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Abstract. Biomarkers play an important role in early detection and
intervention in Alzheimer’s disease (AD). However, obtaining effective
biomarkers for AD is still a big challenge. In this work, we propose to use
the worst transportation cost as a univariate biomarker to index corti-
cal morphometry for tracking AD progression. The worst transportation
(WT) aims to find the least economical way to transport one measure
to the other, which contrasts to the optimal transportation (OT) that
finds the most economical way between measures. To compute the WT
cost, we generalize the Brenier theorem for the OT map to the WT map,
and show that the WT map is the gradient of a concave function satisfy-
ing the Monge-Ampere equation. We also develop an efficient algorithm
to compute the WT map based on computational geometry. We apply
the algorithm to analyze cortical shape difference between dementia due
to AD and normal aging individuals. The experimental results reveal
the effectiveness of our proposed method which yields better statistical
performance than other competiting methods including the OT.

Keywords: Alzheimer’s disease · Shape analysis · Worst transportation.

1 Introduction

As the population living longer, Alzheimer’s disease (AD) is now a major pub-
lic health concern with the number of patients expected to reach 13.8 million
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by the year 2050 in the U.S. alone [7]. However, the late interventions or the
targets with secondary effects and less relevant to the disease initiation often
make the current therapeutic failures in patients with dementia due to AD [11].
The accumulation of beta-amyloid plaques (Aβ) in human brains is one of the
hallmarks of AD, and preclinical AD is now viewed as a gradual process before
the onset of the clinical symptoms. The Aβ positivity is treated as the precur-
sor of anatomical abnormalities such as atrophy and functional changes such as
hypometabolism/hypoperfusion.

It is generally agreed that accurate presymptomatic diagnosis and preven-
tative treatment of AD could have enormous public health benefits. Brain Aβ
pathology can be measured using positron emission tomography (PET) with
amyloid-sensitive radiotracers, or in cerebrospinal fluid (CSF). However, these
invasive and expensive measurements are less attractive to subjects in preclin-
ical stage and PET scanning is also not widely available in clinics. Therefore,
there is strong interest to develop structural magnetic resonance imaging (MRI)
biomarkers, which are largely accessible, cost-effective and widely used in AD
clinical research, to predict brain amyloid burden [3]. Tosun et al. [16] combine
MRI-based measures of cortical shape and cerebral blood flow to predict amyloid
status for early-MCI individuals. Pekkala et al. [13] use the brain MRI measures
like volumes of the cortical gray matter, hippocampus, accumbens, thalamus and
putamen to identify the Aβ positivity in cognitively unimpaired (CU) subjects.
Meanwhile, a univariate imaging biomarker would be highly desirable for clinical
use and randomized clinical trials (RCT)[14, 17]. Though a variety of research
studies univariate biomarkers with sMRI analysis, there is limited research to
develop univariate biomarker to predict brain amyloid burden, which will enrich
our understanding of the relationship between brain atrophy and AD pathology
and thus benefit assessing disease burden, progression and effects of treatments.

In this paper, we propose to use the worst transportation (WT) cost as a
univariate biomarker to predict brain amyloid burden. Specifically, we compare
the population statistics of WT costs between the Aβ+ AD and the Aβ− CU
subjects. The new proposed WT transports one measure to the other in the
least economical way, which contrasts to the optimal transportation (OT) map
that finds the most economical way to transport from one measure to the other.
Similar to the OT map, the WT map is the gradient of a strictly concave function,
which also satisfies the Monge-Ampere equation. Furthermore, the WT map can
be computed by convex optimization with the geometric variational approach
like the OT map [10, 15]. Intuitively, the OT/WT maps are solely determined
by the Riemannian metric of the cortical surface, and they reflect the intrinsic
geometric properties of the brain. Therefore, they tend to serve as continuous
and refined shape difference measures.

Contributions The contribution of the paper includes: (i) In this work, we gen-
eralize the Brenier theorem from the OT map to the newly proposed WT map,
and rigorously show that the WT map is the gradient of a concave function that
satisfies the Monge-Ampere equation. To the best of our knowledge, it is the
first WT work in medical imaging research; (ii) We propose an efficient and ro-



Cortical Morphometry Analysis based on Worst Transportation Theory 3

bust computational algorithm to compute the WT map based on computational
geometry. We further validate it with geometrically complicated human cerebral
cortical surfaces; (iii) Our extensive experimental results show that the proposed
WT cost performs better than the OT cost when discriminating Aβ+ AD pa-
tients from Aβ− CU subjects. This surprising result may help broaden univariate
imaging biomarker research by opening up and addressing a new theme.

2 Theoretic Results
In this section, we briefly review the theoretical foundation of optimal trans-
portation, then generalize the Brenier theorem and Yau’s theorem to the worst
transportation.

2.1 Optimal Transportation Map

Suppose Ω,Ω∗ ⊂ Rd are domains in Euclidean space, with probability measures
µ and ν respectively satisfying the equal total mass condition: µ(Ω) = ν(Ω∗).
The density functions are dµ = f(x)dx and dν = g(y)dy. The transporta-
tion map T : Ω → Ω∗ is measure preserving if for any Borel set B ⊂ Ω∗,∫
T−1(B)

dµ(x) =
∫
B
dν(y), denoted as T#µ = ν.

Monge raised the optimal transportation map problem [18]: given a transporta-
tion cost function c : Ω×Ω∗ → R+, find a transportation map T : Ω → Ω∗ that
minimizes the total transportation cost,

(MP ) min
T

{∫
Ω

c(x, T (x)) : T : Ω → Ω∗, T#µ = ν

}
.

The minimizer is called the optimal transportation map (OT map). The total
transportation cost of the OT map is called the OT cost.

Theorem 1 (Brenier [6]). Given the measures µ and ν with compact supports
Ω,Ω∗ ⊂ Rd with equal total mass µ(Ω) = ν(Ω∗), the corresponding density
functions f, g ∈ L1(Rd), and the cost function c(x, y) = 1

2 |x − y|2, then the
optimal transportation map T from µ to ν exists and is unique. It is the gradient
of a convex function u : Ω → R, the so-called Brenier potential. u is unique up
to adding a constant, and T = ∇u.

If the Brenier potential is C2, then by the measure preserving condition, it
satisfies the Monge-Ampère equation,

detD2u(x) =
f(x)

g ◦ ∇u(x)
. (1)

where D2u is the Hessian matrix of u.

2.2 Worst Transportation Map

With the same setup, the worst transportation problem can be formulated as
follows: given the transportation cost function c : Ω×Ω∗ → R+, find a measure
preserving map T : Ω → Ω∗ that maximizes the total transportation cost,

(WP ) max
T

{∫
Ω

c(x, T (x)) : T : Ω → Ω∗, T#µ = ν

}
.
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The maximizer is called the worst transportation map. The transportation cost
of the WT map is called the worst transportation cost between the measures. In
the following, we generalize the Brenier theorem to the WT map.

Theorem 2 (Worst Transportation Map). Given the probability measures
µ and ν with compact supports Ω,Ω∗ ⊂ Rd respectively with equal total mass
µ(Ω) = ν(Ω∗), and assume the corresponding density functions f, g ∈ L1(Rd),
the cost function c(x, y) = 1

2 |x − y|
2, then the worst transportation map exists

and is unique. It is the gradient of a concave function u : Ω → R, where u is the
worst Brenier potential function, unique up to adding a constant. The WT map
is given by T = ∇u. Furthermore, if u is C2, then it satisfies the Monge-Ampère
equation in Eqn. (1).

Proof. Suppose T : Ω → Ω∗ is a measure-preserving map, T#µ = ν. Consider
the total transportation cost,∫

Ω

|x− T (x)|2dµ =

∫
Ω

|x|2dµ+

∫
Ω

|T (x)|2dµ− 2

∫
Ω

〈x, T (x)〉dµ

=

∫
Ω

|x|2dµ+

∫
Ω∗
|y|2dν − 2

∫
Ω

〈x, T (x)〉dµ, with y = T (x).

Therefore, maximizing the transportation cost is equivalent to minT#µ=ν

∫
Ω
〈x, T (x)〉dµ.

With the Kantorovich formula, this is equivalent to finding the following trans-
portation plan γ : Ω ×Ω∗ → R,

min
γ

{∫
Ω×Ω∗

〈x, y〉dγ, (πx)#γ = µ, (πy)#γ = ν

}
,

where πx, πy are the projections from Ω×Ω∗ to Ω and Ω∗ respectively. By du-
ality, this is equivalent to max{J(u, v), (u, v) ∈ K}, where the energy J(u, v) :=∫
Ω
u(x)f(x)dx+

∫
Ω∗ v(y)g(y)dy, and the functional space K := {(u, v) : u(x) + v(y) ≤ 〈x, y〉}.

Now we define the c-transform,

uc(y) := inf
x∈Ω̄
〈x, y〉 − u(x). (2)

Fixing x, 〈x, y〉 − u(x) is a linear function, hence uc(y) is the lower envelope
of a group of linear functions, and thus is a concave function with Lipschitz
condition (since the gradient of each linear function is x ∈ Ω̄, Ω̄ is bounded).
We construct a sequence of function pairs {(uk, vk)}, where uk = vck−1, vk = uck.
Then J(uk, vk) increases monotonously, and the Lipschitz function pairs (uk, vk)
converge to (u, v), which is the maximizer of J . Since u and v are c-transforms
of each other, we have

u(x) + v(T (x)) = 〈x, T (x)〉. (3)

This shows the existence of the solution.
From the definition of c-transform in Eqn. (2), we obtain v(y) = infx∈Ω̄〈x, y〉−

u(x). Since u(x) is concave and almost everywhere differentiable, we have∇x〈x, y〉−



Cortical Morphometry Analysis based on Worst Transportation Theory 5

∇u(x) = 0, which implies that y = T (x) = ∇u(x). Therefore, the WT map is
the gradient of the worst Brenier potential u.

Next, we show the uniqueness of the WT map. Suppose there are two maxi-
mizers (ϕ,ψ) ∈ K and (u, v) ∈ K, because J(u, v) is linear,therefore 1

2 (ϕ+u, ψ+
v) ∈ K is also a maximizer. Assume

ϕ(x0) + ψ(y0) = 〈x0, y0〉, ϕ(x0) + ψ(y) < 〈x0, y〉, ∀y 6= y0

u(x0) + v(z0) = 〈x0, z0〉, u(x0) + v(z) < 〈x0, z〉, ∀z 6= z0.

If y0 6= z0, then ∀y, 1/2(ϕ + u)(x0) + 1/2(ψ + v)(y) < 〈x0, y〉. But ( 1
2 (ϕ +

u), 1
2 (ψ + v)) is also a maximizer, this contradicts to the Eqn. (3). This shows

the uniqueness of the WT map.
Finally, u is concave and piecewise linear, therefore by Alexandrov’s theorem

[2], it is almost everywhere C2. Moreover, the WT map T = ∇u is measure-
preserving and T#µ = ν, thus we have

det(DT )(x) =
f(x)

g ◦ T (x)
=⇒ det(D2u)(x) =

f(x)

g ◦ ∇u(x)

This completes the proof. �

2.3 Geometric Variational Method

If u is not smooth, we can still define the Alexandrov solution. The sub-gradient
of a convex function u at x is defined as

∂u(x) :=
{
p ∈ Rd : u(z) ≥ 〈p, z − x〉+ u(x), ∀z ∈ Ω

}
The sub-gradient defines a set-valued map: ∂u : Ω → 2Ω

∗
, x 7→ ∂u(x). We can

use the sub-gradient to replace the gradient map in Eqn. (1), and define

Definition 1 (Alexandrov Solution). A convex function u : Ω → R satisfies
the equation (∂u)#µ = ν, or µ((∂u)−1(B)) = ν(B), ∀Borel set B ⊂ Ω∗, then u
is called an Alexandrov solution to the Monge-Ampère equation Eqn. (1).

The work of [10] proves a geometric variational approach for computing the
Alexandrov solution of the optimal transportation problem.

Semi-discrete OT/WT maps Suppose the source measure is (Ω,µ), Ω is a
compact convex domain with non-empty interior in Rd and the density function
f(x) is continuous (Fig. 1(a) gives an example). The target discrete measure
(Ω∗, ν) is defined as ν =

∑n
i=1 νiδ(y − pi), where pi ⊂ Rd are distinct n points

with νi > 0 and
∑n
i=1 νi = µ(Ω) (Fig. 1(c) shows an example with the discrete

measure coming from the 3D surface of Fig. 1(b)). Alexandrov [2] claims that
there exists a height vector h = (h1, . . . , hn) ∈ Rn, so that the upper envelope
uh of the hyper-planes {πi(x) := 〈x, pi〉+ hi}ni=1 gives an open convex polytope
P (h), the volume of the projection of the i-th facet of P (h) in Ω equals to νi
∀i = 1, 2, . . . , n. Furthermore, this convex polytope is unique up to a vertical
translation. In fact, Yau’s work [10] pointed out that the Alexandrov convex
polytope P (h), or equivalently the upper envelop uh is exactly the Brenier po-
tential, whose gradient gives the OT map shown in Fig. 1(d).
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(a) (Ω,µ) (b) 3D surface (c) (Ω∗, ν) (d) OT map image (e) WT map image

Fig. 1. The OT map and WT map from the source measure to the target measure
given by the 3D surface.

Theorem 3 (Yau et. al. [10]). Let Ω ∈ Rd be a compact convex domain,
{p1, ..., pn} be a set of distinct points in Rd and f : Ω → R be a positive con-
tinuous function. Then for any ν1, . . . , νn > 0 with

∑n
i=1 νi =

∫
Ω
f(x)dx, there

exists h = (h1, h2, . . . , hn) ∈ Rn, unique up to adding a constant (c, c, . . . , c), so
that µ(Wi(h) ∩ Ω) =

∫
Wi(h)∩Ω f(x)dx = νi, ∀ i = 1, 2, . . . , n. The height vector

h is exactly the minimum of the following convex function

E(h) =

∫ h

0

n∑
i=1

µ(Wi(h) ∩Ω)dhi −
n∑
i=1

hiνi (4)

on the open convex set (admissible solution space)

H = {h ∈ Rn|µ(Wi(h)∩Ω) > 0 ∀i = 1, 2, . . . , n}
⋂{

h ∈ Rn|
n∑
i=1

hi = 0

}
. (5)

Furthermore, the gradient map ∇uh minimizes the quadratic cost 1
2

∫
Ω
|x −

T (x)|2f(x)dx among all the measure preserving maps T : (Ω,µ) → (Rd, ν =∑n
i=1 νiδpi), T#µ = ν.

Theorem 4 (Semi-Discrete Worst Transportation Map). Let Ω ∈ Rd
be a compact convex domain, {p1, ..., pn} be a set of distinct points in Rd and
f : Ω → R be a positive continuous function. Then for any ν1, . . . , νn > 0
with

∑n
i=1 νi =

∫
Ω
f(x)dx, there exists h = (h1, h2, . . . , hn) ∈ Rn, unique up to

adding a constant (c, c, . . . , c), so that µ(Wi(h)∩Ω) =
∫
Wi(h)∩Ω f(x)dx = νi, ∀i.

The height vector h is exactly the maximum of the following concave function

E(h) =

∫ h

0

n∑
i=1

µ(Wi(h) ∩Ω)dhi −
n∑
i=1

hiνi (6)

on the open convex set (admissible solution space) defined on Eqn. (5). Further-
more, the gradient map ∇uh maximizes the quadratic cost 1

2

∫
Ω
|x−T (x)|2f(x)dx

among all the measure preserving maps T : (Ω,µ) → (Rd, ν =
∑n
i=1 νiδpi),

T#µ = ν.
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(a) OT envelope (b) OT convex hull (c) WT envelope (d) WT concave hull

Fig. 2. The Brenier potential for OT map and WT map, equivalently the upper (a)
and lower (c) envelopes. The Legendre dual of the potential of the OT map and WT
map, equivalently the lower (b) and upper (d) convex hulls.

Proof. Given the height vector h = (h1, h2, · · · , hn), h ∈ H, we construct the
upper convex hull of vi(h) = (pi,−hi)’s (see Fig. 2(d)), each vertex corresponds
to a plane πi(h, x) := 〈pi, x〉+ hi. The convex hull is dual to the lower envelope
of the plane πi(h, ·) (see Fig. 2(c)), which is the graph of the concave function
uh(x) := minni=1 {〈pi, x〉+ hi}. The projection of the lower envelope induces a
farthest power diagram D(h) (see Fig. 2(c)) with Ω =

⋃n
i=1Wi(h)∩Ω, Wi(h) :=

{x ∈ Rd and ∇uh(x) = pi}.
The µ-volume of each cell is defined as

wi(h) := µ(Wi(h) ∩Ω) =

∫
Wi(h)∩Ω

f(x)dx. (7)

Similar to Lemma 2.5 in [10], by direct computation we can show the symmetric
relation holds:

∂wi(h)

∂hj
=
∂wj(h)

∂hi
=

1

|pi − pj |

∫
Wi(h)∩Wj(h)∩Ω

f(x)ds. (8)

This shows the differential form ω =
∑n
i=1 wi(h)dhi is a closed one-form. As in

[10], by Brunn-Minkowski inequality, one can show that the admissible height
space H in Eqn. (5) is convex and simply connected. Hence ω is exact. So the

energy E(h) :=
∫ h

0
ω is well defined and its Hessian matrix is given by

∂2E(h)

∂hi∂hj
=
wi(h)

∂hj
≥ 0, (9)

Since the total volume of all the cells is the constant µ(Ω), we obtain

∂2E(h)

∂h2
i

= −
∑
j 6=i

wi(h)

∂hj
< 0. (10)

Therefore, the Hessian matrix is negative definite in H and the energy is strictly
concave in H. By adding a linear term, the following energy is still strictly
concave,

E(h) =

∫ h

0

n∑
i=1

wi(h)dhi −
n∑
i=1

νihi.
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The gradient of E(h) is given by

∇E(h) = (w1(h)− ν1, w2(h)− ν2, · · · , wn(h)− νn). (11)

On the boundary of H, there is an empty cell Wk(h), and the k-th component
of the gradient is −νk, which points to the interior of H. This shows that the
global unique maximum of the energy is in the interior of H. At the maximum
point h∗, ∇E(h∗) is zero and wi(h

∗) = νi. Thus, h∗ is the unique solution to
the semi-discrete worst transportation problem, as shown in Fig. 1(e) �

3 Computational Algorithms

This section gives a unified algorithm to compute both the optimal and the worst
transportation maps based on convex geometry [5].

3.1 Basic Concepts from Computational Geometry

A hyperplane in Rd+1 is represented as π(x) := 〈p, x〉 + h. Given a family of
hyperplanes {πi(x) = 〈pi, x〉 + hi}ni=1, their upper envelope of {πi}ni=1 is the
graph of the function u(x) := maxni=1 {〈pi, x〉+ hi}; the lower envelope is the
graph of the function u(x) := minni=1 {〈pi, x〉+ hi}; the Legendre dual of u is
defined as u∗(y) := maxx∈Rd〈x, y〉 − u(x). The c-transform of u is defined as

uc(y) := min
x∈Rd
〈x, y〉 − u(x). (12)

Each hyperplane πi(x) has a dual point in Rd+1, namely π∗i := (pi,−hi). The
graph of u∗ is the lower convex hull of the dual points {π∗i }ni=1. And the graph
of uc is the upper convex hull of the dual points {π∗i }ni=1. (i) The projection
of the upper envelope induces a nearest power diagram D(Ω) of Ω with Ω =⋃n
i=1Wi(h) and Wi(h) := {x ∈ Ω|∇u(x) = pi}. And the projection of the lower

convex hull u∗ induces a nearest weighted Delaunay triangulation T (Ω∗) of Ω∗.
(ii) The projection of the lower envelope induces a farthest power diagram Dc
of Ω. And the projection of the upper convex hull uc induces a farthest weighted
Delaunay triangulation T c(Ω∗). D(Ω) and T (Ω∗) are dual to each other, namely
pi connects pj in T (Ω∗) if and only if Wi(h) is adjacent to Wj(h). Similarly, Dc
and T c are also dual to each other. Fig. 2 shows these basic concepts.

3.2 Algorithms based on Computational Geometry

Pipeline The algorithm in Alg. 1 mainly optimizes the energy E(h) in the ad-
missible solution space H using Newton’s method. At the beginning, for the OT
(WT) map, the height vector h0 is initialized as hi = − 1

2 |pi|
2 (hi = 1

2 |pi|
2). At

each step, the convex hull of {(pi,−hi)}ni=1 is constructed. For the OT (WT)
map, the lower (upper) convex hull is projected to induce a nearest (farthest)
weighted Delaunay triangulation T of {pi}’s. Each vertex vi(h) = (pi,−hi) on
the convex hull corresponds to a supporting plane πi(h, x) = 〈pi, x〉 + hi, each
face [vi, vj , vk] in the convex hull is dual to the vertex in the envelope, which is
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Algorithm 1: Worst/Optimal Transportation Map

Input: (Ω,µ), {(pi, νi)}ni=1

Output: The optimizer h of the Brenier potential uh

Normalize {p1, p2, . . . , pn} to be inside Ω by translation and scaling;
Initialize hi = ±〈pi, pi〉/2 for WT/OT;
while true do

Compute the upper (lower) convex hull of {(pi,−hi)}ni=1 for WT/OT map;
Compute the lower (upper) envelope of the planes {〈pi, x〉+ hi}ni=1 for
WT/OT map;

Project the lower (upper) envelope to Ω to get the farthest (nearest)
power diagram Ω =

⋃n
i=1Wi(h) for WT/OT map ;

Compute the µ-volume of each cell wi(h) = µ(Wi(h)) using Eqn. (7);
Compute the gradient of the energy E(h), ∇E(h) = (wi(h)− νi);
if ‖∇E(h)‖ < ε then

return h;
end
Compute the µ-lengths of the power Voronoi edges Wi(h) ∩Wj(h) ∩Ω
using Eqn. (8);

Construct the Hessian matrix of the energy E(h) for WT/OT map:

Hess(E(h)) :=
∂2E(h)

∂hi∂hj
= ±µ(Wi(h) ∩Wj(h))

|yi − yj |

Solve the linear system: Hess(E(h))d = ∇E(h);
λ← ±1 for WT/OT map;
repeat

Compute the farthest (nearest) power diagram D(h + λd) for WT/OT
map;
λ← 1

2
λ;

until no empty power cell ;
Update the height vector h← h + λd;

end

the intersection point of πi, πj and πk. For the OT (WT) map, the lower (up-
per) convex hull is dual to the upper (lower) envelope, and the upper (lower)
envelope induces the nearest (farthest) power diagram. The relationship of the
convex hulls and the envelopes are shown in Fig. 2.

Then we compute the µ-volume of each power cell using Eqn. (7), the gradient
of the energy Eqn. (6) is given by Eqn. (11). The Hessian matrix Hess(E(h))
can be constructed using Eqn. (9) for off diagonal elements and Eqn. (10) for
diagonal elements. The Hessian matrices of the OT map and the WT map differ
by a sign. Then we solve the following linear system to find the update direction,

Hess(E(h))d = ∇E(h). (13)

Next we need to determine the step length λ, such that h + λd is still in the
admissible solution space H in Eqn. (5). Firstly, we set λ = −1 for OT map
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and λ = +1 for WT map. Then we compute the power diagram D(h + λd). If
some cells disappear in D(h +λd), then it means h +λd exceeds the admissible
space. In this case, we shrink λ by half, λ ← 1

2λ, and recompute the power
diagram with h + λd. We repeat this process to find an appropriate step length
λ and update h = h+λd. We repeat the above procedures until the norm of the
gradient ‖∇E(h)‖ is less than a prescribed threshold ε. As a result, the upper
(lower) envelope is the Brenier potential, the desired OT(WT) mapping maps
each nearest (farthest) power cell Wi(h) to the corresponding point pi.

Convex Hull In order to compute the power diagram, we need to compute the
convex hull [5]. The conventional method [15] computes the convex hull from the
scratch at each iteration, which is the most time-consuming step in the algorithm
pipeline. Actually, at the later stages of the optimization, the combinatorial
structure of the convex hull does not change much. Therefore, in the proposed
method, we only locally update the connectivity of the convex hull. Basically,
we check the local power Delaunay property of each edge, and push the non-
Delaunay edges to a stack. While the stack is non-empty, we pop the top edge
and check whether it is local power Delaunay, if it is then we continue, otherwise
we flip it. Furthermore, if the flipping causes some overlapped triangles, we flip
it back. By repeating this procedure, we will finally update the convex hull and
project it to the weighted Delaunay triangulation. If in the end, the stack is
empty, but there are still non-local power Delaunay edges, then it means that
the height vector h is outside the admissible space H and some power cells are
empty. In this scenario, we reduce the step length λ by half and try again.

Subdivision With a piecewise linear source density, we need to compute the
µ-area of the power cells and the µ-length of the power diagram edges. The
source measure is represented by a piecewise linear density function, defined
on a triangulation, as shown in Fig. 3(a). Therefore, we need to compute the
overlay (Fig. 3(c)) of the triangulation (Fig. 3(a)) and the power diagram (Fig.
3(b)) in each iteration. This step is technically challenging. If we use a naive
approach to compute the intersection between each triangle and each power cell,
the complexity is very high. Therefore, we use a Bentley-Ottmann type sweep
line approach [4] to improve the efficiency. Basically, all the planar points are
sorted, such that the left-lower points are less than the right-upper ones. Then
for each cell we find the minimal vertex and maximal vertex. A sweep line goes
from left to right. When the sweep line hits the minimal vertex of a cell, the cell
is born; when the sweep line passes the maximal vertex, the cell dies. We also
keep the data structure to store all the alive triangles and cells, and compute
the intersections among them. This greatly improves the computation efficiency.

4 Experiments
To show the practicality of our framework for structural MR images as well as
the robustness over large brain image datasets, we aim to use the WT cost to
statistically discriminate Aβ+ AD patients and Aβ− CU subjects.

Data Preparation Brain sMRI data are obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [1], from which we use 81
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(a) PL source density (b) Power diagram (c) Overlay

Fig. 3. The subdivision algorithm computes the subdivision of the source triangulation,
where the density function is defined, and the power diagram.

Aβ+ AD patients and 110 Aβ− CU subjects. The ADNI florbetapir PET data
is processed using AVID pipeline [12] and later converted to centiloid scales. A
centiloid cutoff of 37.1 is used to determine amyloid positivity [9]. The sMRIs
are preprocessed using FreeSurfer [8] to reconstruct the pial cortical surfaces and
we only use the left cerebral surfaces. For each surface, we remove the corpus
callosum region which has little morphometry information related to AD, so that
the final surface becomes a topological disk. Further, we compute the conformal
mapping φ from the surface S to the planar disk D with the discrete surface
Ricci flow [19]. To eliminate the Mobius ambiguity, we map the vertex with the
largest z coordinate on S to the origin of the disk, and the vertex with the largest
z coordinate on the boundary ∂S to (0, 1) coordinate of D.

Computation Process In the experiment, we randomly select one subject
from the Aβ− CU subjects as the template, and then compute both the OT
costs and WT costs from the template to all other cortical surfaces. The source
measure is piecewisely defined on the parameter space of the template, namely
the planar disk. The measure of each triangle [φ(vi), φ(vj), φ(vk)] on the disk is
equal to the corresponding area of the triangle [vi, vj , vk] on S. Then the total
source measure is normalized to be 1. For the target surface M , the measure is
defined on the planar points yi = φ(vi) with vi ∈ M . The discrete measure νi
corresponding to both vi and yi is given by νi = 1

3

∑
[vi,vj ,vk]∈M area([vi, vj , vk]),

where [vi, vj , vk] represents a face adjacent to vi on M in R3. After normaliza-
tion, the summation of the discrete measures will be equal to the measure of the
planar disk, namely 1. Then we compute both the OT cost and the WT cost
from the planar source measure induced by the template surface to the target
discrete measures given by the ADs and CUs. Finally, we run a permutation test
with 50,000 random assignments of subjects to groups to estimate the statis-
tical significance of both measurements. Furthermore, we also compute surface
areas and cortical volumes as the measurements for comparison and the same
permutation test is applied. The p-value for the WT cost is 2e-5, which indicates
that the WT-based univariate biomarkers are statistically significant between
two groups and they may be used as a reliable indicator to separate two groups.
It is worth noting that it is also far better than that of the surface area, cortical
volume and OT cost, which are given by 0.7859, 0.5033 and 0.7783, respectively,
as shown in Tab. 1.
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Table 1. The permutation test results with surface area, surface volume, OT cost and
WT cost for group difference between those of Aβ+ ADs and Aβ− CUs.

Method Surface Area Cortical Volume OT Cost WT Cost

p-value 0.7859 0.5033 0.7783 2e-5

Our results show that the WT cost is promising as an AD imaging biomarker.
It is unexpected to see that it performs far better than OT. A plausible expla-
nation is that although human brain cortical shapes are generally homogeneous,
the AD-induced atrophy may have some common patterns which are consis-
tently exaggerated in the WT cost but OT is robust to these changes. More
experiments and theoretical study are warranted to validate our observation.

5 Conclusion
In this work, we propose a new algorithm to compute the WT cost and validate
its potential as a new AD imaging biomarker. In the future, we will validate our
framework with more brain images and offer more theoretical interpretation to
its improved statistical power.
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