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Abstract 
Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering, and having accessible 
water is critically important for earthquake victims.  To address this challenge, utility managers do preventive 
procedures on water pipes periodically to withstand future earthquake damage. The existing seismic vulnerability 
models usually consider simple methods to find the pipes to rehabilitate with highest priority.  In this research, we 
develop an optimization approach to determine which water pipes to rehabilitate subject to a limited budget. 
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1. Introduction 
Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering. Preparing 

enough utility resources right after the earthquake is one of the most vital actions. Water, as the most important 
resource for keeping humans alive in these kinds of disasters, plays an important role. Historical data from past 
earthquakes show the importance of providing drinkable water right after an earthquake. For addressing this challenge, 
utility managers do a preventive procedure that repairs some of their water pipes periodically, but the important 
question is which pipes should be repaired since utility managers have limited budget. Existing seismic vulnerability 
models just consider simple methods to find pipes with highest priority [1].  

In this research, we develop an optimization model that finds a best rehabilitation policy before an earthquake 
that maximizes expected service to the people right after the earthquake. Figure 1 shows the two-stage stochastic 
process considered in this research. In stage 1, an initial rehabilitation policy/decision is made subject to the limited 
budget. Then a hypothetical earthquake occurs and generates a random scenario that determines which pipes are 
broken. In stage 2, right after the earthquake, a recourse function determines the water flow in the unbroken pipes. 

 
Figure 1: Two-Stage Stochastic Model 

The contribution of this paper is as follows. We formulate the aforementioned optimization model as a two-
stage stochastic mixed integer nonlinear program (MINLP). The MINLP model cannot be solved by commercial 
optimization software, like BARON even for problems with a very small number of scenarios. Consequently, we 
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propose piecewise linear functions (PLF) to approximate the nonlinearity in the MINLP. Therefore, we formulate a 
mixed integer linear program (MILP) to approximate the MINLP. The optimization of the MILP is still challenging 
to solve, so we introduce a sequential algorithm to mitigate this computational issue and find bounds for the 
approximated optimal solution. 
 

2. Model Description 
2.1. Stochastic Program for Water Pipe Rehabilitation Problem  

We introduce a stochastic program for water pipe rehabilitation problem with a recourse flow function to 
maximize the output flow after the earthquake.  
Let the water pipe network be represented as a graph G = (N, A), where N is a set of nodes, and A is a set of arcs/pipes. 
For each arc (i,j) ∈ A, let rehabilitation decision variable 

𝑥𝑥𝑖𝑖𝑖𝑖 = �1;                 if pipe from node i to j is rehabilitated
0;                 otherwise                                                       

In addition, let Ξ be a set of random scenarios in which each determines which pipes break according to a Monte Carlo 
Simulation. For each scenario ξ ∈ Ξ, let 𝑃𝑃𝜉𝜉  be the probability that scenario ξ occurs. We can calculate the 𝑃𝑃𝜉𝜉  as 
follows: 
𝑃𝑃𝜉𝜉 = frequency of special scenario happens 

all scenarios
              (1) 

Let a loop be a sequence of connected pipes that begins and ends with the same pipe.  In network literature, a loop is 
usually referred to as a cycle, but in this research, we have elected to use the term loop to be consistent with the 
hydraulic literature. Before the earthquake, let K be the set of all loops in the network G. For each loop 𝑘𝑘 ∈ 𝐾𝐾, let the 
loop variable 𝑂𝑂𝑘𝑘

𝜉𝜉  be 

𝑂𝑂𝑘𝑘
𝜉𝜉 = �1;     if all pipes in loop k are unbroken in scenario ξ                       

0;     if at least one of the pipes  in loop k is broken in scenario ξ   

We define binary parameter 𝑟𝑟𝑖𝑖𝑖𝑖
𝜉𝜉  that is 1 when the pipe from node i to j breaks in scenario ξ ∈ Ξ if unrehabilitated and 

0 otherwise. 
For each arc (i,j) ∈ A and scenario ξ ∈ Ξ , let 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  be the flows from node i to j in scenario ξ∈ Ξ. In addition, 
we define 𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉  to be the net flow (inflow/outflow) of node i in scenario ξ∈ Ξ. Let Nt be the subset of N consisting of 
demand nodes and Ns be the subset of N that contains source nodes, Therefore, 

 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉 = 0 𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁\𝑁𝑁𝑡𝑡 ∪ 𝑁𝑁𝑠𝑠,𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉 ≥ 0 𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁𝑡𝑡 , and 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉 ≤ 0 𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁𝑠𝑠. 

In addition, let 𝑙𝑙𝑖𝑖𝑖𝑖  be the cost of rehabilitating the pipe from node i to j,  and let L be the rehabilitation budget.  
Moreover, let 𝑇𝑇𝑖𝑖𝑖𝑖  be a certain coefficient for each pipe that depends on the physical features of the pipe like its material 
and diameter, let 𝜌𝜌 be an experimental constant, usually equal to 1.852, the hydraulic literature often defines the 
pressure in a pipe (i, j) to be 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉   𝜌𝜌 [2]. In addition, let 𝑈𝑈𝑖𝑖𝑖𝑖  be the maximum possible flow in each pipe (i, j) ∈ A. 
Therefore, the extensive form of the stochastic programming model for the water pipe rehabilitation problem is 
formulated as: 

Max 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 = ∑ (𝑃𝑃𝜉𝜉)�
∑ 𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉
𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡

pre earthquake outflow
� 

𝜉𝜉∈Ξ        (2) 

∑ 𝑙𝑙𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖 (𝑖𝑖 𝑗𝑗)∈𝐴𝐴 ≤ 𝐿𝐿           (3) 
∑ 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝑗𝑗𝑗𝑗𝑗𝑗: (𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖 –∑ 𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉  𝑗𝑗𝑗𝑗𝑗𝑗:(𝑗𝑗 𝑖𝑖)𝜖𝜖𝜖𝜖 =  𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉    ∀𝑖𝑖𝑖𝑖𝑖𝑖, ∀𝜉𝜉 ∈ Ξ    (4) 
𝑂𝑂𝑘𝑘
𝜉𝜉 = ∏ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 
(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (5) 

𝑂𝑂𝑘𝑘
𝜉𝜉(∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉   𝜌𝜌 
(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘 

) = 0     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (6) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖,∀𝜉𝜉 ∈ Ξ    (7) 
𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉𝑓𝑓𝑗𝑗𝑗𝑗

𝜉𝜉 = 0       ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖, ∀𝜉𝜉 ∈ Ξ    (8) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}      ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖     (9) 
𝑂𝑂𝑘𝑘
𝜉𝜉 ∈ {0, 1}      ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝜉𝜉 ∈ Ξ    (10) 

In this MINLP, the objective function (2) maximizes the Expected System Serviceability Index (ESSI). Constraint (3) 
is a knapsack constraint that restricts the cost of rehabilitation to be less than a predetermined budget. Constraint set 
(4) ensures that the difference between input and output flow at each node is equal to the supply or demand of that 
node, also referred to as flow conservation constraints. Constraint set (5) ensures that each loop exists if and only if 
all of its pipes are unbroken after the earthquake. Constraint set (6) ensures that each remaining loop, satisfies pressure 
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conservation constraints with 𝜌𝜌 = 1.852. Constraint set (7) defines the relationship among x, r, and f. It guarantees 
that if a pipe is rehabilitated before the earthquake (x = 1), the earthquake does not break it. On the other hand, if a 
pipe is not rehabilitated before the earthquake (x = 0), it’s broken after the earthquake if 𝑟𝑟 𝜉𝜉  = 1. Consequently, the 
flow f on an arc in scenario ξ can be nonzero if x=1 or 𝑟𝑟 𝜉𝜉  = 0. Constraint set (8) makes sure that each flow is just in 
one direction in each pipe. Constraint sets (9) and (10) are integer restrictions. 
We compute the maximum possible flow in each pipe (i, j) ∈ A by solving a network flow problem as follows: 
𝑈𝑈𝑖𝑖𝑖𝑖 = Max 𝑓𝑓𝑖𝑖𝑖𝑖             (11) 
s.t.: ∑ 𝑓𝑓𝑖𝑖𝑖𝑖  𝑗𝑗𝑗𝑗𝑗𝑗: (𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖 –∑ 𝑓𝑓𝑗𝑗𝑗𝑗  𝑗𝑗𝑗𝑗𝑗𝑗:(𝑗𝑗 𝑖𝑖)𝜖𝜖𝜖𝜖 =  𝑁𝑁𝑁𝑁𝑖𝑖    ∀𝑖𝑖𝑖𝑖𝑖𝑖, ∀𝜉𝜉 ∈ Ξ    (4) 
fij ≥ 0          ∀(i j) ∈ A    (7a) 
In this model, the objective function (11) maximizes the flow in a given pipe, while the model considers the flow 
conservation constraint set that we described before.  
 

2.2. Linear Approximation Model 
Since the previously given stochastic MINLP is computationally intractable, even for a small number of 

scenarios, we formulate an approximation as an MILP.  We have three nonlinear constraint sets, (5), (6) and (8). For 
linearization of constraint set (5), we introduce two new constraint sets that can substitute for constraint set (5): 
𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉      ∀𝑘𝑘 ∈ 𝐾𝐾,∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘 , ∀𝜉𝜉 ∈ Ξ  (5a) 
𝑂𝑂𝑘𝑘
𝜉𝜉 ≥ ∑ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉
 ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘 − (|𝐴𝐴𝑘𝑘| − 1)  ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (5b) 

Constraint set (6) can be linearized as follows [25], where M is a big positive constant: 
−𝑀𝑀𝑂𝑂𝑘𝑘

𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉  ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (6a) 

Constraint set (6a) can be written as two constraint sets: 
−𝑀𝑀𝑂𝑂𝑘𝑘

𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0   ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6b) 

∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉   ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6c) 

However, we still have the term 𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉  𝜌𝜌 that should be linearized. By using Piecewise Linear Functions (PLF) [26], 

constraint sets (6b) and (6c) can be approximated. The term 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 can be estimated by a PLF with S linear pieces. For 

each linear piece s = 1, …, S, let 𝑚𝑚𝑠𝑠 be the slope,  𝑐𝑐𝑠𝑠 be the intercept, (𝑎𝑎′𝑠𝑠 , 𝑏𝑏′𝑠𝑠) be the domain,  and 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 be an integer 
variable that indicates the flow of pipe (i,j) is in the domain of s. Hence, 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝜌𝜌 approximately satisfies the following 
conditions: 
𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 ≈ �𝑚𝑚1𝑓𝑓𝑖𝑖𝑖𝑖 1 

𝜉𝜉 + 𝑐𝑐1𝑤𝑤𝑖𝑖𝑖𝑖 1� + �𝑚𝑚2𝑓𝑓𝑖𝑖𝑖𝑖 2 
𝜉𝜉 + 𝑐𝑐2𝑤𝑤𝑖𝑖𝑖𝑖 2� + ⋯+ �𝑚𝑚𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 

𝜉𝜉 + 𝑐𝑐𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠�    (15) 

s.t.: 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 1 
𝜉𝜉 ≤ 𝑎𝑎′1𝑤𝑤𝑖𝑖𝑖𝑖 1    ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖,∀𝜉𝜉 ∈ Ξ    (16) 

 𝑎𝑎′𝑠𝑠−1𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 
𝜉𝜉 ≤ 𝑎𝑎′𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠   ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖,∀𝜉𝜉 ∈ Ξ;  ∀𝑠𝑠𝑠𝑠{2, 3, … , 𝑆𝑆}  (17) 

𝑤𝑤𝑖𝑖𝑖𝑖 1 + 𝑤𝑤𝑖𝑖𝑖𝑖 2 + ⋯+ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 = 1   ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖     (18) 
𝑤𝑤𝑖𝑖𝑖𝑖 1,𝑤𝑤𝑖𝑖𝑖𝑖 2, … ,𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ {0,  1}   ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖     (19) 

Therefore, constraint sets (6b) and (6c) can be approximated as follows: 
−𝑀𝑀𝑂𝑂𝑘𝑘

𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆

𝑠𝑠 =1 ) 
(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘  

− ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆

𝑠𝑠 =1 ) 
(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘  

   
       ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (6d) 
∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓

𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑗𝑗𝑗𝑗 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑗𝑗)𝜖𝜖𝐴𝐴𝑘𝑘 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉     

       ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ    (6e) 
One challenge is that the numbers of loops and constraints in (5) and (6), are exponentially large with respect to the 
number of pipes in the network. 
The linearization method for constraint set (8) can be formulated as below [27]. We use a set of binary variables 𝑔𝑔𝑖𝑖𝑖𝑖

𝜉𝜉 .  
𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ 𝑔𝑔𝑖𝑖𝑖𝑖

𝜉𝜉 𝑈𝑈𝑖𝑖𝑖𝑖           (8a) 
𝑓𝑓𝑗𝑗𝑗𝑗
𝜉𝜉 ≤ (1 − 𝑔𝑔𝑖𝑖𝑖𝑖

𝜉𝜉 )𝑈𝑈𝑖𝑖𝑖𝑖      ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖, ∀𝜉𝜉 ∈ Ξ    (8b) 
𝑔𝑔𝑖𝑖𝑖𝑖
𝜉𝜉 ∈ {0, 1}      ∀(𝑖𝑖 𝑗𝑗)𝜖𝜖𝜖𝜖, ∀𝜉𝜉 ∈ Ξ    (8c) 
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2.3. Revised Two-Stage Stochastic Programming Formulation 
For simplicity we relax constraint (8). Consequently, the final equivalent MILP consists of objective function 

(2), and constraints (3), (4), (5a), (5b), (6d), (6e), (7), (9), (10), (16), (17), (18), and (19). Moreover, the expected 
MILP second stage recourse function consists of objective function (2), and constraints (4), (5a), (5b), (6d), (6e), (7), 
(9), (10), (16), (17), (18), and (19).  
 

2.4. Evaluation Procedure 
The evaluation of the MILP and the MINLP has been done in a case when there is no break in the network. 

We use fmincon function in MATLAB to find an optimal solution for MINLP. Hence, we evaluate how well our 
MILP approximates the MINLP. 
In addition, we introduce a sequential revised two-stage stochastic algorithm to find an optimality gap for the MILP 
optimal solution [28]. We used MATLAB and Gurobi.  
 

3. Computational Study 
We consider two networks, Networks 1 and 2. Network 1 consists of 117 pipes, 92 nodes, and 22 loops before 

the earthquake (Figure 2). The water pipe network length is 65749 meters. Figure 3 shows Networks 2, the Modena 
network. Networks 2 consists of 317 pipes, 272 nodes, and 46 loops before the earthquake. The water pipe network 
length is 71806.11 meters.  For Network 2, we generated3000 random scenarios using Monte Carlo Simulation from 
a hypothetical earthquake [1]. 308 pipes out of the 317 pipes break at least once in the 3000 scenarios. However, many 
of the scenarios within the 3000 are repeated, and we note that there are in fact only 1505 unique scenarios. 

 
Figure 2: Network 1    Figure 3: Network 2 

 
3.1. Accuracy of MILP Recourse Function 

First, we evaluate the accuracy of the MILP recourse function. For Network 1, we consider a single scenario 
case in which the earthquake does not break any pipes. We solve the MILP using Gurobi to determine the flows in 
Network 1. In this case model does not recommend any rehabilitation policy. Then, we use fmincon function in 
MATLAB to find an optimal solution for the nonlinear recourse function. The results show the linear approximated 
flow from the MILP recourse function is 210.5 liters/second while the nonlinear recourse function optimal solution 
from fmincon is 209.3 liters/second. Consequently, in this case the piecewise linear approximation is 99.4% accurate. 

 
3.2. Sequential Revised Two-Stage Stochastic Programming  

Since Network 2 is huge, we divide the 1505 unique scenarios into groups with five scenarios each, and we 
sort them by their descending probabilities. We assume rehabilitation cost is proportional to the pipe length, and the 
budget limit is 1500 meters. We consider the following sequential algorithm. First, we solve the MILP over the most 
probable five scenarios. Then, we reduce budget limit by the length of the pipes in the solution. We repeat this process 
until we have either no remaining scenario groups or budget limit. Table 1 shows the results. The final policy 
rehabilitates 4 pipes with a total length of 1498.97 meters and a serviceability of 373.25 liters/second. 

 
Table 1: Sequential MILP 

Iteration Remaining Budget Limit (meters) # of Rehabilitated Pipes 
 1 to 27 88.16 2 
28 to 60 7.06 3 

61 1.03 4 
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We use the method in [28] and determine the following optimality bounds for the solution: 
373.25 � liters

second
� ≤ 𝑧𝑧∗ ≤ 386.64 � liters

second
�        (20) 

Consequently, the solution we find using the sequential algorithm is within 2% of optimality. 
 

4. Conclusions  
This study proposed the two-stage stochastic programming model for the water pipe rehabilitation problem 

with a recourse flow function to maximize the output flow right after an earthquake. We introduced the approximate 
mixed integer linear program (MILP) by manipulating the nonlinear constraints and using a piecewise linear 
approximation method. Therefore, the formulated mixed integer nonlinear program (MINLP) can be approximated by 
the MILP. Then we determined the rehabilitation policy over several randomly generated scenarios using the 
sequential algorithm. The evaluation of the concluded policy was done by using the method in [28], and the 
rehabilitation policy is within 2% of optimality. 

In future research, the model can be used for rehabilitation plans of corroded pipes. In addition, we can 
consider leakage in the model, another objective function, using Benders Decomposition for solving the model, and 
developing software for helping municipalities to rehabilitate their water pipes, especially in cities where an 
earthquake may occur with higher probability. 
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