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In this work, we consider numerical methods for the Poisson–Nernst–Planck–Cahn–Hilliard 
(PNPCH) equations with steric interactions, which correspond to a non-constant mobility 
H−1 gradient flow of a free-energy functional that consists of electrostatic free energies, 
steric interaction energies of short range, entropic contribution of ions, and concentration 
gradient energies. We propose a novel energy stable numerical scheme that respects mass 
conservation and positivity at the discrete level. Existence and uniqueness of the solution 
to the proposed nonlinear scheme are established by showing that the solution is a 
unique minimizer of a convex functional over a closed, convex domain. The positivity 
of numerical solutions is further theoretically justified by the singularity of the entropy 
terms, which prevents the minimizer from approaching zero concentrations. A further 
numerical analysis proves discrete free-energy dissipation. Extensive numerical tests are 
performed to validate that the numerical scheme is first-order accurate in time and 
second-order accurate in space, and is capable of preserving the desired properties, 
such as mass conservation, positivity, and free energy dissipation, at the discrete level. 
Moreover, the PNPCH equations and the proposed scheme are applied to study charge 
dynamics and self-assembled nanopatterns in highly concentrated electrolytes that are 
widely used in electrochemical energy devices. Numerical results demonstrate that the 
PNPCH equations and our numerical scheme are able to capture nanostructures, such as 
lamellar patterns and labyrinthine patterns in electric double layers and the bulk, and 
multiple time relaxation with multiple time scales. The multiple time relaxation dynamics 
with metastability take long time to reach an equilibrium, highlighting the need for 
robust, energy stable numerical schemes that allow large time stepping. In addition, we 
numerically characterize the interplay between cross steric interactions of short range 
and the concentration gradient regularization, and their impact on the development of 
nanostructures in the equilibrium state.
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1. Introduction

Ion transport is fundamental to a wide variety of biophysical processes and technological applications, e.g., transmem-

brane ion channels, electrochemical energy devices, and electrokinetics in microfluidics [4,6,72]. Based on a mean-field 
approximation, the classical Poisson–Nernst–Planck (PNP) theory has been derived to describe ion dynamics in various sce-
narios. The diffusion and convection of ions under gradients of the electrostatic potential are modeled by the Nernst–Planck 
equations. In turn, the electrostatic potential is governed by the Poisson equation with charge density arising from mobile 
ions. Despite its success in many applications, the PNP theory is valid only for dilute solutions due to various underlying 
assumptions made in mean-field approximations [4,52]. For instance, it neglects ionic steric effects that play a crucial role 
in the description of concentrated electrolytes in confined environments, e.g., high ionic concentrations in ion channels.

To address this issue, several versions of modified PNP theories with steric effects have been developed in the past few 
decades. One approach to account for steric effects is via the incorporation of entropy of solvent molecules to the elec-
trostatic free energy [8,42,45–47,55,63,68,75]. One salient feature of this type of models is a saturation concentration for 
compactly packed counterions in the vicinity of charge surfaces. Another strategy to include steric effects is to add an ex-
cess chemical potential, which can be given by the density functional theory [43,56], or by the Lennard-Jones potential for 
hard-sphere repulsions [24,41,48]. These models often give rise to integro-differential equations that are computationally in-
tractable. To avoid nonlocal integral terms, local approximations of nonlocal integrals up to leading order terms are proposed 
to obtain approximate local models [38,41,48]. Nonetheless, the resulting model has been shown to be ill-posed for concen-
trated electrolytes within certain parameter regimes [30,48]. To remedy this issue, concentration gradient energies that are 
higher order terms of the local approximations of nonlocal integrals can be added to regularize the solution [30–33]. Such 
gradient energy terms are widely used in the Ginzburg–Landau theory for the description of phase separation in mixtures. 
A conserved H−1 gradient flow of the Ginzburg-Landau functional gives rise to the Cahn–Hilliard (CH) equations [9].

An H−1 gradient flow of the electrostatic free energy with additional concentration gradient energies leads to the fol-
lowing Poisson–Nernst–Planck–Cahn–Hilliard (PNPCH) equations with steric interactions, with non-constant mobility:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂cm

∂t
= ϵm∇ ·

[

cm∇

(

zmψ + log cm +

M
∑

n=1

gmncn − σm%cm

)]

,

− ∇ · (κ∇ψ) =

M
∑

m=1

zmcm + ρ f ,

where ψ is the electrostatic potential, cm is the ion concentration for the mth species, zm is the valence, ρ f is the fixed 
charge density, κ and ϵm arise from nondimensionalization, G =

(

gmn
)

is the coefficient matrix for steric interactions, and 
σm is a gradient energy coefficient; cf. Section 2. Such a system is a well-posed H−1 gradient flow if the ion concentration 
cm keeps positive, and it has been successfully applied to study ion permeation and selectivity in ion channels [32] and 
charge dynamics in room temperature ionic liquids and highly concentrated electrolytes [31,33].

We focus on the development of numerical methods for the PNPCH equations. Many efforts have been devoted to the 
development of numerical methods for the PNP-type equations, ranging from finite difference schemes to discontinuous 
Galerkin (DG) methods [16,17,26,29,54,59,61,73]. In order to obtain physically faithful numerical solutions, it is highly 
desirable and crucial to preserve physical properties of the analytical solutions, such as mass conservation, free-energy 
dissipation, and positivity, at the discrete level. A finite difference scheme was developed for the PNP equations in 1D [27]; 
it was proved that the scheme guarantees numerical positivity if a time step size satisfies certain constraint conditions. 
An energy satisfying finite difference scheme based on a Slotboom transformation is proved to maintain discrete positivity 
under a constraint on the mesh ratio [50]. An arbitrary-order free energy satisfying DG method is proposed to numerically 
solve the 1D PNP equations. The positivity of numerical solutions was enforced by a delicately designed accuracy-preserving 
limiter [51]. A finite element method that can ensure positivity of numerical solutions was developed to solve both the 
PNP equations and PNP equations coupled with the Navier–Stokes equations [57]. A semi-implicit finite difference scheme 
that ensures positivity and discrete energy dissipating properties was established in [39]. Based on harmonic-mean ap-
proximations [19,62], a finite difference scheme that is proved to respect mass conservation and unconditional positivity 
preservation was proposed for PNP equations with steric effects [18]. Estimates on the condition number of the coefficient 
matrix was established as well. To the best of our knowledge, numerical methods with the desired properties for the PNPCH 
equations are still missing.

In this work, we first present the PNPCH equations corresponding to a non-constant mobility H−1 gradient flow of a free-
energy functional that includes electrostatic free energies, steric interaction energies of short range, entropic contribution 
of ions, and concentration gradient energies. To numerically solve the PNPCH equations, we propose a novel energy stable 
numerical scheme that respects mass conservation and positivity at the discrete level. It is shown that the solution to 
the proposed nonlinear scheme corresponds to a unique minimizer of a convex functional over a closed, convex domain, 
establishing the existence and uniqueness of the solution. The positivity of numerical solutions is further theoretically 
justified by making use of the singular nature of the entropy terms, which prevents the minimizer from approaching zero 
concentrations. It is noted that such an argument has been used to prove the positivity preservation of numerical methods 
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for the Cahn–Hilliard equations and quantum diffusion equations [12,20,44]; also see the related analysis [22,23] to deal 
with energetic variational method in the particle coordinate approach. Further numerical analysis establishes discrete free-
energy dissipation of the proposed scheme.

We perform extensive numerical tests to demonstrate that the numerical scheme is first-order accurate in time and 
second-order accurate in space, and is capable of preserving the desired properties, including mass conservation, positivity, 
and free energy dissipation. Moreover, the PNPCH equations and the proposed scheme are applied to study multiple time 
scale dynamics and self-assembled nanopatterns in highly concentrated electrolytes. The multiple time scale dynamics often 
take long time to reach an equilibrium, highlighting the need for robust, energy stable numerical schemes that allow large 
time stepping. Numerical results demonstrate that the PNPCH equations and the proposed numerical scheme are able to 
capture nanostructures, such as lamellar patterns and labyrinthine patterns, and multiple time scale dynamics with multiple 
time scales. In addition, we investigate the interplay between cross steric interactions of short range and the concentration 
gradient regularization, and their impact on the development of nanostructures in the equilibrium state.

The rest of the paper is organized as follows. In Section 2 we derive the PNPCH equations from a free energy functional. 
In Section 3 we present the finite difference scheme. In Section 4 we prove main properties of the numerical scheme at the 
discrete level. Section 5 is devoted to the numerical results. Finally, some concluding remarks are made in Section 6.

2. Physical model

We consider an electrolyte solution with M ionic species, occupying a region ( in R3 . We denote by cm = cm(t, x) (m =
1, · · · , M) the local ionic concentration of the mth ionic species at position x ∈ ( and time t . Denote by c = (c1, c2, ..., cM)T . 
For such a charged system, we consider the following free-energy functional of ionic concentrations [30]:

F [c] =

∫

(

1

2
ρψdx + β−1

M
∑

m=1

∫

(

cm
[

log(*3cm) − 1
]

dx +

∫

(

1

2
cT Gcdx+

M
∑

m=1

∫

(

σm

2
|∇cm|2dx. (1)

The first term represents the electrostatic energy. The total charge density ρ is given by

ρ =

M
∑

m=1

qmcm + ρ f ,

where qm = zme, with zm being the valence of the mth ionic species and e being the elementary charge, and the function 
ρ f ∈ C((̄) represents the distribution of fixed charges. The electrostatic potential ψ is governed by the Poisson’s equation

−∇ · (ε0εr∇ψ) = ρ in (, (2)

where ε0 is the vacuum dielectric permittivity and εr ≥ 1 is a spatially dependent dielectric coefficient function.
The second term describes the entropic contribution of ions to the total free energy. The parameter β = 1/kB T is the 

inverse of thermal energy, with kB being the Boltzmann constant and T being the absolute temperature. The constant *
is the thermal de Broglie wavelength. The ionic steric interaction energy is given in the third term, in which the M × M

matrix G = (gmn) is symmetric with non-negative entries. The entry gmn is related to the second-order virial coefficients 
of hard spheres, depending on the size of the mth and nth ionic species [18,74]. Diagonal entries of G describe self-
steric interactions of ions of the same species, and off-diagonal entries correspond to short-range cross steric interactions 
between ions of different species. A similar model based on the leading order local approximation of the Lennard-Jones 
interaction energies has been developed in the works [30,32,38,41,48,49,65], while the interaction matrix G in that model 
has a different interpretation.

The fourth term, arising from the Cahn–Hilliard mixture theory [9], describes a gradient energy that penalizes large 
concentration gradients and accounts for the energetic cost of short-range interactions, such as the inhomogeneous mixing 
of anions and cations. Here σm are gradient energy coefficients. Such a gradient energy term can also be regarded as higher 
order local approximations of the Lennard-Jones interaction potential for repulsive hard spheres, in addition to the leading 
order approximation shown in the third term [30]. It has been recently introduced to the PNP theory to describe steric 
interactions in ionic liquids [7,31,33] and ion channels [30,32].

We shall obtain governing equations based on the free-energy functional (1). Taking the first variation of F [c] with 
respect to ion concentrations, we obtain the chemical potential µm of the mth species of ions:

µm =
δF [c]

δcm
= qmψ + β−1 log(*3cm) +

M
∑

n=1

gmncn − σm%cm. (3)

The force balance between thermodynamic force and hydrodynamic drag gives rise to the velocity of the mth ion species

ηm = −βDm∇µm,
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where Dm is the diffusion constant. The time evolution of cm satisfies the conservation equation

∂cm

∂t
= −∇ · (cmηm).

With the chemical potential (3), we obtain

∂cm

∂t
= Dm∇ ·

{

βcm∇

[

qmψ + β−1 log(*3cm) +

M
∑

n=1

gmncn − σm%cm

]}

.

Meanwhile, the following nondimensionalized variables are introduced [6,45]

ψ̃ = eβψ, x̃ =
x

L
, c̃m =

cm

c0
, t̃ =

tD0

LλD

, D̃m =
Dm

D0

,

ṽ = *3c0, σ̃m =
σmc0β

L2
, G̃ = c0βG, ρ̃ f =

ρ f

ec0
,

where c0 is a characteristic concentration, L is a macroscopic length scale, and λD is the Debye length given by

λD :=

√

ε0εr

2e2c0β
.

For simplicity, we omit the tildes and obtain the dimensionless Poisson–Nernst–Planck–Cahn–Hilliard (PNPCH) equations 
[30]

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂cm

∂t
= ϵm∇ ·

[

cm∇

(

zmψ + log cm +

M
∑

n=1

gmncn − σm%cm

)]

,

− ∇ · (κ∇ψ) =

M
∑

m=1

zmcm + ρ f ,

(4)

where ϵm = λD
L
Dm and κ =

2λ2
D

L2
. Since the dielectric coefficient function εr ≥ 1, there exists a lower bound κ0 of κ , i.e.,

κ ≥ κ0 :=
ε0

e2c0L2β
. (5)

After omitting the tildes over the dimensionless variables again, the free energy functional becomes

F [c] =

∫

(

1

2

(

M
∑

m=1

zmcm + ρ f

)

ψdx+

M
∑

m=1

∫

(

cm
[

log(vcm) − 1
]

dx

+

∫

(

1

2
cT Gcdx+

M
∑

m=1

∫

(

σm

2

∣

∣∇cm
∣

∣

2
dx.

(6)

For simplicity, we assume that the domain ( is a cuboid and consider periodic boundary conditions on the boundary 
∂(. Since cm represents the concentration of ions, it is reasonable to assume that cm(t, x) ≥ 0 for x ∈ ( and t > 0. By 
periodic boundary conditions and equation system (4), we have mass conservation of each species of ions in the sense that

d

dt

∫

(

cm(t,x)dx =

∫

∂(

cmϵm∇

(

zmψ + log cm +

M
∑

n=1

gmncn − σm%cm

)

· ndS = 0,

where n is a unit normal vector defined on ∂(. Thus, the initial condition,

cm(0,x) = cmin(x),

determines the total mass of the mth species of ions in the system. It is assumed that the initial data satisfy the neutrality 
condition

∫

(

ρ f dx+

M
∑

m=1

∫

(

zmcmin(x)dx = 0, (7)
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which is necessary for the solvability of the Poisson equation (2) with periodic boundary conditions. In fact, for the Cahn-
Hilliard model with logarithmic Flory-Huggins energy potential, the positivity-preserving property has been established at 
a PDE level in [1,13,58], etc. For the PNP model, the positivity-preserving property has also been proved in [28,60]. For the 
PNPCH system (4), the positivity-preserving property (for cm) is expected to be established in a similar manner as the PNP 
system and the Flory-Huggins-Cahn-Hilliard model.

We also consider time evolution of the free energy

d

dt
F =

M
∑

m=1

∫

(

δF

δcm
∂cm

∂t
dx

= −

M
∑

m=1

∫

(

ϵmcm

∣

∣

∣

∣

∣

∇

(

zmψ + log cm +

M
∑

n=1

gmncn − σm%cm

)∣

∣

∣

∣

∣

2

dx ≤ 0, ∀t > 0.

In summary, we have the following physical properties for any solution to the PNPCH equations (4):

• Positivity: If cmin(x) ≥ 0, then cm(t,x) ≥ 0, ∀x ∈ (; (8)

• Mass Conservation:

∫

(

cm(t,x)dx =

∫

(

cmin(x)dx; (9)

• Free-energy Dissipation:
d

dt
F ≤ 0, ∀t > 0. (10)

3. Numerical scheme

3.1. Discretization preliminaries

For simplicity, we present our numerical scheme in R3 with ( = [a, b] × [a, b] × [a, b]. We cover ( with grid points

{

xi, y j, zk
}

=

{

a +

(

i −
1

2

)

h,a +

(

j −
1

2

)

h,a +

(

k −
1

2

)

h

}

for i, j,k = 1, · · · ,N,

where N is the number of grid points in each dimension and h = b−a
N

is a uniform spatial mesh step size.
We briefly recall notations and operators for discrete functions from [11,12,69]. To facilitate the presentation, we intro-

duce the following spaces of 3D periodic grid functions:

Cper := {v|v i, j,k = v i+αN, j+βN,k+γ N , ∀i, j,k,α,β,γ ∈ Z},

C̊per := {v ∈ Cper|v̄ = 0},

E
x
per := {v|v i+ 1

2
, j,k = v i+ 1

2
+αN, j+βN,k+γ N , ∀i, j,k,α,β,γ ∈ Z},

where v̄ := h3

|(|

∑N
i, j,k=1 v i, j,k is the average of a grid function v . The spaces E y

per and E z
per are analogously defined. We also 

introduce the following discrete operators for grid functions:

dxv i, j,k :=
1

h
(v i+ 1

2
, j,k − v i− 1

2
, j,k), Dxv i+ 1

2
, j,k :=

1

h
(v i+1, j,k − v i, j,k),

axv i, j,k :=
1

2
(v i+ 1

2
, j,k + v i− 1

2
, j,k), Axv i+ 1

2
, j,k :=

1

2
(v i+1, j,k + v i, j,k),

and the discrete operators dy , dz , D y , Dz , A y , and Az are similarly defined. The discrete gradient ∇h becomes

∇hv i, j,k := (Dxv i+ 1
2
, j,k, D yv i, j+ 1

2
,k, Dzv i, j,k+ 1

2
),

and the discrete divergence ∇h· turns out to be

∇h · f⃗ i, j,k := dx f
x
i, j,k + dy f

y

i, j,k
+ dz f

z
i, j,k, for f⃗ = ( f x, f y, f z).

The discrete Laplacian operator %h is defined by

%hv i, j,k : = ∇h · (∇hv)i, j,k = dx(Dxv)i, j,k + dy(D yv)i, j,k + dz(Dzv)i, j,k.

If D is a periodic scalar function, we introduce

5
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∇h · (D∇hv)i, j,k := dx(DDxv)i, j,k + dy(DD yv)i, j,k + dz(DDzv)i, j,k.

We now define the following inner product and norms for grid functions:

⟨ν, ξ⟩( := h3
N

∑

i, j,k=1

νi, j,kξi, j,k, ν, ξ ∈ Cper,

[ν, ξ ]x := ⟨ax(νξ),1⟩( ν, ξ ∈ E
x
per.

And also, [ν, ξ ]y and [ν, ξ ]y could be analogously defined. We then introduce

[ f⃗1, f⃗2]( := [ f x1 , f x2 ]x + [ f
y
1 , f

y
2 ]y + [ f z1 , f z2 ]z, f⃗ i = ( f xi , f

y

i
, f zi ) ∈ E⃗per, i = 1,2.

For ν ∈ Cper , we define ∥ν∥22 := ⟨ν, ν⟩( , ∥ν∥
p
p := ⟨|ν|p, 1⟩( , for 1 ≤ p ≤ ∞, and ∥ν∥∞ := max1≤i, j,k≤N |νi, j,k|. For ν ∈ Cper

and 1 ≤ p < ∞, we define the following discrete norms of a gradient

∥∇hν∥
p
p : = ∥Dxν∥

p
p + ∥D yν∥

p
p + ∥Dzν∥

p
p .

In addition, the higher order discrete norms are defined as

∥ν∥2
H1
h

:= ∥ν∥22 + ∥∇hν∥22, ∥ν∥2
H2
h

:= ∥ν∥22 + ∥∇hν∥22 + ∥%hν∥22.

We now introduce a discrete analogue of the space H−1
per(() [12,67]. Consider a positive, periodic scalar function D. For 

any φ ∈ C̊per , there exists a unique solution ϕ ∈ C̊per to the equation

LDϕ := −∇h · (D∇hϕ) = φ,

with periodic boundary conditions discretized as

ϕN+1, j,k = ϕ1, j,k, ϕ0, j,k = ϕN, j,k, j,k = 0, · · · ,N + 1,

ϕi,N+1,k = ϕi,1,k, ϕi,0,k = ϕi,N,k, i,k = 0, · · · ,N + 1,

ϕi, j,N+1 = ϕi, j,1, ϕi, j,0 = ϕi, j,N , i, j = 0, · · · ,N + 1.

(11)

For any φ1, φ2 ∈ C̊per , we define an inner product

⟨φ1,φ2⟩L−1
D

:= [D∇hϕ1,∇hϕ2](,

where ϕi ∈ C̊per is the unique solution to

LDϕi = φi, i = 1,2. (12)

By the discrete summation by parts, formula we have the following identities for periodic grid functions φi :

⟨φ1,φ2⟩L−1
D

= ⟨φ1,L
−1
D

φ2⟩( = ⟨L−1
D

φ1,φ2⟩(.

We denote the norm associated to this inner product by ∥φ∥
L

−1
D

:=
√

⟨φ,φ⟩
L

−1
D

.

3.2. The numerical scheme

We consider the discretization of the PNPCH equations (4) on a time interval [0, T ] with T > 0. For any function v =
v(x, y, z, t) : ( × [0, T ] → R, we denote by vl

i, j,k
numerical approximations of v(xi, y j, zk, tl) on a grid point 

{

xi, y j, zk
}

at 
time tl = l%t , where l = 0, · · · , Nt and %t = T /Nt with Nt being a positive number.

We employ the idea of convex splitting and propose a semi-implicit discrete scheme for the PNPCH equations (4):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cm,l+1 − cm,l

%t
= ϵm∇h ·

(

čm,l∇hµ
m,l+1

)

,

µm,l+1 = zmψ l+1 + log cm,l+1 +

M
∑

n=1

gmn
c cn,l+1 − σm%hc

m,l+1 −

M
∑

n=1

gmn
e cn,l,

− ∇h · (κ∇hψ
l+1) =

M
∑

m=1

zmcm,l+1 + ρ
f

h
,

(13)
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where the mobilities are approximated by

č
m,l

i+ 1
2 , j,k

= Axc
m,l

i+ 1
2 , j,k

, č
m,l

i, j+ 1
2 ,k

= A yc
m,l

i, j+ 1
2 ,k

, č
m,l

i, j,k+ 1
2

= Azc
m,l

i, j,k+ 1
2

,

and ρ f

h
, the restriction of ρ f on grid points, is assumed to satisfy

ρ
f

h
+

M
∑

m=1

zmcm
in

= 0. (14)

Here Gc =
(

gmn
c

)

and Ge =
(

gmn
e

)

are both positive semi-definite matrices such that G = Gc −Ge . Notice that the choice of Gc

and Ge is not necessarily unique. In the numerical implementation, we choose the smallest positive λ such that Gc = λI +G

and Ge = λI are both positive semi-definite.

The free-energy functional (6) is discretized as

Fh[c
l] =

1

2

∥

∥

∥

∥

∥

M
∑

m=1

zmcm,l + ρ
f

h

∥

∥

∥

∥

∥

2

L
−1
κ

+

M
∑

m=1

〈

cm,l, log(vcm,l) − 1
〉

(

+
1

2

M
∑

n=1

M
∑

m=1

gmn⟨cm,l, cn,l⟩( +

M
∑

m=1

σm

2

∥

∥

∥∇hc
m,l

∥

∥

∥

2

2
.

(15)

4. Numerical properties

In this section, we show that the proposed numerical scheme (13) is uniquely solvable with desired properties in pre-
serving positivity, mass conservation, and unconditional energy stability at the discrete level.

4.1. Mass conservation

Theorem 4.1. The numerical concentration cm,l
i, j,k

of the semi-implicit scheme (13) respects mass conservation, in the sense that the 
total concentration of each species remains constant in time, i.e.,

h3
N

∑

i, j,k=1

c
m,l+1
i, j,k

= h3
N

∑

i, j,k=1

c
m,l
i, j,k

, l = 0, · · · ,Nt − 1. (16)

Proof. Summing both sides of the numerical scheme for concentrations over i, j, k gives

h3
N

∑

i, j,k=1

c
m,l+1
i, j,k

− h3
N

∑

i, j,k=1

c
m,l
i, j,k

= %tϵmh3
N

∑

i, j,k=1

∇h ·
(

čm,l∇hµ
m,l+1
i, j,k

)

= 0,

where we have used the periodic boundary conditions (11) and discrete summation by parts in the last step. This completes 
the proof of (16). !

If these exists a solution to the numerical scheme (13), it is indicated by Theorem 4.1 that

cm,0 = cm,1 = · · · = cm,Nt , m = 1,2, · · · ,M. (17)

Therefore, the assumption (14) leads to a discrete version of the solvability condition:

ρ
f

h
+

M
∑

m=1

zmcm,l = 0, l = 0,1, · · · ,Nt .

4.2. Positivity preservation

To prove the positivity-preserving property of the proposed numerical scheme, we present the following lemma without 
giving its proof; cf. [12].

Lemma 4.1. Suppose that φ ∈ C̊per and ∥φ∥∞ ≤ C1 , then we have the following estimate:

∥L−1
D

φ∥∞ ≤ C3 := C2h
−1/2

D
−1
0 , (18)

where D0 is a positive lower bound of the coefficient function D(x), i.e. D ≥D0 > 0, and C2 depends only on C1 and (.

7
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Theorem 4.2. Assume that cm,l ∈ Cper , and cm,l > 0 with ∥cm,l∥∞ ≤ M1 for some M1 > 0. Define Cm,l
0 := min

1≤i, j,k≤N
c
m,l
i, j,k

, so that 

cm,l ≥ C
m,l
0 > 0. There exists a unique solution cm,l+1 ∈ Cper to the nonlinear scheme (13) with cm,l+1 > 0 at a point-wise level.

Proof. The numerical solution of the nonlinear scheme (13) corresponds to the minimizer of the discrete energy functional

J
k(u) =

1

2△t

M
∑

m=1

∥um − cm,l∥2
L

−1

čm,l

+
1

2
∥

M
∑

m=1

zmum + ρ
f

h
∥2
L

−1
κ

+

M
∑

m=1

〈

um, logum − 1
〉

(

+
1

2

M
∑

n=1

M
∑

m=1

gmn
c ⟨um,un⟩( +

M
∑

m=1

σm

2
∥∇hu

m∥22 −

M
∑

n=1

M
∑

m=1

gmn
e ⟨um, cn,k⟩(,

over the admissible set

Ah := {um ∈ Cper|0 < um < θm, um = cm,0 for 1 ≤m ≤ M} ⊂ R
MN3

,

where θm =
|(|cm,0

h3
. It is easy to verify that J k is strictly convex over this domain. We shall prove that the minimizer of J k

exists in Ah and is positive on each grid point. We first consider a closed subset

Ah,δ := {um ∈ Cper|δ ≤ um ≤ θm − δ, um = cm,0 for 1 ≤m ≤ M},

where δ is a number in (0, θm/2). Since Ah,δ is a bounded, compact, and convex subset in Cper , there exists a unique 
minimizer of J k over Ah,δ . Let the minimizer be u∗ = (u1,∗, u2,∗, · · · , uM,∗). When δ is sufficiently small, u∗ could not 
reach the lower boundary of Ah,δ . We shall prove this by contradiction.

Suppose that there exists one grid point α⃗0 = (i0, j0, k0) and m0 such that um0,∗ achieves its global minimum at α⃗0 with 
u
m0,∗
α⃗0

= δ. Suppose that α⃗1 = (i1, j1, k1) is another grid point at which um0,∗ achieves its global maximum. Obviously, we 
have

cm0,0 ≤ u
m0,∗
α⃗1

≤ θm0 − δ.

Since J k is smooth over Ah and u∗ ∈ Ah,δ , the following directional derivative is well defined for sufficiently small s:

lim
s→0+

J k(u∗ + sφ) −J k(u∗)

s

=
1

△t

〈

L
−1

čm0,l

(

um0,∗ − cm0,l
)

,φm0

〉

(
+

〈

zm0L
−1
κ

(

M
∑

m=1

zmum,∗ + ρ
f

h

)

,φm0

〉

(

− σm0
〈

%hu
m0,∗,φm0

〉

(
+ ⟨logum0,∗,φm0⟩( +

M
∑

n=1

g
m0n
c ⟨un,∗,φm0⟩( −

M
∑

n=1

g
m0n
e ⟨cn,l,φm0⟩(,

where φ = (0, · · · , φm0 , · · · , 0). If we choose the direction

φ
m0

i, j,k
= δi,i0δ j, j0δk,k0 − δi,i1δ j, j1δk,k1 ∈ C̊per,

then the directional derivative becomes

1

h3
lim

s→0+

J k(u∗ + sφ) −J k(u∗)

s
=

1

△t
L

−1

čm0,l (u
m0,∗ − cm0,l)α⃗0

−
1

△t
L

−1

čm0,l (u
m0,∗ − cm0,l)α⃗1

+ zm0L
−1
κ

(

M
∑

m=1

zmum,∗ + ρ
f

h

)

α⃗0

− zm0L
−1
κ

(

M
∑

m=1

zmum,∗ + ρ
f

h

)

α⃗1

− σm0

(

%hu
m0,∗
α⃗0

− %hu
m0,∗
α⃗1

)

+ logu
m0,∗
α⃗0

− logu
m0,∗
α⃗1

+

M
∑

n=1

g
m0n
c u

n,∗
α⃗0

−

M
∑

n=1

g
m0n
c u

n,∗
α⃗1

−

M
∑

n=1

g
m0n
e c

n,l

α⃗0
+

M
∑

n=1

g
m0n
e c

n,l

α⃗1
. (19)

Since um0,∗
α⃗0

= δ and um0,∗
α⃗1

≥ cm,0 , we have

logu
m0,∗
α⃗0

− logu
m0,∗
α⃗1

≤ log δ − log cm,0. (20)

8
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Since um0,∗ takes a minimum at the grid point α⃗0 and a maximum at the grid point α⃗1 , we obtain

%hu
m0,∗
α⃗0

≥ 0, %hu
m0,∗
α⃗1

≤ 0. (21)

It follows from gmn
c > 0, gmn

e > 0, un,∗ > 0, and cn,l > 0 that

−

M
∑

n=1

g
m0n
c u

n,∗
α⃗1

−

M
∑

n=1

g
m0n
e c

n,l

α⃗0
< 0. (22)

Since un,∗
α⃗0

≤ θn − δ, we have

M
∑

n=1

g
m0n
c u

n,∗
α⃗0

≤

M
∑

n=1

g
m0n
c

(

θn − δ
)

≤

M
∑

n=1

g
m0n
c θn. (23)

Also, the a priori assumption ∥cn,l∥∞ ≤ M1 indicates that

M
∑

n=1

g
m0n
e c

n,l

α⃗1
≤ M1

M
∑

n=1

g
m0n
e . (24)

Since čm0,l ≥ C
m0,l
0 > 0 and κ ≥ κ0 > 0 (cf. (5)), we have by applying the Lemma 4.1 with D = čm0,l and D = κ that

L
−1

čm0,l (u
m0,∗ − cm0,l)α⃗0

−L
−1

čm0,l (u
m0,∗ − cm0,l)α⃗1

≤ 2C c
3, (25)

and

zm0L
−1
κ

(

M
∑

m=1

zmum,∗ + ρ
f

h

)

α⃗0

− zm0L
−1
κ

(

M
∑

m=1

zmum,∗ + ρ
f

h

)

α⃗1

≤ 2
∣

∣zm0
∣

∣Cκ
3 , (26)

respectively. Note that we have used the assumption that čm0,l ≥ C
m0,l
0 > 0 and κ ≥ κ0 > 0; cf. (5). The constant C c

3 depends 

on θm0 , M1 , (, h, and Cm0,l
0 ; and the constant Cκ

3 depends on max1≤m≤M{|zm|θm}, ∥ρ f

h
∥∞ , (, h, and κ0 . Thus, a substitution 

of (20)−(28) into (19) leads to

1

h3
lim

s→0+

J k(u∗ + sφ) −J k(u∗)

s

≤ log δ − log cm,0 +

M
∑

n=1

g
m0n
c θn + M1

M
∑

n=1

g
m0n
e + 2C c

3△t−1 + 2
∣

∣zm0
∣

∣Cκ
3 .

(27)

For any fixed △t and h, we may choose δ sufficiently small so that

log δ − log cm,0 +

M
∑

n=1

g
m0n
c θn + M1

M
∑

n=1

g
m0n
e + 2C c

3△t−1 + 2
∣

∣zm0
∣

∣Cκ
3 < 0. (28)

That is

lim
s→0+

J k(u∗ + sφ) −J k(u∗)

s
< 0. (29)

This is contradictory to the assumption that u∗ is the minimizer of J k , since the direction φ we chose points into the 
interior of Ah,δ .

Since the numerical solution of each species conserves at each time step, one point of u∗ approaching θm − δ implies 
many points of u∗ going to zero, when δ is sufficiently small. Thus, we can analogously show that the u∗ cannot reach the 
upper boundary of Ah,δ .

Therefore, when δ is sufficiently small, the global minimum of J k over Ah,δ can only be achieved at an interior point of 
Ah,δ , which is a subset of Ah . This establishes the existence of a positive numerical solution to the nonlinear scheme (13). 
In addition, the strict convexity of J k over Ah implies the uniqueness of the numerical solution. The proof of Theorem 4.2

is complete. !

9
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Remark 4.1. It is noticed that the scheme (13) corresponds to an H−1 gradient flow, with a non-constant mobility function 
cm,l . Since cm,l (the numerical solution at the previous time step) has been set to be positive at point-wise level, we see 
that the derivative of the first term in J k(u) (namely 1

2△t

∑M
m=1 ∥um − cm,l∥2

L
−1

čm,l

) yields a uniformly elliptic operator with 

the weight function cm,l . In addition, the point-wise positivity of cm,l enables one to derive a point-wise bound of such a 
discrete operator, so that the singular nature of the logarithmic term prevents the numerical solution from reaching the 
limit value of 0. This fact has played a key role in the positivity-preserving analysis, and the numerical solution cm,l+1 is 
ensured to be point-wise positive at the next time step, so that an induction argument could be applied.

4.3. Unconditional energy stability

Theorem 4.3. The semi-implicit discrete scheme (13) is energy stable, in the sense that

Fh(c
l+1) ≤ Fh(c

l).

Proof. Since L−1
κ is symmetric, positive definite on the space C̊per , we know that the term 1

2

∥

∥

∥

∑M
m=1 z

mcm + ρ
f

h

∥

∥

∥

2

L
−1
κ

is 

convex with respect to cm . A direct calculation reveals that the term

M
∑

m=1

〈

cm, log(vcm) − 1
〉

(
+

M
∑

m=1

σm

2

∥

∥∇hc
m
∥

∥

2

2

is convex as well. We know by the positive semi-definiteness of the matrices Gc and Ge that

1

2

M
∑

n=1

M
∑

m=1

gmn
c

〈

cm, cn
〉

(
and

1

2

M
∑

n=1

M
∑

m=1

gmn
e

〈

cm, cn
〉

(
are convex.

Therefore, by the convexity of these terms and mass conservation (17), we arrive at

Fh(c
l+1) − Fh(c

l) ≤

M
∑

m=1

〈

zmψ l+1 + log cm,l+1 +

M
∑

n=1

gmn
c cn,l+1 − σm%hc

m,l+1

−

N
∑

n=1

gmn
e cn,l, cm,l+1 − cm,l

〉

(

=

M
∑

m=1

〈

µm,l+1,%tϵm∇h ·
(

čm,l∇hµ
m,l+1

)〉

(

= −

M
∑

m=1

%tϵm
[

∇hµ
m,l+1, čm,l∇hµ

m,l+1
]

(
≤ 0,

in which the periodic boundary conditions (11) and discrete summation by parts formulas have been used. This completes 
the proof. !

Remark 4.2. The proposed numerical scheme (13) is only first order accurate in time, and such an accuracy order may not 
be ideal in many practical applications, due to its large-scale feature. Meanwhile, there have been a few recent works of 
second order accurate, positivity preserving and energy stable numerical schemes for certain gradient flows with singular 
logarithmic energy functionals, such as the Flory-Huggins energy potential [12] and Flory-Huggins-deGennes energy poten-
tial [21]. In fact, the second order backward differentiation formula (BDF) approach has been applied in these works. An 
application of these related ideas to the PNPCH model will be considered in the future works.

Remark 4.3. The unconditional energy stability of the proposed scheme (13) follows from the convex-concave decomposition 
of the energy, an idea popularized in Eyre’s work [25]. The method has been applied to the phase field crystal (PFC) 
equation [69]; epitaxial thin film growth models [10,66]; non-local gradient model [35]; the Cahn-Hilliard model coupled 
with fluid flow [53], etc. Second-order accurate energy stable schemes have also been reported in recent years, based on 
either the secant/Crank-Nicolson or BDF approach [2,3,14,15,34,36,40,64,70].

10
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Table 5.1

The ℓ∞ error and convergence order for numerical solutions of c1 , c2 , and ψ at T = 0.0016 with a 
mesh ratio %t = h2 .

N ℓ∞ error in c1 Order ℓ∞ error in c2 Order ℓ∞ error in ψ Order

100 3.98e-5 - 3.94e-5 - 6.57e-4 -

200 9.97e-6 1.9963 9.87e-6 1.9969 1.64e-4 2.0003

400 2.50e-6 1.9985 2.47e-6 1.9992 4.11e-5 2.0001

800 6.24e-7 1.9993 6.17e-7 1.9998 1.03e-5 2.0001

5. Numerical examples

At each time step evolution, we numerically solve the nonlinear difference equation (13) supplemented with periodic 
boundary conditions (11) using the Newton’s iterations. The Newton’s iterations with ion concentrations, chemical poten-
tials, and the electrostatic potential as unknowns converge robustly within four stages in our extensive numerical tests. 
For simplicity, we consider a periodic charged system consists of concentrated binary mononvalent electrolytes and fixed 
charges. Unless stated otherwise, we take the characteristic concentration c0 = 1 M, characteristic length L = 1 nm, charac-
teristic diffusion constant D0 = 1 nm2/ns, and diffusion constants D1 = D2 = 1 nm2/ns for two species of ions. We consider 
a uniform dielectric constant εr = 78, which prescribes λD = 0.304 nm, κ = 0.185, and ϵ1 = ϵ2 = 0.304.

5.1. Accuracy test

We test the numerical convergence order of the proposed numerical scheme (13) in one dimension. To obtain a reference 
solution for comparison, we construct an exact solution

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c1 = 0.1e−t cos(πx) + 0.2,

c2 = 0.1e−t cos(πx) + 0.2,

ψ = e−t cos(πx),

(30)

to the PNPCH equations
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂cm

∂t
= ϵm∂x

[

cm∂x

(

zmψ + log cm +

M
∑

n=1

gmncn − σm%cm

)]

+ fm, m = 1,2,

− ∂x(κ∂xψ) =

2
∑

m=1

zmcm + ρ f ,

(31)

with periodic boundary conditions. Here the source terms f1 , f2 , and ρ f , and the initial conditions are determined by the 
known exact solution (30). We choose the computational domain ( = [−1, 1], and take the steric interaction coefficient 

matrix G =
(

3.6 2.6

2.6 0.2

)

and gradient energy coefficients σ 1 = σ 2 = 0.01. Note that the matrix G is not positive semi-

definite and therefore the corresponding free energy functional (6) is nonconvex.
We test numerical accuracy of the proposed scheme (13) on various meshes, in comparison with the exact solution (30). 

Notice that the mesh ratio, %t = h2 , is chosen for the purpose of numerical accuracy test, rather than for the concern of 
numerical stability. Table 5.1 lists the ℓ∞ error and convergence order for the numerical solutions of ion concentrations 
and the electrostatic potential at time T = 0.0016. It is observed that, the numerical error decreases as the mesh refines, 
and the convergence orders for ion concentrations and the potential are both around 2, as expected. This confirms that the 
proposed numerical scheme (13) is second order accurate in space and first order accurate in time.

We also test numerical accuracy of the proposed scheme (13) in two dimensions. We take ( = [−4, 4] × [−4, 4] and the 

steric interaction coefficient matrix G =
(

2 1

1 2

)

. The following exact solution is constructed

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c1 = 0.1e−20t cos(πx/4) sin(π y/4) + 1,

c2 = 0.1e−20t cos(πx/4) sin(π y/4) + 1,

ψ = e−20t cos(πx) sin(π y/4),

(32)

for the equations (31) with periodic boundary conditions. Again, the corresponding source terms and the initial conditions 
are determined by the known exact solution (32).

Similarly, we carry out computations on various meshes with %t = h2 and compare with the exact solution (32). As 
shown in Table 5.2, the numerical solutions of ion concentrations and the potential both converge to the exact solution 

11
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Table 5.2

The ℓ∞ error and convergence order for numerical solutions of c1 , c2 , and ψ at T = 0.16 with a 
mesh ratio %t = h2 .

N ℓ∞ error in c1 Order ℓ∞ error in c2 Order ℓ∞ error in ψ Order

20 3.39e-1 - 3.39e-1 - 1.24e-1 -

40 8.38e-2 2.0158 8.38e-2 2.0158 2.78e-2 2.1549

60 3.70e-2 2.0162 3.70e-2 2.0162 1.21e-2 2.0515

80 2.07e-2 2.0188 2.07e-2 2.0188 6.80e-3 2.0032

Fig. 5.1. Time evolution of numerical solutions of cation concentrations (c1) and potential ψ .

with a convergence rate around 2, indicating the anticipated accuracy order of the proposed numerical scheme (13) in the 
2D case.

5.2. Properties tests

We now test the performance of the proposed scheme in preserving the desired properties, including positivity, mass 
conservation, and energy dissipation, at the discrete level. We consider the equations (4) on ( = [−1, 1] with periodic 
boundary conditions and initial data

c1(x,0) = c2(x,0) = 1.

The steric interaction coefficient matrix is taken as G =
(

3.6 2.6

2.6 0.2

)

, and the charge distribution function is given by

ρ f (x) = 5
[

e−5(x− 1
2 )2 − e−5(x+ 1

2 )2
]

,

which describes that negative and positive fixed charges are distributed at x = − 1
2
and x = 1

2
, respectively. In the numerical 

simulations, we set the total grid number N = 100 and a mesh ratio %t = h.

Fig. 5.1 displays the snapshot evolution of cation c1 concentration and ψ at different times. Since cations and anions 
distribute uniformly on ( at T = 0, the electrostatic potential ψ is determined by the fixed charges, with maximum and 
minimum values at x = 1

2
and x = − 1

2
, respectively. As time evolves, the cations are attracted by the negative fixed charges 

and get repelled by positive fixed charges, leading to sinusoidal profiles. Accordingly, the electrostatic potential gets screened 
by ion accumulation. We observe that the profiles at T = 1 are almost identical to that of T = 0.7, which implies that the 
charges in the system have arrived at a steady state.

We now check structure-preserving properties of the proposed scheme. As shown in the upper plot of Fig. 5.2, the total 
mass of ions represented by the dashed line stays constant for all the time. Also, the free energy decays monotonically, 
indicating that our numerical scheme is energy stable. As ions are repelled by fixed charges of the same sign, the local ionic 
concentrations become very low. It is of physical interest to check positivity of numerical solutions of concentrations. The 
lower plot of Fig. 5.2 displays the evolution of minimum values of concentrations of both cation and anion against time, and 
the inset presents a zoomed-in plot for a time interval [0.4, 0.6]. It is demonstrated that, although the concentrations can 
be very low due to electrostatic repulsion, the numerical solutions of ionic concentrations remain positive for all the time.

5.3. Applications

We now apply the PNPCH equations and the corresponding numerical method to study the spatial ionic arrangement and 
charge dynamics of concentrated electrolytes that have been widely used in various applications, such as electrochemical 
energy devices. Salient features of concentrated electrolytes include crowding and charge layering in electric double layers, 
multiple time scale dynamics, self-assembly of nanostructuring both in the bulk and electric double layers (EDLs) [7,31,33], 
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Fig. 5.2. Upper: Time evolution of the free energy and total mass. Lower: Time evolution of the minimum concentration value of both cations and anions. 
The inset is a zoomed-in plot for a time interval [0.4, 0.6].

Fig. 5.3. Snapshots of the evolution of cation concentrations starting from a random initial data with σ = 0.05 and σ = 0.005. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

etc. The PNPCH equations, which combine the effect of phase separation with electrodiffusion, are used to investigate these 
features.

We consider the equations (4) on ( = [−3, 3] × [−3, 3] with periodic boundary conditions and a random initial data. 
The distribution of fixed charges are given by

ρ f (x, y) = −
1

2
χ{x=− 3

2
} +

1

2
χ{x= 3

2
},

where χA is the characteristic function over a set A. Such a distribution describes that negative and positive charges are 
distributed on the lines at x = − 3

2
and x = 3

2
, respectively. We take gradient energy coefficients σ 1 = σ 2 = σ and the steric 

interaction coefficient matrix G =
(

1 g12

g21 1

)

, where off-diagonal elements g12 = g21 = 15.

Fig. 5.3 presents several snapshots of the evolution of cation concentrations with σ = 0.05 and σ = 0.005 at T = 0, 
T = 0.5, T = 2, and T = 6. Starting from a random initial distribution, the cations move quickly following the electrostatic 
potential mainly generated by the fixed charges. For σ = 0.05, we observe at T = 2 that, cations further crowdingly accumu-

late in the vicinity of negative fixed charges with the emergence of oscillations in diffuse layers of EDLs. This is reminiscent 
of the overscreening structure studied in the work [5]. As time further evolves, the cation concentrations show periodic 
lamellar patterns not only in the EDLs but also in the bulk. For σ = 0.005, in contrast, cations begin to develop labyrinthine 
type of structure in the bulk at T = 2, but lamellar structures are still favored near fixed charges. As time evolves, the 
patterns become more and more clear, leading to a totally different structure in comparison with that of σ = 0.05. The 
pronounced difference is ascribed to the gradient energy coefficients that penalize large concentration gradients. Smaller 
gradient energy coefficients allow more concentration oscillations. Comparing snapshots at different time instants, we find 
that the electrostatic interactions dominate the ion migration in the early stage, and the effect of phase separation comes 
into play later in the development of patterns in the bulk. The presented rich self-assembly nanostructuring patterns, such 
as the lamellar EDLs and labyrinthine structures in the bulk, are qualitatively consistent with the theoretical study [33] and 
experimental observations [37,71] on ionic liquids.

As shown in Fig. 5.3, the mechanisms of phase separation and electrodiffusion take effects in different stages of the 
pattern formation, indicating the emergence of multiple time scale charge dynamics. To further understand the charge dy-
namics, we show in Fig. 5.4 the evolution of free energy of the system. A multi-phase free-energy dissipation can be clearly 
observed for both σ = 0.05 and σ = 0.005, reminiscent of metastability phenomena. In the first stage, the free energy 
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Fig. 5.4. The evolution of free energy with σ = 0.05 and σ = 0.005.

Fig. 5.5. Equilibrium states of cation concentrations with various combinations of g12 and σ , starting from the same random initial data.

decays sharply on a fast time scale, corresponding to the phase of electrodiffusion, and quickly reaches a metastable state 
characterized by a plateau in the free energy. In the second stage, the free energy decays with a relatively longer time scale, 
corresponding to the formation of patterns in the bulk and EDLs, and reaches an equilibrium eventually. Comparing the re-
sults with different σ values, we also observe that, with larger gradient energy coefficients, the metastable state lasts longer 
and the time scale in the second stage of free-energy dissipation is larger. Such multi-phase free-energy dissipation with 
metastability often takes long time to reach an equilibrium. Efficient numerical simulations of such dynamics require ro-
bust, energy stable numerical schemes that allow large time stepping. Our numerical results demonstrate that the proposed 
energy stable numerical scheme is capable of effectively capturing such multi-phase dynamics.

We next study the interplay between off-diagonal elements in the steric interaction coefficient matrix (g12) and the 
gradient energy coefficient (σ ), and their impact on the development of nanostructures in the equilibrium state. Note 
that the off-diagonal elements describe the cross interactions of short range. Fig. 5.5 plots equilibrium states of cation 
concentrations with various combinations of g12 and σ , starting from the same random initial condition. From the upper 
row plots, we find that, with a relatively small off-diagonal element g12 = 5, only EDLs in the vicinity of fixed charges 
develop in the equilibrium states. With a larger off-diagonal element g12 = 15, we can see rich self-assembled patterns, 
such as lamellar stripes for a strong gradient energy coefficient σ = 0.05 and labyrinthine patterns for a weak gradient 
energy coefficient σ = 0.005. Mixed patterns with lamellar EDLs and labyrinthine structures in the bulk also present for an 
intermediate value of σ = 0.01. Comparison of two rows of plots reveals that strong cross interactions of short range are 
necessary for the formation of self-assembled nanostructures in the bulk. Comparison of three columns of plots indicates 
that more complex nanostructures develop with weaker concentration-gradient regularization.

6. Concluding remarks

In this work, we have considered the PNPCH equations based on a free-energy functional that includes electrostatic free 
energies, entropic contribution of ions, steric interactions, and concentration gradient energies. Numerical studies on the 
PNPCH equations are still missing in the existing literature, especially those concerning preservation of physical structures. 
We have proposed a novel energy stable, semi-implicit numerical scheme that guarantees mass conservation and positivity 
at the discrete level. Detailed analysis has revealed that the solution to the proposed nonlinear scheme corresponds to a 
unique minimizer of a convex functional over a closed, convex domain, establishing the existence and uniqueness of the 
solution. The positivity of numerical solutions has been rigorously proved via an argument on the singularity of the entropy 
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terms at zero concentrations. Discrete free-energy dissipation has been established as well. Numerical tests on convergence 
rates have demonstrated that the proposed numerical scheme is first-order accurate in time and second-order accurate in 
space. Numerical simulations have also verified the capability of the numerical scheme in preserving the desired properties, 
e.g., mass conservation, positivity, and free energy dissipation.

Moreover, we have applied the PNPCH equations and the proposed scheme to investigate charge dynamics and ionic 
arrangement, such as self-assembled nanostructures, in highly concentrated electrolytes. In numerical simulations, we have 
found that there are multiple time relaxations with distinct time scales, and metastable states present in the relaxation to 
an equilibrium. Efficient simulations of such dynamics require robust, energy stable numerical schemes that allow large time 
stepping. Our numerical results have demonstrated that the proposed numerical scheme is able to capture lamellar patterns 
and labyrinthine patterns in electric double layers and the bulk, as well as multiple time scale dynamics with intermediate 
metastable states. In addition, we have probed the interplay between cross steric interactions and the concentration gradient 
regularization, and their profound influence on the pattern formation in the equilibrium state.
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