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Abstract

In this article, we present and analyze a finite element numerical scheme for a three-
component macromolecular microsphere composite (MMC) hydrogel model, which takes
the form of a ternary Cahn-Hilliard-type equation with Flory—Huggins—deGennes energy
potential. The numerical approach is based on a convex—concave decomposition of the energy
functional in multi-phase space, in which the logarithmic and the nonlinear surface diffusion
terms are treated implicitly, while the concave expansive linear terms are explicitly updated.
A mass lumped finite element spatial approximation is applied, to ensure the positivity of
the phase variables. In turn, a positivity-preserving property can be theoretically justified for
the proposed fully discrete numerical scheme. In addition, unconditional energy stability is
established as well, which comes from the convexity analysis. Several numerical simulations
are carried out to verify the accuracy and positivity-preserving property of the proposed
scheme.
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1 Introduction

A hydrogel is a network of cross-linked hydrophilic polymers chains. They absorb water and
can swell to many times their original size. Hydrogels, which can act as solids or liquids in
various settings, are versatile materials that have led to extensive industrial and biomedical
applications [20,21,33]. Macromolecular microsphere composite (MMC) hydrogel, which
was originally synthesized by Huang et al. in 2007, possesses a unique well-defined network
structure and very high mechanical strength. This is due to the highly specialized chemical
grafting of the entangled polymer chains, in comparison with traditional hydrogels [31].
MMC hydrogels have been widely applied in both biomedical and industrial areas, such as
in drug delivery [49], artificial tissues [12,46], et cetera. The formation process of MMC
hydrogel has been described in detail in [30,31,55].

Computational and experimental studies are needed to reveal the complicated properties of
MMC hydrogels. Studies must include the investigation of the parameter space related to their
production and processing, in order to engineer their individual effects. Furthermore, must be
explored and refined to validate their predictions. For example, Zhai et al. [55] developed a
reticular free energy for MMCs, under certain assumptions, most particularly, that the number
of graft chains around a macromolecular microsphere (MMS) is proportional to the perimeter.
Based on the time-dependent Ginzburg-Landau (TDGL) mesoscale simulation method, a
two-component model, appropriately named the MMC-TDGL equation, was developed to
understand the time evolution of MMC hydrogel structure in [55]. This continuum scale model
was designed to simulate phase transitions in MMC hydrogels. Li et al. [34] added a stochastic
term in the binary MMC-TDGL equation to consider how random physical fluctuations
modify the dynamics. Recently, the reticular free energy was reconstructed in [32], and shown
to be consistent with the network structures of the MMC hydrogels. Based on the Boltzmann
entropy theorem, the Flory—Huggins lattice theory and assuming TDGL dynamics, a three-
component MMC-TDGL model can be constructed. The MMC and polymer chains are no
longer considered as a whole in this model, making it more consistent with experiments.

Itis widely known that phase-field models satisfy certain properties, such as energy decay,
mass conservation, and positivity preservation. These properties represent important physical
features and are also essential for mathematical analysis and consistent numerical simulation.
During the past several decades, there have been many works devoted to designing various
kinds of numerical methods to satisty these properties, especially for Allen—Cahn and Cahn—
Hilliard-type equations. See, for example, [10,11,48,52,54] and the references therein. Zhai
et al. [55] constructed a spectral-type numerical method to approximate the solutions of the
binary MMC-TDGL equations. Li et al. used a semi-implicit scheme for binary MMC-TDGL
equation in [34], while there was no discussion of any stability condition. Subsequently, a
convex splitting method was presented in [35], and energy stability was proven for the
numerical solution of the phase variable. Liao et al. applied an adaptive time step strategy to
improve computational efficiency in [36] and Dong et al. [18,19] presented the theoretical
analysis for the first and second-order energy stable schemes. A stabilized method was also
used to solve the binary system by Xu et al. in [50], though a theoretical justification of the
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stabilizing parameters (for energy decay) has not been established. Other related works could
be found in [25,53], etc.

Although there have been many works on the multi-component Cahn—Hilliard flow [4,5,
8,54], addressing polynomial-type energy potentials, the numerical study of ternary MMC-
TDGL equations is still in the preliminary stages. First, it has always been a key difficulty
to design a numerical scheme satisfying the physical properties. Furthermore, it is highly
challenging to prove the positivity-preserving property for the logarithmic terms, since the
fourth-order partial differential equations fail to satisfy a maximum principle. In [11], a finite
element scheme was proposed based on the backward Euler approximation for the Cahn—
Hilliard equation with logarithmic free energy, and the positivity-preserving property of the
numerical solution was proven under a constraint on the time step. In a more recent work [9],
the authors presented a finite difference scheme based on the convex—concave decomposition
of the free energy with logarithmic potential and established a theoretical justification of the
positivity-preserving property, regardless of time step size. This improvement is based on
the following fact: the singular nature of the logarithmic term around the pure-phase values
prevents the numerical solution from reaching these singular values, so that the numerical
scheme is always well-defined as long as the numerical solution stays similarly bounded
at the previous time step. Moreover, similar ideas have been applied in [18,19] to analyze
the binary MMC-TDGL equation. Also see the related works of other gradient models with
singular energy potential, such as the Poisson—Nernst—Planck system [38,41], the reaction—
diffusion system in the energetic variational formulation [37], liquid film droplet model [56],
etc.

In this article, we aim to analyze the ternary MMC-TDGL system and obtain the theoretical
justification of both the positivity-preserving property and the energy stability. To this end,
the key ingredient is an application of the convex—concave decomposition of the physical
energy, with respect to the multi-phase variables. In fact, the convex splitting method has been
extensively applied to a variety of gradient flow models [2,3,6,7,15,16,23,26-29,39,42,44,
45,47,48,51], for both first and second-order temporally accurate versions. Meanwhile, most
of these existing works have focused on polynomial free energy potentials. The extension to
singular Flory—Huggins-type energy potentials turns out to be highly challenging. In addition,
the appearance of the highly nonlinear and singular deGennes gradient energy terms makes
the whole system even more difficult. To overcome these subtle difficulties, we make use of
a convex—concave decomposition of the physical energy in the ternary MMC-TDGL system,
reported in a recent work [17].

In more details, the logarithmic terms and the highly nonlinear gradient energy terms
are placed in the convex part, while the expansive terms are put in the concave part, based
on careful convexity analyses. In turn, the convex splitting approach leads to a uniquely
solvable, positivity-preserving and energy stable numerical scheme. The finite difference
approximation was reported in [17], and its direct application to the finite element method is
not available, due to the difficulty to ensure the point-wise positivity of the numerical solution
in the standard FEM method. In our work, a mixed FEM method is applied to the ternary
MMC-TDGL system to facilitate the numerical implementation of the fourth order parabolic
equations. It is well-known that the standard conforming FEM fails to satisfy the discrete
maximum principle due to the non-diagonal mass matrix. As a result, a lumped mass FEM
was chosen instead, so as to diagonalize the mass matrix. The diagonal elements are the row
sums of the original mass matrix [43]. In comparison with the finite difference method, the
FEM allows for flexible, adaptive meshes and is often easier to analyze.

This paper is organized as follows. In Sect. 2, we briefly review the mathematical model of
three-component phase transitions in MMC hydrogels. In Sect. 3, we present the numerical

@ Springer



78  Page4of 30 Journal of Scientific Computing (2021) 87:78

scheme using the mass lumped finite element method. The detailed proof for the positivity-
preserving property of the numerical solution is provided in Sect. 4, and the energy stability
analysis is established in Sect. 5. In Sect. 6, the numerical simulations are presented to verify
the theoretical results. Finally, some concluding remarks are given in Sect. 7.

2 Three-Component MMC-TDGL System

Given an open bounded, connected domain R? with a Lipschitz smooth boundary 92,
we recall the derivation of the diffuse interface describing the phase transitions of MMC
hydrogels. It is worth mentioning that the ternary system is made of water, macromolecular
microsphere, and polymer chain. Usually, the composition of the mixture is described at
each point by the concentration value of one of the constituents in the mixture. Thus we
denote the concentration of the macromolecular microsphere in the ternary system by the
order parameter ¢, the polymer chain by ¢, and the solvent molecules by ¢3. The value
of the three order parameters are located between O and 1, where three phases vary rapidly
but smoothly across the interface. And also, these three unknowns are linked through the
hyperplain link relationship ¢1 + ¢2 + ¢3 = 1. Due to the mass conservation constraint, we
denote ¢3 = 1 — ¢p; — ¢ throughout the rest of this article, for simplicity of presentation.

The Flory—Huggins reticular free energy takes a form of f(¢1, ¢2). Moreover, the evolu-
tion of the system is driven by the minimization of a free energy under the constraint of mass
conservation of each phase. The Ginzburg-Landau type energy functional F (¢, ¢2) takes
the following form

F(¢1,¢2) = /Q F @1, ¢2) + K(é1, 2)dx, 2.D

where f(¢1, ¢2) contains the mixing entropy S(¢1, ¢») and the mixing enthalpy H (¢1, ¢2),

ie., f(d1,¢2) = S(¢1, ¢2) + H(¢1, $2). The expression of S(¢1, ¢2), H(¢1, ¢2), as well
as K (¢1, ¢2), can be written as follows

S@1.d) = 21 (“"’1)+@1 (’3¢2)+(1—¢1 o2)In (1 — b1 — o),
Y 4 N

N
H(¢1, $2) = 120192 + x13¢1 (1 —¢1— ¢2) + x2392 (1 — 1 — 2),
p 2
K(¢1,¢2) = 36¢ —L Vg2 +W| ¢2|2+36(1_a—;1_¢2)|V(1—¢1—¢2)|2, (2.2)

in which the parameter y is the relative volume of one macromolecular microsphere, N is
the degree of polymerization of the polymer chains. The parameters o and 8 are determined
by the formulas o = 7 (/y/m + N/2)2, B = a//7N, dependent on y and N; see more
detailed derivations of the model in [55]. In fact, the Flory—Huggins energy density takes a
form of ¢; In ¢; for each species concentration, combined with the interaction energy density
¢i¢; [24]. The constants xi2, x13, and 23 are the Flory—Huggins interaction parameters
between macromolecular microspheres and polymer chain, macromolecular microspheres
and solvent, and polymer chain and solvent, respectively. In addition, the deGennes diffusive

2
coefficient, k(¢;) = 3¢5 ol , depends on the corresponding phase variables. This diffusion
process was proposed by physicist P.G. deGennes [14] for the binary Cahn—Hilliard flow, in
which the phase variables could be simplified as ¢; = ¢, ¢» = 1 — ¢, so that the combined
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diffusion coefficient and surface diffusion energy density becomes

a2 (12 a2 (12 a2

k(@) = 36¢>1 + 360 36¢ + 3601 — ) = 3641 _¢),2 [Voi| = V| = [V,
i v N 2

K(¢) = 36¢> Ve | +36¢ IVg|* = k(@) V| 3661 — ¢)|V¢>| .

An extension to the ternary gradient flow is natural. Such a nonlinear diffusive coefficient has
been an essential difficulty for the MMC-TDGL model; see the related analysis in [18,19].
Here qa; is the statistical segment length of the ith component, i = 1,2, 3. By a simple
computation, the variational derivatives of the free energy function F(¢1(X, 1), ¢2(X,1))
with respect to ¢ and ¢, are found to be

OF (91, ¢2) _ 39S @1.92) ailViI> (a%%) LBIVa-gi-¢nP

5o 0 3607 18 36 (1 — ¢1 — $2)?
o (BYU=¢1—=¢2)\ H (1, ¢2) 23)
18(1 =1 — ¢2) g '
SF $1.¢2) _ 9S82 _ a3IVeal® o (a3Vea) ailV(—di—¢o)l
562 9o 3662 18¢ 36 (1 — g1 — )’
V. a%V (1 - ¢1 - ¢2) _ oH (¢17 ¢2) (2 4)
18(1 =1 — ¢2) oy '

where

ﬁ:lln<a¢l>+f—l—ln(l—¢1 ),
Y Y Y

a1

9S B2

i fl ——=1—In(1 - )
%%, ~ N <N>+N n(l—a¢1—¢)
oH

o =2x13¢1 + (X12 — X13 — X23) P2 + X13,
oH

Fre —2x23¢2 + (X12 — X13 — X23) 1 + X23.

To simulate the traditional hydrogels, the time-dependent Ginzburg—Landau (TDGL)
mesoscopic model is widely used to describe the phase transitions of a multi-component
polymer blend. Once this energy F is defined, we can formulate the time evolution of the
three-component MMC hydrogels system for the conserved Cahn—Hilliard equations:

a1 5F (1. )

= DAY 2.5
ot ! 51 2:5)

oy _  SF (91.92)

or 2 S¢r (2.6)

where D; = kg6 M; are the diffusion coefficients, kg is the Boltzmann constant, 6 is the
temperature, and M; > 0 stand for the mobility of the ith component, i = 1, 2. For simplicity,
we select 2 = (0, L)2, and consider L-periodic boundary condition for this model. However,
the finite element method can be extended to a wider class of regions and Neumann boundary
conditions could also be used.
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The Cahn-Hilliard system has the important feature that the phase variables, ¢; and ¢,
are mass-conservative. Integrating (2.5) and (2.6) over Q2 = (0, L)%, we obtain

0 §F
/¢1dx_/ ﬁdx_le V— - nds,
ae 0

SF
— | ¢odx —dx = DZ/ V— - nds.
/ s 0P

Notice that § F /6¢1 and § F /8¢, in (2.3) and (2.4) are both L-periodic with respect to x and
v, so that integration on the boundary vanishes, which implies

2.7

/q{)](x, t)dx:/g/)](x, 0)dx, /¢2(X, t)dx:/ dr(x,0)dx, Vit > 0. (2.8)
Q Q Q Q

As a consequence, ¢3 = 1 — ¢ — ¢, also satisfies the mass-conversation property.

Meanwhile, the most distinguished difficulty for the Cahn—Hilliard equation with log-
arithmic Flory—Huggins energy potential and deGennes diffusive coefficients is associated
with the singularity as the value of ¢ approaches the limit value 0. In fact, for the binary
Cahn-Hilliard flow, the positivity property, i.e., 0 < ¢1, ¢, has been established at the PDE
analysis level in [1,13,22,40]. As a further development, the phase separation has also been
justified for the 1-D and 2-D equations at a theoretical level, i.e., a uniform distance between
the phase variable and the singular limit values has been proved, and such a distance only
depends on the surface diffusion coefficient and expansive parameter, as well as the initial
data. For the ternary MMC TDGL model, a similar positivity estimate is expected to be valid
for the exact PDE solution, i.e., 0 < ¢;, (1 < i < 3), and a uniform separation property is
also expected to be valid for 2-D flow; more technical details have to be involved for this
model.

In terms of the energy stability, by multiplying (2.5) with § F /§¢1 and (2.6) with § F /5¢po,
respectively, and integrating it over €2, using Green’s formula and the periodic boundary
conditions, one obtains

dF §F 9 F
7=f ¢1dx+/ OF 092 1y
dt o 8¢ ot o 8¢y 3t

(2.9)

F SF

:—le |V—|2dx—D2/ [V—%dx < 0,
Q 09 Q ¢

which indicates that the energy F(¢1, ¢2) is a decreasing function of time.

3 The Fully Discrete Finite Element Scheme

The standard notation for the norms is used, in their respective function spaces. In particular,

we denote the standard norms for the Sobolev spaces W7 () by | - |, », and repleace
- lop by Il - llp, - llo2 =1 -ll2by Il - I, and || - llg,2 by Il - lma. Let Cg, (S2) be the

set of all restrictions onto €2 of all real-valued, L-periodic, C*°(£2)-functions on R?. For
each integer ¢ > 0, let ng, (2) be the closure of Cpe, (RQ) in the usual Sobolev norm
|l - llg> and Hpe, () be the dual space of ng, (2). Note that H per (Q) = L3(Q). In turn,
by introducing ) = = 64 F and uy = TF = 8¢, ¥, the mixed weak formulation of

5¢|
MMC-TDGL equations (2.5) becomes: find ¢y, 11, 92, 12 € L%0,T; (2)), with 0,¢1,

per
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8y € L2(0, T; H;L(RQ)), satisfying

per

(0:¢1, v1)+(D1Vy, Vuy) =0, Y € H;er(Q),

(w1, w)= (84, F (@1, ¢2) . w1) . VYwy € H),. (),
(32, V2)+(D2Viio, Vo) =0, Yup € H),, (),

per
(n2, w2)= (84, F ($1.¢2) . w2), Vwy € H),, (),

for any ¢ € [0, T], where (-, -) represents the L inner product or the duality pairing, as
appropriate.

3.1

3.1 The Finite Element Scheme

The following preliminary results are associated with the existence of the convex—concave
decomposition of the energy functional F, i.e, F(¢1, ¢») admits a (not necessarily unique)
splitting into purely convex and concave energies, F = F.— F,, where F, = [ S (¢1. ¢2) +
K (¢1,¢2)dxand F, = — fQ H (¢1, ¢) dx are convex with respect to the specific variables.

Proposition 3.1 [17] Define the functions

Ti(u,v) := %, u € (0, 00), veR;

T (u1, uz, v1, v2) := 362%?2_);), uy, uz, v1, 02 € Ry
T3(u, v, w) := ﬁiv), u,v,w € R;
Ty(uy, up, uz, v) := (ulfui”;m) ui, uz, u3z, v €R.

Then,

1. T\(u,v) is convex in (0, +00) x R.

2. T (uy, up, vy, vp) is convex in R4, provided uy + uy < 1.

3. Tx(u, v, w) is convex in R3, provided u + v > 0.

4. Ty(uy, us, u3, v) is convex in R4, provided uy + uy + uz > 0.
5. S (uy, up) is convex in the Gibbs triangle G, defined as

G = {(u1,u2) |ur,up > 0,u; +uz < 1}.
6. H (u1, us) is concave, provided that 413 x23 — (X12 — X13 — X23)2 > 0.

We consider a finite element method for solving (3.1). Let 7}, be a shape-regular triangu-
lation of 2 with mesh size &, denote &, the diameter of each triangle e € 7, and A, the area
2
of e. Noticing that the element is shape regular, we can assume that % is uniformly bounded
2
by one constant C7: Z—" < C7. Based on the quasi-uniform triangulated mesh 7y, the finite
€

element space is defined as

Spi={ve H;er(Q) | v is piecewise linear on each e € 7} =span{y; | j =1, -+, Np},

where y; is the common nodal basis function which is 1 at the node P; and O at all other
nodes. Define S := S; N L3(), with L3(2) = {v € L*(R) | (v, 1) = 0}, the function
space with zero mean in L3().

Definition 3.1 The discrete energy E : S, x S — R is defined as

E($1, $2) =/;25(¢1,¢2)+H(¢>1,¢2)+K(¢1,¢2)dx-
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Lemma 3.1 Suppose that Q = (0, L)? and b1, ¢ € Sy are periodic. Define the discrete
energies as follows

=/§25(¢1,¢2) + K (¢1, ) dx, E,= —/QH(</>1,¢2) dx, (3.2)

where S (-, ), H (-, ") and K (-, -) are defined by (2.2). Then, both E.(¢1, ¢2) and E.(p1, ¢2)
are convex.

Proof Since S, C H ;er(Q), the proof follows the analysis in Proposition 3.1, and the con-
clusions are obvious. o

Then we introduce the fully-discrete scheme. Let M be a positiveintegerand0 = #p < 1 <

- <ty = Mt = T be a uniform partition of [0, T'], witht =t;, —t;_jandi =1,--- , M.
Due to the convex—concave decomposition £ = E. — E,, the potentials could also be split
into two parts, namely @ and p,. By treating the convex term implicitly and the concave
part explicitly, the first-order in time, mixed finite element scheme could be formulated as
follows: for any 0 < n < M — 1, given ¢%,, ¢4, € Sy, find @77, 1 it part e s,
such that

n+1 _ n
<¢1h¢ v]) (Dlvurﬁfl, Vv]), Yy € Sy,
n+1 _ n+1  n+l 3£ n n v <
iy swi ) = 54&] E. 45]/1 :4) , + 3¢, (¢lhv ¢2h) , Wy |, w € Sp,
(3.3a)
n+l _ ¢ o
< 2h ) = DQV/J_Zh ], sz) Yvr € Sp,

oH o
(st w2) = (86 Ec (815 @51 ) w2) + (% (@0 60, wz) . Yun €8,
(3.3b)

where

59, Ec <¢?;r1’ ¢n+l> ;Ti <¢;11;r1’ ¢n+l) + 84, K (d)?;rl’ ¢n+l) ’

5s (3.4)
89 E <¢r11;r17¢n+1> 4)2 <¢T;rl7¢n+l> + 80, K (¢?;17¢n+1>’

and fori =1, 2,

a?|Veil? a; Vi
(0g; K (91, ¢2), w) = —W,w + 180; , Vw
N a§|V<1—¢1—¢2>|2,w - “§V(1‘¢1‘¢2),vw .
36 (1 — g1 — ¢)? 18(1 —¢1 — ¢2)

Definition 3.2 The discrete Laplacian operator Ay, : S, — S‘h is defined as follows: for any
vy € Sp, Apvp € Sy denotes the unique solution to the problem

(Apvn,x) = —NVon, Vx), Vx € Sh.
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It is straightforward to show that by restricting the domain, A, : S, — 3}, is invertible,
and for any vy € Sy, and we have

(V=20 on Vi) = a0, VX € She
Definition 3.3 The discrete H ! norm | - II=1.n, is defined as follows:
lvnll—1 = v/ (n, (A ~"vp), Vop, € Si. (3.5)

Lemma 3.2 Suppose that 2 = (0, L)% and O1, ¢2, V1, Yo € Sy are periodic. Consider the
convex—concave decomposition of the energy E(¢1, ¢2) into E = E. — E,. Then we have

E(p1,$2) — EW1. ¥2) < (8, Ec (B1, ¢2) — 8¢, Ee (W1, ¥2) , d1 — Y1)
+ (3ps Ec D1, ¢2) — 84y Ee (V1. ¥2) . 2 — V) ,

where 8y, and 8y, denote the variational derivatives.

(3.6)

Proof Define

ec(u,p) =S, p) + Ty (u,ux) + Ti(u, uy) + T (p, px) + T1(p, py)
+ T2(u7 D, Ux, px) + T2(”7 p, Uy, py)’
ee(u, p) = _H(M, p)s

where w = (u, uy, uy), p = (p, px, py). The following identities are obvious

E. :/ Ec(ll, P)dX, E, :/ €g(ll, p)dX
Q Q

We know that both e, (u, p) and e, (u, p) are convex on ((0, 1) x R x R)2.
Then we have

ec(V,p) —ec(u, p) = Vyec(u, p) - (v —u).
NeXt’ setting u= (¢la ¢1X3 ¢1y)v V= (1//13 Wlm WI}')ﬁ P = (¢25 ¢2x’ 4)2)’)’ one Obtail’lS

Ec(Y1, ¢2) — Ec(d1, ¢2) > /Qaqa, ec(u, p)(Y1 — 1) + 9g,, ec(u, P) (Y1 — Pix)

+ gy, ec (U, P)(Y1y — d1y)dx
= (8¢p, Ec(@1, 2), Y1 — é1).

Similarly, the following inequality could be derived for E,:

Ec(¢1, $2) — Eo(Y1, ¢2) = (8g, Ec (Y1, $2), 1 — Yr1).
Then the following estimate holds
EWr, ¢2) — E(¢1, $2) = Ec(Y1, $2) — Ec (Y1, 92) — (Ec(P1, $2) — Ee(d1, ¢2))
= E.(Y1,92) — Ec(P1, $2) — (Ec (Y1, §2) — Ec(P1, $2))

> (8p Ec(d1, 92), Y1 — ¢1) + By Ec (Y1, $2), 1 — VY1)
> (8p Ec(d1, ¢2) — 8¢, Ec (Y1, $2), Y1 — 1),

and we get

E(¢1,92) — E(Y1, ¢2) < (Bg; Ec(P1, 92) — 8¢y Ec (Y1, h2), 1 — Y1).
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A similar inequality could be derived in the same fashion:

E(Wr, ¢2) — E(W1, ¥2) < g Ec(¥1, 2) — 8 Ec (Y1, ¥2), 2 — ¥2).

To sum up, the proof is completed. O

3.2 The Mass Lumped Finite Element Method

The standard mixed FEM (3.3) leads to a theoretical difficulty for justifying the positivity-
preserving property. To overcome this subtle difficulty, we apply a mass lumped FEM instead,
which is a modification of standard conforming FEM for solving parabolic equations. It sim-
plifies the computation for the inverse of a mass matrix and overcomes the shortcoming of
the standard FEM that can not preserve the maximum principle for homogeneous parabolic
equations. In this subsection, we extend the lumped mass FEM to solve MMC-TDGL equa-
tions.

Let P x(k =i, j, m) be the vertices of triangle e, and A, be the area of triangle e. The
generation of the lumped mass matrix can be regarded as introducing the following quadrature
formula:

On(f) =) Qc(f). (3.7)

eeT)
where
A,
Q(f) == D [(Pes) ™ [ fdx.
k=i,j,m ¢
By the above quadrature formula, it is easy to derive Qp(x;, xx) = 0 for k # j, so that

Np

> (X xw) = On(x)). (3.8)

k=1
Notice that x; xx is a second-degree polynomial, thus it holds that (x;, xx)e = ﬁAe for
k# j,and (xj, xj)e = %Ag. Then we get

Np

1
Z (xj» xx) = 5 area (Dj), (3.9)

k=1
where D is the union of triangles with a vertex P;. It is obvious that
1
0n(x)) =) Qe (xf) = yarea (D;). (3.10)
eeTy

We may then define an approximation of the inner product in S;, by

W.mo = Qn(¥n), (G.11)

thus [[7llo = /(n,n) o can be denoted as a norm for any n € Sj, and is equivalent to the
standard || - ||;2 norm by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete Laplacian
operator and the discrete H ~! norm. In fact, the primary difference is in the integral definition.
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Definition 3.4 The discrete Laplacian operator Ay, : S, — S, is defined as follows: for any
vy € Sp, Apvy, € S denote the unique solution to the problem

(Ahvh,X)Q =—(Vup, Vx), Vx € Sp.

It is straightforward to show that by restricting the domain, Ay, : 8, — 8, is invertible,
and for any v, € S, and we have

(VA" v, Vx) = (W X)g. VX € Sh.

Definition 3.5 The discrete H ! norm | - ll-1,0, is defined as follows:

lvnll-1.0 == \/(vh, (=AD" lu) g, Vo € S (3.12)

Definition 3.6 Define the discrete energy E: Sp x Sp — R as follows

E(¢1, $2) = (S (¢1, $2))o + (H(p1, $2) 0 + (K (g1, $2), 1) (3.13)
where
X 2. a2 [V
K@) =) L i 3.14
(91, ¢2) 36 Adr) (3.14)

(=1

and the operator A represents element average operator, that is,

1 1
A= o [ ddx=30u+ 95+ 0.
N Je 3
In the last equation, ¢, ¢, and ¢,,, are the values of ¢ at the three vertices of the element e.

Lemma 3.3 (Existence of a convex—concave decomposition) Suppose (¢1, ¢2) € Sp. The
functions

Ec = (S(¢1,92))0 + (K (1, $2), 1), (3.15)
E, = (—H(¢1, )0, (3.16)

are convex. Therefore, E(¢>1 , ) = EC((t)] ,P2) — Ee (@1, ¢2) is a convex—concave decom-
position of the discrete energy.

Proof The convex—concave decomposition is easily obtained by applying Proposition 3.1. O

In turn, the lumped mass form of (3.3) becomes: for given qbi’h,q&gh e Sy, find
¢I’;1, ;L’ll,j'] , </>§;rl, ug;fl € Sj, such that

¢Vl+1 _ ¢n
(”'Tlh v | =- (Dlv;ﬁ;h“, Vvl) , (3.17a)
o
(1", wl)Q = <5¢15 (¢'f;rl, ¢§,fl) , wl)Q + (8, K <¢f;rl, ¢§;rl) , W)
+ (8 H (9 851) < w1) .+ (3.17b)
n+l _ n
(M Uz) =~ (D2viu Vo2, (3.17¢)
0
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(n2" wa) g = (3 (91 031" )  w2) | + G (017 031 ) )
+ (82 H (&4 #51) - w2) 5 - (3.17d)

where fori =1, 2,

64, K (61, 62). w) Vol )y (4
. N , W) = —_—=, W N w
it oo 36(A($))? 18A(¢)
Y R AUt T W G A AUt Tl VR
36 (1 — A1) — A(¢n))> 18(1— A(¢1) — A())

In addition, the following lemma is needed for the later analysis.

Lemma 3.4 Suppose that 2 = (0, L)? and b1, 02, 01,02 : L —> Rare perl;odic and suf-
ﬁAciently regktlar. Consider the convex—concave decomposition of the energy E(¢1, ¢2) into
E =E. — E,, given by (3.15) and (3.16), then we have

E(¢1.¢2) — E(g1,¢2) < (7S(¢1 ¢z>+7H(¢1 L $2). o1 — ¢1) + 8p K (91, ¢2), 01 — $1)

(WS(@ ¢2)+£H(¢1 , 92), </J2—¢2> + Bpo K (91, 92), 02 — $2).

Proof Fix (¢1, ¢2) € Sp x Sy and (Y1, ¥2) € Sy, x Sp. Forany 0 < A < 1, we can deﬁne the
continuous and differentiable function J. (1) := E (1 + AV, @2 + An). Since E (@1, 2)
is convex, J. (1) is convex. We have J. (1) — J-(0) > J/(0)A. This implies that

Eo(¢1 + M1, ¢ + A2) — Ec(1, ¢2)

(75(451 2), Mﬂl) +( S(¢1, ¢2), Mﬁz)
Gl g2 0

a|Ver | ajVe
_ (Al AV
(36(A(¢1>)2 ‘“>+<18A(¢1) n

2 2 2
GBIV (1= 1 = ¢2)| @3V (1= g1 = ¢)
A — , AV
+<36(A(1—¢1—¢2>>2 ‘”l> (18A(1—¢1—¢2) m)

2 2 2
a2|V¢2| a2V¢2
Y [ AV
(36(A(¢2>>2’ ‘”) " (18A(¢>z)’ WZ)

2 2 2
az|V (1 —¢1 —¢2) | azV (1 —¢1 —¢2)
,A — LAV . 3.18
+<36<A(1—¢1—¢2>>2 m) (18A(1—¢1—¢2) wz) G19

We may assume that (g1, ¢2) = (¢1,¢2) + A(Y¥1, ¥2) € Sp x Sp, since A is small in
magnitude. Then we have

Ec(1, ¢2) — Ec(1, ¢2)

<7S(¢1 $2), 01 — ¢>1> < S(P1, 2), §02—¢2)

+
0
HIV 2
s - \Y -
(36(A<¢ IE ) <8A<¢>> @ ¢”>
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2 2 2
a3V —¢1 — )| a3V (1 —¢1 — $2)
Q1 — - V(g —
(36(A(1—¢1—¢2>>2 i ¢‘> (18A(1—¢1_¢2) 1 ¢1>>
2 2 2
a3Vl a2V,
N5 2 — 27 V(g —
(36(A(</>2>>2"”2 ¢2>+<18A(¢2)’ (¢ 4’2>)
2 2 2
az|V (1 —¢1 —¢2) | a3V (1 —¢1 — d2)
R e Vg —¢0) |-
(36<A(1—¢1—¢2>>2 v ¢2> (18A(1—¢1_¢2) (¢2 ¢2>>
(3.19)

For E,, a similar inequality is available:

091

a
+ (—fH(dn, ), 92 — ¢2> . (3.20)
3¢2 0

A ~ d
Ec(p1, 92) — Ec(¢1, ¢2) > <—7H(¢l’¢2)’ 1 — ¢1>
o

Combining the inequalities, we have
E(p1,$2) — E@1, 92) = (Ec(¢1, 92) — Ec(p1, 92)) — (Ee($1, ¢2) — Ee(p1, ¢2))

d -
< (75(¢1,¢2),¢1 —<p1> + (8¢, K(¢1, ¢2), b1 — @1)
0

991
a .
+ <f5(¢1, $2), $2 — §02> + (B, K (@1, $2), $2 — ¢2)
L) 0
0 9
—(—=—H@1, ¢2), 61 — —(—=—H@1, ), b2 — :
( o (@1, 92), $1 ¢1>Q ( s (¢1,92), P2 wz)Q
(3.21)
Consequently, the proof is completed. O

Remark 3.1 The periodic boundary condition is considered in this article, for simplicity of
presentation, since all the boundary integral terms will cancel, so that the integration by parts
is always valid. As a result, for all the nonlinear and singular terms, the boundary terms
will cause any scientific difficulty in the mathematical analysis. Meanwhile, the analysis
in this work could be extended to other type of physically relevant boundary condition,
such a homogeneous Neumann one. In fact, a natural boundary condition (corresponding to
the Neumann boundary one) is more straightforward in the finite element set-up, and this
extension analysis will be considered in the future works.

4 The Unique Solvability and Positivity-Preserving Property

The mass lumped method, improving the original mass matrix, provides us with an efficient
way to derive the theoretical proof of preserving positivity property for the MMC-TDGL
equations.

Lemma4.1 [9] Suppose that£,& € Sy, with (§ —&,1) =0, thatis, € — & € S’h, and assume
that |£llco < 1, |€llce < M. Then, we have the following estimate:

|2 -8 _=cu @.1)
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where C1 > 0 depends only upon M and Q. In particular, C is independent of the mesh
spacing h .

Lemma4.2 Letp,y € Sy, and A(Y) > 0, then

36(A(¢))?’ 18A(¢)’ =36 \A®WY)’ ’ '
|Ve|? ) ( Vo ) < |Ve|? ) 1 (vw )
— ) - VY )< ————=.4 —(—.vy).
(36<A<¢>>)2 v 18A(¢) V)= 18(A())? W)+ 36 A®Y) v
4.3)

Proof By Cauchy-Schwarz inequality, on every element e € 7}, one gets

Vo 2% 1 vy :
‘(18A<¢>’W>e = <36(A<¢)>2’A(‘”>6 <9A(¢)’W)e

<|W’|2,A(¢)> +( vy ,vw) : (4.4)
36(A(¢))? e \36A) e

IA

Summing over all e,

‘( Ve V¢>‘<<|V¢|2 A(¢))+( vy vw>. 4.53)
sa@ V)= Geawn? 36A() '

Moreover, note that for ¢, ¥ € S,

<_|V¢|2 1/,) — (_|V¢|2 A(¢)>
36(A($)* 36(A(@)* ’

then the lemma can be proved by combining this relationship with (4.5). O

Remark 4.1 If A(y) > 0, then Lemma 4.2 will be modified by

IVg|? Vo 1 Vi

(‘ 36<A(¢>)2"”> * (18A(¢)’Vw> =36 L (Tw,)’ W); (4.6)
AW)>0
Vol ) <V¢ ) <|V¢>|2 ) I (W )
a2 V) wae YY) S \Baee 4 = —_vy) .
(36(A(¢>)2 V) Tag V) = (a4 36 ZT A Y,
A®Y)>0

4.7

Lemma4.3 Forany ¢ € Sy, if A(¢p) > 0 on one element e € Ty, with mesh size h,, then we
have
Vol _ 32h,
A@@) — 24,

4.8)
on the element e.

Proof Let P; = (x;, y;) (i = 1, 2, 3) be the three vertex points of e, then

9 1
o = E(‘p(Pl)()Q = y3) + @ (P2)(y3 — y1) + ¢(P3)(y1 — y2)),

0x

d 1

8£ = —(@(P1)(x3 —x2) + ¢(P2)(x1 — x3) + ¢ (P3)(x2 — x1)).
y 24,
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So V¢ can be bounded by

V2h,
T 24,
Note that
1
A(p) = 3 (@(P1) +¢(P2) +¢(P3)),
then the lemma is proved. O

Subsequently, a combination of Lemmas 4.2 and 4.3 leads to the following result.

Lemma4.4 Let ¢,y € Sy, and A(Y) > 0, then

Vg ) ( V¢ )
Q A e 49
( 36 ") T\ a@y eXT:h W)l 4.9)
Vo[> ) ( Ve )
36(A@)N2 ") AW le- 4.10
(3>6(A(<z>))2 v 18A(¢) EZ[: Wl (4.10)

Proof By Lemma 4.3 and noticing that A(y/) is constant on every element e, we get

1 v 1 V|2 1 9h?
36 Z[: (A(w’w’> 36 27; ((A(vf))Z’ W”) =36 2 23
e h ee;

h eeTy,
A@)>0 A(://)>0
- Z i AW
66771
Similarly,

IVo|* I g
(W’ A(w) <72 A AW

eeTy
2
Since the element is shape regular, Z" < C7, now the lemma is proved by using Lemma 4.2
and Remark 4.1. |
Theorem 4.1 Given ¢}, ¢5 € Sy, with 0 < ¢}, ¢5 < 1,0 < ¢} + @5 < 1, (so that
0< ¢1 ¢2 < 1), there exists a unique solution ¢"+l ¢"+l € S;, to (3.17), with ¢”+l &1,
Pt =5, 0 <ot ot < 1, and 0 < ¢ + @5t <

Proof Tt is observed that, the numerical solution of (3.17) is a minimizer of the following
discrete energy functional with respect to ¢; and ¢2

T (1, ¢2)——||¢1 11710+ 55 02— 832, o+ (S @102 g
+ (K (¢17 ¢2)7 1) + (8¢1 (¢17¢2) ’d)l)Q + (8¢2H (d’?v ¢g) 7¢2)Qa
“4.11)

over the admissible set
Ap ={(@1,¢2) € Sk xSp | 1,2 >0,0=< 1 +¢2 < 1,

(dn . I)Q =0, (</>2 — 9, 1)Q =0} c R?:.
4.12)
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It is easy to observe that J;' is a strictly convex functional with respect to ¢ and ¢, over
this domain. Consider the following closed domain:

Aps = {(@1,¢2) € Sp x Sp | P1.¢2 > 8(8),6 <1 +¢2 <139,

(¢>1 — 40, 1)Q =0, <¢2 — ¢, 1)Q =0} c R?Ms.
(4.13)

Since Ay s is a bounded, compact and convex set in the following hyperplane V in RN 12’
with dimension 2N12, -2

1

_ b _ 0
V—=(¢>1,¢2)- (91, g = ¢y, 2

— 40
2 ($2. Do —%’, 4.14)

there exists a (may not unique) minimizer of 7 (¢1, ¢2) over Aj 5. The key point of the
positivity analysis is that, such a minimizer could not occur on the boundary points (in V) if
6 and g(8) are small enough.

Assume the minimizer of J;' (¢1, ¢2) occurs at a boundary point of Aj 5.

Case 1: We set the minimization point as (¢}, ¢3), with ¢ (Py,) := ¢f,a0 = g(3).
In addition, we assume that ¢} reaches the maximum value at «y, so it is obvious that
¢T, o = (]Tf = ¢?. We can view the variable ¢ ¢, as the Nf,th one in the hyperplane V, with
the condition - N

@V, o — Zi;al(d’l,i, Xi)o
b (Xer- Do '

(4.15)

In more details, we denote the following alternate function

) N
@0 Do = XLy, @105 X0
n . — Tn (. — gqn | . 1 ’
U (61.0)]i ey - #2) = T (- @)y - 82) = T ( g .2
(4.16)
By a careful calculation, we obtain the following directional derivative
1 -1 *
a0+ 5.0, = 5= (80" (01 = 01) . ¥) |+ 60 (01.43) . ¥)
+ 6o K (87, 3) ) + (8, H (91, 68) W) 5. VY € S
4.17)
This time, due to (¢} + sV, ¢3) € Aps, let us pick the direction
area(Dy,)
=0y — C28y,, Co2 = ———, 4.18
‘// o) 200 2 area(Dal) ( )

where 4, and d,, are the basis functions on Py, and Py, Dy, and Dy, are the support of
8«4, and d4, , respectively.
For the first term appearing in (4.17), an application of Lemma 4.1 gives

3
L,*l * _ n _L ﬁ Al x _ n .
Dz " @1 = ¢ o = Dlre;j” 3 ,-X;:( AH@ = ¢V (P ))
1 — * n — * n
= 3pr @eaDu) (=4, D@t =" lay —C2 area(Da) ) (= A7 ) (@F —Dlar)
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1 — * n - * n
= 5z D) (A6 = 8Dy — (8791 = 9Dl

<

2Cy
it area(Dy,). (4.19)

For the second term, we see that

G ST, 83 V)0 = (—1 ( ¢>1)_ln(1 —oF — ). w)
0
¢1
=2 |3 1A Z *1< ) —In(l — ¢ — %) ) w(P..))
e€Ty

_ 1 ¢] * *
=3 area(Dy,) *1 (—) —In(1 — @7 — ¢3) | lag

( ¢1

= - area(DaO)

In(1 — ¢ — ¢5>) |m)

(¢) (¢)V
|0_l —
1—¢1 1 -9 —¢3

(g(a» NGk )

N

I A

- area(DaO) T—3

I A

fare (Day) (ln ()7 —In@?%)7 ) (4.20)

For the third term, we have
B (12|V¢*|2 CIZV(f)*
86, K (oF, 0%). [ 1 . 1 1 |V
o K (97, 03) .9 ( 36(A())> V) \ tsagn VY

. (% v (-0t -l w) . (a%V(l — 91— 43) w).
36 (A1 — ¢f — ¢3))’ 18A (1 -7 — ¢3)

421

By Lemma 4.4,

2 *12 2 * 2 2
B ai|Ver| arVe] a;Cr 3a;CoCr
( 600 ") T\ Tsaen YY) = s D AGale + === 3 AGa)le

36(A(p1)*

eeT) eeTy
2 2
aiCr ajC2Cr
= >+ . oL (4.22)
eEDO,0 eEDO,l
Similarly,
* * 2 * *
(‘132 MU 1/1) _ <a§V(1 — ¢ —¢3) Vﬁ')
36 (A1 — ¢} — ¢3))° 184 (1 — ¢} — ¢3)
2 2
az;Cr a;C,Cr
<3 da+ 5 PORE (4.23)
EGDQO EGDQI
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Then the term J4, K can be bounded by

G K (¢7.93) . ¥) <

(a1 +3a3)CT Z L+ (3al+a3)C2CT Z L @.24)

24

eeDaO eEDal

For the numerical solution ¢} at the previous time step, the a-priori assumption 0 < ¢} < 1
indicates that

_1<¢ (Pc(o) ¢7(Pc{1)§1
For the last term, we have

Gp H (07, 85) . ¥)o = (x13 — 2x13¢} + (x12 — x13 — x23)%. V)0

= Z =4, (Z(XIS —2x13¢97 — (x12 — x13 — X23)¢§’)1//(Pe,_/))

eeTh
1

= g area(Du()) (_2X13(¢’l1|0t() - ¢’17|011) - (X]Z — X13 — X23)(¢g|ao - ¢g|011))
1

< 5 area(Dag) iz +3x13 + x23)- (4.25)

To sum up, the following inequality is available

1
(8 (?) . (4.26)

1
dslly (¢7 + sv. ¢3)|,_ < 3 (Do) In
. . Dy, L 243a3)C BaFHa3)CoC
in whichrg = “0 (éfc,fl — In(¢\)? +x124+3x13 +X23)+% Y eea, 1+%
D ec De 1. Note that ry is a constant for a fixed 7, i, while it becomes singular as T —> 0.
For any fixed t, we could choose g(§) sufficiently small so that

1
1 1
3 area(Dyg,) In (g((;))y +rp <O, 4.27)

Y
such as g(8) = (8 exp (— afg;‘()ajg) )) . This in turn shows that

dgy} (97 + s, @3) ls=0 < 0, for g(8) satisfying (4.27).

This contradicts the assumption that 7' has a minimum at (¢}, ¢3), since the directional
derivative is negative in a direction pointing into (A 5)°, the interior of Ay s.

Case 2: Using similar arguments as in Case 1, we can also prove that, the global minimum
of J;! over Ap s could not occur on the boundary section of ¢2 o, = g(8), for any grid node
number o, if g(8) is small enough.

Case 3: We set the minimization point as (¢}, ¢3), with d){, w T d);’ w0 = 1 — 8, where ag
represents oo-th grid node number, and assume that ¢ o, > % In addition, (¢1 + ¢2, 1) =
¢>? + qbg, there exists one grid point o = (i1, 2 ), S(Lthat ﬂ + ¢; reaches the maximum
value. It is obvious that ¢1*’a1 + ¢5,a1 <9+ = ¢? + ¢)g. Similarly, the variable ¢1 o,
could be viewed as the le,—th one in the hyperplane V, with the condition

@Y. Do — 12, @1 xi)o

4.28
(qu’ l)Q ( )

Loy =
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In more details, the following alternate function is introduced

@). Vo ~ X1, @i xi)0
Xy » 1)Q

o)

U, <(¢1,i)|i7éal 7¢2) =I5 (5 @D, - b2) = Ty (

(4.29)
Again, a careful calculation implies the following directional derivative

1 - * n
a (9 +5v. 09|,y = = (80" (01 = 1)) |+ (018 (81 03) . ¥)
+ @B K (67, 03) ) + (39, H (87.05) V) o V¥ €50

(4.30)
In this case, since (¢} + sy, ¢3) € Ap s, we pick the direction
area(Dy,)
= C38y, — 84, Cy = —— %07 4.31
1/1 20¢ gy ©2 area(Dm) ( )

For the first term in (4.30), an application of Lemma 4.1 leads to

1
D—ﬂ(—A;lwl o). w)g——z ZA,, @ — OV (Pe,j)
eETh
1

= 3pr7 (Crarea(Da)(= A (@ =) |y —area(Dag) (=AY (T = lag)
—;area(D )((—Afl)(qb*—qb")l — (=A@ — o)l )
_3D1‘[ ] h 1 1 /1oy h 1 1/1ao

2C
< 3Dt area(Dy,). (4.32)

For the second term, a similar inequality could be derived

¢1

(89, S(¢7. 93). ¥)o = ( In(1 —¢f—¢ﬁ),1ﬂ)

Q

=) 7A32<—1 ( ¢1>—1n(1—¢f—¢;)) ¥ (Pe,j)

eeTy

_ 1 ¢1 * *
=3 area(Dygy) —l n(—) — In(l — ¢ — 93) | lo

( 4’1 ¢1 — ¢5>) |a0>
1 B LA i
=3 area(Dy,) | In s loy —In [~ ¢! — 3 log
11y
1 1 3
< —area(Dy,) = — —1In . (4.33)
3 ( =) — ¢ J )

For the third term, we have the following expansion as in (4.24):

(3a? +a3)C (a? 4 3a%)C,C
Op K (67, 05) . 9) < 1T3T 31+ # Yoo @34

eeDaO eeDo,1
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For the last term in (4.30), since the numerical solution at the previous time step is involved,
the a-priori assumption 0 < ¢ < 1 indicates that

n n
-1= ¢1,a0 - ¢],a1 =1
which in turn results in the following inequality

G H (¢7.95) . ¥ = (13 — 2x13¢] + G2 — x13 — %2302, ¥)o

=3 b [Sos 2t — Gz - s — DU P
3 = 1 2 eJ

eeTy
1
= 5 area(Day) (=2x13@ ey — D lap) — (X12 — X13 — X23) (D3 oy — B lary))
1
< 3 area(Dy,) (x12 +3x13 + X23)- (4.35)

In turn, a summation of the above estimates yields

1
diUy (o7 + s, ¢>§)|S:0 < 3 area(Dy,) Ind + 1y, (4.36)
in which r = %area(DaO)(% + %1n3 +In 1+q§(1>+¢'0 + xi2 + 3x13 + x23) +
1 2

(Ba?+a3)Cr
24 ZEEDD,U 1+

we could choose ¢ sufficiently small so that

2 2
+3a3)C2C . )
W ZeeDal 1. Again, ry is a constant for a fixed T and £,

1
3 area(Dyy)Inéd +r; <O, 4.37)

3(ri+D
area(DaO)

such as § = exp (— ) This in turn demonstrates that

dgy} (97 + sv, 3) ls=0 < 0, for g(8) satisfy (4.37),

which contradicts the assumption that jh" has a minimum at (¢}, ¢3), since the directional
derivative is negative in a direction pointing into (A 5)°, the interior of Ay s.

Case 4: Using similar arguments, we can also prove that, the global minimum of ;' over
Ap,s could not occur on the boundary section where qﬁi" w T ¢5, o = 1 — 4, if § is sufficiently
small, for any point index «g. The details are left to the interested readers.

Finally, a combination of these four cases shows that, the global minimizer of J}" (¢1, ¢2)
could only possibly occur at interior point of (A;.5)° C (A;)°. We conclude that there must
be a solution (¢1, ¢2) € (Ap)? that minimizes J; (@1, ¢2) over Ap, which is equivalent to
the numerical solution of (3.17). The existence of the numerical solution is established.

In addition, since 7} (¢1, ¢2) is a strictly convex function over Ay, the uniqueness analysis
for this numerical solution is straightforward. The proof of Theorem 4.1 is complete. O

5 The Energy Stability

An unconditional energy stability for the proposed numerical scheme (3.17) is stated below.

Theorem 5.1 (Energy stability) The unique solution of the mass lumped fully-discrete scheme
(3.17) is unconditionally energy stable, i.e., for any time step size t > 0, the following estimate
is valid:

E@it o5y < E@f 95)- (5.1)
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Proof The energy stability of the mass lumped scheme (3.17) is a direct consequence of
Lemma 3.4.
For wy, wy € S, we denote v; = (—Ah)_lwl, v = (—Ah)_lwz, and obtain

n+1
<¢D-L-¢lh (—Ah)_lw1> + (6¢1I€(¢m—1’ d)n-&-l)7 )
0

v n+1 n+1 v n+1 n+1 _
<8¢ S(b1y, by, )+a¢ H(py, do ) w )Q—O,

¢n+l _ ¢§h
Dot

5.2)
,(—Ah)lwz) +(8¢2K(¢”+1 ¢"+1) wz)
(@]

R n+1 n+1 i n+1 n+1 ) _
<a¢5(¢ Py )+8¢H(¢ sy )y W2 Q—O-

In turn, by setting w; = ¢"+l T w2 = ¢”+1 ¢5),» and applying Lemma 3.4, we arrive
at
a
7”¢n+l _¢1h”7l 0 + S(¢n+l ¢n+l) + 7H(¢n+l ¢n+l) ¢n+1 _¢?h
061 i o
a
+ 7||¢n+1 ¢gh||3l,Q +< S(¢n+l ¢n+l)+ 7H(¢n+l ¢n+l) ¢n+l _¢£Lh>
99 99 0
<8¢1K(¢n+l ¢n+1) ¢n+l _¢,11h) <8¢2K(¢n+l ¢n+l) ¢n+l _¢;21h>
> —||¢>”“ Oilio+ 5 ||<z>"+l — 520 F E@GT o5 — E@],. 5
> E(¢”+1 5 ) — E@l, ¢2h>.
This finishes the proof of Theorem 5.1. O

6 Numerical Results

In this section, we perform some numerical simulations using the proposed scheme (3.17). In
[32], the authors simulated several numerical examples for solving three-component MMC-
TDGL equations by the SAV method and showed some phase transition processes, with
different initial concentrations as well as the statistical segment lengths a;,i = 1, 2,3,
consistent with an earlier work [34]. The statistical segment lengths a; in the deGennes

interfacial gradient terms, % Z?:l %’f|V¢i |2, i =1, 2,3, determine the interface thickness.
Now, the default parameter of MMC-TDGL is selected to make F, convex; see Table 1. In fact,
these parameters are only used for the numerical experiments, to validate the effectiveness
of the proposed finite element scheme. In the numerical simulation of more realistic physical
problems, these parameters could be easily adjusted, and no essential pattern difference is
expected for the computational results with the parameter modification.

The first example is aimed to test the numerical convergence. The second one simulates
a periodic structure on a large domain. In addition, the third one is designed to show some
realistic results associated with the evolution of macromolecular microsphere hydrogels. For
convenience, we only consider the periodic boundary condition, and the case of homogeneous
Neumann boundary condition could be similarly handled.
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Table 1 The values of the

. . . Parameter D; D N ay ay a
parameters in the simulation ! 2 M2 X3 o v L @2 5

Value 1 1 4 10 16 0.16 512 1 1 1

L2 error

10° 102 108 10’ 102 10°

N; N;

Fig. 1 The L and L2 numerical errors versus temporal resolution Nr, at the final time 7 = 0.02 in
Example 6.1, by fixing 7 = 1/256. The time step size is given by 7 = NLT The reference line has an

exact slope of —1, while the least square approximation to the L2 error curves has approximate slopes
—1.0466, —1.0122, —1.0154, for the variables ¢1, ¢ and ¢3, respectively

Example 6.1 Let parameter a; = a = a3 = 0.3, while keeping the other default parameters
constant. Consider the MMC-TDGL equation over the domain Q2 = (0, 1)2, with the initial
data given by

¢1(x,y,0) =0.1+0.01cos(2mrx) cos(2my),

$2(x,y,0) =0.540.01 cos(2mwx) cos(2m y). ©.1

We use the triangular mesh with size & = 1/256 for partition of the domain. Since the
exact solution is unknown, we compute the errors by adjacent time step in the numerical
accuracy test. Figure 1 presents the L> and L? numerical errors of the three-phase variables,
o1, P2, @3, as well as a reference line at the terminal time 7 = 0.02. In turn, the time step
size is determined by the formula t = NLT, in which N7 stands for the total number of time
steps. Due to the O (h?) approximation in space, the spatial error is negligible. The expected
temporal numerical accuracy assumption e = Ct indicates that In|e| = In(CT) — In N7,
so that we plot In |e| versus. In N7 to demonstrate the temporal convergence order. The
reference line has an exact slope of —1, while the least square approximation to the L? error
curves has approximate slopes —1.0466, —1.0122, —1.0154, for the variables ¢1, ¢ and ¢3,
respectively. In other words, a perfect first order temporal convergence rate is reported.

In the accuracy test for the spatial convergence order, we set the time sizeas T = 7.8125¢ —
6, so that the temporal error is negligible. A sequence of spatial resolutions are taken, with sz =
NLU' The expected temporal numerical accuracy assumption ¢ = Ch? indicates that In |e| =
In C — 21In Ny, so that we plot In |e| versus In Ny to demonstrate the temporal convergence
order. Similarly, Fig. 2 presents the L°° and L? numerical errors of the three-phase variables,
as well as a reference line at the terminal time 7 = 0.02, for this spatial convergence order
test. The reference line has an exact slope of —2, while the least square approximation to
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10-2 L

*. . — k= Gy

10—4 L

L> error

10

108 3 108

10’ 102 10’ 102
No No
Fig. 2 The L™ and L2 numerical errors versus spatial resolution Ny, at the final time 7 = 0.02 in Exam-
ple 6.1, by fixing T = 7.8125¢ — 6. The spatial mesh size is given by h = Nio' The reference line has

an exact slope of —2, while the least square approximation to the L2 error curves has approximate slopes
—2.0532, —2.0476, —2.0480, for the variables ¢1, ¢ and ¢3, respectively

6,(t=8)

Fig.3 The simulated solution ¢, att = 0, 5, 8, 10, 15 and 20 respectively, in Example 6.2

the L? error curves has approximate slopes —2.0532, —2.0476, —2.0480, for the variables
¢1, ¢ and @3, respectively. Therefore, a perfect second order spatial convergence rate is
reported.
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Fig.4 The phase variables plot in Example 6.2, at r = 25, 80 and 200

Example 6.2 Consider the MMC-TDGL equation over the domain Q = (0, 64)%, with the
initial data given by

¢1(x,y,0) =0.1+0.01cos(3mrx/32)cos(3wy/32),

¢ (x,y,0) =0.540.01 cos(3mx/32) cos(3wy/32). 62)

We use the triangular mesh with size 7 = 1/4 for partition of the domain, and take the
time step size as = 0.01. Figure 3 displays the configuration of the simulated solution
¢> at a sequence of time instants, t = 0, 5, 8, 10, 15 and 20, respectively. It is observed
that the phase structures have a drastic change in time, and then asymptotically evolve to a
steady state, which is consistent with the energy evolution plotted in Fig. 7. In addition, the
configuration of all three phase variables are presented in Fig. 4, at a sequence of later time
instants, t = 25, 80, and 200, respectively. The corresponding evolutions of the mass, as well
as the maximum and minimum values of the phase variables, are displayed in Figs. 5 and 6,
respectively. The mass conservation and the positivity property are observed to be preserved
in these evolution figures (Fig. 7).
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Fig.5 Mass evolution of the phase variables in Example 6.2
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Fig.6 Evolution of the maximum and minimum value of phase variables in Example 6.2
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Fig.7 Energy evolution of the simulated solution in Example 6.2
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$,(t=0) 6,(t=3.6) 6,(t=6.52)

0.9

0.8

Fig. 8 The phase variable plot for ¢, at a sequence of time instants r = 0, 3.6, 6.52, 8, 10, 26, 85, 278 and
500 respectively in Example 6.3

Example 6.3 Considered the MMC-TDGL equations over the domain 2 = (0, 50)2, with
the initial data given by
¢1(x,y,0) =0.1+r; j,

(6.3)
¢2(x,y,0) =0.54+7r; ;,

where the r; ; are uniformly distributed random numbers in [—0.01, 0.01].

We use the uniform triangular mesh with size h = 1/4, take the time step size as T = 0.01,
and focus on the ¢, variable, which reflects the polymer chain distribution. In this example,
the initial concentration of polymer segments reaches 0.5 + r;, ;, every MMS can be joined
by polymer chains since there are enough segments to grow. Thus the reticular structure can
be obtained. Figure 8 displays the plot of the ¢, variable at a sequence of time instants, #=0,
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Fig.9 Energy evolution in Example 6.3

012 max(¢,) max(os)
min(g,) 0.8 min(g,)

0.1
0.6

0.08 04
0.4

02 (120.4,5.051*10°3)
0.06 : ‘4// 02
0.04 0 ° 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

(a) (b) ()

Fig. 10 Evolution of the maximum and minimum values of the phase variables ¢1, ¢ and ¢3 in Example 6.2
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3.6,6.52, 8, 10, 26, 85, 278 and 500, respectively. It is observed that the red area in the third
row becomes larger, that is, the structure is tighter, which is consistent with [32,34].

The evolution of the corresponding energy is plotted in Fig. 9, which indicates a monotone
decrease in time. Figures 10 and 11 display the maximum and minimum value of the phase
variables and the mass. Again, the positivity-preserving property and mass conversation have
been perfectly demonstrated in the numerical simulation.

7 Concluding Remarks

In this paper, we have developed a positivity-preserving and energy stable finite element
scheme for the three-component Cahn—Hilliard flow model involved in macromolecular
microsphere composite hydrogels, with the Flory—Huggins—deGennes energy potential in
the ternary system. A convex—concave decomposition of the energy functional in multi-
phase space is recalled, which in turn leads to an implicit treatment of the logarithmic and
the nonlinear surface diffusion terms, as well as an explicit update of the concave expansive
linear terms. In the spatial discretization, the mass lumped finite element approximation is
applied. Both the positivity preserving property and the unconditional energy stability are
theoretically justified, which will be the first such results for a finite element scheme applied
to the ternary MMC system. A few numerical examples are presented, which demonstrate
the robustness and accuracy of the proposed numerical scheme.
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