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Abstract. In this paper we propose and analyze a (temporally) third order accurate
backward differentiation formula (BDF) numerical scheme for the no-slope-selection
(NSS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral
discretization in space. The surface diffusion term is treated implicitly, while the non-
linear chemical potential is approximated by a third order explicit extrapolation for-
mula for the sake of solvability. In addition, a third order accurate Douglas-Dupont

regularization term, in the form of −A∆t2∆2
N(u

n+1−un), is added in the numerical
scheme. A careful energy stability estimate, combined with Fourier eigenvalue anal-
ysis, results in the energy stability in a modified version, and a theoretical justifica-
tion of the coefficient A becomes available. As a result of this energy stability anal-
ysis, a uniform in time bound of the numerical energy is obtained. And also, the
optimal rate convergence analysis and error estimate are derived in details, in the
ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm, with the help of a linearized estimate for the nonlin-
ear error terms. Some numerical simulation results are presented to demonstrate the
efficiency of the numerical scheme and the third order convergence. The long time
simulation results for ε = 0.02 (up to T = 3×105) have indicated a logarithm law for
the energy decay, as well as the power laws for growth of the surface roughness and
the mound width. In particular, the power index for the surface roughness and the
mound width growth, created by the third order numerical scheme, is more accurate
than those produced by certain second order energy stable schemes in the existing
literature.
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1 Introduction

In this article we consider a no-slope-selection (NSS) epitaxial thin film growth equation,
which corresponds to the L2 gradient flow associated with the following energy func-
tional

E(u) :=
∫

Ω

(
−1

2
ln(1+|∇u|2)+ ε2

2
|∆u|2

)
dx, (1.1)

where Ω=(0,Lx)×(0,Ly), u : Ω→R is a periodic height function, and ε is a constant pa-
rameter of transition layer width. In more details, the first nonlinear term represents the
Ehrlich-Schwoebel (ES) effect [14,26–28,40], which results in an uphill atom current in the
dynamics and the steepening of mounds in the film. The second higher order quadratic
term represents the isotropic surface diffusion effect [27,35]. In turn, the chemical poten-
tial becomes the following variational derivative of the energy

µ :=δuE=∇·
( ∇u

1+|∇u|2
)
+ε2∆2u, (1.2)

and the PDE stands for the L2 gradient flow

∂tu=−µ=−∇·
( ∇u

1+|∇u|2
)
−ε2∆2u. (1.3)

Meanwhile, under a small-slope assumption that |∇u|2 ≪1, the energy functional could
be approximated by a polynomial pattern

E(u)=
∫

Ω

(
1

4
(|∇u|2−1)2+

ε2

2
|∆u|2

)
dx, (1.4)

and the dynamical equation is formulated as

∂tu=∇·
(
|∇u|2∇u

)
−∆u−ε2∆2u. (1.5)

This model is referred to as the slope-selection (SS) equation [24, 25, 27, 35]. A solution to
(1.5) exhibits pyramidal structures, where the faces of the pyramids have slopes |∇u|≈1;
meanwhile, the no-slope-selection equation (1.3) exhibits mound-like structures, and the
slopes of which (on an infinite domain) may grow unbounded [27, 42]. On the other
hand, both solutions have up-down symmetry in the sense that there is no way to distin-
guish a hill from a valley. This can be altered by adding adsorption/desorption or other
dynamics.

The numerical schemes with high order accuracy and energy stability have been of
great interests, due to the long time nature of the gradient flow coarsening process. There
have been many efforts to devise and analyze energy stable numerical schemes for both
the SS and NSS equations; see the related references [6,8,17,23,29,31,36–39,41–43,45,47],
etc. In particular, the linear schemes have been attracted a great amount of attentions
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among the energy stable numerical approaches, due to its simplicity of implementation.
In the existing works [3,30], the authors proposed linear algorithms for the NSS equation,
with first and second order temporal accuracy orders, respectively, so that the energy sta-
bility could be established at a theoretical level. Such a highly nonlinear energy stability
analysis is based on the following subtle fact: in spite of its complicated form in the
denominator, the nonlinear term in the NSS equation (1.3) has automatically bounded
higher order derivatives in the L∞ norm. Such an idea has also been applied to derive
the exponential time differencing (ETD) based numerical schemes for the NSS equations,
with certain modified energy stability; see the related works [4, 23], etc.

Among the energy stable numerical works for the epitaxial thin film model, the the-
oretical analysis of a (temporally) third order accurate numerical scheme is very limited.
There have been two recent works [5, 10] to address the energy stability of third order
accurate schemes for the NSS equation, based on the ETD approach. Meanwhile, it is
observed that, some non-trivial operators have been involved in the numerical imple-
mentation of the ETD-based higher order schemes, which may lead to a high compu-
tational cost. In this article, we propose and analyze a third order accurate numerical
scheme for the NSS equation (1.3), based on the standard BDF3 temporal approxima-
tion, combined with certain explicit extrapolation formula for the nonlinear term. Again,
such an explicit treatment to the nonlinear terms would not be able to ensure the energy
stability at the theoretical level. To overcome this difficulty, we have to add a third or-
der Douglas-Dupont regularization term in the numerical scheme, namely in the form of
−A∆t2∆2

N(u
n+1−un). Furthermore, a careful energy estimate enables us to derive a rigor-

ous stability estimate for a modified energy function, which contains the original energy
functional and a few non-negative numerical correction terms. In fact, the subtle fact that
all the nonlinear terms have automatically bounded higher order derivative will play an
important role in the highly complicated nonlinear analysis. The Fourier pseudo-spectral
method is taken as the spatial approximation, and the discrete summation by parts prop-
erty will facilitate the corresponding analysis for the fully discrete scheme. As a result
of this modified energy stability, we are able to derive a uniform-in-time bound for the
original energy functional bound. In addition to the energy stability analysis, we pro-
vide a theoretical analysis of an O(∆t3+hm) rate convergence estimate for the proposed
third order BDF (BDF3) scheme, in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm. It is well-known
that a direct inner product with the numerical error equation by en+1 (the error function
at time step tn+1) does not lead to the desired result, because of the long stencil structure
involved. Instead, an inner product with en+1+(en+1−en) is considered in the analy-
sis, originated from an existing work [33]. In turn, the full order convergence result is
expected via detailed numerical error estimates. Again, a uniform bound of the nonlin-
ear derivatives will play an important role in the derivation of such an error estimate.
And also, all the spatial operators are associated with the standard derivatives, so that a
complicated eigenvalue analysis could be avoided in the derivation of the optimal con-
vergence, in contrast with the ones reported in [5, 10].

The long time simulation results for the coarsening process have indicated a loga-



908 Y. Hao, Q. Huang and C. Wang / Commun. Comput. Phys., 29 (2021), pp. 905-929

rithm law for the energy decay, as well as the power laws for growth of the surface rough-
ness and the mound width. In particular, the power index for the surface roughness and
the mound width growth, created by the proposed third order BDF scheme, is more ac-
curate than those created by certain second order schemes in the existing literature, with
the same numerical resolution. This experiment has demonstrated the robustness of the
proposed BDF3 numerical scheme.

The rest of the article is organized as follows. In Section 2 we present the numeri-
cal scheme, including the review of the Fourier pseudo-spectral spatial approximation.
Afterward, a modified energy stability is established for the proposed third order BDF
scheme. Subsequently, the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) convergence estimate is provided in
Section 3. In Section 4 we present the numerical results, including the accuracy test and
the long time simulation for the coarsening process. Finally, the concluding remarks are
given in Section 5.

2 The numerical scheme

2.1 Review of the Fourier pseudo-spectral approximation

For simplicity of presentation, we assume that the domain is given by Ω=(0,L)2, Nx =
Ny = N and N ·h = L. A more general domain could be treated in a similar manner.
Furthermore, to facilitate the pseudo-spectral analysis in later sections, we set N=2K+1.
All the variables are evaluated at the regular numerical grid (xi,yj), with xi = ih, yj = jh,
0≤ i, j≤2K+1.

Without loss of generality, we assume that L= 1. For a periodic function f over the
given 2-D numerical grid, set its discrete Fourier expansion as

fi,j =
K

∑
k,ℓ=−K

f̂k,ℓexp
(
2πi(kxi+ℓyj)

)
, (2.1)

its collocation Fourier spectral approximations to first and second order partial deriva-
tives in the x-direction become

(DNx f )i,j =
K

∑
k,ℓ=−K

(2kπi) f̂k,ℓexp
(
2πi(kxi+ℓyj)

)
, (2.2)

(
D2

Nx f
)

i,j
=

K

∑
k,ℓ=−K

(
−4π2k2

)
f̂k,ℓexp

(
2πi(kxi+ℓyj)

)
. (2.3)

The differentiation operators in the y direction, namely, DNy and D2
Ny, could be defined

in the same fashion. In turn, the discrete Laplacian, gradient and divergence become

∆N f =
(
D2

Nx+D2
Ny

)
f ,

∇N f =

(
DNx f
DNy f

)
, ∇N ·

(
f1

f2

)
=DNx f1+DNy f2, (2.4)
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at the point-wise level. See the derivations in the related references [1, 2, 19, 22], etc.

Given any periodic grid functions f and g (over the 2-D numerical grid), the spectral
approximations to the L2 inner product and L2 norm are introduced as

‖ f‖2=
√
〈 f , f 〉, with 〈 f ,g〉=h2

N−1

∑
i,j=0

fi,jgi,j. (2.5)

A careful calculation yields the following formulas of summation by parts at the discrete
level (see the related discussions [3, 6, 20, 21]):

〈 f ,∆N g〉=−〈∇N f ,∇N g〉 ,
〈

f ,∆2
N g

〉
= 〈∆N f ,∆N g〉 . (2.6)

Similarly, for any grid function f with f :=h2 ∑
N−1
i,j=0 fi,j =0, the operator (−∆N)

−1 and the

discrete ‖·‖−1 norm are defined as

(
(−∆N)

−1 f
)

i,j
= ∑

k,ℓ 6=0

1

λk,ℓ
f̂k,ℓexp

(
2πi(kxi+ℓyj)

)
, λk,ℓ=(2kπ)2+(2ℓπ)2, (2.7)

‖ f‖−1=
√
〈 f ,(−∆N)−1 f 〉. (2.8)

In addition to the standard ℓ2 norm, we also introduce the ℓp and discrete maximum
norms for a grid function f , to facilitate the analysis in later sections:

‖ f‖∞ :=max
i,j

| fi,j|, ‖ f‖p :=
(

h2
N−1

∑
i,j=0

| fi,j|p
) 1

p
, 1≤ p<∞. (2.9)

Moreover, for any numerical solution φ, the discrete energy is defined as

EN(φ)=Ec,1,N(φ)+
ε2

2
‖∆Nφ‖2

2 , Ec,1,N(φ)=h2
N−1

∑
i,j=0

(
−1

2
ln
(

1+|∇Nφ|2
)

i,j

)
. (2.10)

2.2 The proposed third order BDF numerical scheme

As usual, we denote uk as the numerical approximation to the PDE solution at time step
tk := k∆t, with any integer n. Given un, un−1, un−2, we propose a third order BDF-type
scheme for the NSS equation (1.3):

11
6 un+1−3un+ 3

2 un−1− 1
3 un−2

∆t
+ε2∆2

Nun+1+∇N ·
(

3
∇Nun

1+|∇N un|2

−3
∇Nun−1

1+|∇N un−1|2 +
∇Nun−2

1+|∇Nun−2|2
)
+A∆t2∆2

N(u
n+1−un)=0. (2.11)
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Remark 2.1. Since the third order algorithm (2.11) is a three-step scheme, the “ghost”
point approximations u−1 and u−2 are needed in the initial time step. If we take u−2 =
u−1 = u0, the energy bound estimate (2.35) becomes very simple, while the third order
numerical accuracy may have been lost in the initial step. Instead, we could use alternate
explicit high-order numerical algorithms, such as RK2 and RK3, to update the numerical
solutions at u1 and u2, so that the third order numerical accuracy is preserved in the
first few time steps. This approach enables one to derive the full third order temporal
convergence estimate in the above theorem. In particular, we notice that the first two RK
time steps in the initial approximation will not cause any stability concern, since they are
treated as the initial values in the numerical scheme.

Proposition 2.1. For any initial data with u0 = u1 = u2 = β0, the third order numerical

scheme (2.11) is mass conservative, i.e, un+1=un = ···=β0 for any n≥2.

Proof. First of all, the following identity is valid, due to the periodic boundary condition
for a vector f and a scalar function g:

∇N · f =0, ∆N g=∇N ·∇N g=0. (2.12)

In turn, for the third order scheme (2.11), all the updated terms have a zero-mean:

∆2
Nun+1=0, ∆2

N(u
n+1−un)=0,

∇N ·
(

3
∇Nun

1+|∇Nun|2 −3
∇Nun−1

1+|∇Nun−1|2 +
∇Nun−2

1+|∇Nun−2|2
)
=0.

(2.13)

As a consequence, a substitution into (2.11) implies that

11

6
un+1−3un+

3

2
un−1− 1

3
un−2=0, ∀n≥2. (2.14)

With an application of induction analysis, we conclude that

un+1=un =un−1=un−2= ···=u0=β0, (2.15)

provided that u0=u1=u2=β0. This finishes the proof of Proposition 2.1.

2.3 The energy stability analysis

The following two preliminary estimates in [23] will be useful in the energy stability
analysis.

Lemma 2.1. [23] Denote a mapping fi : R2→R2: fi(v)= v
1+|v|2 . Then we have

|fi(v)−fi(w)|≤ |v−w|, ∀v,w∈R2. (2.16)
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Lemma 2.2. [23] Define H(a,b)= 1
2 ln(1+a2+b2)+ κ0

2 (a
2+b2). Then H(a,b) is convex in R2

if and only if κ0≥ 1
8 .

As a result of these convexity results, we are able to obtain the following energy esti-
mate.

Lemma 2.3. For the numerical solutions un+1 and un with un+1=un, we have

〈
∇N ·

( ∇Nun

1+|∇Nun|2
)

,un+1−un
〉

≥Ec,1,N(u
n+1)−Ec,1,N(u

n)− κ0

2
‖∇N(u

n+1−un)‖2
2, (2.17)

with the nonlinear energy functional Ec,1,N(φ) defined in (2.10).

Proof. For simplicity of presentation, we denote

f
(0)
N (u)=∇N ·

( ∇Nu

1+|∇Nu|2
)
+κ0∆Nu. (2.18)

By Lemma 2.2, f
(0)
N (u) corresponds to a concave energy functional, so that the following

convexity inequality is valid:

〈 f
(0)
N (un),un+1−un〉≥HN(u

n+1)−HN(u
n), with HN(φ)=Ec,1,N(φ)−

κ0

2
‖∇Nφ‖2

2, (2.19)

which is equivalent to (2.17). This finishes the proof of Lemma 2.3.

The energy stability of the proposed third order BDF-type scheme (2.11) is stated in
the following theorem, in a modified version.

Theorem 2.1. The numerical solution produced by the proposed BDF-type scheme (2.11) satisfies

ẼN(u
n+1,un,un−1)≤ẼN(u

n,un−1,un−2), with

ẼN(u
n+1,un,un−1)=EN(u

n+1)+
3

4∆t
‖un+1−un‖2

2+
1

6∆t
‖un−un−1‖2

2

+
3

2
‖∇N(u

n+1−un)‖2
2+

1

2
‖∇N(u

n−un−1)‖2
2, (2.20)

for any ∆t>0, provided that A≥ 9
32(

49
16 )

4ε−2.

Proof. The numerical scheme (2.11) could be rewritten as

∇N ·
( ∇Nun

1+|∇Nun|2
)
=−

11
6 un+1−3un+ 3

2 un−1− 1
3 un−2

∆t

−∇N ·
(

2
∇Nun

1+|∇N un|2 −3
∇Nun−1

1+|∇N un−1|2 +
∇Nun−2

1+|∇Nun−2|2
)

−ε2∆2
Nun+1−A∆t2∆2

N(u
n+1−un). (2.21)
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Taking a discrete ℓ2 inner product with (2.21) by un+1−un yields

〈
∇N ·

( ∇Nun

1+|∇Nun|2
)

,un+1−un
〉
+

1

∆t

〈11

6
un+1−3un+

3

2
un−1− 1

3
un−2,un+1−un

〉

+
〈
∇N ·

(
2

∇Nun

1+|∇Nun|2 −3
∇Nun−1

1+|∇Nun−1|2 +
∇Nun−2

1+|∇Nun−2|2
)

,un+1−un
〉

+ε2〈∆2
Nun+1,un+1−un〉+A∆t2〈∆2

N(u
n+1−un),un+1−un〉=0. (2.22)

The temporal stencil term could be analyzed as follows:

〈11

6
un+1−3un+

3

2
un−1− 1

3
un−2,un+1−un

〉

=
〈11

6
(un+1−un)− 7

6
(un−un−1)+

1

3
(un−1−un−2),un+1−un

〉

≥11

6
‖un+1−un‖2

2−
7

12
(‖un−un−1‖2

2+‖un+1−un‖2
2)

− 1

6
(‖un−1−un−2‖2

2+‖un+1−un‖2
2)

=
1

3
‖un+1−un‖2

2+
3

4
(‖un+1−un‖2

2−‖un−un−1‖2
2)

+
1

6
(‖un−un−1‖2

2−‖un−1−un−2‖2
2). (2.23)

For the nonlinear increment term, the following estimate could be derived:

−
〈

2
∇Nun

1+|∇Nun|2 −3
∇Nun−1

1+|∇N un−1|2 +
∇Nun−2

1+|∇Nun−2|2 ,∇N(u
n+1−un)

〉

=−2
〈 ∇Nun

1+|∇Nun|2 −
∇Nun−1

1+|∇Nun−1|2 ,∇N(u
n+1−un)

〉

+
〈 ∇Nun−1

1+|∇Nun−1|2 −
∇Nun−2

1+|∇Nun−2|2 ,∇N(u
n+1−un)

〉

≤2‖∇N(u
n−un−1)‖2 ·‖∇N(u

n+1−un)‖2+‖∇N(u
n−1−un−2)‖2 ·‖∇N(u

n+1−un)‖2

≤3

2
‖∇N(u

n+1−un)‖2
2+‖∇N(u

n−un−1)‖2
2+

1

2
‖∇N(u

n−1−un−2)‖2
2, (2.24)

in which the point-wise inequality (2.16) (in Lemma 2.1) has been applied in the second
step. For the surface diffusion term, the following identity is available:

〈∆2
Nun+1,un+1−un〉= 1

2
(‖∆Nun+1‖2

2−‖∆Nun‖2
2+‖∆N(u

n+1−un)‖2
2). (2.25)

Similarly, the following identity is straightforward to the artificial Douglas-Dupont reg-
ularization term:

A∆t2〈∆2
N(u

n+1−un),un+1−un〉=A∆t2‖∆N(u
n+1−un)‖2

2. (2.26)
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As a consequence, a substitution of (2.17) and (2.22)-(2.26) into (2.21) results in

EN(u
n+1)−EN(u

n)+
( ε2

2
+A∆t2

)
‖∆N(u

n+1−un)‖2
2+

1

3∆t
‖un+1−un‖2

2

+
3

4∆t
(‖un+1−un‖2

2−‖un−un−1‖2
2)+

1

6∆t
(‖un−un−1‖2

2−‖un−1−un−2‖2
2)

≤25

16
‖∇N(u

n+1−un)‖2
2+‖∇N(u

n−un−1)‖2
2+

1

2
‖∇N(u

n−1−un−2)‖2
2, (2.27)

with the optimal value of κ0 =
1
8 taken. To control the right hand side of (2.27), we begin

with the following quadratic inequality

ε2

2
+A∆t2≥

√
2A1/2ε∆t, (2.28)

which in turn leads to

( ε2

2
+A∆t2

)
‖∆N(u

n+1−un)‖2
2+

1

3∆t
‖un+1−un‖2

2

≥
√

2A1/2ε∆t‖∆N(u
n+1−un)‖2

2+
1

3∆t
‖un+1−un‖2

2

≥25/43−1/2A1/4ε1/2‖∆N(u
n+1−un)‖2 ·‖un+1−un‖2

≥25/43−1/2A1/4ε1/2‖∇N(u
n+1−un)‖2

2, (2.29)

in which the summation by parts formula has been applied in the last step, as well as the
following estimate:

‖∇N(u
n+1−un)‖2

2=−〈un+1−un,∆N(u
n+1−un)〉≤‖∆N(u

n+1−un)‖2·‖un+1−un‖2. (2.30)

Under the constraint that

25/43−1/2 A1/4ε1/2≥ 49

16
, i.e. A≥ 9

32

(49

16

)4
ε−2, (2.31)

the following inequality is valid:

EN(u
n+1)−EN(u

n)+
49

16
‖∇N(u

n+1−un)‖2
2

+
3

4∆t
(‖un+1−un‖2

2−‖un−un−1‖2
2)+

1

6∆t
(‖un−un−1‖2

2−‖un−1−un−2‖2
2)

≤25

16
‖∇N(u

n+1−un)‖2
2+‖∇N(u

n−un−1)‖2
2+

1

2
‖∇N(u

n−1−un−2)‖2
2. (2.32)

In fact, (2.32) is equivalent to

ẼN(u
n+1,un,un−1)− ẼN(u

n,un−1,un−2)≤0. (2.33)

This finishes the proof of Theorem 2.1.
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Corollary 2.1. For the numerical solution (2.11), we have

EN(u
k)≤EN(u

0)+
3

4∆t
‖u0−u−1‖2

2+
1

6∆t
‖u−1−u−2‖2

2

+
3

2
‖∇N(u

0−u−1)‖2
2+

1

2
‖∇N(u

−1−u−2)‖2
2 := C̃0, ∀k≥0, (2.34)

provided that (2.31) is satisfied.

Proof. By the modified energy inequality (2.20), the following induction analysis could
be performed:

EN(u
k)≤ ẼN(u

k,uk−1,uk−2)≤···≤ ẼN(u
0,u−1,u−2) := C̃0, ∀k≥0. (2.35)

This completes the proof.

Remark 2.2. By the detailed expansion (2.20) of the modified energy ẼN(u
n+1,un,un−1), it

is observed to be an O(∆t) approximation to the original energy functional EN(u
n+1) (at

time step tn+1), not a third order accurate approximation. In fact, the O(∆t) approxima-
tion order comes from two correction terms, namely, 3

4∆t‖un+1−un‖2
2 and 1

6∆t‖un−un−1‖2
2.

An additional stability property in the temporal stencil enables us to derive such a mod-
ified energy stability. On the other hand, although there is O(∆t) difference between the
modified and original energy functionals, such a modified stability ensures a uniform-in-
time bound for the original energy functional, due to the non-negative feature of all the
correction terms.

Remark 2.3. The requirement (2.31) for the parameter A indicates an order of A=O(ε−2).
Such a requirement is based on a subtle fact that, an extra stability estimate from the sur-
face diffusion term has to be used to balance the stability loss coming from the multi-step
explicit treatment of the nonlinear terms, and the surface diffusion coefficient is given by
ε2 in the physical parameter.

On the other hand, such a parameter order A=O(ε−2) is only used for the theoretical
justification of the energy stability. In the practical computations, an extensive choice of
A=O(1) has never led to any energy stability loss for the proposed third order scheme,
although its stability could not be theoretically justified. In fact, the effect of the artificial
regularization coefficients has been investigated in a recent article [34], for the second
order energy stable BDF2 scheme for the NSS equation (1.3). The theoretical analysis in-
dicates a minimum value of A0=

289
1024 to obtain a modified energy stability for the second

order BDF-type scheme, while the numerical simulation with an even smaller A0 = 0.1
has yielded more accurate results in the long time computations. Similar behaviors have
also been observed in the proposed third order BDF-type scheme (2.11): The theoretical
analysis indicates a minimum value of A0=

9
32(

49
16)

4ε−2 to obtain a modified energy stabil-
ity for the proposed third order scheme, while the numerical simulation with A0=O(1)
has yielded more accurate results in the long time computations. In the numerical results
presented in Section 4, an O(1) artificial regularization coefficient will be utilized.
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Remark 2.4. There have been a few recent works of the second order BDF schemes for
certain gradient flow models, such as Allen-Cahn and Cahn-Hilliard [9, 32, 46], slope-
selection thin film equation [15], square phase field crystal [12], in which the energy sta-
bility was theoretically established. Similarly, a Douglas-Dupont type regularization has
to be included in the numerical scheme, while a careful analysis only requires the cor-
responding parameter A of an order A =O(1). The primary reason for the difference
in the order of the artificial parameter A between the second and third order numerical
schemes is based on the following fact: for the second order scheme, the artificial regu-
larization, with magnitude O(∆t2), and the temporal discretization terms are sufficient
to theoretically justify the energy stability; while for the third order scheme, these two
terms are not sufficient to ensure the numerical stability, since the artificial regularization
term has to be in the order of O(∆t3) to keep the third order temporal accuracy.

Remark 2.5. The stability and convergence estimates for the temporally third order ac-
curate numerical schemes have been reported for fluid models, such as viscous Burgers’
equation [21], incompressible Navier-Stokes equation [11], harmonic mapping flow [44],
etc.

For the gradient models, the only existing works to address the energy stability for a
third order numerical scheme could be found in [5, 10, 18, 45]. In this article, we provide
an alternate third order numerical approach for the NSS equation, for which both the
energy stability and optimal rate convergence estimate could be theoretically justified.

Remark 2.6. The second Dahlquist barrier [13] states that, “There are no explicit A-stable
and linear multistep methods. The implicit ones have order of convergence at most 2.”
The proposed third order accurate scheme (2.11) is based on the BDF3 temporal approxi-
mation for the surface diffusion part, while it is well-known that the BDF3 method is not
A-stable. On the other hand, although the BDF3 method is not A-stable, an A-stability is
not necessary to preserve an unconditional energy stability for the NSS equation (1.3). In
more details, the domain of the BDF3 contains a very large portion of the left half complex
plane. In particular, the whole negative real axis (where all the eigenvalues associated
with the surface diffusion operator are located) is contained inside the stability domain.
Furthermore, the nonlinear chemical potential parts have automatically bounded higher
order derivatives, and this subtle fact leads to an unconditional energy stability, with
the help of extra dissipations coming from the surface diffusion and temporal differen-
tiation terms. More importantly, an addition of artificial regularization in the numerical
scheme (2.11) makes it not equivalent to the original BDF3 algorithm, and this term re-
sults in better stability property than the standard BDF3 method. All these facts yield the
desired unconditional energy stability of the proposed third order scheme (2.11), and no
CFL-like condition is needed for the time step size.
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3 The convergence analysis for the third order BDF scheme

The global existence of weak solution, strong solution and smooth solution for the NSS
equation (1.3) has been established in [27]. In more details, a global-in-time estimate of
L∞(0,T;Hm)∩L2(0,T;Hm+2) for the phase variable was proved, assuming initial data in
Hm, for any m ≥ 2. Therefore, with an initial data with sufficient regularity, we could
assume that the exact solution has regularity of class R:

ue∈R :=H4(0,T;C0)∩H1(0,T;H4)∩H3(0,T;Hm+2)∩L∞(0,T;Hm+4). (3.1)

Define UN(·,t) := PNue(·,t), the (spatial) Fourier projection of the exact solution into
BK, the space of trigonometric polynomials of degree to and including K. The following
projection approximation is standard: if ue ∈L∞(0,T;Hℓ

per(Ω)), for some ℓ∈N, we have

‖UN−ue‖L∞(0,T;Hk)≤Chℓ−k‖ue‖L∞(0,T;Hℓ), ∀ 0≤ k≤ ℓ. (3.2)

By Um
N we denote UN(·,tm), with tm =m·∆t. Since UN ∈PK, the mass conservative prop-

erty is available at the discrete level:

Um
N =

1

|Ω|
∫

Ω
UN(·,tm)dx=

1

|Ω|
∫

Ω
UN(·,tm−1)dx=Um−1

N , ∀ m∈N. (3.3)

On the other hand, the solution of the numerical scheme (2.11) is also mass conservative
at the discrete level:

um=um−1, ∀ m∈N. (3.4)

Meanwhile, we denote Um as the interpolation values of UN at discrete grid points at
time instant tm: Um

i,j :=UN(xi,yj,t
m). As indicated before, we use the mass conservative

projection for the initial data:

u0
i,j=U0

i,j :=UN(xi,yj,t=0). (3.5)

The error grid function is defined as

em :=Um−um, ∀ m∈{0,1,2,3,···}. (3.6)

Therefore, it follows that em =0, for any m∈{0,1,2,3,···}.
For the proposed third order BDF-type scheme (2.11), the convergence result is stated

below.

Theorem 3.1. Given initial data U0
N, U−1

N , U−2
N ∈Cm+4

per (Ω), with periodic boundary conditions,
suppose the unique solution for the NSS equation (1.3) is of regularity class R. Then, provided
∆t and h are sufficiently small, for all positive integers ℓ, such that ∆t ·ℓ≤T, we have

‖eℓ‖2+
(

ε2∆t
ℓ

∑
m=1

‖∆Nem‖2
2

)1/2
≤C(∆t3+hm), (3.7)

where C>0 is independent of ∆t and h.
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3.1 The error evolutionary equation

For the Fourier projection solution UN and its interpolation U, a careful consistency anal-
ysis implies that

11
6 Un+1−3Un+ 3

2Un−1− 1
3Un−2

∆t
+ε2∆2

NUn+1+A∆t2∆2
N(U

n+1−Un)

=−∇N ·
(

3
∇NUn

1+|∇NUn|2 −3
∇NUn−1

1+|∇NUn−1|2 +
∇NUn−2

1+|∇NUn−2|2
)
+τn, (3.8)

with ‖τn‖2≤C(∆t3+hm). In turn, subtracting the numerical scheme (2.11) from the con-
sistency estimate (3.8) yields

11
6 en+1−3en+ 3

2 en−1− 1
3 en−2

∆t
+ε2∆2

Nen+1+A∆t2∆2
N(e

n+1−en)

=−∇N ·
(

3
∇NUn

1+|∇NUn|2 −3
∇Nun

1+|∇N un|2 −3
∇NUn−1

1+|∇NUn−1|2 +3
∇Nun−1

1+|∇N un−1|2

+
∇NUn−2

1+|∇NUn−2|2 −
∇Nun−2

1+|∇Nun−2|2
)
+τn. (3.9)

3.2 The ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2
h) error estimate

Before the proof of the convergence result, we present the telescope formula in [33] for
the third order BDF temporal discretization operator in the following lemma; also see [48]
for the related discussion.

Lemma 3.1. For the third order BDF temporal discretization operator, there exists αi, i=1,··· ,10,
α1 6=0, such that

〈11

6
en+1−3en+

3

2
en−1− 1

3
en−2,2en+1−en

〉

=‖α1en+1‖2
2−‖α1en‖2

2+‖α2en+1+α3en‖2
2−‖α2en+α3en−1‖2

2

+‖α4en+1+α5en+α6en−1‖2
2−‖α4en+α5en−1+α6en−2‖2

2

+‖α7en+1+α8en+α9en−1+α10en−2‖2
2. (3.10)

Now we proceed into the convergence estimate. Taking a discrete ℓ2 inner product
with (3.9) by 2en+1−2en gives

1

∆t

〈11

6
en+1−3en+

3

2
en−1− 1

3
en−2,2en+1−en

〉

+ε2〈∆Nen+1,∆N(2en+1−en)〉+A∆t2〈∆N(e
n+1−en),∆N(2en+1−en)〉

=
2

∑
j=0

γ(j)
〈 ∇NUn−j

1+|∇NUn−j|2 −
∇Nun−j

1+|∇Nun−j|2 ,∇N(2en+1−en)
〉
+〈τn,2en+1−en〉, (3.11)
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with γ(0)=3, γ(1)=−3, γ(2)=1. Notice that the summation by parts formula has been re-
peatedly applied in the derivation. The local truncation error term could also be bounded
in a straightforward way:

〈τn,2en+1−en〉≤‖τn‖2
2+‖en+1‖2

2+
1

2
(‖τn‖2

2+‖en‖2
2)=

3

2
‖τn‖2

2+‖en+1‖2
2+

1

2
‖en‖2

2.

(3.12)

The surface diffusion and the Douglas-Dupont regularization terms could be analyzed
as follows:

〈∆Nen+1,∆N(2en+1−en)〉=‖∆N en+1‖2
2+〈∆Nen+1,∆N(e

n+1−en)〉

≥‖∆N en+1‖2
2+

1

2
(‖∆Nen+1‖2

2−‖∆N en‖2
2), (3.13)

〈∆N(e
n+1−en),∆N(2en+1−en)〉=‖∆N(e

n+1−en)‖2
2+〈∆Nen+1,∆N(e

n+1−en)〉

≥‖∆N(e
n+1−en)‖2

2+
1

2
(‖∆N en+1‖2

2−‖∆Nen‖2
2). (3.14)

For the nonlinear error term on the right hand side of (3.11), we focus on the time instant
tn. By making use of inequality (2.16) (in Lemma 2.1), we see that

∣∣∣
∇NUn

1+|∇NUn|2 −
∇Nun

1+|∇Nun|2
∣∣∣≤|∇Nen|, at a point-wise level. (3.15)

This in turn leads to

γ(0)
〈 ∇NUn

1+|∇NUn|2 −
∇Nun

1+|∇Nun|2 ,∇N(2en+1−en)
〉

≤3‖∇N en‖2 ·‖∇N(2en+1−en)‖2. (3.16)

Similarly, the following inequalities are available:

γ(1)
〈 ∇NUn−1

1+|∇NUn−1|2 −
∇Nun−1

1+|∇Nun−1|2 ,∇N(2en+1−en)
〉

≤3‖∇Nen−1‖2 ·‖∇N(2en+1−en)‖2, (3.17)

γ(2)
〈 ∇NUn−2

1+|∇NUn−2|2 −
∇Nun−2

1+|∇Nun−2|2 ,∇N(2en+1−en)
〉

≤‖∇Nen−2‖2 ·‖∇N(2en+1−en)‖2. (3.18)

Then we arrive at

2

∑
j=0

γ(j)
〈 ∇NUn−j

1+|∇NUn−j|2 −
∇Nun−j

1+|∇Nun−j|2 ,∇N(2en+1−en)
〉

≤(3‖∇Nen‖2+3‖∇Nen−1‖2+‖∇Nen−2‖2)·‖∇N(2en+1−en)‖2

≤7‖∇Nen+1‖2
2+8‖∇Nen‖2

2+
9

2
‖∇Nen−1‖2

2+
3

2
‖∇Nen−2‖2

2, (3.19)
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with repeated application of Cauchy inequality at the last step.
Therefore, a substitution of (3.10), (3.12)-(3.14) and (3.19) into (3.11) leads to

1

∆t
(Fn+1−Fn)+ε2‖∆N en+1‖2

2+
1

2
(ε2+A∆t2)(‖∆Nen+1‖2

2−‖∆N en‖2
2)

≤7‖∇Nen+1‖2
2+8‖∇Nen‖2

2+
9

2
‖∇Nen−1‖2

2

+
3

2
‖∇Nen−2‖2

2+
3

2
‖τn‖2

2+‖en+1‖2
2+

1

2
‖en‖2

2, (3.20)

with

Fn+1=‖α1en+1‖2
2+‖α2en+1+α3en‖2

2+‖α4en+1+α5en+α6en−1‖2
2. (3.21)

Meanwhile, for the error gradient term ‖∇Nen+1‖2
2, the following estimate could be de-

rived:

7‖∇Nen+1‖2
2=−7〈en+1,∆Nen+1〉≤7‖en+1‖2 ·‖∆N en+1‖2

≤147

2
ε−2‖en+1‖2

2+
ε2

6
‖∆Nen+1‖2

2. (3.22)

The error gradient terms at three other time step instants could be bounded in a similar
way:

8‖∇Nen‖2
2≤96ε−2‖en‖2

2+
ε2

6
‖∆Nen‖2

2, (3.23)

9

2
‖∇Nen−1‖2

2≤
243

8
ε−2‖en−1‖2

2+
ε2

6
‖∆Nen−1‖2

2, (3.24)

3

2
‖∇Nen−2‖2

2≤
27

8
ε−2‖en−2‖2

2+
ε2

6
‖∆Nen−2‖2

2. (3.25)

Going back (3.20), we arrive at

1

∆t
(Fn+1−Fn)+

5

6
ε2‖∆Nen+1‖2

2+
1

2
(ε2+A∆t2)(‖∆N en+1‖2

2−‖∆Nen‖2
2)

≤
(147

2
ε−2+1

)
‖en+1‖2

2+
(

96ε−2+
1

2

)
‖en‖2

2+
243

8
ε−2‖en−1‖2

2+
27

8
ε−2‖en−2‖2

2

+
ε2

6
(‖∆Nen‖2

2+‖∆Nen−1‖2
2+‖∆Nen−2‖2

2)+
3

2
‖τn‖2

2. (3.26)

By introducing a modified quantity

F̃n+1 :=Fn+1+
1

2
(ε2+A∆t2)∆t‖∆N en+1‖2

2, (3.27)

and making use of the following obvious fact:

‖ek‖2
2 ≤

1

α2
1

F̃k, ∀k≥0, (3.28)
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we obtain the following estimate

1

∆t
(F̃n+1− F̃n)+

5

6
ε2‖∆Nen+1‖2

2−
ε2

6
(‖∆Nen‖2

2+‖∆Nen−1‖2
2+‖∆Nen−2‖2

2)

≤(96ε−2+1)α−2
1 (F̃n+1+ F̃n+ F̃n−1+ F̃n−2)+

3

2
‖τn‖2

2. (3.29)

In turn, an application of discrete Gronwall inequality results in the convergence esti-
mate:

Fn+1+
(1

3
ε2∆t

n+1

∑
m=1

‖∆N em‖2
2

)1/2
≤ Ĉ(∆t3+hm)2. (3.30)

Furthermore, its combination with definition (3.21) (for Fn+1) indicates the desired re-
sult (3.7). This completes the proof of Theorem 3.1.

Remark 3.1. The proposed numerical scheme (2.11) is fully discrete, instead of method of
line; both the modified BDF3 temporal method and the Fourier pseudo-spectral spatial
approximation have been involved in the scheme. In turn, the truncation error τn (ap-
pearing in (3.8)) implies both the third order temporal accuracy and the spectral spatial
accuracy. In the stability and convergence estimates, it is noticed that the summation by
parts formula (2.6) has played an important role in the theoretical analysis for the fully
discrete scheme.

Remark 3.2. The inner product associated with the truncation error is analyzed in (3.12),
with ‖τn‖2=O(∆t3+hm). On the other hand, this accuracy order does not affect the final
convergence rate in time, since the numerical error evolutionary equation (3.9) could be
rewritten as

11

6
en+1−3en+

3

2
en−1− 1

3
en−2+ε2∆t∆2

Nen+1+A∆t3∆2
N(e

n+1−en)

=−∆t∇N ·
(

3
∇NUn

1+|∇NUn|2 −3
∇Nun

1+|∇N un|2 −3
∇NUn−1

1+|∇NUn−1|2 +3
∇Nun−1

1+|∇Nun−1|2

+
∇NUn−2

1+|∇NUn−2|2 −
∇Nun−2

1+|∇Nun−2|2
)
+∆tτn, (3.31)

so that the last term (corresponding to the truncation error) is of order O(∆t4+∆thm).
Finally, with an application of discrete Gronwall inequality to the preliminary esti-
mate (3.29), we are able to derive the desired convergence result (3.30), with third order
temporal accuracy and spectral order spatial accuracy.

Remark 3.3. For the proposed third order numerical scheme (2.11), a uniform time step
is necessary to establish the energy stability and convergence analyses at a theoretical
level, due to its multi-step and long-stencil nature. Meanwhile, non-uniform time step
size could also be used in the practical computations, and such a choice does not affect
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the energy dissipation property in the simulation results; see the detailed descriptions in
the next section. In addition, there have been some existing works of theoretical analysis
of variable time stepping method for gradient flows, such as [7] for the BDF2 scheme ap-
plied to the Cahn-Hilliard equation. The variable time stepping version of the proposed
third order numerical scheme (2.11) will also be investigated in the future works.

4 Numerical results

4.1 Convergence test for the numerical scheme

In this subsection we perform a numerical accuracy check for the third order accurate
BDF-type scheme (2.11). The computational domain is set to be Ω=(0,1)2, and the exact
profile for the phase variable is set to be

U(x,y,t)=sin(2πx)cos(2πy)cos(t). (4.1)

To make U satisfy the original PDE (1.3), we have to add an artificial, time-dependent
forcing term. Then the proposed third order BDF-type scheme (2.11) can be implemented
to solve for (1.3).

To investigate the accuracy in space, we fix ∆t=10−4, so that the spatial approximation
error dominates the overall numerical error. We compute solutions with grid sizes N=64
to N = 144 in increments of 8, and we solve up to time T = 1. The surface diffusion
parameter is taken as ε=0.05, and we set the artificial regularization parameter as A=1.
The ℓ2 and ℓ∞ numerical errors, computed by the proposed numerical schemes (2.11), are
displayed in Fig. 1. The spatial spectral accuracy is apparently observed for the phase
variable. Due to the round-off errors, a saturation of spectral accuracy appears with an
increasing N.

To demonstrate the accuracy in time, the spatial numerical error has to be negligible.
We fix the spatial resolution as N = 192 (so that h = 1

192 ), and set the final time T = 1.
The same surface diffusion and artificial regularization parameters are taken, namely,
ε=0.05, A=1, respectively. Naturally, a sequence of time step sizes are taken as ∆t= T

NT
,

with NT=100:100:1000. The expected temporal numerical accuracy assumption e=C∆tk

indicates that ln|e|= ln(CTk)−klnNT , so that we plot ln|e| vs. lnNT to demonstrate the
temporal convergence order. The fitted line displayed in Fig. 2 shows an approximate
slope of -3, which in turn verifies a nice third order temporal convergence order, in both
the discrete ℓ2 and ℓ∞ norms.

4.2 Long time simulation results of the coarsening process

With the assumption that ε≪min
{

Lx,Ly

}
, the temporal evolution of the solution to (1.3)

has always been of great interests. The physically interesting quantities that may be ob-
tained from the solutions are (i) the energy E(t); (ii) the characteristic (average) height
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Figure 1: The discrete ℓ2 and ℓ∞ numerical errors for the phase variable at T=1, plotted versus N, the number
of spatial grid point, for the fully discrete numerical scheme (2.11). The time step size is fixed as ∆t= 10−4.
An apparent spatial spectral accuracy is observed.
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Figure 2: The discrete ℓ2 and ℓ∞ numerical errors vs. temporal resolution NT for NT = 100 : 100 : 1000, with
a spatial resolution N=192. The surface diffusion parameter is taken to be ε=0.05. The data lie roughly on

curves CN−3
T , for appropriate choices of C, confirming the full third-order accuracy of the scheme.

(the surface roughness) h(t); and (iii) the characteristic (average) slope m(t). These quan-
tities are precisely defined as

h(t)=

√
1

|Ω|
∫

Ω

∣∣∣u(x,t)−ū(t)
∣∣∣
2
dx , with ū(t) :=

1

|Ω|
∫

Ω
u(x,t)dx, (4.2)

m(t)=

√
1

|Ω|
∫

Ω
|∇u(x,t)|2dx. (4.3)
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For the no-slope-selection equation (1.3), asymptotic scaling law could be formally de-
rived as h ∼O

(
t1/2

)
, m(t)∼O

(
t1/4

)
, and E ∼O(−ln(t)) as t → ∞; see [16, 27, 28] and

other related references. This in turn implies that the characteristic (average) length
ℓ(t):=h(t)/m(t)∼O

(
t1/4

)
as t→∞. In other words, the average length and average slope

scale the same with increasing time. We also observe that the average mound height h(t)
grows faster than the average length ℓ(t), which is expected because there is no preferred
slope of the height function u.

At a theoretical level, as described in [24, 25, 28], one can at best obtain lower bounds
for the energy dissipation and, conversely, upper bounds for the average height. How-
ever, the rates quoted as the upper or lower bounds are typically observed for the av-
eraged values of the quantities of interest. It is quite challenging to numerically predict
these scaling laws, since very long time scale simulations are needed. To capture the full
range of coarsening behaviors, numerical simulations for the coarsening process require
short-time and long-time accuracy and stability, in addition to high spatial accuracy for
small values of ε.

In this section we display the numerical simulation results obtained from the pro-
posed third order BDF-type scheme (2.11) for the no-slope-selection equation (1.3), and
compare the computed solutions against the predicted coarsening rates. Similar results
have also been reported for many first and second order accurate numerical schemes
in the existing literature, such as the ones given by [3, 23, 42], etc. The surface diffu-
sion coefficient parameter is taken to be ε= 0.02 in this article, and the domain is set as
L= Lx = Ly = 12.8. The uniform spatial resolution is given by h= L/N, N = 512, which
is adequate to resolve the small structures in the solution with such a value of ε. The
artificial regularization parameter is taken as A=0.5 in our simulation.

For the temporal step size ∆t, we use increasing values of ∆t, namely, ∆t= 0.004 on
the time interval [0,400], ∆t = 0.04 on the time interval [400,6000], ∆t = 0.16 on the time
interval [6000,3×105]. Whenever a new time step size is applied, we initiate the two-step
numerical scheme by taking u−1=u−2=u0, with the initial data u0 given by the final time
output of the last time period. Fig. 3 displays time snapshots of the film height u with
ε= 0.02, with significant coarsening observed in the system. At early times many small
hills (red) and valleys (blue) are present. At the final time, t=300000, a one-hill-one-valley
structure emerges, and further coarsening is not possible.

The long time characteristics of the solution, especially the energy decay rate, av-
erage height growth rate, and the mound width growth rate, are of interest to surface
physics community. The last two quantities can be easily measured experimentally. On
the other hand, the discrete energy EN is defined via (2.10); the space-continuous aver-
age height and average slope have been defined in (4.2), (4.3), and the analogous discrete
versions are also available. Theoretically speaking, the lower bound for the energy decay
rate is of the order of −ln(t), and the upper bounds for the average height and average
slope/average length are of the order of t1/2, t1/4, respectively, as established for the no-
slope-selection equation (1.3) in [28]. Figs. 4-6 present the semi-log plots for the energy
versus time, log-log plots for the average height versus time, and average slope versus
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(a) t=200, 400 (b) t=3000, 6000

(c) t=20000, 40000 (d) t=80000, 300000

Figure 3: (Color online.) Snapshots of the computed height function u at the indicated times for the parameters
L=12.8, ε=0.02. The hills at early times are not as high as time at later times, and similarly with the valley.
The average height/depth evolution with time could be seen in Fig. 4.

time, respectively, with the given physical parameter ε= 0.02. The detailed scaling “ex-
ponents” are obtained using least squares fits of the computed data up to time t= 400.
A clear observation of the −ln(t), t1/2 and t1/4 scaling laws can be made, with different
coefficients dependent upon ε, or, equivalently, the domain size, L.

We also recall that a lower bound for the energy (1.1), assuming Ω=(0,L)2, which has
been derived and polished in our earlier works [3, 6, 42]:

E(φ)≥ L2

2

(
ln

(
4ε2π2

L2

)
− 4ε2π2

L2
+1

)
=: γ . (4.4)

Since the energy is bounded below, it cannot keep decreasing at the rate −ln(t). This fact
manifests itself in the calculated data as the rate of decrease of the energy, for example,
begins to wildly deviate from the predicted −ln(t) curve. Sometimes the rate of decrease
increases, and sometimes it slows as the systems “feels” the periodic boundary condi-
tions. In fact, regardless of this later-time deviation from the accepted rates, the time at
which the system saturates (i.e., the time when the energy abruptly and essentially stops
decreasing) is roughly that predicted by extending the blue lines in Fig. 4 to the predicted
minimum energy (4.4).

Remark 4.1. In this presented numerical simulation, the spatial resolution and time step
sizes are taken as the same as the ones presented for the second order energy stable



Y. Hao, Q. Huang and C. Wang / Commun. Comput. Phys., 29 (2021), pp. 905-929 925

10
0

10
1

10
2

10
3

10
4

10
5

10
6

time

-700

-600

-500

-400

-300

-200

-100

numerical simulation

fitting data

Figure 4: Semi-log plot of the temporal evolution the energy EN for ε=0.02. The energy decreases like −ln(t)
until saturation. The dotted lines correspond to the minimum energy reached by the numerical simulation.
The red lines represent the energy plot obtained by the simulations, while the straight lines are obtained by
least squares approximations to the energy data. The least squares fit is only taken for the linear part of the
calculated data, only up to about time t= 400. The fitted line for the energy has the form ae ln(t)+be, with
ae =−40.8189, be=−149.8528.
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Figure 5: The log-log plot of the average height (or roughness) of u, denoted as h(t), which grows like t1/2. The
red lines represent the average height plot obtained by the simulations, while the straight lines are obtained by
least squares approximations to the numerical data. The least squares fit is only taken for the linear part of the
calculated data, only up to t=400. The fitted line for the average height has the form ahtbh , with ah =0.4113,
bh =0.5025.

scheme [6]. For the long time simulation, both numerical schemes have produced similar
evolutionary curves in terms of energy, standard deviation, and the mound width. A
more detailed calculation shows that long time asymptotic growth rate of the standard
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Figure 6: The log-log plot of the average width of u, denoted m(t), which grows like t1/4. The red lines
represent the average width plot obtained by the simulations, while the straight lines are obtained by least
squares approximations to the numerical data. Similarly, the least squares fit is only taken for the linear part
of the calculated data, only up to t = 400. The fitted line for the average width has the form amtbm , with
am =4.2063, bm =0.2547.

deviation given by the third order numerical simulation is closer to t1/2 than that by
the second order energy stable scheme: mr = 0.5025, as recorded in Fig. 5, while in [6]
this exponent was found to be mr = 0.5132. Similarly, the long time asymptotic growth
rate of the mound width given by (2.11) is closer to t1/4 than that by the second order
energy stable scheme in: bm=0.2547, as recorded in Fig. 6, in comparison with mr=0.2607
reported in [6]. This gives more evidence that the third order BDF-type scheme is able
to produce more accurate long time numerical simulation results than the second order
schemes.

Similar comparison has also been made between the second order ETD-related scheme
and the proposed third order BDF-type scheme: mr=0.5025, bm=0.2547 for the proposed
third order scheme, in comparison with mr=0.510, bm=0.258, for the second order scheme
as reported in [23]. This gives another evidence of robustness of the third order accurate
numerical scheme for the NSS equation (1.3).

5 Concluding remarks

In this article, we propose and analyze a third order accurate BDF-type numerical scheme
for the NSS equation (1.3) of the epitaxial thin film growth model, combined with Fourier
pseudo-spectral spatial discretization. The surface diffusion term is treated implicitly,
while the nonlinear chemical potential is approximated by a third order explicit extrap-
olation formula for the sake of solvability. More importantly, a third order accurate
Douglas-Dupont regularization term is added in the numerical scheme. The energy sta-



Y. Hao, Q. Huang and C. Wang / Commun. Comput. Phys., 29 (2021), pp. 905-929 927

bility is derived in a modified version, based on a careful energy stability estimate, com-
bined with Fourier eigenvalue analysis; a theoretical justification of the coefficient A has
also been provided. Such an energy stability analysis implies a uniform in time bound of
the numerical energy. Furthermore, the optimal rate convergence analysis and error esti-
mate are derived in details. In particular, a discrete inner product is taken with an alter-
nate numerical term, to avoid the well-known difficulty associated with the long-stencil
nature of the standard BDF3 scheme. Some numerical simulation results are presented
to demonstrate the robustness of the numerical scheme and the third order convergence.
In particular, the long time simulation results have revealed that, the power index for the
surface roughness and the mound width growth for ε= 0.02 (up to T = 3×105), created
by the proposed third order numerical scheme, is more accurate than these created by
certain second order accurate, energy stable schemes in the existing literature.
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