
Journal of Scientific Computing           (2021) 87:78 

https://doi.org/10.1007/s10915-021-01508-w

An Energy Stable Finite Element Scheme for the
Three-Component Cahn–Hilliard-Type Model for
Macromolecular Microsphere Composite Hydrogels

Maoqin Yuan1 ·Wenbin Chen2 · Cheng Wang3 · Steven M. Wise4 ·

Zhengru Zhang5

Received: 22 November 2020 / Revised: 24 March 2021 / Accepted: 20 April 2021

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In this article, we present and analyze a finite element numerical scheme for a three-

component macromolecular microsphere composite (MMC) hydrogel model, which takes

the form of a ternary Cahn–Hilliard-type equation with Flory–Huggins–deGennes energy

potential. The numerical approach is based on a convex–concave decomposition of the energy

functional in multi-phase space, in which the logarithmic and the nonlinear surface diffusion

terms are treated implicitly, while the concave expansive linear terms are explicitly updated.

A mass lumped finite element spatial approximation is applied, to ensure the positivity of

the phase variables. In turn, a positivity-preserving property can be theoretically justified for

the proposed fully discrete numerical scheme. In addition, unconditional energy stability is

established as well, which comes from the convexity analysis. Several numerical simulations

are carried out to verify the accuracy and positivity-preserving property of the proposed

scheme.
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1 Introduction

A hydrogel is a network of cross-linked hydrophilic polymers chains. They absorb water and

can swell to many times their original size. Hydrogels, which can act as solids or liquids in

various settings, are versatile materials that have led to extensive industrial and biomedical

applications [20,21,33]. Macromolecular microsphere composite (MMC) hydrogel, which

was originally synthesized by Huang et al. in 2007, possesses a unique well-defined network

structure and very high mechanical strength. This is due to the highly specialized chemical

grafting of the entangled polymer chains, in comparison with traditional hydrogels [31].

MMC hydrogels have been widely applied in both biomedical and industrial areas, such as

in drug delivery [49], artificial tissues [12,46], et cetera. The formation process of MMC

hydrogel has been described in detail in [30,31,55].

Computational and experimental studies are needed to reveal the complicated properties of

MMC hydrogels. Studies must include the investigation of the parameter space related to their

production and processing, in order to engineer their individual effects. Furthermore, must be

explored and refined to validate their predictions. For example, Zhai et al. [55] developed a

reticular free energy for MMCs, under certain assumptions, most particularly, that the number

of graft chains around a macromolecular microsphere (MMS) is proportional to the perimeter.

Based on the time-dependent Ginzburg–Landau (TDGL) mesoscale simulation method, a

two-component model, appropriately named the MMC-TDGL equation, was developed to

understand the time evolution of MMC hydrogel structure in [55]. This continuum scale model

was designed to simulate phase transitions in MMC hydrogels. Li et al. [34] added a stochastic

term in the binary MMC-TDGL equation to consider how random physical fluctuations

modify the dynamics. Recently, the reticular free energy was reconstructed in [32], and shown

to be consistent with the network structures of the MMC hydrogels. Based on the Boltzmann

entropy theorem, the Flory–Huggins lattice theory and assuming TDGL dynamics, a three-

component MMC-TDGL model can be constructed. The MMC and polymer chains are no

longer considered as a whole in this model, making it more consistent with experiments.

It is widely known that phase-field models satisfy certain properties, such as energy decay,

mass conservation, and positivity preservation. These properties represent important physical

features and are also essential for mathematical analysis and consistent numerical simulation.

During the past several decades, there have been many works devoted to designing various

kinds of numerical methods to satisfy these properties, especially for Allen–Cahn and Cahn–

Hilliard-type equations. See, for example, [10,11,48,52,54] and the references therein. Zhai

et al. [55] constructed a spectral-type numerical method to approximate the solutions of the

binary MMC-TDGL equations. Li et al. used a semi-implicit scheme for binary MMC-TDGL

equation in [34], while there was no discussion of any stability condition. Subsequently, a

convex splitting method was presented in [35], and energy stability was proven for the

numerical solution of the phase variable. Liao et al. applied an adaptive time step strategy to

improve computational efficiency in [36] and Dong et al. [18,19] presented the theoretical

analysis for the first and second-order energy stable schemes. A stabilized method was also

used to solve the binary system by Xu et al. in [50], though a theoretical justification of the

123



Journal of Scientific Computing            (2021) 87:78 Page 3 of 30    78 

stabilizing parameters (for energy decay) has not been established. Other related works could

be found in [25,53], etc.

Although there have been many works on the multi-component Cahn–Hilliard flow [4,5,

8,54], addressing polynomial-type energy potentials, the numerical study of ternary MMC-

TDGL equations is still in the preliminary stages. First, it has always been a key difficulty

to design a numerical scheme satisfying the physical properties. Furthermore, it is highly

challenging to prove the positivity-preserving property for the logarithmic terms, since the

fourth-order partial differential equations fail to satisfy a maximum principle. In [11], a finite

element scheme was proposed based on the backward Euler approximation for the Cahn–

Hilliard equation with logarithmic free energy, and the positivity-preserving property of the

numerical solution was proven under a constraint on the time step. In a more recent work [9],

the authors presented a finite difference scheme based on the convex–concave decomposition

of the free energy with logarithmic potential and established a theoretical justification of the

positivity-preserving property, regardless of time step size. This improvement is based on

the following fact: the singular nature of the logarithmic term around the pure-phase values

prevents the numerical solution from reaching these singular values, so that the numerical

scheme is always well-defined as long as the numerical solution stays similarly bounded

at the previous time step. Moreover, similar ideas have been applied in [18,19] to analyze

the binary MMC-TDGL equation. Also see the related works of other gradient models with

singular energy potential, such as the Poisson–Nernst–Planck system [38,41], the reaction–

diffusion system in the energetic variational formulation [37], liquid film droplet model [56],

etc.

In this article, we aim to analyze the ternary MMC-TDGL system and obtain the theoretical

justification of both the positivity-preserving property and the energy stability. To this end,

the key ingredient is an application of the convex–concave decomposition of the physical

energy, with respect to the multi-phase variables. In fact, the convex splitting method has been

extensively applied to a variety of gradient flow models [2,3,6,7,15,16,23,26–29,39,42,44,

45,47,48,51], for both first and second-order temporally accurate versions. Meanwhile, most

of these existing works have focused on polynomial free energy potentials. The extension to

singular Flory–Huggins-type energy potentials turns out to be highly challenging. In addition,

the appearance of the highly nonlinear and singular deGennes gradient energy terms makes

the whole system even more difficult. To overcome these subtle difficulties, we make use of

a convex–concave decomposition of the physical energy in the ternary MMC-TDGL system,

reported in a recent work [17].

In more details, the logarithmic terms and the highly nonlinear gradient energy terms

are placed in the convex part, while the expansive terms are put in the concave part, based

on careful convexity analyses. In turn, the convex splitting approach leads to a uniquely

solvable, positivity-preserving and energy stable numerical scheme. The finite difference

approximation was reported in [17], and its direct application to the finite element method is

not available, due to the difficulty to ensure the point-wise positivity of the numerical solution

in the standard FEM method. In our work, a mixed FEM method is applied to the ternary

MMC-TDGL system to facilitate the numerical implementation of the fourth order parabolic

equations. It is well-known that the standard conforming FEM fails to satisfy the discrete

maximum principle due to the non-diagonal mass matrix. As a result, a lumped mass FEM

was chosen instead, so as to diagonalize the mass matrix. The diagonal elements are the row

sums of the original mass matrix [43]. In comparison with the finite difference method, the

FEM allows for flexible, adaptive meshes and is often easier to analyze.

This paper is organized as follows. In Sect. 2, we briefly review the mathematical model of

three-component phase transitions in MMC hydrogels. In Sect. 3, we present the numerical
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scheme using the mass lumped finite element method. The detailed proof for the positivity-

preserving property of the numerical solution is provided in Sect. 4, and the energy stability

analysis is established in Sect. 5. In Sect. 6, the numerical simulations are presented to verify

the theoretical results. Finally, some concluding remarks are given in Sect. 7.

2 Three-Component MMC-TDGL System

Given an open bounded, connected domain � ⊂ R
2 with a Lipschitz smooth boundary ∂�,

we recall the derivation of the diffuse interface describing the phase transitions of MMC

hydrogels. It is worth mentioning that the ternary system is made of water, macromolecular

microsphere, and polymer chain. Usually, the composition of the mixture is described at

each point by the concentration value of one of the constituents in the mixture. Thus we

denote the concentration of the macromolecular microsphere in the ternary system by the

order parameter φ1, the polymer chain by φ2 and the solvent molecules by φ3. The value

of the three order parameters are located between 0 and 1, where three phases vary rapidly

but smoothly across the interface. And also, these three unknowns are linked through the

hyperplain link relationship φ1 + φ2 + φ3 = 1. Due to the mass conservation constraint, we

denote φ3 = 1 − φ1 − φ2 throughout the rest of this article, for simplicity of presentation.

The Flory–Huggins reticular free energy takes a form of f (φ1, φ2). Moreover, the evolu-

tion of the system is driven by the minimization of a free energy under the constraint of mass

conservation of each phase. The Ginzburg–Landau type energy functional F(φ1, φ2) takes

the following form

F (φ1, φ2) =
∫

�

f (φ1, φ2) + K (φ1, φ2)dx, (2.1)

where f (φ1, φ2) contains the mixing entropy S(φ1, φ2) and the mixing enthalpy H(φ1, φ2),

i.e., f (φ1, φ2) = S(φ1, φ2) + H(φ1, φ2). The expression of S(φ1, φ2), H(φ1, φ2), as well

as K (φ1, φ2), can be written as follows

S(φ1, φ2) = φ1

γ
ln

(

αφ1

γ

)

+ φ2

N
ln

(

βφ2

N

)

+ (1 − φ1 − φ2) ln (1 − φ1 − φ2) ,

H(φ1, φ2) = χ12φ1φ2 + χ13φ1 (1 − φ1 − φ2) + χ23φ2 (1 − φ1 − φ2) ,

K (φ1, φ2) = a2
1

36φ1
|∇φ1|2 + a2

2

36φ2
|∇φ2|2 + a2

3

36 (1 − φ1 − φ2)
|∇ (1 − φ1 − φ2) |2, (2.2)

in which the parameter γ is the relative volume of one macromolecular microsphere, N is

the degree of polymerization of the polymer chains. The parameters α and β are determined

by the formulas α = π(
√

γ /π + N/2)2, β = α/
√

π N , dependent on γ and N ; see more

detailed derivations of the model in [55]. In fact, the Flory–Huggins energy density takes a

form of φi ln φi for each species concentration, combined with the interaction energy density

φiφ j [24]. The constants χ12, χ13, and χ23 are the Flory–Huggins interaction parameters

between macromolecular microspheres and polymer chain, macromolecular microspheres

and solvent, and polymer chain and solvent, respectively. In addition, the deGennes diffusive

coefficient, κ(φi ) = a2
i

36φi
, depends on the corresponding phase variables. This diffusion

process was proposed by physicist P.G. deGennes [14] for the binary Cahn–Hilliard flow, in

which the phase variables could be simplified as φ1 = φ, φ2 = 1 − φ, so that the combined
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diffusion coefficient and surface diffusion energy density becomes

κ(φ) = a2

36φ1
+ a2

36φ2
= a2

36φ
+ a2

36(1 − φ)
= a2

36φ(1 − φ)
, |∇φ1| = |∇φ2| = |∇φ|,

K (φ) = a2

36φ1
|∇φ1|2 + a2

36φ2
|∇φ2|2 = κ(φ)|∇φ|2 = a2

36φ(1 − φ)
|∇φ|2.

An extension to the ternary gradient flow is natural. Such a nonlinear diffusive coefficient has

been an essential difficulty for the MMC-TDGL model; see the related analysis in [18,19].

Here ai is the statistical segment length of the i th component, i = 1, 2, 3. By a simple

computation, the variational derivatives of the free energy function F(φ1(x, t), φ2(x, t))

with respect to φ1 and φ2 are found to be

δF (φ1, φ2)

δφ1
= ∂S (φ1, φ2)

∂φ1
− a2

1 |∇φ1|2

36φ2
1

− ∇ ·
(

a2
1∇φ1

18φ1

)

+ a2
3 |∇ (1 − φ1 − φ2) |2

36 (1 − φ1 − φ2)
2

+ ∇ ·
(

a2
3∇ (1 − φ1 − φ2)

18 (1 − φ1 − φ2)

)

− ∂ H (φ1, φ2)

∂φ1
, (2.3)

δF (φ1, φ2)

δφ2
= ∂S (φ1, φ2)

∂φ2
− a2

2 |∇φ2|2

36φ2
2

− ∇ ·
(

a2
2∇φ2

18φ2

)

+ a2
3 |∇ (1 − φ1 − φ2) |2

36 (1 − φ1 − φ2)
2

+ ∇ ·
(

a2
3∇ (1 − φ1 − φ2)

18 (1 − φ1 − φ2)

)

− ∂ H (φ1, φ2)

∂φ2
, (2.4)

where

∂S

∂φ1
= 1

γ
ln

(

αφ1

γ

)

+ 1

γ
− 1 − ln (1 − φ1 − φ2) ,

∂S

∂φ2
= 1

N
ln

(

βφ2

N

)

+ 1

N
− 1 − ln (1 − φ1 − φ2) ,

∂ H

∂φ1
= −2χ13φ1 + (χ12 − χ13 − χ23) φ2 + χ13,

∂ H

∂φ2
= −2χ23φ2 + (χ12 − χ13 − χ23) φ1 + χ23.

To simulate the traditional hydrogels, the time-dependent Ginzburg–Landau (TDGL)

mesoscopic model is widely used to describe the phase transitions of a multi-component

polymer blend. Once this energy F is defined, we can formulate the time evolution of the

three-component MMC hydrogels system for the conserved Cahn–Hilliard equations:

∂φ1

∂t
= D1�

δF (φ1, φ2)

δφ1
, (2.5)

∂φ2

∂t
= D2�

δF (φ1, φ2)

δφ2
, (2.6)

where Di = kBθ Mi are the diffusion coefficients, kB is the Boltzmann constant, θ is the

temperature, and Mi > 0 stand for the mobility of the i th component, i = 1, 2. For simplicity,

we select � = (0, L)2, and consider L-periodic boundary condition for this model. However,

the finite element method can be extended to a wider class of regions and Neumann boundary

conditions could also be used.
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The Cahn–Hilliard system has the important feature that the phase variables, φ1 and φ2,

are mass-conservative. Integrating (2.5) and (2.6) over � = (0, L)2, we obtain

d

dt

∫

�

φ1dx =
∫

�

∂φ1

∂t
dx = D1

∫

∂�

∇ δF

δφ1
· nds,

d

dt

∫

�

φ2dx =
∫

�

∂φ2

∂t
dx = D2

∫

∂�

∇ δF

δφ2
· nds.

(2.7)

Notice that δF/δφ1 and δF/δφ2 in (2.3) and (2.4) are both L-periodic with respect to x and

y, so that integration on the boundary vanishes, which implies

∫

�

φ1(x, t)dx =
∫

�

φ1(x, 0)dx,

∫

�

φ2(x, t)dx =
∫

�

φ2(x, 0)dx, ∀t > 0. (2.8)

As a consequence, φ3 = 1 − φ1 − φ2 also satisfies the mass-conversation property.

Meanwhile, the most distinguished difficulty for the Cahn–Hilliard equation with log-

arithmic Flory–Huggins energy potential and deGennes diffusive coefficients is associated

with the singularity as the value of φ approaches the limit value 0. In fact, for the binary

Cahn–Hilliard flow, the positivity property, i.e., 0 < φ1, φ2, has been established at the PDE

analysis level in [1,13,22,40]. As a further development, the phase separation has also been

justified for the 1-D and 2-D equations at a theoretical level, i.e., a uniform distance between

the phase variable and the singular limit values has been proved, and such a distance only

depends on the surface diffusion coefficient and expansive parameter, as well as the initial

data. For the ternary MMC TDGL model, a similar positivity estimate is expected to be valid

for the exact PDE solution, i.e., 0 < φi , (1 ≤ i ≤ 3), and a uniform separation property is

also expected to be valid for 2-D flow; more technical details have to be involved for this

model.

In terms of the energy stability, by multiplying (2.5) with δF/δφ1 and (2.6) with δF/δφ2,

respectively, and integrating it over �, using Green’s formula and the periodic boundary

conditions, one obtains

d F

dt
=

∫

�

δF

δφ1

∂φ1

∂t
dx +

∫

�

δF

δφ2

∂φ2

∂t
dx

= −D1

∫

�

|∇ δF

δφ1
|2dx − D2

∫

�

|∇ δF

δφ2
|2dx ≤ 0,

(2.9)

which indicates that the energy F(φ1, φ2) is a decreasing function of time.

3 The Fully Discrete Finite Element Scheme

The standard notation for the norms is used, in their respective function spaces. In particular,

we denote the standard norms for the Sobolev spaces W m,p(�) by ‖ · ‖m,p , and repleace

‖ · ‖0,p by ‖ · ‖p , ‖ · ‖0,2 = ‖ · ‖2 by ‖ · ‖, and ‖ · ‖q,2 by ‖ · ‖Hq . Let C∞
per (�) be the

set of all restrictions onto � of all real-valued, L-periodic, C∞(�)-functions on R
2. For

each integer q ≥ 0, let H
q
per (�) be the closure of C∞

per (�) in the usual Sobolev norm

‖ · ‖q , and H
−q
per (�) be the dual space of H

q
per (�). Note that H0

per (�) = L2(�). In turn,

by introducing μ1 = δF
δφ1

= δφ1 F and μ2 = δF
δφ2

= δφ2 F , the mixed weak formulation of

MMC-TDGL equations (2.5) becomes: find φ1, μ1, φ2, μ2 ∈ L2(0, T ; H1
per (�)), with ∂tφ1,
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∂tφ2 ∈ L2(0, T ; H−1
per (�)), satisfying

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(∂tφ1, v1)+(D1∇μ1,∇v1) = 0, ∀v1 ∈ H1
per (�),

(μ1, w1)=
(

δφ1 F (φ1, φ2) , w1

)

, ∀w1 ∈ H1
per (�),

(∂tφ2, v2)+(D2∇μ2,∇v2) = 0, ∀v2 ∈ H1
per (�),

(μ2, w2)=
(

δφ2 F (φ1, φ2) , w2

)

, ∀w2 ∈ H1
per (�),

(3.1)

for any t ∈ [0, T ], where (·, ·) represents the L2 inner product or the duality pairing, as

appropriate.

3.1 The Finite Element Scheme

The following preliminary results are associated with the existence of the convex–concave

decomposition of the energy functional F , i.e, F(φ1, φ2) admits a (not necessarily unique)

splitting into purely convex and concave energies, F = Fc − Fe, where Fc =
∫

�
S (φ1, φ2)+

K (φ1, φ2) dx and Fe = −
∫

�
H (φ1, φ2) dx are convex with respect to the specific variables.

Proposition 3.1 [17] Define the functions

T1(u, v) := v2

36u
, u ∈ (0,∞), v ∈ R;

T2 (u1, u2, v1, v2) := (v1+v2)2

36(1−u1−u2)
, u1, u2, v1, v2 ∈ R;

T3(u, v, w) := w2

36(u+v)
, u, v, w ∈ R;

T4(u1, u2, u3, v) := 3v2

(u1+u2+u3)
u1, u2, u3, v ∈ R.

Then,

1. T1(u, v) is convex in (0,+∞) × R.

2. T2 (u1, u2, v1, v2) is convex in R
4, provided u1 + u2 < 1.

3. T3(u, v, w) is convex in R
3, provided u + v > 0.

4. T4(u1, u2, u3, v) is convex in R
4, provided u1 + u2 + u3 > 0.

5. S (u1, u2) is convex in the Gibbs triangle G, defined as

G := {(u1, u2) | u1, u2 > 0, u1 + u2 < 1} .

6. H (u1, u2) is concave, provided that 4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0.

We consider a finite element method for solving (3.1). Let Th be a shape-regular triangu-

lation of � with mesh size h, denote he the diameter of each triangle e ∈ Th and �e the area

of e. Noticing that the element is shape regular, we can assume that
h2

e

�e
is uniformly bounded

by one constant CT :
h2

e

�e
≤ CT . Based on the quasi-uniform triangulated mesh Th , the finite

element space is defined as

Sh := {v ∈ H1
per (�) | v is piecewise linear on each e ∈ Th} = span{χ j | j = 1, · · · , Np},

where χ j is the common nodal basis function which is 1 at the node Pj and 0 at all other

nodes. Define S̊h := Sh ∩ L2
0(�), with L2

0(�) = {v ∈ L2(�) | (v, 1) = 0}, the function

space with zero mean in L2(�) .

Definition 3.1 The discrete energy E : Sh × Sh → R is defined as

E(φ1, φ2) =
∫

�

S (φ1, φ2) + H(φ1, φ2) + K (φ1, φ2) dx.
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Lemma 3.1 Suppose that � = (0, L)2 and φ1, φ2 ∈ Sh are periodic. Define the discrete

energies as follows

Ec =
∫

�

S (φ1, φ2) + K (φ1, φ2) dx, Ee = −
∫

�

H (φ1, φ2) dx, (3.2)

where S (·, ·) , H (·, ·) and K (·, ·) are defined by (2.2). Then, both Ec(φ1, φ2) and Ee(φ1, φ2)

are convex.

Proof Since Sh ⊂ H1
per (�), the proof follows the analysis in Proposition 3.1, and the con-

clusions are obvious. ��

Then we introduce the fully-discrete scheme. Let M be a positive integer and 0 = t0 < t1 <

· · · < tM = Mτ = T be a uniform partition of [0, T ], with τ = ti − ti−1 and i = 1, · · · , M .

Due to the convex–concave decomposition E = Ec − Ee, the potentials could also be split

into two parts, namely μ1 and μ2. By treating the convex term implicitly and the concave

part explicitly, the first-order in time, mixed finite element scheme could be formulated as

follows: for any 0 ≤ n ≤ M − 1, given φn
1h, φn

2h ∈ Sh , find φn+1
1h , μn+1

1h , φn+1
2h , μn+1

2h ∈ Sh

such that
(

φn+1
1h − φn

1h

τ
, v1

)

= −
(

D1∇μn+1
1h ,∇v1

)

, ∀v1 ∈ S̊h,

(

μn+1
1h , w1

)

=
(

δφ1 Ec

(

φn+1
1h , φn+1

2h

)

, w1

)

+
(

∂ H

∂φ1

(

φn
1h, φn

2h

)

, w1

)

, ∀w1 ∈ S̊h,

(3.3a)
(

φn+1
2h − φn

2h

τ
, v2

)

= −
(

D2∇μn+1
2h ,∇v2

)

, ∀v2 ∈ S̊h,

(

μn+1
2h , w2

)

=
(

δφ2 Ec

(

φn+1
1h , φn+1

2h

)

, w2

)

+
(

∂ H

∂φ2

(

φn
1h, φn

2h

)

, w2

)

, ∀w2 ∈ S̊h,

(3.3b)

where

δφ1 Ec

(

φn+1
1h , φn+1

2h

)

= ∂S

∂φ1

(

φn+1
1h , φn+1

2h

)

+ δφ1 K
(

φn+1
1h , φn+1

2h

)

,

δφ2 Ec

(

φn+1
1h , φn+1

2h

)

= ∂S

∂φ2

(

φn+1
1h , φn+1

2h

)

+ δφ2 K
(

φn+1
1h , φn+1

2h

)

,

(3.4)

and for i = 1, 2,

(δφi
K (φ1, φ2), w) =

(

−
a2

i |∇φi |2

36φ2
i

, w

)

+
(

a2
i ∇φi

18φi

,∇w

)

+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36 (1 − φ1 − φ2)
2

, w

)

−
(

a2
3∇ (1 − φ1 − φ2)

18 (1 − φ1 − φ2)
,∇w

)

.

Definition 3.2 The discrete Laplacian operator �h : Sh → S̊h is defined as follows: for any

vh ∈ Sh,�hvh ∈ S̊h denotes the unique solution to the problem

(

�hvh,χ
)

= − (∇vh,∇χ) , ∀χ ∈ Sh .
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It is straightforward to show that by restricting the domain, �h : S̊h → S̊h is invertible,

and for any vh ∈ S̊h , and we have
(

∇ (−�h)−1 vh,∇χ
)

= (vh, χ) , ∀χ ∈ Sh .

Definition 3.3 The discrete H−1 norm ‖ · ‖−1,h , is defined as follows:

‖vh‖−1,h :=
√

(vh, (−�h)−1vh), ∀vh ∈ S̊h . (3.5)

Lemma 3.2 Suppose that � = (0, L)2 and φ1, φ2, ψ1, ψ2 ∈ Sh are periodic. Consider the

convex–concave decomposition of the energy E(φ1, φ2) into E = Ec − Ee. Then we have

E(φ1, φ2) − E(ψ1, ψ2) ≤
(

δφ1 Ec (φ1, φ2) − δφ1 Ee (ψ1, ψ2) , φ1 − ψ1

)

+
(

δφ2 Ec (φ1, φ2) − δφ2 Ee (ψ1, ψ2) , φ2 − ψ2

)

,
(3.6)

where δφ1 and δφ2 denote the variational derivatives.

Proof Define

ec(u, p) = S(u, p) + T1(u, ux ) + T1(u, u y) + T1(p, px ) + T1(p, py)

+ T2(u, p, ux , px ) + T2(u, p, u y, py),

ee(u, p) = −H(u, p),

where u = (u, ux , u y), p = (p, px , py). The following identities are obvious

Ec =
∫

�

ec(u, p)dx, Ee =
∫

�

ee(u, p)dx.

We know that both ec(u, p) and ee(u, p) are convex on ((0, 1) × R × R)2.

Then we have

ec(v, p) − ec(u, p) ≥ ∇uec(u, p) · (v − u).

Next, setting u = (φ1, φ1x , φ1y), v = (ψ1, ψ1x , ψ1y), p = (φ2, φ2x , φ2y), one obtains

Ec(ψ1, φ2) − Ec(φ1, φ2) ≥
∫

�

∂φ1 ec(u, p)(ψ1 − φ1) + ∂φ1x
ec(u, p)(ψ1x − φ1x )

+ ∂φ1y
ec(u, p)(ψ1y − φ1y)dx

= (δφ1 Ec(φ1, φ2), ψ1 − φ1).

Similarly, the following inequality could be derived for Ee:

Ee(φ1, φ2) − Ee(ψ1, φ2) ≥ (δφ1 Ee(ψ1, φ2), φ1 − ψ1).

Then the following estimate holds

E(ψ1, φ2) − E(φ1, φ2) = Ec(ψ1, φ2) − Ee(ψ1, φ2) − (Ec(φ1, φ2) − Ee(φ1, φ2))

= Ec(ψ1, φ2) − Ec(φ1, φ2) − (Ee(ψ1, φ2) − Ee(φ1, φ2))

≥ (δφ1 Ec(φ1, φ2), ψ1 − φ1) + (δφ1 Ee(ψ1, φ2), φ1 − ψ1)

≥ (δφ1 Ec(φ1, φ2) − δφ1 Ee(ψ1, φ2), ψ1 − φ1),

and we get

E(φ1, φ2) − E(ψ1, φ2) ≤ (δφ1 Ec(φ1, φ2) − δφ1 Ee(ψ1, φ2), φ1 − ψ1).
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A similar inequality could be derived in the same fashion:

E(ψ1, φ2) − E(ψ1, ψ2) ≤ (δφ2 Ec(ψ1, φ2) − δφ2 Ee(ψ1, ψ2), φ2 − ψ2).

To sum up, the proof is completed. ��

3.2 TheMass Lumped Finite Element Method

The standard mixed FEM (3.3) leads to a theoretical difficulty for justifying the positivity-

preserving property. To overcome this subtle difficulty, we apply a mass lumped FEM instead,

which is a modification of standard conforming FEM for solving parabolic equations. It sim-

plifies the computation for the inverse of a mass matrix and overcomes the shortcoming of

the standard FEM that can not preserve the maximum principle for homogeneous parabolic

equations. In this subsection, we extend the lumped mass FEM to solve MMC-TDGL equa-

tions.

Let Pe,k(k = i, j, m) be the vertices of triangle e, and �e be the area of triangle e. The

generation of the lumped mass matrix can be regarded as introducing the following quadrature

formula:

Qh( f ) =
∑

e∈Th

Qe( f ), (3.7)

where

Qe( f ) = �e

3

∑

k=i, j,m

f
(

Pe,k

)

≈
∫

e

f dx.

By the above quadrature formula, it is easy to derive Qh(χ j , χk) = 0 for k �= j , so that

Np
∑

k=1

(

χ j , χk

)

= Qh(χ2
j ). (3.8)

Notice that χ jχk is a second-degree polynomial, thus it holds that (χ j , χk)e = 1
12

�e for

k �= j , and (χ j , χ j )e = 1
6
�e. Then we get

Np
∑

k=1

(

χ j , χk

)

= 1

3
area

(

D j

)

, (3.9)

where D j is the union of triangles with a vertex Pj . It is obvious that

Qh(χ2
j ) =

∑

e∈Th

Qe

(

χ2
j

)

= 1

3
area

(

D j

)

. (3.10)

We may then define an approximation of the inner product in Sh by

(ψ, η)Q = Qh(ψη), (3.11)

thus ‖η‖Q =
√

(η, η)Q can be denoted as a norm for any η ∈ Sh and is equivalent to the

standard ‖ · ‖L2 norm by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete Laplacian

operator and the discrete H−1 norm. In fact, the primary difference is in the integral definition.
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Definition 3.4 The discrete Laplacian operator �h : Sh → S̊h is defined as follows: for any

vh ∈ Sh,�hvh ∈ S̊h denote the unique solution to the problem
(

�hvh,χ
)

Q
= − (∇vh,∇χ) , ∀χ ∈ Sh .

It is straightforward to show that by restricting the domain, �h : S̊h → S̊h is invertible,

and for any vh ∈ S̊h , and we have
(

∇ (−�h)−1 vh,∇χ
)

= (vh, χ)Q , ∀χ ∈ Sh .

Definition 3.5 The discrete H−1 norm ‖ · ‖−1,Q , is defined as follows:

‖vh‖−1,Q :=
√

(vh, (−�h)−1vh)Q, ∀vh ∈ S̊h . (3.12)

Definition 3.6 Define the discrete energy Ê : Sh × Sh → R as follows

Ê(φ1, φ2) = (S (φ1, φ2))Q + (H(φ1, φ2))Q + (K̃ (φ1, φ2), 1) (3.13)

where

K̃ (φ1, φ2) :=
3

∑

�=1

a2
�

36

|∇φ�|2
A(φ�)

, (3.14)

and the operator A represents element average operator, that is,

A(φ)|e = 1

�e

∫

e

φdx = 1

3
(φα + φβ + φγ ).

In the last equation, φα , φβ , and φγ , are the values of φ at the three vertices of the element e.

Lemma 3.3 (Existence of a convex–concave decomposition) Suppose (φ1, φ2) ∈ Sh . The

functions

Êc = (S(φ1, φ2))Q + (K̃ (φ1, φ2), 1), (3.15)

Êe = (−H(φ1, φ2))Q, (3.16)

are convex. Therefore, Ê(φ1, φ2) = Êc(φ1, φ2) − Êe(φ1, φ2) is a convex–concave decom-

position of the discrete energy.

Proof The convex–concave decomposition is easily obtained by applying Proposition 3.1. ��

In turn, the lumped mass form of (3.3) becomes: for given φn
1h, φn

2h ∈ Sh , find

φn+1
1h , μn+1

1h , φn+1
2h , μn+1

2h ∈ Sh such that

(

φn+1
1h − φn

1h

τ
, v1

)

Q

= −
(

D1∇μn+1
1h ,∇v1

)

, (3.17a)

(

μ1h
n+1, w1

)

Q
=

(

δφ1 S
(

φn+1
1h , φn+1

2h

)

, w1

)

Q
+ (δφ1 K̃

(

φn+1
1h , φn+1

2h

)

, w1)

+
(

δφ1 H
(

φn
1h, φn

2h

)

, w1

)

Q
, (3.17b)

(

φn+1
2h − φn

2h

τ
, v2

)

Q

= −
(

D2∇μn+1
2h ,∇v2

)

, (3.17c)
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(

μ2h
n+1, w2

)

Q
=

(

δφ2 S
(

φn+1
1h , φn+1

2h

)

, w2

)

Q
+ (δφ2 K̃

(

φn+1
1h , φn+1

2h

)

, w2)

+
(

δφ2 H
(

φn
1h, φn

2h

)

, w2

)

Q
, (3.17d)

where for i = 1, 2,

(δφi
K̃ (φ1, φ2), w) =

(

−
a2

i |∇φi |2
36(A(φi ))2

, w

)

+
(

a2
i ∇φi

18A(φi )
,∇w

)

+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36 (1 − A(φ1) − A(φ2))
2
, w

)

−
(

a2
3∇ (1 − φ1 − φ2)

18 (1 − A(φ1) − A(φ2))
,∇w

)

.

In addition, the following lemma is needed for the later analysis.

Lemma 3.4 Suppose that � = (0, L)2 and φ1, φ2, ϕ1, ϕ2 : � → R are periodic and suf-

ficiently regular. Consider the convex–concave decomposition of the energy Ê(φ1, φ2) into

Ê = Êc − Êe, given by (3.15) and (3.16), then we have

Ê(φ1, φ2) − Ê(ϕ1, ϕ2) ≤
(

∂

∂φ1
S(φ1, φ2) + ∂

∂φ1
H(φ1, φ2), ϕ1 − φ1

)

Q

+ (δφ1 K̃ (φ1, φ2), ϕ1 − φ1)

+
(

∂

∂φ2
S(φ1, φ2) + ∂

∂φ2
H(φ1, φ2), ϕ2 − φ2

)

Q

+ (δφ2 K̃ (φ1, φ2), ϕ2 − φ2).

Proof Fix (φ1, φ2) ∈ Sh × Sh and (ψ1, ψ2) ∈ Sh × Sh . For any 0 < λ < 1, we can define the

continuous and differentiable function Jc(λ) := Êc(φ1 +λψ1, φ2 +λψ2). Since Êc(φ1, φ2)

is convex, Jc(λ) is convex. We have Jc(λ) − Jc(0) ≥ J ′
c(0)λ. This implies that

Êc(φ1 + λψ1, φ2 + λψ2) − Êc(φ1, φ2)

≥
(

∂

∂φ1
S(φ1, φ2), λψ1

)

Q

+
(

∂

∂φ2
S(φ1, φ2), λψ2

)

Q

−
(

a2
1 |∇φ1|2

36(A(φ1))2
, λψ1

)

+
(

a2
1∇φ1

18A(φ1)
, λ∇ψ1

)

+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36(A (1 − φ1 − φ2))2
, λψ1

)

−
(

a2
3∇ (1 − φ1 − φ2)

18A (1 − φ1 − φ2)
, λ∇ψ1

)

−
(

a2
2 |∇φ2|2

36(A(φ2))2
, λψ2

)

+
(

a2
2∇φ2

18A(φ2)
, λ∇ψ2

)

+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36(A (1 − φ1 − φ2))2
, λψ2

)

−
(

a2
3∇ (1 − φ1 − φ2)

18A (1 − φ1 − φ2)
, λ∇ψ2

)

. (3.18)

We may assume that (ϕ1, ϕ2) := (φ1, φ2) + λ(ψ1, ψ2) ∈ Sh × Sh , since λ is small in

magnitude. Then we have

Êc(ϕ1, ϕ2) − Êc(φ1, φ2)

≥
(

∂

∂φ1
S(φ1, φ2), ϕ1 − φ1

)

Q

+
(

∂

∂φ2
S(φ1, φ2), ϕ2 − φ2

)

Q

−
(

a2
1 |∇φ1|2

36(A(φ1))2
, ϕ1 − φ1

)

+
(

a2
1∇φ1

18A(φ1)
,∇(ϕ1 − φ1)

)
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+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36(A (1 − φ1 − φ2))2
, ϕ1 − φ1

)

−
(

a2
3∇ (1 − φ1 − φ2)

18A (1 − φ1 − φ2)
,∇(ϕ1 − φ1)

)

−
(

a2
2 |∇φ2|2

36(A(φ2))2
, ϕ2 − φ2

)

+
(

a2
2∇φ2

18A(φ2)
,∇(ϕ2 − φ2)

)

+
(

a2
3 |∇ (1 − φ1 − φ2) |2

36(A (1 − φ1 − φ2))2
, ϕ2 − φ2

)

−
(

a2
3∇ (1 − φ1 − φ2)

18A (1 − φ1 − φ2)
,∇(ϕ2 − φ2)

)

.

(3.19)

For Êe, a similar inequality is available:

Êe(ϕ1, ϕ2) − Êe(φ1, φ2) ≥
(

− ∂

∂φ1
H(φ1, φ2), ϕ1 − φ1

)

Q

+
(

− ∂

∂φ2
H(φ1, φ2), ϕ2 − φ2

)

Q

. (3.20)

Combining the inequalities, we have

Ê(φ1, φ2) − Ê(ϕ1, ϕ2) = (Êc(φ1, φ2) − Êc(ϕ1, ϕ2)) − (Êe(φ1, φ2) − Êe(ϕ1, ϕ2))

≤
(

∂

∂φ1
S(φ1, φ2), φ1 − ϕ1

)

Q

+ (δφ1 K̃ (φ1, φ2), φ1 − ϕ1)

+
(

∂

∂φ2
S(φ1, φ2), φ2 − ϕ2

)

Q

+ (δφ2 K̃ (φ1, φ2), φ2 − ϕ2)

−
(

− ∂

∂φ1
H(φ1, φ2), φ1 − ϕ1

)

Q

−
(

− ∂

∂φ2
H(φ1, φ2), φ2 − ϕ2

)

Q

.

(3.21)

Consequently, the proof is completed. ��

Remark 3.1 The periodic boundary condition is considered in this article, for simplicity of

presentation, since all the boundary integral terms will cancel, so that the integration by parts

is always valid. As a result, for all the nonlinear and singular terms, the boundary terms

will cause any scientific difficulty in the mathematical analysis. Meanwhile, the analysis

in this work could be extended to other type of physically relevant boundary condition,

such a homogeneous Neumann one. In fact, a natural boundary condition (corresponding to

the Neumann boundary one) is more straightforward in the finite element set-up, and this

extension analysis will be considered in the future works.

4 The Unique Solvability and Positivity-Preserving Property

The mass lumped method, improving the original mass matrix, provides us with an efficient

way to derive the theoretical proof of preserving positivity property for the MMC-TDGL

equations.

Lemma 4.1 [9] Suppose that ξ, ξ̄ ∈ Sh , with (ξ − ξ̄ , 1) = 0, that is, ξ − ξ̄ ∈ S̊h , and assume

that ‖ξ‖∞ < 1, ‖ξ̄‖∞ ≤ M. Then, we have the following estimate:
∥

∥

∥
−�−1

h

(

ξ − ξ̄
)

∥

∥

∥

∞
≤ C1, (4.1)
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where C1 > 0 depends only upon M and �. In particular, C1 is independent of the mesh

spacing h .

Lemma 4.2 Let φ,ψ ∈ Sh and A(ψ) > 0, then

(

− |∇φ|2
36(A(φ))2

, ψ

)

+
( ∇φ

18A(φ)
,∇ψ

)

≤ 1

36

( ∇ψ

A(ψ)
,∇ψ

)

, (4.2)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ

18A(φ)
,∇ψ

)

≤
( |∇φ|2

18(A(φ))2
, A(ψ)

)

+ 1

36

( ∇ψ

A(ψ)
,∇ψ

)

.

(4.3)

Proof By Cauchy-Schwarz inequality, on every element e ∈ Th , one gets

∣

∣

∣

∣

( ∇φ

18A(φ)
,∇ψ

)

e

∣

∣

∣

∣

≤
( |∇φ|2

36(A(φ))2
, A(ψ)

)

1
2

e

( ∇ψ

9A(ψ)
,∇ψ

)
1
2

e

≤
( |∇φ|2

36(A(φ))2
, A(ψ)

)

e

+
( ∇ψ

36A(ψ)
,∇ψ

)

e

. (4.4)

Summing over all e,
∣

∣

∣

∣

( ∇φ

18A(φ)
,∇ψ

)∣

∣

∣

∣

≤
( |∇φ|2

36(A(φ))2
, A(ψ)

)

+
( ∇ψ

36A(ψ)
,∇ψ

)

. (4.5)

Moreover, note that for φ,ψ ∈ Sh ,
(

− |∇φ|2
36(A(φ))2

, ψ

)

=
(

− |∇φ|2
36(A(φ))2

, A(ψ)

)

,

then the lemma can be proved by combining this relationship with (4.5). ��

Remark 4.1 If A(ψ) ≥ 0, then Lemma 4.2 will be modified by
(

− |∇φ|2
36(A(φ))2

, ψ

)

+
( ∇φ

18A(φ)
,∇ψ

)

≤ 1

36

∑

e∈Th
A(ψ)>0

( ∇ψ

A(ψ)
,∇ψ

)

e

, (4.6)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ

18A(φ)
,∇ψ

)

≤
( |∇φ|2

18(A(φ))2
, A(ψ)

)

+ 1

36

∑

e∈Th
A(ψ)>0

( ∇ψ

A(ψ)
,∇ψ

)

e

.

(4.7)

Lemma 4.3 For any φ ∈ Sh , if A(φ) > 0 on one element e ∈ Th with mesh size he, then we

have
|∇φ|
A(φ)

≤ 3
√

2he

2�e

(4.8)

on the element e.

Proof Let Pi = (xi , yi ) (i = 1, 2, 3) be the three vertex points of e, then

∂φ

∂x
= 1

2�e

(φ(P1)(y2 − y3) + φ(P2)(y3 − y1) + φ(P3)(y1 − y2)),

∂φ

∂ y
= 1

2�e

(φ(P1)(x3 − x2) + φ(P2)(x1 − x3) + φ(P3)(x2 − x1)).
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So ∇φ can be bounded by

|∇φ| ≤
√

2he

2�e

(φ(P1) + φ(P2) + φ(P3)).

Note that

A(φ) = 1

3
(φ(P1) + φ(P2) + φ(P3)) ,

then the lemma is proved. ��
Subsequently, a combination of Lemmas 4.2 and 4.3 leads to the following result.

Lemma 4.4 Let φ,ψ ∈ Sh and A(ψ) ≥ 0, then
(

− |∇φ|2
36(A(φ))2

, ψ

)

+
( ∇φ

18A(φ)
,∇ψ

)

≤ CT

8

∑

e∈Th

A(ψ)|e, (4.9)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ

18A(φ)
,∇ψ

)

≤ 3CT

8

∑

e∈Th

A(ψ)|e. (4.10)

Proof By Lemma 4.3 and noticing that A(ψ) is constant on every element e, we get

1

36

∑

e∈Th
A(ψ)>0

( ∇ψ

A(ψ)
,∇ψ

)

= 1

36

∑

e∈Th
A(ψ)>0

( |∇ψ |2
(A(ψ))2

, A(ψ)

)

≤ 1

36

∑

e∈Th

9h2
e

2�2
e

(A(ψ), 1)e

= 1

8

∑

e∈Th

h2
e

�e

A(ψ)|e.

Similarly,
( |∇φ|2

18(A(φ))2
, A(ψ)

)

≤ 1

4

∑

e∈Th

h2
e

�e

A(ψ)|e.

Since the element is shape regular,
h2

e

�e
≤ CT , now the lemma is proved by using Lemma 4.2

and Remark 4.1. ��
Theorem 4.1 Given φn

1 , φn
2 ∈ Sh , with 0 < φn

1 , φn
2 < 1, 0 < φn

1 + φn
2 < 1, (so that

0 < φn
1 , φn

2 < 1), there exists a unique solution φn+1
1 , φn+1

2 ∈ Sh to (3.17), with φn+1
1 = φn

1 ,

φn+1
2 = φn

2 , 0 < φn+1
1 , φn+1

2 < 1, and 0 < φn+1
1 + φn+1

2 < 1.

Proof It is observed that, the numerical solution of (3.17) is a minimizer of the following

discrete energy functional with respect to φ1 and φ2

J
n
h (φ1, φ2) = 1

2D1τ

∥

∥φ1 − φn
1

∥

∥

2

−1,Q
+ 1

2D2τ

∥

∥φ2 − φn
2

∥

∥

2

−1,Q
+ (S (φ1, φ2) , 1)Q

+ (K̃ (φ1, φ2) , 1) +
(

δφ1 H
(

φn
1 , φn

2

)

, φ1

)

Q
+

(

δφ2 H
(

φn
1 , φn

2

)

, φ2

)

Q
,

(4.11)

over the admissible set

Ah := {(φ1, φ2) ∈ Sh × Sh | φ1, φ2 ≥ 0, 0 ≤ φ1 + φ2 ≤ 1,
(

φ1 − φ̄0
1 , 1

)

Q
= 0,

(

φ2 − φ̄0
2 , 1

)

Q
= 0} ⊂ R

2N 2
p .

(4.12)
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It is easy to observe that J n
h is a strictly convex functional with respect to φ1 and φ2 over

this domain. Consider the following closed domain:

Ah,δ := {(φ1, φ2) ∈ Sh × Sh | φ1, φ2 ≥ g(δ), δ ≤ φ1 + φ2 ≤ 1 − δ,
(

φ1 − φ̄0
1 , 1

)

Q
= 0,

(

φ2 − φ̄0
2 , 1

)

Q
= 0} ⊂ R

2N 2
p .

(4.13)

Since Ah,δ is a bounded, compact and convex set in the following hyperplane V in R
2N 2

p ,

with dimension 2N 2
p − 2:

V =
{

(φ1, φ2) : 1

|�| (φ1, 1)Q = φ0
1 ,

1

|�| (φ2, 1)Q = φ0
2

}

, (4.14)

there exists a (may not unique) minimizer of J n
h (φ1, φ2) over Ah,δ . The key point of the

positivity analysis is that, such a minimizer could not occur on the boundary points (in V ) if

δ and g(δ) are small enough.

Assume the minimizer of J n
h (φ1, φ2) occurs at a boundary point of Ah,δ .

Case 1: We set the minimization point as (φ�
1, φ

�
2), with φ�

1(Pα0) := φ�
1,α0

= g(δ).

In addition, we assume that φ�
1 reaches the maximum value at α1, so it is obvious that

φ�
1,α1

≥ φ�
1 = φ0

1 . We can view the variable φ1,α1 as the N 2
pth one in the hyperplane V , with

the condition

φ1,α1 =
(φ0

1 , 1)Q −
∑Np

i �=α1
(φ1,i , χi )Q

(χα1 , 1)Q

. (4.15)

In more details, we denote the following alternate function

Un
h

(

(

φ1,i

)
∣

∣

i �=α1
, φ2

)

:= J n
h

(

·, (φ1)α1
, φ2

)

= J n
h

⎛

⎝·,
(φ0

1 , 1)Q −
∑Np

i �=α1
(φ1,i , χi )Q

(χα1 , 1)Q
, φ2

⎞

⎠ .

(4.16)

By a careful calculation, we obtain the following directional derivative

dsU
n
h

(

φ∗
1 + sψ, φ�

2

)
∣

∣

s=0
= 1

D1τ

(

−�−1
h

(

φ�
1 − φn

1

)

, ψ
)

Q
+

(

δφ1 S
(

φ�
1, φ

�
2

)

, ψ
)

Q

+ (δφ1 K̃
(

φ�
1, φ

�
2

)

, ψ) +
(

δφ1 H
(

φn
1 , φn

2

)

, ψ
)

Q
, ∀ψ ∈ S̊h .

(4.17)

This time, due to
(

φ∗
1 + sψ, φ�

2

)

∈ Ah,δ , let us pick the direction

ψ = δα0 − C2δα1 , C2 = area(Dα0)

area(Dα1)
, (4.18)

where δα0 and δα1 are the basis functions on Pα0 and Pα1 , Dα0 and Dα1 are the support of

δα0 and δα1 , respectively.

For the first term appearing in (4.17), an application of Lemma 4.1 gives

1

D1τ
(−�−1

h (φ�
1 − φn

1 ), ψ)Q = 1

D1τ

∑

e∈Th

�e

3

3
∑

j=1

(−�−1
h )(φ�

1 − φn
1 )ψ(Pe, j )

= 1

3D1τ
(area(Dα0 )(−�−1

h )(φ�
1 −φn

1 )|α0 −C2 area(Dα1 )(−�−1
h )(φ�

1 −φn
1 )|α1 )
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= 1

3D1τ
area(Dα0 )

(

(−�−1
h )(φ�

1 − φn
1 )|α0 − (−�−1

h )(φ�
1 − φn

1 )|α1

)

≤ 2C1

3D1τ
area(Dα0 ). (4.19)

For the second term, we see that

(δφ1 S(φ�
1, φ

�
2), ψ)Q =

(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2), ψ

)

Q

=
∑

e∈Th

⎛

⎝

1

3
�e

3
∑

j=1

(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

ψ(Pe, j )

⎞

⎠

= 1

3
area(Dα0)

((

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

|α0

−
(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

|α1

)

= 1

3
area(Dα0)

⎛

⎝ln
(φ�

1)
1
γ

1 − φ�
1 − φ�

2

|α0 − ln
(φ�

1)
1
γ

1 − φ�
1 − φ�

2

|α1

⎞

⎠

≤ 1

3
area(Dα0)

⎛

⎝ln
(g(δ))

1
γ

δ
− ln

(φ̄0
1)

1
γ

1 − δ

⎞

⎠

≤ 1

3
area(Dα0)

(

ln
(g(δ))

1
γ

δ
− ln(φ̄0

1)
1
γ

)

. (4.20)

For the third term, we have

(δφ1 K̃
(

φ�
1, φ

�
2

)

, ψ) =
(

− a2
1 |∇φ�

1|2

36(A(φ�
1))

2
, ψ

)

+
(

a2
1∇φ�

1

18A(φ�
1)

,∇ψ

)

+
(

a2
3

∣

∣∇
(

1 − φ�
1 − φ�

2

)∣

∣

2

36
(

A(1 − φ�
1 − φ�

2)
)2

, ψ

)

−
(

a2
3∇

(

1 − φ�
1 − φ�

2

)

18A
(

1 − φ�
1 − φ�

2

) ,∇ψ

)

.

(4.21)

By Lemma 4.4,
(

− a2
1 |∇φ�

1|2

36(A(φ�
1))

2
, ψ

)

+
(

a2
1∇φ�

1

18A(φ�
1)

, ∇ψ

)

≤ a2
1CT

8

∑

e∈Th

A(δα0 )|e + 3a2
1C2CT

8

∑

e∈Th

A(δα1)|e

= a2
1CT

24

∑

e∈Dα0

1 + a2
1C2CT

8

∑

e∈Dα1

1. (4.22)

Similarly,
(

a2
3

∣

∣∇
(

1 − φ�
1 − φ�

2

)∣

∣

2

36
(

A(1 − φ�
1 − φ�

2)
)2

, ψ

)

−
(

a2
3∇

(

1 − φ�
1 − φ�

2

)

18A
(

1 − φ�
1 − φ�

2

) ,∇ψ

)

≤ a2
3CT

8

∑

e∈Dα0

1 + a2
3C2CT

24

∑

e∈Dα1

1. (4.23)
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Then the term δφ1 K̃ can be bounded by

(δφ1 K̃
(

φ�
1, φ

�
2

)

, ψ) ≤ (a2
1 + 3a2

3)CT

24

∑

e∈Dα0

1 + (3a2
1 + a2

3)C2CT

24

∑

e∈Dα1

1. (4.24)

For the numerical solution φn
1 at the previous time step, the a-priori assumption 0 < φn

1 < 1

indicates that

−1 ≤ φn
1 (Pα0) − φn

1 (Pα1) ≤ 1.

For the last term, we have

(δφ1 H
(

φn
1 , φn

2

)

, ψ)Q = (χ13 − 2χ13φ
n
1 + (χ12 − χ13 − χ23)φ2, ψ)Q

=
∑

e∈Th

1

3
�e

⎛

⎝

3
∑

j=1

(χ13 − 2χ13φ
n
1 − (χ12 − χ13 − χ23)φ

n
2 )ψ(Pe, j )

⎞

⎠

= 1

3
area(Dα0 )

(

−2χ13(φ
n
1 |α0 − φn

1 |α1 ) − (χ12 − χ13 − χ23)(φ
n
2 |α0 − φn

2 |α1 )
)

≤ 1

3
area(Dα0 )(χ12 + 3χ13 + χ23). (4.25)

To sum up, the following inequality is available

dsU
n
h

(

φ∗
1 + sψ, φ�

2

)∣

∣

s=0
≤ 1

3
area(Dα0) ln

(g(δ))
1
γ

δ
+ r0, (4.26)

in whichr0 = area(Dα0
)

3

(

2C1
D1τ

− ln(φ̄0
1)

1
γ +χ12+3χ13+χ23

)

+
(

a2
1+3a2

3

)

CT

24

∑

e∈Dα0
1+

(

3a2
1+a2

3

)

C2CT

24
∑

e∈Dα1
1. Note that r0 is a constant for a fixed τ, h, while it becomes singular as τ −→ 0.

For any fixed τ , we could choose g(δ) sufficiently small so that

1

3
area(Dα0) ln

(g(δ))
1
γ

δ
+ r0 < 0, (4.27)

such as g(δ) =
(

δ exp
(

− 3(r0+1)
area(Dα0

)

))γ

. This in turn shows that

dsU
n
h

(

φ�
1 + sψ, φ�

2

)

|s=0 < 0, for g(δ) satisfying (4.27).

This contradicts the assumption that J n
h has a minimum at (φ�

1, φ
�
2), since the directional

derivative is negative in a direction pointing into (Ah,δ)
◦, the interior of Ah,δ .

Case 2: Using similar arguments as in Case 1, we can also prove that, the global minimum

of J n
h over Ah,δ could not occur on the boundary section of φ2,α0 = g(δ), for any grid node

number α0, if g(δ) is small enough.

Case 3: We set the minimization point as (φ�
1, φ

�
2), with φ�

1,α0
+ φ�

2,α0
= 1 − δ, where α0

represents α0-th grid node number, and assume that φ1,α0 ≥ 1
3

. In addition, (φ1 + φ2, 1) =
φ0

1 + φ0
2 , there exists one grid point α1 = (i1, j1), so that φ�

1 + φ�
2 reaches the maximum

value. It is obvious that φ�
1,α1

+ φ�
2,α1

≤ φ�
1 + φ�

2 = φ0
1 + φ0

2 . Similarly, the variable φ1,α1

could be viewed as the N 2
p-th one in the hyperplane V , with the condition

φ1,α1 =
(φ0

1 , 1)Q −
∑Np

i �=α1
(φ1,i , χi )Q

(χα1 , 1)Q

. (4.28)
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In more details, the following alternate function is introduced

Un
h

(

(

φ1,i

)
∣

∣

i �=α1
, φ2

)

:= J n
h

(

·, (φ1)α1
, φ2

)

= J n
h

⎛

⎝·,
(φ0

1 , 1)Q −
∑Np

i �=α1
(φ1,i , χi )Q

(χα1 , 1)Q
, φ2

⎞

⎠ .

(4.29)

Again, a careful calculation implies the following directional derivative

dsU
n
h

(

φ∗
1 + sψ, φ�

2

)
∣

∣

s=0
= 1

D1τ

(

−�−1
h

(

φ�
1 − φn

1

)

, ψ
)

Q
+

(

δφ1 S
(

φ�
1, φ

�
2

)

, ψ
)

Q

+ (δφ1 K̃
(

φ�
1, φ

�
2

)

, ψ) +
(

δφ1 H
(

φn
1 , φn

2

)

, ψ
)

Q
, ∀ψ ∈ S̊h .

(4.30)

In this case, since (φ∗
1 + sψ, φ�

2) ∈ Ah,δ , we pick the direction

ψ = C2δα1 − δα0 , C2 = area(Dα0)

area(Dα1)
. (4.31)

For the first term in (4.30), an application of Lemma 4.1 leads to

1

D1τ
(−�−1

h (φ�
1 − φn

1 ), ψ)Q = 1

D1τ

∑

e∈Th

1

3
�e

3
∑

j=1

�−1
h (φ�

1 − φn
1 )ψ(Pe, j )

= 1

3D1τ
(C2 area(Dα1 )(−�−1

h )(φ�
1 −φn

1 )|α1 −area(Dα0 )(−�−1
h )(φ�

1 −φn
1 )|α0 )

= 1

3D1τ
area(Dα0 )

(

(−�−1
h )(φ�

1 − φn
1 )|α1 − (−�−1

h )(φ�
1 − φn

1 )|α0

)

≤ 2C1

3D1τ
area(Dα0 ). (4.32)

For the second term, a similar inequality could be derived

(δφ1 S(φ�
1, φ

�
2), ψ)Q =

(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2), ψ

)

Q

=
∑

e∈Th

⎛

⎝

1

3
�e

3
∑

j=1

(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

ψ(Pe, j )

⎞

⎠

= −1

3
area(Dα0)

((

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

|α1

−
(

1

γ
ln(

αφ�
1

γ
) − ln(1 − φ�

1 − φ�
2)

)

|α0

)

= −1

3
area(Dα0)

⎛

⎝ln
(φ�

1)
1
γ

1 − φ�
1 − φ�

2

|α1 − ln
(φ�

1)
1
γ

1 − φ�
1 − φ�

2

|α0

⎞

⎠

≤ 1

3
area(Dα0)

(

ln
1

1 − φ̄0
1 − φ̄0

2

− ln

1
3

1/γ

δ

)

. (4.33)

For the third term, we have the following expansion as in (4.24):

(δφ1 K̃
(

φ�
1, φ

�
2

)

, ψ) ≤ (3a2
1 + a2

3)CT

24

∑

e∈Dα0

1 + (a2
1 + 3a2

3)C2CT

24

∑

e∈Dα1

1. (4.34)
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For the last term in (4.30), since the numerical solution at the previous time step is involved,

the a-priori assumption 0 < φn
1 < 1 indicates that

−1 ≤ φn
1,α0

− φn
1,α1

≤ 1,

which in turn results in the following inequality

(δφ1 H
(

φn
1 , φn

2

)

, ψ)Q = (χ13 − 2χ13φ
n
1 + (χ12 − χ13 − χ23)φ2, ψ)Q

=
∑

e∈Th

1

3
�e

⎛

⎝

3
∑

j=1

(χ13 − 2χ13φ
n
1 − (χ12 − χ13 − χ23)φ

n
2 )ψ(Pe, j )

⎞

⎠

= 1

3
area(Dα0 )

(

−2χ13(φ
n
1 |α1 − φn

1 |α0 ) − (χ12 − χ13 − χ23)(φ
n
2 |α1 − φn

2 |α0 )
)

≤ 1

3
area(Dα0 )(χ12 + 3χ13 + χ23). (4.35)

In turn, a summation of the above estimates yields

dsU
n
h

(

φ∗
1 + sψ, φ�

2

)∣

∣

s=0
≤ 1

3
area(Dα0) ln δ + r1, (4.36)

in which r1 = 1
3

area(Dα0)(
2C1
D1τ

+ 1
γ

ln 3 + ln 1

1+φ̄0
1+φ̄0

2

+ χ12 + 3χ13 + χ23) +
(3a2

1+a2
3 )CT

24

∑

e∈Dα0
1 + (a2

1+3a2
3 )C2CT

24

∑

e∈Dα1
1. Again, r1 is a constant for a fixed τ and h,

we could choose δ sufficiently small so that

1

3
area(Dα0) ln δ + r1 < 0, (4.37)

such as δ = exp
(

− 3(r1+1)
area(Dα0

)

)

. This in turn demonstrates that

dsU
n
h

(

φ�
1 + sψ, φ�

2

)

|s=0 < 0, for g(δ) satisfy (4.37),

which contradicts the assumption that J n
h has a minimum at (φ�

1, φ
�
2), since the directional

derivative is negative in a direction pointing into (Ah,δ)
◦, the interior of Ah,δ .

Case 4: Using similar arguments, we can also prove that, the global minimum of J n
h over

Ah,δ could not occur on the boundary section where φ�
1,α0

+φ�
2,α0

= 1− δ, if δ is sufficiently

small, for any point index α0. The details are left to the interested readers.

Finally, a combination of these four cases shows that, the global minimizer of J n
h (φ1, φ2)

could only possibly occur at interior point of (Ah,δ)
0 ⊂ (Ah)0. We conclude that there must

be a solution (φ1, φ2) ∈ (Ah)0 that minimizes J n
h (φ1, φ2) over Ah , which is equivalent to

the numerical solution of (3.17). The existence of the numerical solution is established.

In addition, since J n
h (φ1, φ2) is a strictly convex function over Ah , the uniqueness analysis

for this numerical solution is straightforward. The proof of Theorem 4.1 is complete. ��

5 The Energy Stability

An unconditional energy stability for the proposed numerical scheme (3.17) is stated below.

Theorem 5.1 (Energy stability) The unique solution of the mass lumped fully-discrete scheme

(3.17) is unconditionally energy stable, i.e., for any time step size τ > 0, the following estimate

is valid:

Ê(φn+1
1h , φn+1

2h ) ≤ Ê(φn
1h, φn

2h). (5.1)
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Proof The energy stability of the mass lumped scheme (3.17) is a direct consequence of

Lemma 3.4.

For w1, w2 ∈ S̊h , we denote v1 = (−�h)−1w1, v2 = (−�h)−1w2, and obtain
(

φn+1
1h − φn

1h

D1τ
, (−�h)−1w1

)

Q

+
(

δφ1 K̃ (φn+1
1h , φn+1

2h ), w1

)

+
(

∂

∂φ1
S(φn+1

1h , φn+1
2h ) + ∂

∂φ1
H(φn+1

1h , φn+1
2h ), w1

)

Q

= 0,

(

φn+1
2h − φn

2h

D2τ
, (−�h)−1w2

)

Q

+
(

δφ2 K̃ (φn+1
1h , φn+1

2h ), w2

)

+
(

∂

∂φ2
S(φn+1

1h , φn+1
2h ) + ∂

∂φ2
H(φn+1

1h , φn+1
2h ), w2

)

Q

= 0.

(5.2)

In turn, by setting w1 = φn+1
1h − φn

1h, w2 = φn+1
2h − φn

2h , and applying Lemma 3.4, we arrive

at

0 = 1

D1τ
‖φn+1

1h − φn
1h‖2

−1,Q +
(

∂

∂φ1
S(φn+1

1h , φn+1
2h ) + ∂

∂φ1
H(φn+1

1h , φn+1
2h ), φn+1

1h − φn
1h

)

Q

+ 1

D2τ
‖φn+1

2h − φn
2h‖2

−1,Q +
(

∂

∂φ2
S(φn+1

1h , φn+1
2h ) + ∂

∂φ2
H(φn+1

1h , φn+1
2h ), φn+1

2h − φn
2h

)

Q

+
(

δφ1 K̃ (φn+1
1h , φn+1

2h ), φn+1
1h − φn

1h

)

+
(

δφ2 K̃ (φn+1
1h , φn+1

2h ), φn+1
2h − φn

2h

)

≥ 1

D1τ
‖φn+1

1h − φn
1h‖2

−1,Q + 1

D2τ
‖φn+1

2h − φn
2h‖2

−1,Q + Ê(φn+1
1h , φn+1

2h ) − Ê(φn
1h, φn

2h)

≥ Ê(φn+1
1h , φn+1

2h ) − Ê(φn
1h, φn

2h).

This finishes the proof of Theorem 5.1. ��

6 Numerical Results

In this section, we perform some numerical simulations using the proposed scheme (3.17). In

[32], the authors simulated several numerical examples for solving three-component MMC-

TDGL equations by the SAV method and showed some phase transition processes, with

different initial concentrations as well as the statistical segment lengths ai , i = 1, 2, 3,

consistent with an earlier work [34]. The statistical segment lengths ai in the deGennes

interfacial gradient terms, 1
36

∑3
i=1

a2
i

φi
|∇φi |2, i = 1, 2, 3, determine the interface thickness.

Now, the default parameter of MMC-TDGL is selected to make Fe convex; see Table 1. In fact,

these parameters are only used for the numerical experiments, to validate the effectiveness

of the proposed finite element scheme. In the numerical simulation of more realistic physical

problems, these parameters could be easily adjusted, and no essential pattern difference is

expected for the computational results with the parameter modification.

The first example is aimed to test the numerical convergence. The second one simulates

a periodic structure on a large domain. In addition, the third one is designed to show some

realistic results associated with the evolution of macromolecular microsphere hydrogels. For

convenience, we only consider the periodic boundary condition, and the case of homogeneous

Neumann boundary condition could be similarly handled.
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Table 1 The values of the
parameters in the simulation

Parameter D1 D2 χ12 χ13 χ23 γ N a1 a2 a3

Value 1 1 4 10 1.6 0.16 5.12 1 1 1

Fig. 1 The L∞ and L2 numerical errors versus temporal resolution NT , at the final time T = 0.02 in

Example 6.1, by fixing h = 1/256. The time step size is given by τ = T
NT

. The reference line has an

exact slope of −1, while the least square approximation to the L2 error curves has approximate slopes
−1.0466,−1.0122,−1.0154, for the variables φ1, φ2 and φ3, respectively

Example 6.1 Let parameter a1 = a2 = a3 = 0.3, while keeping the other default parameters

constant. Consider the MMC-TDGL equation over the domain � = (0, 1)2, with the initial

data given by

φ1(x, y, 0) = 0.1 + 0.01 cos(2πx) cos(2π y),

φ2(x, y, 0) = 0.5 + 0.01 cos(2πx) cos(2π y).
(6.1)

We use the triangular mesh with size h = 1/256 for partition of the domain. Since the

exact solution is unknown, we compute the errors by adjacent time step in the numerical

accuracy test. Figure 1 presents the L∞ and L2 numerical errors of the three-phase variables,

φ1, φ2, φ3, as well as a reference line at the terminal time T = 0.02. In turn, the time step

size is determined by the formula τ = T
NT

, in which NT stands for the total number of time

steps. Due to the O(h2) approximation in space, the spatial error is negligible. The expected

temporal numerical accuracy assumption e = Cτ indicates that ln |e| = ln(CT ) − ln NT ,

so that we plot ln |e| versus. ln NT to demonstrate the temporal convergence order. The

reference line has an exact slope of −1, while the least square approximation to the L2 error

curves has approximate slopes −1.0466,−1.0122,−1.0154, for the variables φ1, φ2 and φ3,

respectively. In other words, a perfect first order temporal convergence rate is reported.

In the accuracy test for the spatial convergence order, we set the time size as τ = 7.8125e−
6, so that the temporal error is negligible. A sequence of spatial resolutions are taken, with h =

1
N0

. The expected temporal numerical accuracy assumption e = Ch2 indicates that ln |e| =
ln C − 2 ln N0, so that we plot ln |e| versus ln N0 to demonstrate the temporal convergence

order. Similarly, Fig. 2 presents the L∞ and L2 numerical errors of the three-phase variables,

as well as a reference line at the terminal time T = 0.02, for this spatial convergence order

test. The reference line has an exact slope of −2, while the least square approximation to
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Fig. 2 The L∞ and L2 numerical errors versus spatial resolution N0, at the final time T = 0.02 in Exam-

ple 6.1, by fixing τ = 7.8125e − 6. The spatial mesh size is given by h = 1
N0

. The reference line has

an exact slope of −2, while the least square approximation to the L2 error curves has approximate slopes
−2.0532,−2.0476,−2.0480, for the variables φ1, φ2 and φ3, respectively

Fig. 3 The simulated solution φ2, at t = 0, 5, 8, 10, 15 and 20 respectively, in Example 6.2

the L2 error curves has approximate slopes −2.0532,−2.0476,−2.0480, for the variables

φ1, φ2 and φ3, respectively. Therefore, a perfect second order spatial convergence rate is

reported.
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Fig. 4 The phase variables plot in Example 6.2, at t = 25, 80 and 200

Example 6.2 Consider the MMC-TDGL equation over the domain � = (0, 64)2, with the

initial data given by

φ1(x, y, 0) = 0.1 + 0.01 cos(3πx/32) cos(3π y/32),

φ2(x, y, 0) = 0.5 + 0.01 cos(3πx/32) cos(3π y/32).
(6.2)

We use the triangular mesh with size h = 1/4 for partition of the domain, and take the

time step size as τ = 0.01. Figure 3 displays the configuration of the simulated solution

φ2 at a sequence of time instants, t = 0, 5, 8, 10, 15 and 20, respectively. It is observed

that the phase structures have a drastic change in time, and then asymptotically evolve to a

steady state, which is consistent with the energy evolution plotted in Fig. 7. In addition, the

configuration of all three phase variables are presented in Fig. 4, at a sequence of later time

instants, t = 25, 80, and 200, respectively. The corresponding evolutions of the mass, as well

as the maximum and minimum values of the phase variables, are displayed in Figs. 5 and 6,

respectively. The mass conservation and the positivity property are observed to be preserved

in these evolution figures (Fig. 7).
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Fig. 5 Mass evolution of the phase variables in Example 6.2
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Fig. 6 Evolution of the maximum and minimum value of phase variables in Example 6.2

0 50 100 150 200 250 300 350

t

8860

8880

8900

8920

8940

8960

8980

9000

E
n
e
rg

y

20 40 60 80 100

8870

8880

8890

8900

8910

Fig. 7 Energy evolution of the simulated solution in Example 6.2

123



   78 Page 26 of 30 Journal of Scientific Computing            (2021) 87:78 

Fig. 8 The phase variable plot for φ2 at a sequence of time instants t = 0, 3.6, 6.52, 8, 10, 26, 85, 278 and
500 respectively in Example 6.3

Example 6.3 Considered the MMC-TDGL equations over the domain Ω = (0, 50)2, with

the initial data given by

φ1(x, y, 0) = 0.1 + ri, j ,

φ2(x, y, 0) = 0.5 + ri, j ,
(6.3)

where the ri, j are uniformly distributed random numbers in [−0.01, 0.01].

We use the uniform triangular mesh with size h = 1/4, take the time step size as τ = 0.01,

and focus on the φ2 variable, which reflects the polymer chain distribution. In this example,

the initial concentration of polymer segments reaches 0.5 + ri, j , every MMS can be joined

by polymer chains since there are enough segments to grow. Thus the reticular structure can

be obtained. Figure 8 displays the plot of the φ2 variable at a sequence of time instants, t=0,
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Fig. 9 Energy evolution in Example 6.3
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Fig. 10 Evolution of the maximum and minimum values of the phase variables φ1, φ2 and φ3 in Example 6.2

Fig. 11 Mass evolution of phase
variables in Example 6.3
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3.6, 6.52, 8, 10, 26, 85, 278 and 500, respectively. It is observed that the red area in the third

row becomes larger, that is, the structure is tighter, which is consistent with [32,34].

The evolution of the corresponding energy is plotted in Fig. 9, which indicates a monotone

decrease in time. Figures 10 and 11 display the maximum and minimum value of the phase

variables and the mass. Again, the positivity-preserving property and mass conversation have

been perfectly demonstrated in the numerical simulation.

7 Concluding Remarks

In this paper, we have developed a positivity-preserving and energy stable finite element

scheme for the three-component Cahn–Hilliard flow model involved in macromolecular

microsphere composite hydrogels, with the Flory–Huggins–deGennes energy potential in

the ternary system. A convex–concave decomposition of the energy functional in multi-

phase space is recalled, which in turn leads to an implicit treatment of the logarithmic and

the nonlinear surface diffusion terms, as well as an explicit update of the concave expansive

linear terms. In the spatial discretization, the mass lumped finite element approximation is

applied. Both the positivity preserving property and the unconditional energy stability are

theoretically justified, which will be the first such results for a finite element scheme applied

to the ternary MMC system. A few numerical examples are presented, which demonstrate

the robustness and accuracy of the proposed numerical scheme.
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