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Abstract

We propose a matching method that recov-
ers direct treatment effects from randomized
experiments where units are connected in an
observed network, and units that share edges
can potentially influence each others’ out-
comes. Traditional treatment effect estima-
tors for randomized experiments are biased
and error prone in this setting. Our method
matches units almost exactly on counts of
unique subgraphs within their neighborhood
graphs. The matches that we construct are
interpretable and high-quality. Our method
can be extended easily to accommodate ad-
ditional unit-level covariate information. We
show empirically that our method performs
better than other existing methodologies for
this problem, while producing meaningful,
interpretable results.

1 INTRODUCTION

Randomized experiments are considered to be the gold
standard for estimating causal effects of a treatment
on an outcome. Typically, in these experiments, the
outcome of a unit is assumed to be only affected by the
unit’s own treatment status, and not by the treatment
assignment of other units (Cox, 1958; Rubin, 1980).
However, in many applications – such as measuring ef-
fectiveness of an advertisement campaign or a teacher
training program – units interact, and ignoring these
interactions results in poor causal estimates (Hallo-
ran and Struchiner, 1995; Sobel, 2006). We propose a
method that leverages the observed network structure
of interactions between units to account for treatment
interference among them.
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We study a setting in which a treatment has been uni-
formly randomized over a set of units connected in a
network, and where treatments of connected units can
influence each others’ outcomes. The development of
methods for this setting is a relatively new field in
causal inference methodology, and only few approaches
for it have been proposed (e.g., van der Laan, 2014;
Aronow et al., 2017; Sussman and Airoldi, 2017).

In this paper, we propose a method that leverages
matching (Rosenbaum and Rubin, 1983) to recover di-
rect treatment effects from experiments with interfer-
ence. Our method makes several key contributions
to the study of this setting: First, our method ex-
plicitly leverages information about the network struc-
ture of the experimental sample to adjust for possible
interference while estimating direct treatment effects.
Second, unlike other methods, matching allows us to
nonparametrically estimate treatment effects, without
the need to specify parametric models for interference
or outcomes. Third, matching produces highly inter-
pretable results, informing analysts as to which fea-
tures of the input data were used to produce estimates.
More specifically, we match on features of graphs that
are easy to interpret and visualize.

In our setting, units experience interference according
to their neighborhood graphs – the graphs defined by
the units they are directly connected to. Units with
similar neighborhood graphs will experience similar in-
terference. For example, the educational outcome of a
student randomly assigned to an extra class depends
on whether or not her friends are also assigned to that
class, and not just on how many: the specific structure
of the student’s friendship circle will influence whether
or not study groups are formed, how information is
shared, how much attention the treated student will
devote to the class, and so on. All of this will impact
the overall educational outcomes of interest.

Because of this, matching units with similar neigh-
borhood graphs together will enable us to recover di-
rect treatment effects even under interference. We
match units’ neighborhood graphs on counts of sub-
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graphs within them, as graphs with similar counts of
the same unique subgraphs are naturally likely to be
similar. From there, we construct matches on individ-
uals with similar sets of important subgraphs; here,
the set of important subgraphs is learned from a train-
ing set. We generalize the Almost-Matching-Exactly
(AME) framework (Dieng et al., 2019; Wang et al.,
2019) to match units on subgraphs in experimental
settings. We do this by constructing graph-based fea-
tures that can explain both the interference pattern in
the experiment and predict the underlying social net-
work. We demonstrate that our method performs bet-
ter than other methods for the same problem in many
settings, while generating interpretable matches.

The paper will proceed as follows: In Section 2,
we make explicit the assumptions underpinning our
framework, and outline our matching approach to es-
timating direct treatment effects. In Sections 3 and 4,
we evaluate the effectiveness of our method on simu-
lated and real-world data. Theoretical evaluation of
our approach is available in the appendix.

1.1 Related Work

Work on estimating causal effects under interference
between units has three broad themes. First, there
has been a growing body of work on the design of novel
randomization schemes to perform causal inference un-
der interference (Liu and Hudgens, 2014; Sinclair et al.,
2012; Duflo and Saez, 2003; Basse and Airoldi, 2018).
Some of this work makes explicit use of observed net-
work structure to randomly assign treatment so as to
reduce interference (Ugander et al., 2013; Toulis and
Kao, 2013; Eckles et al., 2016, 2017; Jagadeesan et al.,
2019). These methodologies are inapplicable to our
setting as they require non-uniform treatment assign-
ment, whereas in our setting we wish to correct for in-
terference after randomization. Second, there is work
on estimating direct treatment effects in experiments
under interference, and after conventional treatment
randomization, similar to our setting. Some existing
work aims to characterize the behavior of existing esti-
mators under interference (Manski, 2013; Sävje et al.,
2017). Other approaches lay out methods based on
randomization inference to test a variety of hypothe-
ses under interference and treatment randomization
(Rosenbaum, 2007; Aronow, 2012; Athey et al., 2018).
Some of these approaches mix randomization infer-
ence and outcome models (Bowers et al., 2013). For
the explicit problem of recovery of treatment effects
under interference, Aronow et al. (2017) provide a
general framework to translate different assumptions
about interference into inverse-probability estimators,
and Sussman and Airoldi (2017) give linearly unbi-
ased, minimum integrated-variance estimators under a

series of assumptions about interference. These meth-
ods either ignore explicit network structure, or require
probabilities under multiple complex sampling designs
to be estimated explicitly. Finally, there have been
studies of observational inference under network inter-
ference (van der Laan, 2014; Liu et al., 2016; Ogburn
et al., 2017; Forastiere et al., 2016). However, recov-
ering causal estimates using observational data when
units are expected to influence each other requires a
structural model of both the nature of interference and
contagion among units.

2 METHODOLOGY

We discuss our problem and approach in this section.

2.1 Problem Statement

We have a set of n experimental units indexed by
i. These units are connected in a known graph G =
(V,E), where V (G) = {1, . . . , n} is the set of vertices
of G, and E(G) is the set of edges of G. We disallow
self-loops in our graph. We say thatH is a subgraph of
G if V (H) ✓ V (G) and E(H) ✓ E(G). Let ti 2 {0, 1}
represent the treatment indicator for unit i, t repre-
sent the vector of treatment indicators for the entire
sample, and t�i represent the treatment indicators for
all units except i. Given a treatment vector t on the
entire sample (i.e., for all vertices in G), we use Gt to
denote the labeled graph, where each vertex i 2 V (G)
has been labeled with its treatment indicator ti. In ad-
dition, we use GP to denote a graph induced by the set
of vertices P ✓ V (G) on G, such that V (GP ) = P and
E(GP ) = {(e1, e2) 2 E(G) : e1 2 P, e2 2 P}. We use
the notation Ni = {j : (i, j) 2 E(G)} to represent the
neighborhood of vertex i. The labeled neighborhood
graph of a unit i, Gt

Ni
, is defined as the graph induced

by the neighbors of i, and labeled according to t. We
also define tNi

to be the vector of treatment indica-
tors corresponding to unit i’s neighborhood graph. A
unit’s response to the treatment is represented by its
random potential outcomes Yi(t) = Yi(ti, t�i). Unlike
other commonly studied causal inference settings, unit
i’s potential outcomes are now a function of both the
treatment assigned to i, and of all other units’ treat-
ments. Observed treatments for unit i and the whole
sample are represented by the random variables Ti and
T respectively. We assume that the number of treated
units is always n(1), i.e.,

Pn

i=1 Ti = n(1).

A0: Ignorability of Treatment Assignment.

We make the canonical assumption that treatments
are administered independently of potential outcomes,
that is: Yi(ti, t�i) ?? T, and 0 < Pr(Ti = 1) < 1 for
all units. In practice, we assume that treatment is as-
signed uniformly at random to units, which is possible
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only in experimental settings. As stated before, we do
not make the canonical Stable Unit Treatment Value
Assumption (SUTVA) (Rubin, 1980), which, among
other requirements, states that units are exclusively
affected by the treatment assigned to them. We do
not make this assumption because our units are con-
nected in a network: it could be possible for treat-
ments to spread along the edges of the network and
to affect connected units’ outcomes. We do maintain
the assumption of comparable treatments across units,
which is commonly included in SUTVA.

Our causal quantity of interest will be the Average
Direct Effect (ADE), which is defined as follows:

ADE =
1

n

nX

i=1

E[Yi(1,0)� Yi(0,0)], (1)

where t�i = 0 represents the treatment assignment in
which no unit other than i is treated. The summand
represents the treatment effect on unit i when no other
unit is treated, and, therefore, no interference occurs
(Halloran and Struchiner, 1995).

2.2 Framework

We outline the requirements of our framework for
direct effect estimation under interference. We de-
note interference effects on a unit i with the function
fi(t) : {0, 1}

n 7! R, a function that maps each possible
treatment allocation for the n units to the amount of
interference on unit i. We will use several assumptions
to restrict the domain of f to a much smaller set (and
overload the notation fi accordingly). To characterize
f , we rely on the typology of interference assumptions
introduced by Sussman and Airoldi (2017). The first
three assumptions (A0-A2) needed in our framework
are common in the interference literature (e.g., Man-
ski, 2013; Toulis and Kao, 2013; Eckles et al., 2016;
Athey et al., 2018):

A1: Additivity of Main Effects. First, we as-
sume that main treatment effects are additive, i.e.,
that there is no interaction between units’ treatment
indicators. This allows us to write:

Yi(t, t�i) = t⌧i + fi(t�i) + ✏i (2)

where ⌧i is the direct treatment effect on unit i, and
✏i is some baseline effect.
A2: Neighborhood Interference. We focus on a
specific form of the interference function fi by assum-
ing that the interference experienced by unit i depends
only on treatment of its neighbors. That is, if for two
treatment allocations t, t0 we have tNi

= t0Ni
then

fi(t) = fi(t
0). To make explicit this dependence on the

neighborhood subgraph, we will write fi(tNi
) ⌘ fi(t).

A3: Isomorphic Graph Interference We assume
that, if two units i and j have isomorphic labeled neigh-
borhood graphs, then they receive the same amount
of interference, denoting isomorphism by ', Gt

Ni
'

Gt

Nj
=) fi(tNi

) = fj(tNj
) ⌘ f(Gt

Ni
) = f(Gt

Nj
).

While Assumptions A1 and A2 are standard, A3 is
new. This assumption allows us to study interference
in a setting where units with similar neighborhood sub-
graphs experience similar amounts of interference.

All our assumptions together induce a specific form for
the potential outcomes, namely that they depend on
neighborhood structure Gt

Ni
, but not exactly who the

neighbors are (information contained in Ni) nor treat-
ment assignments for those outside the neighborhood
(information contained in tNi

). Namely:

Proposition 1. Under assumptions A0-A3, potential
outcomes in (2) for all units i can be written as:

Yi(t, t�i) = t⌧i + f(Gt

Ni
) + ✏i, (3)

where ⌧i is the direct treatment effect on unit i, and ✏i
is some baseline response.

In addition, suppose that baseline responses for all
units are equal to each other in expectation, i.e., for
all i, E[✏i] = ↵. Then under assumptions A0-A3, for
neighborhood graph structures gi of unit i and treat-
ment vectors t, the ADE is identified as:

ADE =
1

n(1)

nX

i=1

E
⇥
Ti⇥

�
E[Yi|G

T

Ni
' gti , Ti = 1]

� E[Yi|G
T

N ' gti , Ti = 0]
�⇤
,

where GT

Ni
is the neighborhood graph of i labelled ac-

cording to the treatment assignment T.

The proposition (whose proof is in the appendix)
states that the interference received by a unit is a func-
tion of each unit’s neighborhood graph. Further, the
outcomes can be decomposed additively into this func-
tion and the direct treatment effect on i. The propo-
sition implies that the ADE is identified by matching
each treated unit to one or more control units with an
isomorphic neighborhood graph, and computing the
direct effect on the treated using these matches. This
effect is, in expectation over individual treatment as-
signments, equal to the ADE.

2.3 Subgraph Selection via

Almost-Matching-Exactly

Given Proposition 1 and the framework established in
the previous section, we would ideally like to match
treated and control units that have isomorphic neigh-
borhood graphs. This would allow us to better esti-
mate the ADE without suffering interference bias: for
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trading off exactly-matching on these important sub-
graphs with potential mismatches on subgraphs that
contribute less to interference.

In practice, our implementation enumerates all sub-
graphs in each unit’s neighborhood and stores the
count of each pattern – this is computationally chal-
lenging. There is a growing body of work on efficient
counting algorithms for pre-specified small patterns
(up to 4-5 nodes) but there is little research on fast
methods to both enumerate and count all motifs in a
graph (e.g., Pinar et al., 2017; Marcus and Shavitt,
2010; Hu et al., 2013). Empirically, we see that this
enumeration takes less than 30 seconds for 50 units.

The FLAME Algorithm for AME. The Fast
Large Almost Matching Exactly (FLAME) algorithm
(Wang et al., 2019) approximates the solution to
the AME problem. The procedure starts by exactly
matching all possible units on all covariates. It then
drops one covariate at a time, choosing the drop maxi-
mizing the match quality MQ at that iteration, defined:

MQ = C · BF�cPEY . (5)

The match quality is the sum of a balancing factor
BF and a predictive error cPEY , with relative weights
determined by the hyper-parameter C. The balanc-
ing factor is defined as the proportion of treated units
plus the proportion of control units matched at that
iteration. Introducing the balancing factor into the
objective has the advantage of encouraging more units
to be matched, thereby minimizing variance of estima-
tors (see Wang et al., 2019). In our setting, the second
component of the match quality, predictive error, takes
the form:

cPEY = argmin
h2F1

nX

i

(Yi � h(S(Gt

Ni
) � θ, Ti))

2 (6)

for some class of functions F1. It is computed using
a holdout training set and discourages dropping co-
variates that are useful for predicting the outcome. In
this way, FLAME strikes a balance between matching
many units and ensuring these matches are of high-
quality. By using a holdout set to determine how use-
ful a set of variables is for out-of-sample prediction,
FLAME learns a measure of covariate importance via
a weighted Hamming distance. Specifically, it learns a
vector of importance weights w for the different sub-
graph counts that minimizes wT

I[S(Gt

Ni
) 6= S(Gt

Nj
)],

where I[S(Gt

Ni
) 6= S(Gt

Nj
)] is a vector whose kth entry

is 0 if the labeled neighborhood graphs of i and j have
the same count of subgraph k, and 1 otherwise.

To this match quality term, we add a network fit term
to give subgraphs more weight that are highly predic-

tive of overall network structure. We fit a logistic re-
gression model in which the edges (i, j) between units
i, j are independent given Ni,Nj , and dependent on
the subgraph counts of units i and j:

(i, j)
iid
⇠ Bern(logit(�T

1 S(G
t

Ni
) + �T

2 S(G
t

Nj
)))

To the match quality in the original formulation, we
then add cPEG, defined to be the AIC (Akaike, 1974)
of this fitted model, weighted by a hyperparameter D.
Therefore, at each iteration:

MQ = C · BF�cPEY +D ·cPEG.

Thus, we penalize not only subgraph drops that im-
pede predictive performance or making matches, but
also those that make the observed network unlikely.
cPEG represents the empirical prediction error of the
chosen set of statistics for the observed graph: if cPEG
is low, then the chosen subgraphs do a good job of
predicting the observed graph. This error is also eval-
uated at a minimum over another class of prediction
functions, F2. This term in the AME objective is justi-
fied by Assumption A3: units that have isomorphic la-
beled neighborhood graphs should experience the same
amount of interference, and subgraph counts should be
predictive of neighborhood graph structure.

Our approach to estimating the ADE is therefore as
follows. (1) For each unit i, count and label all types of
subgraphs inGt

Ni
. (2) Run FLAME, encouraging large

numbers of matches on subgraph counts, while using
the covariates that are most important for predicting
the outcome and the network. (3) Estimate ADE as
\ADE, by computing the difference in means for each
matched group and then averaging across matched
groups, weighted by their size. Since our approach
is based on FLAME, we call it FLAME-Networks.

Extensions. FLAME-Networks immediately ex-
tends to handling unit-level covariate information for
baseline adjustments; we simply concatenate sub-
graph information and covariate information in the
same dataset and then make almost-exact matches.
FLAME-Networks will automatically learn the weights
of both subgraphs and baseline covariates to make
matches that take both into account. Another
straightforward extension considers interference not
just in the immediate neighborhood of each unit, but
up to an arbitrary number of hops away. To extend
FLAME-Networks in this way, it is sufficient to enu-
merate subgraphs in the induced neighborhood graph
of each unit i where the vertices considered are those
with a path to i that is at most k steps long. Given
these counts, our method proceeds exactly as before.
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di: The treated degree of unit i
∆i: The number of triangles in Gt

Ni[{i} with at
least one treated unit.

Fk
i : The number of k-stars in Gt

Ni[{i} with at least
one treated unit.

†ki : The number of units in Gt

Ni[{i} with degree
� k and at least one treated unit among their
neighbors.

Bi: The vertex betweenness of unit i.
Ci: The closeness centrality of unit i.

Table 1: Interference components used in experiments;
see the appendix for more details.

3 EXPERIMENTS

We begin by evaluating the performance of our estima-
tor in a variety of simulated settings, in which we vary
the form of the interference function. We find that our
approach performs well in many distinct settings. In
Section M of the appendix, we also assess the quality
of the matches constructed.

We simulate graphs from an Erdős-Rènyi model: G ⇠

Erdős-Rènyi(n, q), by which every possible edge be-
tween the n units is created independently, with prob-
ability q. In Sections H and I of the appendix, we
also perform experiments on cluster-randomized and
real-world networks. Treatments for the whole sam-
ple are generated with Pr(T = t) =

�
n

n(1)

��1
, where

n(1) is the number of treated units. Outcomes are
generated according to Yi(t, t�i) = t⌧i + f(Gt

Ni
) + ✏i,

where ✏ ⇠ N(0, In) represents a baseline outcome;
⌧i ⇠ N(5, In) represents a direct treatment effect, and
f is the interference function. In Section J of the ap-
pendix, we consider a setting in which the errors are
heteroscedastic. For the interference function, we use
additive combinations of the subgraph components in
Table 1 and define mip, p = 1, . . . , 7 to be the counts of
feature p in Gt

Ni[{i}. Lastly, the counts of each com-
ponent are normalized to have mean 0 and standard
deviation 1. We compare our approach with different
methods to estimate the ADE under interference:

Näıve. The simple difference in means between treat-
ment and control groups assuming no interference.
All Eigenvectors. Eigenvectors for the entire adja-
cency matrix are computed with every treated unit
matched to the control unit minimizing the Maha-
lanobis distance between the eigenvectors, weighing
the k’th eigenvector by 1/k. The idea behind this esti-
mator is that the eigendecomposition of the adjacency
matrix encodes important information about the net-
work and how interference might spread within it.
First Eigenvector. Same as All Eigenvectors ex-
cept units are matched only on their values of the
largest-eigenvalue eigenvector.

Feature di ∆i F2
i F4

i †3 Bi Ci

Weight �1 �2 �3 �4 �5 �6 �7
Setting 1 0 10 0 0 0 0 0
Setting 2 10 10 0 0 0 0 0
Setting 3 0 10 1 1 1 1 -1
Setting 4 5 1 10 1 1 1 -1

Table 2: Settings for Experiment 1.

Stratified Näıve. The stratified näıve estimator as
discussed by Sussman and Airoldi (2017). A weighted
difference-in-means estimator where units are divided
into strata defined by their treated degree (number of
treated vertices they are connected to), and assigned
weight equal to the number of units within the stra-
tum in the final difference of weighted averages be-
tween treated and control groups.
SANIA MIVLUE. The minimum integrated vari-
ance, linear unbiased estimator under assumptions of
symmetrically received interference and additivity of
main effects, when the priors on the baseline outcome
and direct treatment effect have no correlation be-
tween units; proposed by Sussman and Airoldi (2017).
FLAME-Networks. Our proposed method. In all
simulations, the two components of the PE function
are weighted equally, and a ridge regression is used to
compute outcome prediction error.

3.1 Experiment 1: Additive Interference

First we study a setting in which interference is an
additive function of the components in Table 1. Out-
comes in this experiment have the form: Yi = �1di +
�2∆i + �3F

2
i + �4F

4
i + �5 †

3
i +�6Bi + �7Ci + ✏i, with

✏i ⇠ N(0, 1). We simulate 50 datasets for each set-
ting, in which the units are in an ER(50, 0.05) graph.
Table 2 shows values for the �i in each of our exper-
imental settings. Results for Experiment 1 are re-
ported in Figure 2. FLAME-Networks outperforms
all other methods both in terms of average error, and
standard deviation over the simulations. This is likely
because FLAME-Networks learns weights for the sub-
graphs that are proportionate to those we use at each
setting, and matches units on subgraphs with larger
weights. When the interference function is multiplica-
tive instead of additive, FLAME-Networks performs
similarly; results are in the appendix.

3.2 Experiment 2: Covariate Adjustment

A strength of FLAME-Networks is its ability to na-
tively account for covariate information. We analyze
a setting in which baseline effects are dependent on
an additional discrete-valued covariate, x, that is ob-
served alongside the network. Outcomes take the form
Yi = t⌧i + f(Gt

Ni
) + �xi + ✏i, where xi is chosen uni-
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Fredrik Sävje, Peter M Aronow, and Michael G
Hudgens. Average treatment effects in the pres-
ence of unknown interference. arXiv preprint
arXiv:1711.06399, 2017.

Ron Shachar and Barry Nalebuff. Follow the leader:
Theory and evidence on political participation.
American Economic Review, 89(3):525–547, 1999.

Betsy Sinclair, Margaret McConnell, and Donald P
Green. Detecting spillover effects: Design and anal-
ysis of multilevel experiments. American Journal of
Political Science, 56(4):1055–1069, 2012.

Michael E Sobel. What do randomized studies of hous-
ing mobility demonstrate? causal inference in the
face of interference. Journal of the American Statis-
tical Association, 101(476):1398–1407, 2006.

Daniel L Sussman and Edoardo M Airoldi. Ele-
ments of estimation theory for causal effects in the
presence of network interference. arXiv preprint
arXiv:1702.03578, 2017.

Panos Toulis and Edward Kao. Estimation of causal
peer influence effects. In International Conference
on Machine Learning (ICML), pages 1489–1497,
2013.

Johan Ugander, Brian Karrer, Lars Backstrom, and
Jon Kleinberg. Graph cluster randomization: Net-
work exposure to multiple universes. In Proceedings
of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
329–337. ACM, 2013.

Mark J van der Laan. Causal inference for a popula-
tion of causally connected units. Journal of Causal
Inference, 2(1):13–74, 2014.

Tianyu Wang, Marco Morucci, M Awan, Yameng Liu,
Sudeepa Roy, Cynthia Rudin, and Alexander Vol-
fovsky. FLAME: A fast large-scale almost matching
exactly approach to causal inference. arXiv preprint
arXiv:1707.06315, 2019.


