Almost-Matching-Exactly for Treatment Effect Estimation under
Network Interference

M. Usaid Awan
Sudeepa Roy

Marco Morucci
Cynthia Rudin

Vittorio Orlandi
Alexander Volfovsky

Duke University

Abstract

We propose a matching method that recov-
ers direct treatment effects from randomized
experiments where units are connected in an
observed network, and units that share edges
can potentially influence each others’ out-
comes. Traditional treatment effect estima-
tors for randomized experiments are biased
and error prone in this setting. Our method
matches units almost exactly on counts of
unique subgraphs within their neighborhood
graphs. The matches that we construct are
interpretable and high-quality. Our method
can be extended easily to accommodate ad-
ditional unit-level covariate information. We
show empirically that our method performs
better than other existing methodologies for
this problem, while producing meaningful,
interpretable results.

1 INTRODUCTION

Randomized experiments are considered to be the gold
standard for estimating causal effects of a treatment
on an outcome. Typically, in these experiments, the
outcome of a unit is assumed to be only affected by the
unit’s own treatment status, and not by the treatment
assignment of other units (Cox, 1958; Rubin, 1980).
However, in many applications — such as measuring ef-
fectiveness of an advertisement campaign or a teacher
training program — units interact, and ignoring these
interactions results in poor causal estimates (Hallo-
ran and Struchiner, 1995; Sobel, 2006). We propose a
method that leverages the observed network structure
of interactions between units to account for treatment
interference among them.
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We study a setting in which a treatment has been uni-
formly randomized over a set of units connected in a
network, and where treatments of connected units can
influence each others’ outcomes. The development of
methods for this setting is a relatively new field in
causal inference methodology, and only few approaches
for it have been proposed (e.g., van der Laan, 2014;
Aronow et al., 2017; Sussman and Airoldi, 2017).

In this paper, we propose a method that leverages
matching (Rosenbaum and Rubin, 1983) to recover di-
rect treatment effects from experiments with interfer-
ence. Our method makes several key contributions
to the study of this setting: First, our method ex-
plicitly leverages information about the network struc-
ture of the experimental sample to adjust for possible
interference while estimating direct treatment effects.
Second, unlike other methods, matching allows us to
nonparametrically estimate treatment effects, without
the need to specify parametric models for interference
or outcomes. Third, matching produces highly inter-
pretable results, informing analysts as to which fea-
tures of the input data were used to produce estimates.
More specifically, we match on features of graphs that
are easy to interpret and visualize.

In our setting, units experience interference according
to their neighborhood graphs — the graphs defined by
the units they are directly connected to. Units with
similar neighborhood graphs will experience similar in-
terference. For example, the educational outcome of a
student randomly assigned to an extra class depends
on whether or not her friends are also assigned to that
class, and not just on how many: the specific structure
of the student’s friendship circle will influence whether
or not study groups are formed, how information is
shared, how much attention the treated student will
devote to the class, and so on. All of this will impact
the overall educational outcomes of interest.

Because of this, matching units with similar neigh-
borhood graphs together will enable us to recover di-
rect treatment effects even under interference. We
match units’ neighborhood graphs on counts of sub-
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graphs within them, as graphs with similar counts of
the same unique subgraphs are naturally likely to be
similar. From there, we construct matches on individ-
uals with similar sets of important subgraphs; here,
the set of important subgraphs is learned from a train-
ing set. We generalize the Almost-Matching-Exactly
(AME) framework (Dieng et al., 2019; Wang et al.,
2019) to match units on subgraphs in experimental
settings. We do this by constructing graph-based fea-
tures that can explain both the interference pattern in
the experiment and predict the underlying social net-
work. We demonstrate that our method performs bet-
ter than other methods for the same problem in many
settings, while generating interpretable matches.

The paper will proceed as follows: In Section 2,
we make explicit the assumptions underpinning our
framework, and outline our matching approach to es-
timating direct treatment effects. In Sections 3 and 4,
we evaluate the effectiveness of our method on simu-
lated and real-world data. Theoretical evaluation of
our approach is available in the appendix.

1.1 Related Work

Work on estimating causal effects under interference
between units has three broad themes. First, there
has been a growing body of work on the design of novel
randomization schemes to perform causal inference un-
der interference (Liu and Hudgens, 2014; Sinclair et al.,
2012; Duflo and Saez, 2003; Basse and Airoldi, 2018).
Some of this work makes explicit use of observed net-
work structure to randomly assign treatment so as to
reduce interference (Ugander et al., 2013; Toulis and
Kao, 2013; Eckles et al., 2016, 2017; Jagadeesan et al.,
2019). These methodologies are inapplicable to our
setting as they require non-uniform treatment assign-
ment, whereas in our setting we wish to correct for in-
terference after randomization. Second, there is work
on estimating direct treatment effects in experiments
under interference, and after conventional treatment
randomization, similar to our setting. Some existing
work aims to characterize the behavior of existing esti-
mators under interference (Manski, 2013; Savje et al.,
2017). Other approaches lay out methods based on
randomization inference to test a variety of hypothe-
ses under interference and treatment randomization
(Rosenbaum, 2007; Aronow, 2012; Athey et al., 2018).
Some of these approaches mix randomization infer-
ence and outcome models (Bowers et al., 2013). For
the explicit problem of recovery of treatment effects
under interference, Aronow et al. (2017) provide a
general framework to translate different assumptions
about interference into inverse-probability estimators,
and Sussman and Airoldi (2017) give linearly unbi-
ased, minimum integrated-variance estimators under a

series of assumptions about interference. These meth-
ods either ignore explicit network structure, or require
probabilities under multiple complex sampling designs
to be estimated explicitly. Finally, there have been
studies of observational inference under network inter-
ference (van der Laan, 2014; Liu et al., 2016; Ogburn
et al., 2017; Forastiere et al., 2016). However, recov-
ering causal estimates using observational data when
units are expected to influence each other requires a
structural model of both the nature of interference and
contagion among units.

2 METHODOLOGY

We discuss our problem and approach in this section.

2.1 Problem Statement

We have a set of n experimental units indexed by
i. These units are connected in a known graph G =
(V,E), where V(G) = {1,...,n} is the set of vertices
of G, and E(Q) is the set of edges of G. We disallow
self-loops in our graph. We say that H is a subgraph of
GifV(H) CV(G) and E(H) C E(G). Let t; € {0,1}
represent the treatment indicator for unit 7, t repre-
sent the vector of treatment indicators for the entire
sample, and t_; represent the treatment indicators for
all units except i. Given a treatment vector t on the
entire sample (i.e., for all vertices in G), we use G* to
denote the labeled graph, where each vertex i € V(Q)
has been labeled with its treatment indicator ¢;. In ad-
dition, we use Gp to denote a graph induced by the set
of vertices P C V(G) on G, such that V(Gp) = P and
E(Gp) = {(e1,e2) € E(G) : e € P,es € P}. We use
the notation N; = {j : (i,7) € E(G)} to represent the
neighborhood of vertex i. The labeled neighborhood
graph of a unit i, G% -, is defined as the graph induced
by the neighbors of i, and labeled according to t. We
also define ty; to be the vector of treatment indica-
tors corresponding to unit i’s neighborhood graph. A
unit’s response to the treatment is represented by its
random potential outcomes Y;(t) = Y;(¢;,t_;). Unlike
other commonly studied causal inference settings, unit
i’s potential outcomes are now a function of both the
treatment assigned to ¢, and of all other units’ treat-
ments. Observed treatments for unit ¢ and the whole
sample are represented by the random variables T; and
T respectively. We assume that the number of treated
units is always n() | ie., S0 T; = n(b.

AOQO: Ignorability of Treatment Assignment.
We make the canonical assumption that treatments
are administered independently of potential outcomes,
that is: Y;(t;,t—;) L T, and 0 < Pr(T; = 1) < 1 for
all units. In practice, we assume that treatment is as-
signed uniformly at random to units, which is possible
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only in experimental settings. As stated before, we do
not make the canonical Stable Unit Treatment Value
Assumption (SUTVA) (Rubin, 1980), which, among
other requirements, states that units are exclusively
affected by the treatment assigned to them. We do
not make this assumption because our units are con-
nected in a network: it could be possible for treat-
ments to spread along the edges of the network and
to affect connected units’ outcomes. We do maintain
the assumption of comparable treatments across units,
which is commonly included in SUTVA.

Our causal quantity of interest will be the Average
Direct Effect (ADE), which is defined as follows:

1 n
ADE = — > E[Y;(1,0) -

i=1

Y;(0,0)], (1)

where t_; = 0 represents the treatment assignment in
which no unit other than ¢ is treated. The summand
represents the treatment effect on unit ¢ when no other
unit is treated, and, therefore, no interference occurs
(Halloran and Struchiner, 1995).

2.2 Framework

We outline the requirements of our framework for
direct effect estimation under interference. We de-
note interference effects on a unit ¢ with the function
fi(t) : {0,1}™ — R, a function that maps each possible
treatment allocation for the n units to the amount of
interference on unit 7. We will use several assumptions
to restrict the domain of f to a much smaller set (and
overload the notation f; accordingly). To characterize
f, we rely on the typology of interference assumptions
introduced by Sussman and Airoldi (2017). The first
three assumptions (A0-A2) needed in our framework
are common in the interference literature (e.g., Man-
ski, 2013; Toulis and Kao, 2013; Eckles et al., 2016;
Athey et al., 2018):

Al: Additivity of Main Effects. First, we as-
sume that main treatment effects are additive, i.e.,
that there is no interaction between units’ treatment
indicators. This allows us to write:

Yi(t, t—i) =tmi + fi(t—i) + & (2)

where 7; is the direct treatment effect on unit 7, and
€; is some baseline effect.

A2: Neighborhood Interference. We focus on a
specific form of the interference function f; by assum-
ing that the interference experienced by unit ¢ depends
only on treatment of its neighbors. That is, if for two
treatment allocations t,t" we have tn;, = t, then
fi(t) = fi(t'). To make explicit this dependence on the
neighborhood subgraph, we will write f;(tar,) = fi(t).

A3: Isomorphic Graph Interference We assume
that, if two units ¢ and j have isomorphic labeled neigh-
borhood graphs, then they receive the same amount
of interference, denoting isomorphism by ~, G¥% N,
Gy — filtw) = filta,) = F(GY,) = F(GY):
While Assumptions Al and A2 are standard, A3is
new. This assumption allows us to study interference
in a setting where units with similar neighborhood sub-
graphs experience similar amounts of interference.

All our assumptions together induce a specific form for
the potential outcomes, namely that they depend on
neighborhood structure G¥ -, but not exactly who the
neighbors are (information contained in A ) nor treat-
ment assignments for those outside the neighborhood
(information contained in tps,). Namely:

Proposition 1. Under assumptions A0-A3, potential
outcomes in (2) for all units i can be written as:

Yi(t,t—;) = tr; + f(GY) + &, (3)

where T; is the direct treatment effect on unit i, and ¢;
is some baseline response.

In addition, suppose that baseline responses for all
units are equal to each other in expectation, i.e., for
all i, Ele;] = a. Then under assumptions A0-A3, for
neighborhood graph structures g; of unit i and treat-
ment vectors t, the ADE is identified as:

1 n
ADE = W§E[ﬂx(m[m|@ ~ gt T; = 1]

—EYi|GN = ¢, T: = 0])],

where G;{}i is the neighborhood graph of i labelled ac-
cording to the treatment assignment T.

The proposition (whose proof is in the appendix)
states that the interference received by a unit is a func-
tion of each unit’s neighborhood graph. Further, the
outcomes can be decomposed additively into this func-
tion and the direct treatment effect on ¢. The propo-
sition implies that the ADE is identified by matching
each treated unit to one or more control units with an
isomorphic neighborhood graph, and computing the
direct effect on the treated using these matches. This
effect is, in expectation over individual treatment as-
signments, equal to the ADE.

2.3 Subgraph Selection via
Almost-Matching-Exactly

Given Proposition 1 and the framework established in
the previous section, we would ideally like to match
treated and control units that have isomorphic neigh-
borhood graphs. This would allow us to better esti-
mate the ADE without suffering interference bias: for
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a treated unit 4, if a control unit j can be found such
that G;‘\/—i ~ Gf\/j, then j’s outcome will be identical in
expectation to ¢’s counterfactual outcome and can be
used as a proxy. Unfortunately, the number of non-
isomorphic (canonically unique) graphs with a given
number of nodes and edges grows incredibly quickly
(Harary, 1994) and finding such matches is infeasible
for large graphs. We therefore resort to counting all
subgraphs that appear in a unit’s neighborhood graph
and matching units based on the counts of those sub-
graphs. However, instead of exactly matching on the
counts of those subgraphs, we match treated and con-
trol units if they have similar counts, since match-
ing exactly on all subgraph counts implies isomorphic
neighborhoods and is also infeasible. Further, abso-
lutely exact matches may not exist in real networks.

Constructing inexact matches, in turn, requires a mea-
sure of relative graph importance. In Figure 1, for
example, there are two control units that the treated
unit may be matched to; if triangles contribute more to
the interference function, it should be matched to the
right; otherwise, if degree and/or two-stars are more
important, it should be matched to the left. Of course,
these relative importance measures might depend on
the problem and we would like to learn them.

Treated
/ unit ?
‘ O—0
Matched Matched ©
control control

Figure 1: Inexact matching presupposes an ordering of
feature importance; should the the treated ego (black)
be matched to a control whose neighborhood graph
has the same number of units (left), or same number
of triangles (right)?

It might be tempting to match directly on f, as that
would lead to unbiased inference. However, we abstain
from doing so for two reasons. Firstly, in practice,
the true interference is unknown and we could only
match on estimated values of f; this suffers from all the
problems that afflict matching on estimated propensity
scores without appropriate adjustments (Abadie and
Imbens, 2016) or parametric approximations (Rubin
and Thomas, 1996). Such corrections or approxima-
tions do not currently exist for estimated interference
functions and their development is an active area of
research. Secondly, interpretability is a key compo-
nent of our framework that would be lost matching on
f-values; these values are scalar summaries of interfer-

ence that depends on entire graphs. Estimating f well
would also likely require complex and uninterpretable
nonparametric methods. In Section K of the appendix,
we empirically compare matching units on f-values to
our subgraph matching method via simulation. The
loss of interpretability associated with matching on f
does not yield substantial gains in performance, even
when using true values of f for matching, which is
impossible in practice.

Almost-Matching-Exactly (AME) (Wang et al., 2019;
Dieng et al., 2019; Awan et al., 2019) provides a frame-
work for the above problem that is explicitly geared to-
wards building interpretable, high-quality matches on
discrete covariates, which in our setting are the counts
of the treated subgraphs in the neighborhood. AME
performs inexact matching while learning importance
weights for each covariate from a training set, priori-
tizing matches on more important covariates. In this
way, it neatly addresses the challenge of inexact match-
ing by learning a metric specific to discrete covariates
(namely, a weighted Hamming distance). Formally,
AME matches units so as to optimize a flexible mea-
sure of match quality. For each treated unit i, solving
the AME problem is equivalent to finding:

0" € argmax6’w 4)
6c{0,1}r

such that 35 :¢t; =0 and x; 00 =x;080

where o denotes the Hadamard product, w is a vector
of weights and @;,x; are vectors of binary covariates
for units ¢ and j that we might like to match on. In
our network interference setting, these are vectors of
subgraph counts. The vector w denotes the impor-
tance of each subgraph in causing interference. We
will leverage both information on outcomes and net-
works to construct an estimate for it.

We start by enumerating (up to isomorphism) all the p
subgraphs g1, ..., gp that appear in any of the Gf\& 4 €
1,...,n. The covariates for unit ¢ are then given by
S(GR,) = (S1(GYy,), - -+, Sp(GYp)) where Si(GY.) de-
notes the number of times subgraph g appears in the
subgraphs of va These counts are then converted
into binary indicators that are one if the count of sub-
graph gi in each unit’s neighborhood is exactly x, for
all z observed in the data. Thus, units will be matched
exactly if they have identical subgraph counts. We
then approximately solve the problem in Equation (4)
to find the optimally important set of subgraphs upon
which to exactly match each treated unit, such that
there is at least one control unit that matches ex-
actly with the treated unit on the chosen subgraph
counts. The key idea behind this approach is that we
want to match units exactly on subgraph counts that
contribute significantly to the interference function,
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trading off exactly-matching on these important sub-
graphs with potential mismatches on subgraphs that
contribute less to interference.

In practice, our implementation enumerates all sub-
graphs in each unit’s neighborhood and stores the
count of each pattern — this is computationally chal-
lenging. There is a growing body of work on efficient
counting algorithms for pre-specified small patterns
(up to 4-5 nodes) but there is little research on fast
methods to both enumerate and count all motifs in a
graph (e.g., Pinar et al., 2017; Marcus and Shavitt,
2010; Hu et al., 2013). Empirically, we see that this
enumeration takes less than 30 seconds for 50 units.

The FLAME Algorithm for AME. The Fast
Large Almost Matching Exactly (FLAME) algorithm
(Wang et al., 2019) approximates the solution to
the AME problem. The procedure starts by exactly
matching all possible units on all covariates. It then
drops one covariate at a time, choosing the drop maxi-
mizing the match quality MQ at that iteration, defined:

MQ = C - BF — PEy. (5)

The match quality is the sum of a balancing factor
BF and a predictive error ISEy, with relative weights
determined by the hyper-parameter C'. The balanc-
ing factor is defined as the proportion of treated units
plus the proportion of control units matched at that
iteration. Introducing the balancing factor into the
objective has the advantage of encouraging more units
to be matched, thereby minimizing variance of estima-
tors (see Wang et al., 2019). In our setting, the second
component of the match quality, predictive error, takes
the form:

n

PEy = argmin Z(K — h(S(G%)00,T;))*  (6)

heF1 B
for some class of functions F;. It is computed using
a holdout training set and discourages dropping co-
variates that are useful for predicting the outcome. In
this way, FLAME strikes a balance between matching
many units and ensuring these matches are of high-
quality. By using a holdout set to determine how use-
ful a set of variables is for out-of-sample prediction,
FLAME learns a measure of covariate importance via
a weighted Hamming distance. Specifically, it learns a
vector of importance weights w for the different sub-
graph counts that minimizes w”I[S(GY,) # S(Gf\[j)],
where I[S(GY,) # S(GY%;,)] is a vector whose k*" entry
is 0 if the labeled neighborhood graphs of ¢ and j have
the same count of subgraph &, and 1 otherwise.

To this match quality term, we add a network fit term
to give subgraphs more weight that are highly predic-

tive of overall network structure. We fit a logistic re-
gression model in which the edges (i, j) between units
i,j are independent given N;, N, and dependent on
the subgraph counts of units ¢ and j:

(4,5) * Bern(logit(87 S(GY%.) + AT S(G4)))

To the match quality in the original formulation, we
then add PEg, defined to be the AIC (Akaike, 1974)
of this fitted model, weighted by a hyperparameter D.
Therefore, at each iteration:

MQ = C -BF — PEy + D - PEg.

Thus, we penalize not only subgraph drops that im-
pede predictive performance or making matches, but
also those that make the observed network unlikely.
PE: represents the empirical prediction error of the
chosen set of statistics for the observed graph: if PE:
is low, then the chosen subgraphs do a good job of
predicting the observed graph. This error is also eval-
uated at a minimum over another class of prediction
functions, F5. This term in the AME objective is justi-
fied by Assumption A3: units that have isomorphic la-
beled neighborhood graphs should experience the same
amount of interference, and subgraph counts should be
predictive of neighborhood graph structure.

Our approach to estimating the ADE is therefore as
follows. (1) For each unit ¢, count and label all types of
subgraphs in G}\/ (2) Run FLAME, encouraging large
numbers of matches on subgraph counts, while using
the covariates that are most important for predicting
the outcome and the network. (3) Estimate ADE as

m, by computing the difference in means for each
matched group and then averaging across matched
groups, weighted by their size. Since our approach
is based on FLAME, we call it FLAME-Networks.

Extensions.  FLAME-Networks immediately ex-
tends to handling unit-level covariate information for
baseline adjustments; we simply concatenate sub-
graph information and covariate information in the
same dataset and then make almost-exact matches.
FLAME-Networks will automatically learn the weights
of both subgraphs and baseline covariates to make
matches that take both into account.  Another
straightforward extension considers interference not
just in the immediate neighborhood of each unit, but
up to an arbitrary number of hops away. To extend
FLAME-Networks in this way, it is sufficient to enu-
merate subgraphs in the induced neighborhood graph
of each unit 7 where the vertices considered are those
with a path to ¢ that is at most k steps long. Given
these counts, our method proceeds exactly as before.
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d;: The treated degree of unit 4

A;: The number of triangles in G}, ., Wwith at

least one treated unit.

% The number of k-stars in Gj\/iu{i} with at least
one treated unit.

5. The number of units in ijiu 0} with degree
> k and at least one treated unit among their
neighbors.

B;: The vertex betweenness of unit 7.

C;:  The closeness centrality of unit 1.

Table 1: Interference components used in experiments;
see the appendix for more details.

3 EXPERIMENTS

We begin by evaluating the performance of our estima-
tor in a variety of simulated settings, in which we vary
the form of the interference function. We find that our
approach performs well in many distinct settings. In
Section M of the appendix, we also assess the quality
of the matches constructed.

We simulate graphs from an Erdés-Renyi model: G ~
Erdés-Renyi(n, ¢), by which every possible edge be-
tween the n units is created independently, with prob-
ability ¢. In Sections H and I of the appendix, we
also perform experiments on cluster-randomized and
real-world networks. Treatments for the whole sam-
ple are generated with Pr(T = t) = (,,)) , where
nM is the number of treated units. Outcomes are
generated according to Y;(t,t_;) = tr; + f(G%.) + &,
where ¢ ~ N(0,1,) represents a baseline outcome;
7; ~ N(5,1,) represents a direct treatment effect, and
f is the interference function. In Section J of the ap-
pendix, we consider a setting in which the errors are
heteroscedastic. For the interference function, we use
additive combinations of the subgraph components in
Table 1 and define m;,,p =1,...,7 to be the counts of
feature p in Gj\fiu e Lastly, the counts of each com-
ponent are normajlized to have mean 0 and standard
deviation 1. We compare our approach with different
methods to estimate the ADE under interference:

Naive. The simple difference in means between treat-
ment and control groups assuming no interference.
All Eigenvectors. Eigenvectors for the entire adja-
cency matrix are computed with every treated unit
matched to the control unit minimizing the Maha-
lanobis distance between the eigenvectors, weighing
the k’th eigenvector by 1/k. The idea behind this esti-
mator is that the eigendecomposition of the adjacency
matrix encodes important information about the net-
work and how interference might spread within it.
First Eigenvector. Same as All Eigenvectors ex-
cept units are matched only on their values of the
largest-eigenvalue eigenvector.

Feature di A, %7 %i 2 B C;
Weight |71 72 3 7 %5 % 7
Setting 1 | 0 10 0 0 0 0 O
Setting 2 | 10 10 0 0 0 0 O
Setting 3 | 0 10 1 1 1 1 -1
Setting 4 5 1 10 1 1 1 -1

Table 2: Settings for Experiment 1.

Stratified Naive. The stratified naive estimator as
discussed by Sussman and Airoldi (2017). A weighted
difference-in-means estimator where units are divided
into strata defined by their treated degree (number of
treated vertices they are connected to), and assigned
weight equal to the number of units within the stra-
tum in the final difference of weighted averages be-
tween treated and control groups.

SANIA MIVLUE. The minimum integrated vari-
ance, linear unbiased estimator under assumptions of
symmetrically received interference and additivity of
main effects, when the priors on the baseline outcome
and direct treatment effect have no correlation be-
tween units; proposed by Sussman and Airoldi (2017).
FLAME-Networks. Our proposed method. In all
simulations, the two components of the PE function
are weighted equally, and a ridge regression is used to
compute outcome prediction error.

3.1 Experiment 1: Additive Interference

First we study a setting in which interference is an
additive function of the components in Table 1. Out-
comes in this experiment have the form: Y; = y1d; +
Y2Ai + y3%kF + Yk} + 5 12 +76Bi + 77Ci + €, with
€ ~ N(0,1). We simulate 50 datasets for each set-
ting, in which the units are in an ER(50,0.05) graph.
Table 2 shows values for the 7; in each of our exper-
imental settings. Results for Experiment 1 are re-
ported in Figure 2. FLAME-Networks outperforms
all other methods both in terms of average error, and
standard deviation over the simulations. This is likely
because FLAME-Networks learns weights for the sub-
graphs that are proportionate to those we use at each
setting, and matches units on subgraphs with larger
weights. When the interference function is multiplica-
tive instead of additive, FLAME-Networks performs
similarly; results are in the appendix.

3.2 Experiment 2: Covariate Adjustment

A strength of FLAME-Networks is its ability to na-
tively account for covariate information. We analyze
a setting in which baseline effects are dependent on
an additional discrete-valued covariate, x, that is ob-
served alongside the network. Outcomes take the form
Y; = tm + f(G%,) + Bxi + €;, where z; is chosen uni-
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Simulation Results: Additive Interference

Absolute Error
°
=

5.0 ——— ©
- | ¢
00{™"" 1‘ ---------------------------------------------
12
8
s
4 - = ‘
D N S A—
FLAME-Networks First All Naive Stratified SANIA

Eigenvector  Eigenvectors

Figure 2: Results from Experiment 1. Each violin plot
represents the distribution over simulations of absolute
estimation error. The panels are numbered according
to the parameter settings of the simulations. Violin
plots are blue if the method had mean error lower than
or equal to FLAME-Networks’ and red otherwise. The
black line inside each violin is the median error. The
dashed line is FLAME-Networks’ mean error.

formly at random from {1,2,3} for each unit, and
[ is fixed at 15. This means that our sample is di-
vided into 3 strata defined by the covariate values.
We ran FLAME-Networks with a dataset consisting
of subgraph counts, plus observed covariates for each
unit. For comparison with the other methods, we first
regress Y on x, and then use the residuals of that re-
gression as outcomes for the other methods. This way,
the initial regression will account for the baseline ef-
fects of z, and the residuals contain only potential in-
terference. The interference function takes the form
f(Gj\/) =d; +A; + B;, which is what we are trying to
learn with the other methods. We simulate the sample
network from ER(50,0.05).

Results are displayed in Table 3. FLAME-Networks
performs, on average, better than all the other meth-
ods. Results in Section L of the supplement show that
when £ is increased, none of the methods suffer in per-
formance. While regression adjustment prior to esti-
mation seems to have a positive impact on the perfor-
mance of other methods in the presence of additional
covariates, FLAME-Networks performs best. This is
because FLAME-Networks is built to easily handle the
inclusion of covariates in its estimation procedure.

3.3 Experiment 3: Misspecified Interference

We now study the robustness of our estimator in a
setting in which one of our key assumptions — A3
— is violated. Specifically, we now allow for treated

Method Median 25th q 75th g
FLAME-Networks 0.39 0.21 0.59
First Eigenvector 0.47 0.40 0.83
All Eigenvectors 0.55 0.29 0.79
Naive 0.53 0.36 0.92
SANTA 1.93 1.75 2.25
Stratified 4.49 4.45 4.53

Table 3: Results from Experiment 2 with 8 = 5. Me-
dian and 25th and 75th percentile of absolute error
over 40 simulated datasets.

and control units to receive different amounts of in-
terference, even if they have the same labelled neigh-
borhood graphs. We do this by temporarily eliminat-
ing all control-control edges in the network and then
counting the features in Table 1 used to assign interfer-
ence. That is, consider a unit ¢ with a single, untreated
neighbor j. In our new setting, if degree is a feature of
the interference function, then ¢ being treated implies
i receives interference from j. But if ¢ is untreated,
then ¢ would receive no interference from j, because
its neighbor is also untreated. This crucially implies
that FLAME-Networks will be matching—and estimat-
ing the ADE from—individuals that do not necessarily
receive similar amounts of interference.

In this setting, we generate interference according to:
fi = (5= )d; + vA,; for v € [0,5] and assess the
performance of FLAME-Networks against that of the
SANTA and stratified estimators. Results are shown
in Figure 3. We see that, when degree is the only
component with weight in the interference function,
FLAME-Networks performs better than the stratified
estimator, but worse than the SANIA estimator, which
leverages aspects of the graph related to degree. How-
ever, our performance improves as -y increases and the
true interference depends more on triangle counts since
the triangle counts available to FLAME-Networks rep-
resent the actual interference pattern more frequently
than the degree counts did. Thus, we see that although
violation of our method’s assumptions harms its per-
formance, it still manages at times to outperform es-
timators that rely too heavily on degree.

4 APPLICATION

In this section, we demonstrate the practical utility
of our method. We use data collected by Banerjee
et al. (2013) on social networks for 75 villages in Kar-
nataka, India. They are a median distance of 46 km
from one another other, motivating the assumption
that network interference is experienced solely between
individuals from the same village. For each village,
we study the effect of 1. lack of education on election
participation; 2. lack of education on Self-Help-Group
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~ SANIA
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Figure 3: Results from Experiment 3. These simula-
tions were run on an ER(75, 0.07) graph. The bands
around the lines represent 25th and 75th quantiles of
the 50 simulations, for each value of ~.

(SHG) participation; and 3. being male on SHG par-
ticipation. We proxy election participation by owner-
ship of an election card. We compare our estimates —
which account for network interference — to naive esti-
mates — which assume no network interference. Data
pre-processing is summarized in the appendix.

For ADE estimates, we assume the treatment is ran-
domly assigned. We find that lack of education is asso-
ciated with higher SHG participation, and that males
are less likely to participate in SHGs than females (see
Figure 4). These results make sense in the context
of developing countries where SHGs are mainly uti-
lized by females in low-income families, which gen-
erally have lower education levels. We observe that
education does not impact election participation; in
developing countries, an individual’s decision to par-
ticipate in an election may be driven by factors such
caste, religion, influence of local leaders and closeness
of race (Shachar and Nalebuff, 1999; Gleason, 2001).
FLAME-Networks matches units in each village by
subgraph counts and covariate values to estimate the
ADE. Looking at the matched groups, we discover that
subgraphs such as 2-stars and triangles were important
for matching, implying that second-order connections
could be affecting interference in this setting. Further
details of the matched groups are in Section F.

Figure 4 plots naive and FLAME-Networks ADE esti-
mates. We find a significant difference between our
estimates and the naive estimates when estimating
the effect of being male on participation in SHGs.
The naive estimator overestimates the treatment ef-
fect, which is possible when ignoring network interfer-
ence. It is plausible, in this setting, that interference
would heighten these effects for all outcomes. This is
because individuals from similar social backgrounds or

||

Naive ADE Estimate

5
&
FLAME-Network ADE Estimate
S
@

o

Naive - FLAME-Network
o
o

Difference in ADE Estimates:

Figure 4: Naive and FLAME-Networks ADE estimates
and their difference. Red, blue, and green respectively
correspond to (treatment, outcome) pairs: (no educa-

tion, election participation), (no education, SHG par-
ticipation), and (gender, SHG participation).

S

gender tend to interact more together, and, therefore,
are more likely to influence each other’s participation
decision, both in elections and in SHGs.

5 DISCUSSION

Conventional estimators for treatment effects in ran-
domized experiments will be biased when there is
interference between units. We have introduced
FLAME-Networks — a method to recover direct treat-
ment effects in such settings. Our method is based
on matching units with similar neighborhood graphs
in an almost-exact way, thus producing interpretable,
high-quality results. We have shown that FLAME-
Networks performs better than existing methods both
on simulated data, and we have used real-world data
to show how it can be applied in a real setting. Our
method extends easily to settings with additional co-
variate information for units and to taking into ac-
count larger neighborhoods for interference. In future
work, our method can be extended to learning a vari-
ety of types of distance metrics between graphs.
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