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Abstract

We propose a matching method for obser-

vational data that matches units with others

in unit-specific, hyper-box-shaped regions of

the covariate space. These regions are large

enough that many matches are created for each

unit and small enough that the treatment effect

is roughly constant throughout. The regions

are found as either the solution to a mixed in-

teger program, or using a (fast) approximation

algorithm. The result is an interpretable and

tailored estimate of the causal effect for each

unit.

1 INTRODUCTION

Interpretability is paramount in causal inference settings:

high-stakes decisions involving medical treatments, pub-

lic policies, or business strategies, are increasingly made

on the basis of causal estimates from pre-existing data.

Decision-makers in such settings must often be able to

justify their choices for purposes of accountability, and

must also be able to take advantage of all existing infor-

mation in their decisions, rather than complex summaries

of it – interpretability plays a critical role to fulfill these

needs. Matching methods in causal inference, which

match treated and control units with the same or similar

covariate values, are commonly used for interpretabil-

ity and mitigating bias. However, they can suffer from

problems when human analysts manually choose the dis-

tance metric for matching: humans are notoriously poor

at manually constructing high dimensional functions.

For matching, units with similar values of the confound-

ing covariates should be matched together, so as to repli-

cate the random assignment of treatment provided by a
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randomized experiment within each matched group (Ru-

bin 1974; Pearl 2009). Ideally, matching should be exact,

where a treated unit is matched with one or more iden-

tical control units in a matched group. However, when

covariates are high-dimensional, it is generally impossi-

ble to find units with identical values of all covariates.

Because of this, matching methods typically use a notion

of closeness between units (e.g., a distance metric), that

allows matches to be made approximately rather than ex-

actly. The question then becomes how to construct a

good distance metric.

The choice of a distance metric for matching largely

drives the interpretability and accuracy of the method.

Coarsened exact matching (Iacus et al. 2011; Iacus et al.

2012), for example, can require a user-defined coarsen-

ing of a high dimensional covariate space, which can be

error-prone. Other matching methods, such as propen-

sity score matching (Rosenbaum and Rubin 1983) or

prognostic score matching (Hansen 2008) are more auto-

mated in that they only require the user to select a model

class, and may yield better estimates of average treat-

ment effects. However, these techniques suffer from lack

of interpretability: e.g., when one projects data onto the

propensity score, the matched units may be distant from

each other in covariate space, only having in common

that they are equally likely to receive the treatment. Even

in techniques like optimal matching (Rosenbaum 1989),

the distance metric between units is an input parameter

or a user-defined constraint, which is again problematic

as the human analyst manually defines high dimensional

distance metrics between units.

Our Contribution We propose a method for match-

ing that provides both interpretability and accuracy with-

out requiring humans to design the distance metric for

matching. In particular, the approach learns an opti-

mal adaptive coarsening of the covariate space from

a model trained on a separate training dataset, leading

to accurate estimates of the treatment effect and inter-

pretable matches. The matched group for a unit consists





al. 2013), as we leverage predictions to create matches;

2. methods within the almost-exact-matching (AEM)

framework (FLAME, DAME, and MALTS) (Wang,

Morucci, et al. 2017; Dieng et al. 2019; Parikh et al.

2018) that leverage a training set for matching, and 3. the

causal forest (CF) framework (Wager and Athey 2018),

because they use a training set for assisting with “soft”

matching on a test set. Matching on the prognostic score

attempts to find a low dimensional summary to match

on, which our approach avoids. Our method differs from

FLAME and DAME (which handle only discrete covari-

ates and use learned Hamming distances), differs from

MALTS (which uses learned Mahalanobis distances on

continuous covariates), and differs from CF (because

it aims to specifically generate interpretable matched

groups). Adaptive Hyper-Boxes handles both continuous

and discrete variables in the same framework, and needs

only to pinpoint hyper-box edges. We do not use nearest

neighbors, we do not parameterize a distance metric; we

use all points within the learned interpretable hyper-box.

Hyperboxes have been used extensively for regression

(e.g., Peters 2011), classification (e.g., Xu and Papageor-

giou 2009) and prediction (e.g., Goh and Rudin 2014)

but notably, not for causal inference (Khuat et al. 2019).

These methods (and others, such as bump hunting,

Friedman and Fisher 1999) aim to find adaptive boxes

around individual units and some use MIPs to find boxes,

as we do. Some other works aim to create global rule-

based classifiers for causal inference (Wang and Rudin

2017), whereas our method provides local rules.

2 METHODOLOGY

Throughout, we consider n units and p covariates. The

units are indexed by i = 1, . . . , n, and the covariates

of unit i are denoted by a p-dimensional random vari-

able Xi, taking values xi = (xi1, xi2, . . . , xip)
′ ∈ R

p.

A unit’s potential outcomes are given by (Yi(0), Yi(1)),
which are also random variables in our setting. We use

the following model for the potential outcomes: Yi(t) =
ft(Xi) + νi, where E[νi] = 0, and, for any two units

i and k, νi and νk are independent. We require f to be

nonparametrically estimable from the data. We denote

treatment by the random variable Ti ∈ {0, 1}; we refer

to units with Ti = 1 as treated units, and to units with

Ti = 0 as control units. We denote observed outcomes

with the random variable Yi = Yi(1)Ti + Yi(0)(1− Ti).
Our quantity of interest is the Individual Treatment Ef-

fect (ITE) for each treated unit, defined as τi = E[Yi(1)−
Yi(0)|Xi = xi]. By definition of Yi, we never have ac-

cess to Yi(0) for treated units, and control units must be

employed to construct an estimate of this missing poten-

tial outcome for treated units. To do this we make the

following canonical assumptions of observational infer-

ence:

(A1) Overlap. For all values of x and units i, we have

0 < Pr(Ti = 1|Xi = x) < 1.

(A2) SUTVA. A unit’s potential outcomes depend only

on the treatment administered to that unit, i.e., if

Yi(t1, . . . , tn) denotes unit i’s potential outcome as a

function of all n units’ treatment status, under SUTVA

we have: Yi(t1, . . . , tn) = Yi(ti).
(A3) Conditional ignorability. For all units i and any

t ∈ {0, 1}, treatment is administered independently of

outcomes conditionally on the observed covariates, i.e.,

Ti |= (Yi(1), Yi(0))|Xi = xi. This directly implies that

E[Yi|T = t,Xi = xi] = E[Yi(t)|Xi = xi], which en-

ables us to estimate treatment effects on observed data.

Under these assumptions, if for a treated unit i there

existed a control unit k such that xi = xk, then we

would have E[Yi(0)|X = xi] = f0(xi) = f0(xk) =
E[Yk(0)|X = xk], and the estimator Yi − Yk would be

unbiased for τi. Unfortunately, this is almost never the

case in practice: since x is high-dimensional, it is un-

likely that most units would have a match with the same

exact covariate values. To remedy this issue, we match

treatment units to control units with similar values of x.

2.1 PRINCIPLES OF APPROXIMATE

MATCHING VIA HYPER-BOXES

We focus without loss of generality on creating hyper-

boxes for treatment units; any control unit within treat-

ment unit i’s box will be considered to be matched to i.

Each hyper-box is p-dimensional. Hyper-boxes for con-

trol units can be constructed analogously.

Hyper-boxes are specified by lower and upper bounds

for all covariates ai = (ai1, ai2, . . . , aip)
′ and bi =

(bi1, bi2, . . . , bip)
′. For convenience, we define the func-

tion H(a,b) = [a1, b1] × · · · × [ap, bp] and also denote

unit i’s p-dimensional hyper-box as Hi = H(ai,bi).
Necessarily, xi ∈ Hi; i.e., unit i is contained in its own

box. Similarly, we say that a unit k is contained in i’s box

if xk ∈ Hi and we define the main matched group for

treated unit i to be the set of all units contained in i’s box:

MMG(Hi) = {k ∈ 1, . . . , n : xk ∈ Hi}. We also use

nt
Hi

=
∑

k∈MMG(Hi)
Tk and nc

Hi
=

∑

k∈MMG(Hi)
1 − Tk

to denote the number of treated and control units in unit

i’s box respectively, as well as nHi
= nt

Hi
+ nc

Hi
.

We use the following estimators for outcomes of unit i.

We emphasize that both quantities are estimated from a

single box associated with unit i; the first from control





For reliable estimates, we encourage boxes to contain (1)

a large number of units, and (2) to minimize variability

of predicted outcomes on the control units it contains:

Var(Hi) =

1

nHi

∑

k∈MMG(Hi)



f0(xk)−
1

nHi

∑

k∈MMG(Hi)

f0(xk)





2

+
1

nHi

∑

k∈MMG(Hi)



f1(xk)−
1

nHi

∑

k∈MMG(Hi)

f1(xk)





2

.

(4)

Minimizing Err(H) and Var(H) directly avoids Issues 1

and 2 outlined above. In the case of Issue 1, both Err(H)
and Var(H) will be small even if units are far apart in

terms of x, telling us that we can make boxes larger in

that part of the space. In the case of Issue 2 the opposite

will be true; even if units are close in terms of x, Err(H)
and Var(H) will be large, suggesting that boxes should

be smaller in that part of the space.

Our loss will be reliable if we have good estimates ft(x)
at many points within each bin, including all points

x1, . . . ,xn at a minimum. We preserve honesty in such

estimates by dividing the data into a training and a test

set, denoted by Dtr = {(xtr
i , Y tr

i , T tr
i )}ni=1 and Dts =

{(xts
i , Y ts

i , T ts
i )}ni=1 respectively, and assumed to each

be of size n for notational simplicity. Lastly, under these

conditions, the hyper-boxes are designed to provide bal-

ance on relevant covariates and thus lead to high quality

treatment effect estimates (Stuart et al. 2013). The test

set will contain the observations to be matched, while

the training set will be used to estimate ft(x) for each x

of interest. We will denote this estimate by f̂t(x): any

machine learning method can be used to estimate ft, as

predicted values of ft are only going to inform loss cal-

culations and not actual treatment effect estimates.

Adaptive Hyper-box MIP formulation. Here, we use

the triangle inequality to upper-bound the error term. We

consider treatment point i and points k ∈ MMG(Hi) for

an arbitrary treatment value, t and hyper-box Hi:

Err(Hi) =

∣

∣

∣

∣

1

nHi

∑

k∈MMG(Hi)

ft(xi)− ft(xk)

∣

∣

∣

∣

≤
1

nHi

∑

k∈MMG(Hi)

∣

∣

∣

∣

ft(xi)− ft(xk)

∣

∣

∣

∣

. (5)

We minimize the bound instead of the error term, for both

treatment and control groups. We use a similar upper

bound for variability. For any value of Hi we have:

Var(Hi)

=
1

nHi

∑

k∈MMG(Hi)



ft(xk)−
1

nHi

∑

l∈MMG(Hi)

ft(xl)





2

≤
1

nHi

∑

k∈MMG(Hi)

C

∣

∣

∣

∣

∣

∣

1

nHi

∑

l∈MMG(Hi)

(ft(xk)− ft(xl))

∣

∣

∣

∣

∣

∣

,

where the last line follows by setting C =

maxHi

∣

∣

∣

1
nHi

∑

l∈MMG(Hi)
(ft(xk)− ft(xl))

∣

∣

∣ and us-

ing Hölder’s Inequality. Here C is a constant, and is not

affected by any optimization we will perform to obtain

Hi. We can now apply the triangle inequality twice:

Var(Hi)

≤
1

nHi

∑

k∈MMG(Hi)

C

nHi

∑

l∈MMG(Hi)

|ft(xk)− ft(xi)|

+ |ft(xl)− ft(xi)|

=
2C

nHi

∑

k∈MMG(Hi)

|ft(xk)− ft(xi)|. (6)

Inequalities (5) and (6) show that minimizing
∑

k∈MMG(Hi)
|ft(xi) − ft(xk)| will lower both Err(Hi)

and Var(Hi) through the upper bounds just introduced,

for fixed nHi
. Minimizing this term also ensures that

treatment and control outcomes stay relatively constant

within each hyper-box.

In order to ensure that the denominator of the variance

(i.e., nHi
) stays large, we subtract it from the loss func-

tion. Hence, the loss now encourages larger matched

groups, while maintaining linearity of the objective:

min
Hi

∑

k∈MMG(Hi)

|ft(xk)− ft(xi)|+ βnHi
,

where β trades off between the terms.

These steps give rise to the following global MIP for our

entire sample. Here, decision variable Hi defines the box

for treatment unit i, and decision variable wik is an indi-

cator for whether k is in i’s box:

min
H1,...,Hn

n
∑

i=1

{

γ1

n
∑

k=1

wik

∣

∣

∣f̂1(x
ts
i )− f̂1(x

ts
k )

∣

∣

∣

+γ0

n
∑

k=1

wik

∣

∣

∣f̂0(x
ts
i )− f̂0(x

ts
k )

∣

∣

∣− β

n
∑

k=1

wik

}

(7)



subject to: Hi ∈ R
p×p, wik ∈ {0, 1} ∀ k

xts
i ∈ Hi ∀ i (8)

wik = I[xts

k
∈Hi] ∀ i (9)

n
∑

k=1

wik(1− Tk) ≥ m ∀ i. (10)

Constraint (8) forces unit i to be within its own box; (9)

defines an indicator wik for whether unit k falls into the

box for test unit i; (10) forces boxes to include at least m

control units. We require a minimum number of control,

but not treatment, units to be matched, because treatment

unit i is within MMG(Hi), and thus there is always at least

one treated unit in each box. This makes computing the

first term in the loss always possible, and excludes triv-

ial solutions with empty boxes. The loss in Eq. (7) is

made up of three terms: the first is the upper bound on

the estimation error and variability terms of our frame-

work derived in inequalities (5) and (6) for treated out-

comes. The second is the same bound, but for control

outcomes. We want these terms to be small to ensure

the outcome function does not vary much within a box.

The third term counts units in the box, encouraging more

matches. The supplement details an explicitly linear for-

mulation of the above problem. The hyperparameters γ1,

γ0, and β weight the three components of the loss. They

can be cross-validated, set to 1, or chosen intuitively by

normalizing them to the same scale as discussed in the

supplement.

The form of the MIP presented above directly suggests

that the optimization problem is separable in the 1 . . . , n
units. We take advantage of this property and solve one

MIP for each of the n units to be matched separately.

Adaptive Hyper-box Fast Approximation We now

describe a fast algorithm to approximate the MIP solu-

tion. For a unit i, we initialize its box to be a single point

at its covariate values. We then expand the box according

to the principles previously outlined: 1. we expand the

box along a single covariate at a time, so that the result-

ing box is always axis-aligned and interpretable; 2. we

expand along the covariate that extends the box into the

region with least outcome variation – ensuring high qual-

ity matches – and stop expanding the box once this vari-

ation increases too much, avoiding low quality matches;

and 3. we estimate the variation in the outcome via f̂0, f̂1
learned on a separate, training set, as for the MIP.

Algorithm 1 in the supplement provides pseudocode.

The main crux of the algorithm is to determine whether

a new, proposed box P is good. To do so, we examine

the outcome function in P\Hi (the region we propose to

add to our existing hyper-box). If the outcome in the new

region is relatively constant, we do not expect to incur

much bias from including units that lie inside. Therefore,

we look at how much f̂0, f̂1 vary on a grid in P\Hi and

choose to expand along the covariate yielding the lowest

variation. Further details are in the supplement.

Scalability and Parallelization Both MIP AHB and

Fast AHB create a box tailored to a specific unit i, inde-

pendently from boxes of other units. Both methods are,

therefore, embarassingly parallelizable. The supplement

shows runtime results for the methods: Fast AHB scales

well, especially in n, and can be applied to large datasets

on most machines, while MIP AHB is less suited for

large datasets due to its exponential nature. Discussion of

the methods’ computational complexity, and suggestions

for speeding them up, is included in the supplement.

Matching with Non-Continuous Covariates Our

method also handles non-continuous covariates, includ-

ing categorical and cardinal covariates. Categorical co-

variates that take on k discrete values can be binarized

into k − 1 indicator variables, after which MIP and Fast

can be run without modification to form matches. MIP

and Fast can also be run out of the box on cardinal vari-

ables without loss in performance. We demonstrate this

by matching on year-valued variables in our application.

Empirically, when we run MIP AHB and Fast AHB on

categorical data, they learn identical importance weights

for the covariates (see Section 3.2). That is, they either

construct boxes that exactly match units with identical

covariate values or prioritize matches on covariates con-

tributing more to the outcome. This is similar to the

characteristics of the FLAME and DAME algorithms de-

scribed by Wang, Morucci, et al. 2017 and Dieng et al.

2019, though AHB has the added benefit of adaptively

handling continuous covariates. It would not be possible

to extend FLAME and DAME to this case because they

rely on Hamming distance. Since AHB chooses only box

edges, it avoids having to use a parameterized distance

metric, allowing it to handle continuous covariates in the

same way that it handles discrete covariates.

3 EXPERIMENTS

We generate data independently for all units, with data

for unit i generated according to the following process:

1. Generate covariates: xij
ind
∼ Fx, j = 1, . . . , p

2. Generate a propensity score: ei = expit(γxi)
3. Assign treatment: Zi ∼ Bernoulli(ei)
4. Generate the outcome: yi = g(xi) + h(xi)Zi + εi.

Here, γ is fixed. We consider various choices of con-

founding functions g and heterogeneous treatment func-





Choices of g and h and associated results are specified

in the last three rows of Table 2. We see that CEM and

AHB both perform exceedingly well when all covariates

are binary. Further analysis reveals: 1. that MIP and Fast

yield identical boxes and ITEs in this scenario, 2. that the

ITEs are the same as those generated via exact matching

on the one, true covariate, and 3. that CEM’s ITEs are

the same as those generated via exact matching on all co-

variates. Thus, while both methods yield unbiased ITE

estimates in this setting, CEM’s are of higher variance

because it constructs more granular boxes than necessary

due to its inability to adapt to irrelevant covariates. In-

deed, supplemental results show that as the number of ir-

relevant covariates increases, CEM’s performance deteri-

orates drastically, while AHB’s stay the same. In the sim-

ulation with mixed covariates, MIP AHB outperforms all

competitors but BART, and Fast AHB falls only behind

BART, Best CF, and Prognostic.

Similarity Between MIP AHB and Fast AHB To

compare MIP AHB and Fast AHB, we compare the over-

lap in units assigned to matched groups by MIP AHB

and Fast AHB, denoted by MMG(Hi)
MIP and MMG(Hi)

Fast.

We define a ‘mutual membership rate’ as the maximum

of the proportion of units in MMG(Hi)
MIP that are in

MMG(Hi)
Fast and vice versa. Across all units, we find

median mutual membership rates around 80% in our ex-

periments. Visual comparisons of the boxes output by

both methods also confirm they adapt similarly to vari-

ability in the outcome function, extending boxes where

the outcome is near-constant and shrinking them where

it changes rapidly. For experiments conducted entirely

with discrete data, MIP AHB and Fast AHB constructed

identical boxes. Lastly, ITE comparisons between the

methods show little to no difference in most simulations.

4 APPLICATION

We apply our methodology to replicating a study of the

effect of work training programs on future earnings orig-

inally conducted by (LaLonde 1986; R. H. Dehejia and

Wahba 1999; R. Dehejia and Wahba 2002). This dataset

includes an experimental sample (from the 1975-76 Na-

tional Supported Work (NSW) program where treatment

units received a work training program), and two ob-

servational samples (constructed by combining samples

from the Panel Study of Income Dynamics (PSID) and

from the Current Population Survey (CPS)). Further de-

tails about the datasets are in the Supplement. Matching

methods can be evaluated on how well they can recon-

struct the unbiased ATT estimate from the experimental

sample, by matching treated units from the experiment to

control units from the observational samples. Matching

covariates include income before the training program,

race, years of schooling, marital status, and age. We

focus on the task of estimating the in-sample ATT, and

therefore match each treated unit i to at least one control

unit from each dataset, and no other treated unit. The

resulting ITE estimates are then averaged to compute an

ATT estimate. We employ MIP AHB, as the data is small

enough to do so. Since we do not match any other treated

units to each unit i, we set γ1 = 0, and focus on finding

control matches.

We compare Adaptive Hyper-Boxes to other matching

methods estimating the ATT from the observational sam-

ples, shown in Table 3. The ATT estimates that AHB

produces using both observational datasets are compa-

rable to the estimate from the experimental sample. Most

other methods fail to produce estimates of the same qual-

ity as AHB on either dataset. Figure 4 displays sample

boxes constructed by MIP AHB on one of the matching

covariates, together with a smoothed version of the esti-

mated ITE and predicted outcome. Our method behaves

as expected, making many small and close boxes where

the predicted outcome function grows rapidly, and wider

boxes where it does not.

Figure 4: Relationship between pre-treatment income

and estimated ITE. The solid black line is a smoothed

estimate of the control response as a function of pre-

treatment income. The colored boxes are five sample

boxes created by Adaptive Hyper-Boxes.

Table 8 in the supplement also presents treatment effect

estimates at different values of pre-treatment years of

schooling. We see that years of schooling does indeed

moderate the treatment effect, as individuals with fewer

years of schooling are estimated to either benefit less

than individuals with more years of schooling, or even

lose income, after the work training program. Lastly, Ta-

ble 9 shows sample matched groups produced by AHB.

5 DISCUSSION

Adaptive Hyper-Boxes Matching is a useful al-

ternative to other matching methods. It learns



Table 1: Functions (up to a constant) used for treatment and confounding in experiments. Continuous covariates are

denoted by x and discrete covariates by w. There are pc continuous covariates and pd discrete covariates.

None Const Box Linear Quad Binary Mixed

g(xi) or h(xi) 0 1
∑

j I{0.5 < xij}
∑

j xij

∑

j x
2
ij wij

∑

j(xij + wij)

(pc, pd) (0, 0) (0, 0) (2, 0) (2, 0) (2, 0) (0, 1) (1, 1)

Table 2: Mean absolute error as proportion of ATT for estimating ITE of treated units under different confounding

regimes. The first column denotes the number of (confounding, treatment, irrelevant) covariates. The second column

denotes the confounding and treatment functions, g and h respectively. Either MIP or Fast performs best in almost all

simulation types. NA denotes inability to make any matches; bold denotes lowest error attained in that setting.

AHB Black Box Benchmark Matching

p
g / h

Method
MIP Fast BART Best CF CEM

Full

Matching
GenMatch Mahal

Nearest

Neighbor
Prognostic

(0, 0, 2) None / Const 0.09 0.05 0.04 0.25 1.01 0.32 0.36 0.34 0.37 0.25

(2, 0, 0) Box / Const 0.11 0.16 0.24 0.24 0.24 3.03 0.66 0.62 3.05 0.29

(2, 0, 0) Linear / Const 0.17 0.22 0.14 0.26 0.23 0.82 0.38 0.36 0.91 0.28

(2, 0, 0) Quad / Const 0.10 0.04 0.08 0.25 0.22 0.42 0.38 0.37 0.45 0.27

(2, 0, 4) Quad / Const 0.02 0.02 0.02 0.16 NA 0.21 0.12 0.11 0.24 0.04

(1, 1, 0) Box / Box 0.30 0.45 0.65 0.73 0.58 2.59 2.37 1.02 2.30 0.94

(1, 0, 1) Binary / Const 0.02 0.02 0.02 0.09 0.02 0.12 0.49 0.10 0.10 0.09

(1, 1, 6) Binary / Binary 0.06 0.06 0.09 0.17 0.20 0.71 0.97 0.27 0.61 0.18

(2, 0, 0) Mixed / Const 0.07 0.12 0.06 0.09 0.12 0.48 0.15 0.15 0.55 0.10

Table 3: US $ estimates of the effect of a training pro-

gram on future earnings from two observational control

samples. Methods estimate the ATT by matching treated

experimental units to observational control units. The

unbiased experimental ATT estimate is $1794. Estimates

closer to this value are better. Error in parentheses.

Method

Dataset
CPS PSID

Adaptive Hyper-box 1720 (-75) 1762 (-32)

Naive -7729 (-9523) -14797 (-16591)

Full Matching 708 (-1087) 816 (-978)

Prognostic 1319 (-475) 2224 (429)

CEM 3744 (1950) -2293 (-4087)

Mahalanobis 1181 (-614) -804 (-2598)

Nearest Neighbor 1576 (-219) 2144 (350)

matched groups adaptively, works for mixed cate-

gorical and continuous datasets, and produces low-

variance matched groups that can be described with in-

terpretable rules. Code implementing AHB is available

at github.com/almost-matching-exactly/

Adaptive-Binning. Hyper-boxes have a long his-

tory of successful usage in regression and classification

problems. They can produce interpretable predictions

which we have now leveraged to produce interpretable

matches in the context of causal inference.
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