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Abstract
Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering, and having accessible
water is critically important for earthquake victims. To address this challenge, utility managers do preventive
procedures on water pipes periodically to withstand future earthquake damage. The existing seismic vulnerability
models usually consider simple methods to find the pipes to rehabilitate with highest priority. In this research, we
develop an optimization approach to determine which water pipes to rehabilitate subject to a limited budget.
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1. Introduction

Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering. Preparing
enough utility resources right after the earthquake is one of the most vital actions. Water, as the most important
resource for keeping humans alive in these kinds of disasters, plays an important role. Historical data from past
earthquakes show the importance of providing drinkable water right after an earthquake. For addressing this challenge,
utility managers do a preventive procedure that repairs some of their water pipes periodically, but the important
question is which pipes should be repaired since utility managers have limited budget. Existing seismic vulnerability
models just consider simple methods to find pipes with highest priority [1].

In this research, we develop an optimization model that finds a best rehabilitation policy before an earthquake
that maximizes expected service to the people right after the earthquake. Figure 1 shows the two-stage stochastic
process considered in this research. In stage 1, an initial rehabilitation policy/decision is made subject to the limited
budget. Then a hypothetical earthquake occurs and generates a random scenario that determines which pipes are
broken. In stage 2, right after the earthquake, a recourse function determines the water flow in the unbroken pipes.

Stage | | Stage 2

pipe rehabilitation pipe damage
scenarios

Pre-earthquake | Earthquake occurs | Post-carthquake

rehabilitation with evaluation
limited budget :

Figure 1: Two-Stage Stochastic Model
The contribution of this paper is as follows. We formulate the aforementioned optimization model as a two-
stage stochastic mixed integer nonlinear program (MINLP). The MINLP model cannot be solved by commercial
optimization software, like BARON even for problems with a very small number of scenarios. Consequently, we
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propose piecewise linear functions (PLF) to approximate the nonlinearity in the MINLP. Therefore, we formulate a
mixed integer linear program (MILP) to approximate the MINLP. The optimization of the MILP is still challenging
to solve, so we introduce a sequential algorithm to mitigate this computational issue and find bounds for the
approximated optimal solution.

2. Model Description
2.1. Stochastic Program for Water Pipe Rehabilitation Problem
We introduce a stochastic program for water pipe rehabilitation problem with a recourse flow function to
maximize the output flow after the earthquake.
Let the water pipe network be represented as a graph G = (N, 4), where N is a set of nodes, and 4 is a set of arcs/pipes.
For each arc (7,j) € A4, let rehabilitation decision variable
‘. = {1; if pipe from node i to j is rehabilitated
y 0; otherwise

In addition, let = be a set of random scenarios in which each determines which pipes break according to a Monte Carlo
Simulation. For each scenario & € =, let P¢ be the probability that scenario & occurs. We can calculate the P as

follows:
frequency of special scenario happens
P{ — q y p . pp (1)
all scenarios

Let a loop be a sequence of connected pipes that begins and ends with the same pipe. In network literature, a loop is
usually referred to as a cycle, but in this research, we have elected to use the term loop to be consistent with the
hydraulic literature. Before the earthquake, let X be the set of all loops in the network G. For each loop k € K, let the

loop variable 0,5 be
0f = {1; if all pipes in loop k are unbroken in scenario §
k7 10; ifatleastone of the pipes inloop k is broken in scenario &

We define binary parameter 1”5

that is 1 when the pipe from node i to j breaks in scenario & € E if unrehabilitated and
0 otherwise.

For each arc (i,j) € A and scenario § € E, let fj be the flows from node i to j in scenario e E. In addition,
we define NFf to be the net flow (inflow/outflow) of node i in scenario E€ =. Let N, be the subset of N consisting of
demand nodes and N; be the subset of N that contains source nodes, Therefore,

NFf = 0if i € N\N, UN;, NE’ = 0if i € N,,and NF® < 0if i € N;.

In addition, let [;; be the cost of rehabilitating the pipe from node i to j, and let L be the rehabilitation budget.
Moreover, let T;; be a certain coefficient for each pipe that depends on the physical features of the pipe like its material
and diameter, let p be an experimental constant, usually equal to 1.852, the hydraulic literature often defines the
pressure in a pipe (i, j) to be Tj; fj ?[2]. In addition, let U; ; be the maximum possible flow in each pipe (i, j) € 4.
Therefore, the extensive form of the stochastic programming model for the water pipe rehabilitation problem is
formulated as:

Max ESSI, = 3¢es(P%) ( Zien, NF{ ) )
pre earthquake outflow
Yapealijxiy <L (3)
Yjen: (ij)eAf;]E' - Zjen:(j i)sAfﬁ = NF! VieN, V§ € B “)
0p =T pea, (1 — A = x;)735) Vk €K, V§ €E (5)
0f St jea, Tifs ) =0 vk €K, VE€E (6)
0<fi<(—A—x)r) Uy V(i )eA, V& € E 7)
fifi=0 V(i j)eA, YEEE (8)
x;; € {0,1} V(ij)eA 9)
0} €{0,1} vk €K, VE€E (10)

In this MINLP, the objective function (2) maximizes the Expected System Serviceability Index (ESSI). Constraint (3)
is a knapsack constraint that restricts the cost of rehabilitation to be less than a predetermined budget. Constraint set
(4) ensures that the difference between input and output flow at each node is equal to the supply or demand of that
node, also referred to as flow conservation constraints. Constraint set (5) ensures that each loop exists if and only if
all of its pipes are unbroken after the earthquake. Constraint set (6) ensures that each remaining loop, satisfies pressure
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conservation constraints with p = 1.852. Constraint set (7) defines the relationship among x, », and /. It guarantees
that if a pipe is rehabilitated before the earthquake (x = 1), the earthquake does not break it. On the other hand, if a
pipe is not rehabilitated before the earthquake (x = 0), it’s broken after the earthquake if r¢ = 1. Consequently, the
flow f on an arc in scenario & can be nonzero if x=1 or % = 0. Constraint set (8) makes sure that each flow is just in
one direction in each pipe. Constraint sets (9) and (10) are integer restrictions.

We compute the maximum possible flow in each pipe (i, j) € 4 by solving a network flow problem as follows:

st Xjen: (i peafij —Zjen:Gieafji = NF; VieN, V§ € B “4)
f; =0 v(ij) € A (7a)

In this model, the objective function (11) maximizes the flow in a given pipe, while the model considers the flow
conservation constraint set that we described before.

2.2. Linear Approximation Model
Since the previously given stochastic MINLP is computationally intractable, even for a small number of
scenarios, we formulate an approximation as an MILP. We have three nonlinear constraint sets, (5), (6) and (8). For
linearization of constraint set (5), we introduce two new constraint sets that can substitute for constraint set (5):

0f <1-(1-x)r Vk € K, V(i €Ay, VE € E (5a)
0f = Xy jpear 1 — (1= x5)15 = (Al = 1) vk €K, VE€E (5b)
Constraint set (6) can be linearized as follows [25], where M is a big positive constant:

3 ¢ ¢ 3 =
—MO; < X peari=o Tijf;j e peagri=o Tijfji < Moy Vk €K, V¢ EE (6a)
Constraint set (6a) can be written as two constraint sets:

$ ¢ § =
—MO; < X peari=o Tijfij e peagri=o Tijfji P Vk €K, V¢ €EE (6b)
Z(i j)EAk:Tij=0 Tl] i]f' P Z(l. j)EAk:Tij=0 Tllfjf P = MOIE vk € K’ vf EZ (6C)

However, we still have the term f]f P that should be linearized. By using Piecewise Linear Functions (PLF) [26],
constraint sets (6b) and (6¢) can be approximated. The term flf P can be estimated by a PLF with S linear pieces. For
each linear piece s =1, ..., S, let m; be the slope, c, be the intercept, (a’s, b's) be the domain, and w;; ; be an integer

variable that indicates the flow of pipe (i,j) is in the domain of s. Hence, fj P approximately satisfies the following
conditions:

fj P~ (mlfif.1 + cywy; 1) + (mzfif.2 + czwijz) + -+ (msfi]f.s + CSWL-]-S) (15)
st: 0= f, <awy, V(i ))eA, V& € E (16)
a5 qwys < fig < aswys V(i ))eA, VE € E; Vse(2,3, ..., S} (17)
WL}1+W1.}2+.+WL}S:1 V(l])GA (18)
Wij l'Wij 2, ""Wl'jS € {0, 1} V(l])GA (19)

Therefore, constraint sets (6b) and (6¢) can be approximated as follows:
_MOE < Z(i JeAR Tij(2§=1 mg f;is + Cs Wij s) - Z(i JeA Tij(z:g:l mg f;is + Cs Wij s)

vk €K, VEEE (6d)
3 3 3
Y pea Tij (Ca - ms fijs + W) = i prea Tif (X =1 M f;‘is +cswijs) < MOy
vk €K, VE€E (6¢)

One challenge is that the numbers of loops and constraints in (5) and (6), are exponentially large with respect to the
number of pipes in the network.

The linearization method for constraint set (8) can be formulated as below [27]. We use a set of binary variables gf]

fi < iUy (8a)
fi <A=gi)Uy V(ij)ed, VE EE (8b)
gfj € {0,1} V(i )eA, VE EE (8¢)
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2.3. Revised Two-Stage Stochastic Programming Formulation
For simplicity we relax constraint (8). Consequently, the final equivalent MILP consists of objective function
(2), and constraints (3), (4), (5a), (5b), (6d), (6¢e), (7), (9), (10), (16), (17), (18), and (19). Moreover, the expected
MILP second stage recourse function consists of objective function (2), and constraints (4), (5a), (5b), (6d), (6¢), (7),
(9), (10), (16), (17), (18), and (19).

2.4. Evaluation Procedure
The evaluation of the MILP and the MINLP has been done in a case when there is no break in the network.
We use fmincon function in MATLAB to find an optimal solution for MINLP. Hence, we evaluate how well our
MILP approximates the MINLP.
In addition, we introduce a sequential revised two-stage stochastic algorithm to find an optimality gap for the MILP
optimal solution [28]. We used MATLAB and Gurobi.

3. Computational Study
We consider two networks, Networks 1 and 2. Network 1 consists of 117 pipes, 92 nodes, and 22 loops before
the earthquake (Figure 2). The water pipe network length is 65749 meters. Figure 3 shows Networks 2, the Modena
network. Networks 2 consists of 317 pipes, 272 nodes, and 46 loops before the earthquake. The water pipe network
length is 71806.11 meters. For Network 2, we generated3000 random scenarios using Monte Carlo Simulation from
a hypothetical earthquake [1]. 308 pipes out of the 317 pipes break at least once in the 3000 scenarios. However, many
of the scenarios within the 3000 are repeated, and we note that there are in fact only 1505 unique scenarios.

Figure 2: Network 1 Figure 3: Network 2

3.1. Accuracy of MILP Recourse Function
First, we evaluate the accuracy of the MILP recourse function. For Network 1, we consider a single scenario
case in which the earthquake does not break any pipes. We solve the MILP using Gurobi to determine the flows in
Network 1. In this case model does not recommend any rehabilitation policy. Then, we use fmincon function in
MATLAB to find an optimal solution for the nonlinear recourse function. The results show the linear approximated
flow from the MILP recourse function is 210.5 liters/second while the nonlinear recourse function optimal solution
from fmincon is 209.3 liters/second. Consequently, in this case the piecewise linear approximation is 99.4% accurate.

3.2. Sequential Revised Two-Stage Stochastic Programming
Since Network 2 is huge, we divide the 1505 unique scenarios into groups with five scenarios each, and we
sort them by their descending probabilities. We assume rehabilitation cost is proportional to the pipe length, and the
budget limit is 1500 meters. We consider the following sequential algorithm. First, we solve the MILP over the most
probable five scenarios. Then, we reduce budget limit by the length of the pipes in the solution. We repeat this process
until we have either no remaining scenario groups or budget limit. Table 1 shows the results. The final policy
rehabilitates 4 pipes with a total length of 1498.97 meters and a serviceability of 373.25 liters/second.

Table 1: Sequential MILP

Iteration Remaining Budget Limit (meters) | # of Rehabilitated Pipes
1 to 27 88.16 2
28 to 60 7.06 3
61 1.03 4
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We use the method in [28] and determine the following optimality bounds for the solution:
373.25 (o) < 2° < 386.64 (o) (20)
Consequently, the solution we find using the sequential algorithm is within 2% of optimality.

secon second

4. Conclusions

This study proposed the two-stage stochastic programming model for the water pipe rehabilitation problem
with a recourse flow function to maximize the output flow right after an earthquake. We introduced the approximate
mixed integer linear program (MILP) by manipulating the nonlinear constraints and using a piecewise linear
approximation method. Therefore, the formulated mixed integer nonlinear program (MINLP) can be approximated by
the MILP. Then we determined the rehabilitation policy over several randomly generated scenarios using the
sequential algorithm. The evaluation of the concluded policy was done by using the method in [28], and the
rehabilitation policy is within 2% of optimality.

In future research, the model can be used for rehabilitation plans of corroded pipes. In addition, we can
consider leakage in the model, another objective function, using Benders Decomposition for solving the model, and
developing software for helping municipalities to rehabilitate their water pipes, especially in cities where an
earthquake may occur with higher probability.
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