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In this paper, we construct and analyze a uniquely solvable, positivity preserving and 

unconditionally energy stable finite-difference scheme for the periodic three-component 

Macromolecular Microsphere Composite (MMC) hydrogels system, a ternary Cahn-Hilliard 

system with a Flory-Huggins-deGennes free energy potential. The proposed scheme is 

based on a convex-concave decomposition of the given energy functional with two 

variables, and the centered difference method is adopted in space. We provide a theoretical 

justification that this numerical scheme has a pair of unique solutions, such that the 

positivity is always preserved for all the singular terms, i.e., not only two phase variables 

are always between 0 and 1, but also the sum of two phase variables is between 0

and 1, at a point-wise level. In addition, we use the local Newton approximation and 

multigrid method to solve this nonlinear numerical scheme, and various numerical results 

are presented, including the numerical convergence test, positivity-preserving property test, 

energy dissipation and mass conservation properties.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

Macromolecular microsphere composite (MMC) hydrogels, a class of polymeric materials, have attracted theoretical and 

experimental studies due to their well-defined network microstructures and high mechanical strength. Various methods 

have been developed to model the evolution of MMC hydrogels. In [43], the authors presented a binary mathematical 

model to describe the periodic structures and the phase transitions of the MMC hydrogels based on Boltzmann entropy 

theory. Their model, the MMC-TDGL equation, is structurally similar to the Cahn-Hilliard equation. Most existing works for 

the MMC-TDGL equation are based on the two-phase model; see [15,25–27], et cetera. Also see the related works for the 

simulation of a modern approach of binary block co-polymer [31–33], including constrained geometries.

The Allen-Cahn and Cahn-Hilliard equations are well-known gradient flows with either polynomial Ginzburg-Landau or 

singular Flory-Huggins-type free energy density. These equations model spinodal decomposition and phase separation in a 

two-phase fluid in either the non-conserved or conserved setting, respectively. There have been many theoretical analyses 

and numerical approximations for these kinds of gradient flows in the two-phase case [4,5,8–13,18,21,30,40]. For the ternary 
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Cahn-Hilliard system, the general framework is to adopt three independent phase variables (φ1, φ2, φ3) while enforcing a 

mass conservation (or “no-voids”) constraint φ1 + φ2 + φ3 = 1. See the related works [2,3,41].

In this work, we consider a ternary time-dependent Ginzburg-Landau mesoscopic model with a given coarse-grained 

free energy, which is an improvement in some ways over the model proposed in [43], as it removes the assumption that 

the number of the graft chain around a large ball is proportional to the perimeter in the modeling process. For this ternary 

Cahn-Hilliard system, the following singular energy potential is taken into consideration:

Go(φ1, φ2, φ3) =

∫

�

{

So(φ1, φ2, φ3) +
1

36

3
∑

i=1

ε2
i

φi

|∇φi|
2 + Ho(φ1, φ2, φ3)

}

dx, (1.1)

where So(φ1, φ2, φ3) + Ho(φ1, φ2, φ3) is the reticular free energy density:

So(φ1, φ2, φ3) =
φ1

M0
ln

αφ1

M0
+

φ2

N0
ln

βφ2

N0
+ φ3 lnφ3,

Ho(φ1, φ2, φ3) = χ12φ1φ2 + χ13φ1φ3 + χ23φ2φ3.

The term So is often called the ideal solution part, and Ho stands for the entropy of mixing part. The sum So + Ho is 

also called the regular solution model in material science and the Flory-Huggins model in polymer chemistry. The domain 

� ⊂ R2 is assumed to be open, bounded, and simply connected. We focus on the 2-D case for simplicity of presentation, 

while an extension to the 3-D gradient flow is straightforward. The unknown phase variable φ1 , φ2 and φ3 are conserved 

field variables, representing the concentration of the macromolecular microsphere, the concentration of the polymer chain, 

and the concentration of the solvent, respectively. These three phase variables are subject to the “no-voids” constraint 

φ1 + φ2 + φ3 = 1. We denote by M0 the relative volume of one macromolecular microsphere, and by N0 the degree of 

polymerization of the polymer chains. The coefficient εi is called the statistical segment length of the i-th component, 

which is always positive. The parameters α and β depend on M0 and N0:

α = π

(

√

M0

π
+

N0

2

)2

, β = 2

√

M0

π
+ N0.

By χ12, χ13 , and χ23 we denote the Huggins interaction parameters between (i) the macromolecular microspheres and 

polymer chains, (ii) the macromolecular microspheres and solvent, and (iii) the polymer chains and solvent, respectively. All 

these parameters are positive. In this paper, we choose parameters satisfying the inequality

4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0,

which guarantees the concavity of the entropy of mixing term H0 , as we shall see.

Making use of the no-voids constraint φ3 = 1 − φ1 − φ2 , we can rewrite the energy functional as

G(φ1, φ2) =

∫

�

{

S(φ1, φ2) +
ε2
1 |∇φ1|

2

36φ1
+

ε2
2 |∇φ2|

2

36φ2
+

ε2
3|∇(1 − φ1 − φ2)|

2

36(1− φ1 − φ2)
+ H(φ1, φ2)

}

dx, (1.2)

where, naturally,

S(φ1, φ2) =
φ1

M0
ln

αφ1

M0
+

φ2

N0
ln

βφ2

N0
+ (1 − φ1 − φ2) ln(1 − φ1 − φ2),

H(φ1, φ2) = χ12φ1φ2 + χ13φ1(1− φ1 − φ2) + χ23φ2(1− φ1 − φ2).

The ternary MMC dynamic equations become the H−1 gradient flows associated with the given energy functional (1.2):

∂tφ1 = M1
μ1, ∂tφ2 = M2
μ2, (1.3)

where M1, M2 > 0 are mobilities, which are assumed to be positive constants. The terms μ1 and μ2 are the chemical 

potentials with respect to φ1 and φ2 , respectively, i.e.,

μ1 := δφ1G =
1

M0
ln

αφ1

M0
− ln(1− φ1 − φ2) − 2χ13φ1 + (χ12 − χ13 − χ23)φ2

+ χ13 +
1

M0
− 1−

ε2
1 |∇φ1|

2

36φ2
1

− ∇ ·

(

ε2
1∇φ1

18φ1

)

(1.4)

+
ε2
3|∇(1 − φ1 − φ2)|

2

36(1− φ1 − φ2)2
+ ∇ ·

(

ε2
3∇(1 − φ1 − φ2)

18(1− φ1 − φ2)

)

,
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μ2 := δφ2G =
1

N0
ln

βφ2

N0
− ln(1− φ1 − φ2) − 2χ23φ2 + (χ12 − χ13 − χ23)φ1

+ χ23 +
1

N0
− 1−

ε2
2 |∇φ2|

2

36φ2
2

− ∇ ·

(

ε2
2∇φ2

18φ2

)

(1.5)

+
ε2
3|∇(1 − φ1 − φ2)|

2

36(1− φ1 − φ2)2
+ ∇ ·

(

ε2
3∇(1 − φ1 − φ2)

18(1− φ1 − φ2)

)

.

For simplicity, we assume that periodic boundary conditions hold. It is then easy to see that the energy is non-increasing 

for the ternary MMC model. The evolution equations (1.3) are mass conservative; the mass fluxes are proportional to the 

gradients of the respective chemical potentials.

Concerning the ternary Cahn-Hilliard type model with polynomial Ginzburg-Landau free energy density potential and 

constant surface diffusion coefficients, there have been quite a few existing numerical works to address the issue of en-

ergy stability. For example, several finite element schemes have been studied in an earlier work [3], based on different 

semi-implicit methods to pursue an energy dissipation property. Recently, a Fourier pseudo-spectral numerical scheme was 

constructed in [6], based on a non-standard convex-concave decomposition of the physical energy; the unique solvability 

and unconditional energy stability of the corresponding numerical scheme were established at a theoretical level. Besides 

the convex splitting approach, an invariant energy quadrant (IEQ) algorithm was designed in [41]. Therein a stability analysis 

was proved for a numerically modified energy, not for the original energy functional.

By comparison, the ternary Cahn-Hilliard system (1.3) – (1.5) is much more difficult than the versions mentioned above. 

Due to the singular nature of the Flory-Huggins logarithmic free energy density, the positivity-preserving property has to be 

enforced for the numerical solution to make the scheme well-defined, which turns out to be a very challenging issue. For 

example, an application of either the invariant energy quadrant (IEQ) [19], scalar auxiliary variable (SAV) [35,36] or linear 

stabilization method [23,24] would not be able to enforce such a property, due to the explicit treatment of the nonlinear 

singular terms. In fact, an extension of the singular energy functional (beyond the singular limit values) has to be made 

to define the corresponding linear numerical schemes. In addition to the difficulty associated with the positivity-preserving 

behavior of the numerical solution, the highly nonlinear and singular nature of the surface diffusion coefficients makes the 

system even more challenging, at both the analytic and numerical levels. In this paper, we propose and analyze a numerical 

scheme for the ternary MMC hydrogels system (1.3) – (1.5), with three theoretical properties justified: positivity-preserving, 

unique solvability, and unconditional energy stability. This scheme is based on the convex-concave decomposition of the 

original energy functional, which turns out to be highly non-trivial even for the polynomial approximation one [6], due to 

the multi phase variables involved. In order to apply the framework of such a decomposition for the terms involved with 

multi phase variables, a careful calculation of the Hessian matrix has to be performed. As analyzed in a recent article [7]

for the Flory-Huggins Cahn-Hilliard flow with constant surface diffusion coefficient, an implicit treatment of the nonlinear 

singular logarithmic term is necessary to theoretically justify its positivity-preserving property. Also see a few other related 

works [28,29,34,42,44] for various gradient flows with singular energy potential. In addition to the logarithmic terms, the 

chemical potential expansions with the nonlinear deGennes surface diffusion energy have to be implicitly updated in the 

numerical scheme, because of its convex nature in terms of all the phase variables. This leads to a highly nonlinear, highly 

singular numerical system, while the linear expansive term is treated explicitly. However, a more careful analysis reveals 

that, the convex and the singular natures of these implicit nonlinear parts prevent the numerical solutions approach the 

singular limit values of 0 and 1, so that the positivity-preserving property is available for all the phase variables. Such a 

theoretical justification is much more complicated than the one with constant surface diffusion coefficient case, as reported 

in [7], because of the mixed terms involved in the nonlinear surface diffusion part. With the positivity property justified, 

the unique solvability becomes a direct consequence of the convexity associated with the implicit terms in the numerical 

algorithm. An unconditional energy stability could also be derived using a convexity argument.

The rest part of this paper is organized as follows. In Section 2, we show a convex-concave decomposition of the en-

ergy (1.2). In Section 3, we present a finite difference scheme based on a convex splitting of the energy functional. In 

Section 4, the unique solvability and the positivity preserving property of the numerical solutions are analyzed. The uncon-

ditional energy stability analysis is provided in Section 5. Various numerical results are presented in Section 6. Finally, we 

give some concluding remarks in Section 7.

2. Existence of a convex-concave decomposition

In this section, we will give a convex-concave decomposition of the energy (1.2). The following preliminary results are 

needed.

Proposition 2.1. Define the functions

T1(u, v) :=
v2

36u
, u ∈ (0,∞), v ∈ R;

3
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T2(u1,u2, v1, v2) :=
(v1 + v2)

2

36(1− u1 − u2)
, u1,u2, v1, v2 ∈ R;

T3(u, v, w) :=
w2

36(u + v)
, u, v, w ∈ R.

1. T1(u, v) is convex in (0, +∞) × R.

2. T2(u1, u2, v1, v2) is convex in R4 , provided that u1 + u2 < 1.

3. T3(u, v, w) is convex in R3 , provided that u + v > 0.

4. S(u1, u2) is convex in the Gibbs Triangle, G , defined as

G := {(u1,u2) |u1,u2 > 0, u1 + u2 < 1} .

5. H(u1, u2) is concave, provided that 4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0.

Proof. (1) For T1(u, v), a careful calculation gives its Hessian matrix:

H1 =
1

36

⎛

⎝

2v2

u3 − 2v
u2

− 2v
u2

2
u

⎞

⎠ .

The first-order principal minors of the matrix H1 are given by: D1 = v2

18u3 , D2 = 1
18u

, which are both non-negative when 

u ∈ (0, +∞) and v ∈ R. In addition, the second-order principal minor becomes D12 = 0. Therefore, we conclude that the 

Hessian Matrix H1 is positive semi-definite and thus T1 is convex in (0, ∞) × R.

(2) The Hessian matrix for T2(u1, u2, v1, v2) turns out to be

H2 =
1

36

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2A2

B3
2A2

B3
2A
B2

2A
B2

2A2

B3
2A2

B3
2A
B2

2A
B2

2A
B2

2A
B2

2
B

2
B

2A
B2

2A
B2

2
B

2
B

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A = v1 + v2, B = 1− u1 − u2.

The first-order principal minors of the matrix H2 are D1 = D2 = A2

18B3 , D3 = D4 = 1
18B

, which are positive values. Meanwhile, 

all other principal minors are equal to 0. In general, all these principal minors are non-negative when u1 +u2 < 1. Therefore, 

we conclude that the Hessian Matrix H2 is positive semi-definite and thus T2 is convex when u1 + u2 < 1.

(3) For T3(u, v, w), the Hessian matrix has the following form:

H3 =
1

36

⎛

⎜

⎜

⎜

⎝

2w2

(u+v)3
2w2

(u+v)3
−2w

(u+v)2

2w2

(u+v)3
2w2

(u+v)3
−2w

(u+v)2

−2w
(u+v)2

−2w
(u+v)2

2
u+v

⎞

⎟

⎟

⎟

⎠

. (2.1)

The first-order principal minors of the matrix H3 are D1 = w2

18(u+v)3
, D2 = w2

18(u+v)3
, D3 = 1

18(u+v)
, which are positive values. 

Again, all other principal minors are equal to 0. All these principal minors are non-negative when u + v > 0. Then we 

conclude that the Hessian Matrix H3 is positive semi-definite and thus T3 is convex when u + v > 0.

(4) For S(u1, u2), the Hessian matrix is

HS =

⎛

⎝

1
M0u1

+ 1
1−u1−u2

1
1−u1−u2

1
1−u1−u2

1
N0u2

+ 1
1−u1−u2

⎞

⎠ . (2.2)

The first-order principal minors of the matrix HS are given by D1 = 1
M0u1

+ 1
1−u1−u2

, D2 = 1
N0u2

+ 1
1−u1−u2

, which are 

positive values. The second-order principal minor is determined as

D12 = det(HS) =
1

M0N0u1u2
+

1

M0u1
+

1

N0u2
+

1

1− u1 − u2
.

All these principal minors are positive when u1, u2 ∈ (0, +∞) and u1 + u2 < 1. Consequently, the Hessian matrix HS is 

positive-definite and thus S is convex in the Gibbs triangle G .

4
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(5) The Hessian matrix of H(u1, u2) becomes

HH =

⎛

⎝

−2χ13 χ12 − χ13 − χ23

χ12 − χ13 − χ23 −2χ23

⎞

⎠ . (2.3)

The first-order principal minors of HH are given by D1 = −2χ13 < 0, D2 = −2χ13 < 0. In addition, the second-order princi-

pal minor of HH becomes

D12 = det(HH ) = 4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0.

Therefore, the Hessian matrix HH is negative-definite and thus H is concave when 4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0. �

Lemma 2.2 (Existence of a convex-concave decomposition). Assume that φ1, φ2 : � → (0, 1) are periodic and sufficiently regular, with 

point values in the Gibbs Triangle, G . The functionals

Gc(φ1, φ2) :=

∫

�

S(φ1, φ2) +
ε2
1 |∇φ1|

2

36φ1
+

ε2
2|∇φ2|

2

36φ2
+

ε2
3|∇(1 − φ1 − φ2)|

2

36(1− φ1 − φ2)
dx, (2.4)

Ge(φ1, φ2) := −

∫

�

H(φ1, φ2)dx, (2.5)

are convex. Therefore, G(φ1, φ2) = Gc(φ1, φ2) − Ge(φ1, φ2) is a convex-concave decomposition of the energy.

Proof. The fact that G(φ1, φ2) = Gc(φ1, φ2) − Ge(φ1, φ2) is obvious. Suppose that

(u1,u2) ∈ G = {(u1,u2) |u1,u2 > 0, u1 + u2 < 1}

and set �u := (u1, u2, u3, u4, u5, u6) ∈ G × R4 . Define

ec(�u) := S(u1,u2) + ε2
1T1(u1,u3) + ε2

1T1(u1,u5) + ε2
2T1(u2,u4)

+ ε2
2T1(u2,u6) + ε2

3T2(u1,u2,u3,u4) + ε2
3T2(u1,u2,u5,u6),

ee(�u) := −H(u1,u2).

Proposition 2.1 suggests that ec and ee are convex in G × R4 . Therefore, we have the following inequality according to the 

definition of a convex function: ∀ λ ∈ (0, 1), �u, �v ∈ G × R4 ,

ec(λ�u + (1− λ)�v) ≤ λec(�u) + (1− λ)ec(�v). (2.6)

It is noticed that

Gc(φ1, φ2) =

∫

�

ec(φ1, φ2, φ1x, φ2x, φ1 y, φ2 y)dx,

Ge(φ1, φ2) =

∫

�

ee(φ1, φ2)dx.

Setting �u := (φ1, φ2, φ1x, φ2x, φ1 y, φ2 y) and �v := (ψ1, ψ2, ψ1x, ψ2x, ψ1 y, ψ2 y), and integrating inequality (2.6) leads to

Gc(λφ1 + (1− λ)ψ1, λφ2 + (1 − λ)ψ2) ≤ λGc(φ1, φ2) + (1− λ)Gc(ψ1,ψ2),

which indicates that Gc(φ1, φ2) is a convex functional of φ1 and φ2 . Using a similar argument, we see that Ge(φ1, φ2) is 

also convex. �

The following estimate is the foundation of the energy stability. The proof, which is practically the same as that in [39], 

is independent on the specific form of G(φ1, φ2).

Lemma 2.3. Suppose that � = (0, Lx) × (0, L y) and (φ1, φ2), (ψ1, ψ2) : � → G are periodic and sufficiently regular. Consider the 

canonical convex splitting of the energy G(φ1, φ2) in (1.2) into G = Gc − Ge given in (2.4) – (2.5). Then

G( �φ) − G( �ψ) ≤ (δφ1Gc( �φ) − δφ1Ge( �ψ),φ1 − ψ1)L2 + (δφ2Gc( �φ) − δφ2Ge( �ψ),φ2 − ψ2)L2 , (2.7)

where �φ = (φ1, φ2), �ψ = (ψ1, ψ2).

5
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Proof. Set

Gc( �φ) =

∫

�

ec(φ1, φ2, φ1x, φ2x, φ1 y, φ2 y)dx.

If (φ1, φ2) ∈ G , Lemma 2.2 ensures the convexity of ec(�u) in G × R4 . We have the equivalent statement

ec(�v) − ec(�u) ≥ ∇�uec(�u) · (�v − �u),

for any �u, �v ∈ G × R4 .

Now setting

�u = (φ1, φ2, φ1x, φ2x, φ1 y, φ2 y), �v = (ψ1,ψ2,ψ1x,ψ2x,ψ1 y,ψ2 y),

and integrating-by-parts, we get the inequality

Gc( �φ) − Gc( �ψ) ≥ (δφ1Gc( �ψ),φ1 − ψ1)L2 + (δφ2Gc( �ψ),φ2 − ψ2)L2 . (2.8)

By a similar analysis for Ge , we see that

Ge( �ψ) − Ge( �φ) ≥ (δφ1Ge( �φ),ψ1 − φ1)L2 + (δφ2Ge( �φ),ψ2 − φ2)L2 . (2.9)

Adding (2.8) and (2.9) yields

G( �φ) − G( �ψ) =
(

Gc( �φ) − Gc( �ψ)
)

−
(

Ge( �φ) − Ge( �ψ)
)

≤ (δφ1Gc( �φ),φ1 − ψ1)L2 + (δφ2Gc( �φ),φ2 − ψ2)L2

−
(

(δφ1Ge( �ψ),φ1 − ψ1)L2 + (δφ2Ge( �ψ),φ2 − ψ2)L2

)

= (δφ1Gc( �φ) − δφ1Ge( �ψ),φ1 − ψ1)L2 + (δφ2Gc( �φ) − δφ2Ge( �ψ),φ2 − ψ2)L2 . �

3. Numerical scheme

3.1. Discretization of two-dimensional space

In the spatial discretization, the centered difference approximation is applied. Some basic notations have to be recalled. 

We use the notations and results for some discrete functions and operators from [38,39]. Let � = (0, Lx) × (0, L y), and we 

assume Lx = L y =: L > 0 for simplicity of presentation. Let N ∈ N be given, and define the grid spacing h := L/N . We also 

assume – but only for simplicity of notation, ultimately – that the mesh spacing in the x and y-directions is the same. The 

following two uniform, infinite grids with grid spacing h > 0, are introduced:

E := {pi+1/2 | i ∈ Z}, C := {pi | i ∈ Z},

where pi = p(i) := (i − 1/2) · h. Consider the following 2-D discrete N2-periodic function spaces:

Cper :=
{

ν : C × C → R
∣

∣ νi, j = νi+αN, j+βN , ∀ i, j,α, β ∈ Z
}

,

Ex
per :=

{

ν : E × C → R

∣

∣

∣ νi+ 1
2 , j = νi+ 1

2+αN, j+βN , ∀ i, j,α, β ∈ Z

}

.

Here we are using the identification νi, j = ν(pi, p j), et cetera. The space E
y
per is analogously defined. The function of Cper is 

called cell-centered function, and the function of Ex
per and E

y
per , is called edge-centered function. We also define the mean zero 

space

C̊per :=

⎧

⎨

⎩

ν ∈ Cper

∣

∣

∣

∣

∣

∣

0 = ν :=
h2

L2

N
∑

i, j=1

νi, j

⎫

⎬

⎭

.

In addition, �Eper is defined as �Eper := Ex
per × E

y
per . We now introduce the difference and average operators on the spaces:

Axνi+1/2, j :=
1

2

(

νi+1, j + νi, j

)

, Dxνi+1/2, j :=
1

h

(

νi+1, j − νi, j

)

,

A yνi, j+1/2 :=
1

2

(

νi, j+1 + νi, j

)

, D yνi, j+1/2 :=
1

h

(

νi, j+1 − νi, j

)

,

with Ax, Dx : Cper → Ex
per , A y, D y : Cper → E

y
per . Likewise,

6
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axνi, j :=
1

2

(

νi+1/2, j + νi−1/2, j

)

, dxνi, j :=
1

h

(

νi+1/2, j − νi−1/2, j

)

,

ayνi, j :=
1

2

(

νi, j+1/2 + νi, j−1/2

)

, dyνi, j :=
1

h

(

νi, j+1/2 − νi, j−1/2

)

,

with ax, dx : Ex
per → Cper , ay, dy : E

y
per → Cper . The discrete gradient operator ∇h : Cper → �Eper is given by

∇hνi, j =
(

Dxνi+1/2, j, D yνi, j+1/2

)

,

and the discrete divergence ∇h· : �Eper → Cper is defined via

∇h · �f i, j = dx f
x
i, j + dy f

y

i, j
,

where �f = ( f x, f y) ∈ �Eper . The standard 2-D discrete Laplacian, 
h : Cper → Cper , becomes


hνi, j :=dx(Dxν)i, j + dy(D yν)i, j

=
1

h2

(

νi+1, j + νi−1, j + νi, j+1 + νi, j−1 − 4νi, j

)

.

More generally, if D is a periodic scalar function that is defined at all of the edge center points and �f ∈ �Eper , then D�f ∈ �Eper , 

assuming point-wise multiplication, and we may define

∇h ·
(

D�f
)

i, j
= dx

(

D f x
)

i, j
+ dy

(

D f y
)

i, j
.

Specifically, if ν ∈ Cper , then ∇h · (D∇h ) : Cper → Cper is defined point-wise via

∇h ·
(

D∇hν
)

i, j
= dx (DDxν)i, j + dy

(

DD yν
)

i, j
.

Now we are ready to define the following grid inner products:

〈ν, ξ〉� := h2
N

∑

i, j=1

νi, j ξi, j, ν, ξ ∈ Cper, [ν, ξ ]x := 〈ax(νξ),1〉� , ν, ξ ∈ Ex
per,

[ν, ξ ]y :=
〈

ay(νξ),1
〉

�
, ν, ξ ∈ E

y
per,

[

�f1, �f2

]

�
:=

[

f x1 , f x2
]

x
+

[

f
y
1 , f

y
2

]

y
, �f i = ( f xi , f

y

i
) ∈ �Eper, i = 1,2.

In turn, the following norms could be appropriately introduced for cell-centered functions for ν ∈ Cper: ‖ν‖
p
p :=

〈

|ν|p,1
〉

�
, 

for 1 ≤ p < ∞, and ‖ν‖∞ := max1≤i, j≤N

∣

∣νi, j

∣

∣. We also define norms of the gradient (for ν ∈ Cper) as follows:

‖∇hν‖22 := [∇hν,∇hν]� = [Dxν, Dxν]x +
[

D yν, D yν
]

y
,

and, more generally,

‖∇hν‖p :=
(

[

|Dxν|p,1
]

x
+

[

|D yν|p,1
]

y

)
1
p
, 1 ≤ p < ∞.

Higher order norms can be similarly formulated. For example,

‖ν‖2
H1
h

:= ‖ν‖22 + ‖∇hν‖22 , ‖ν‖2
H2
h

:= ‖ν‖2
H1
h

+ ‖
hν‖22 .

Lemma 3.1. Let D be an arbitrary periodic, scalar function defined on all of the edge-center points. For any ψ, ν ∈ Cper and any 

�f ∈ �Eper , the following summation by parts formulas are valid:
〈

ψ,∇h · �f
〉

�
= −

[

∇hψ, �f
]

�
, 〈ψ,∇h · (D∇hν)〉� = − [∇hψ,D∇hν]� . (3.1)

To facilitate the analysis below, we need to introduce a discrete analogue of the space H−1
per (�), as outlined in [37]. 

Suppose that D is a positive, periodic scalar function defined at edge-center points. For any φ ∈ Cper , there exists a unique 

ψ ∈ C̊per that solves

LD(ψ) := −∇h · (D∇hψ) = φ − φ, (3.2)

where φ := |�|−1 〈φ,1〉� . We equip this space with a bilinear form: for any φ1, φ2 ∈ C̊per , define

7
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〈φ1, φ2〉L−1
D

:= [D∇hψ1,∇hψ2]� , (3.3)

where ψi ∈ C̊per is the unique solution to

LD(ψi) := −∇h · (D∇hψi) = φi, i = 1,2. (3.4)

The following identity [37] is easy to prove via summation-by-parts:

〈φ1, φ2〉L−1
D

=
〈

φ1,L
−1
D

(φ2)
〉

�
=

〈

L
−1
D

(φ1),φ2

〉

�
, (3.5)

and since LD is symmetric positive definite, 〈 · , · 〉
L

−1
D

is an inner product on C̊per [37]. When D ≡ 1, we drop the subscript 

and write L1 =L = −
h , and introduce the notation 〈 · , · 〉
L

−1
D

=: 〈 · , · 〉−1,h . In the general setting, the norm associated 

to this inner product is denoted ‖φ‖
L

−1
D

:=
√

〈φ,φ〉
L

−1
D

, for all φ ∈ C̊per , but, if D ≡ 1, we write ‖ · ‖
L

−1
D

=: ‖ · ‖−1,h .

3.2. A convex-concave decomposition of the discrete energy

Let us define

�CGper :=
{

(φ1, φ2) ∈ Cper × Cper
∣

∣ (φ1i, j, φ2i, j) ∈ G, i, j ∈ Z
}

,

which corresponds to the pairs of periodic grid functions whose point values are in the Gibbs Triangle, G . Define κ(φ) :=
1

36φ
. The discrete energy Gh(φ1, φ2) : �CGper → R is introduced as

Gh(φ1, φ2) = 〈S(φ1, φ2) + H(φ1, φ2),1〉�

+
〈

ax(κ(Axφ1)(Dxφ1)
2) + ay(κ(A yφ1)(D yφ1)

2),ε2
1

〉

�

+
〈

ax(κ(Axφ2)(Dxφ2)
2) + ay(κ(A yφ2)(D yφ2)

2),ε2
2

〉

�

+
〈

ax(κ(Ax(1 − φ1 − φ2))(Dx(1− φ1 − φ2))
2),ε2

3

〉

�

+
〈

ay(κ(A y(1 − φ1 − φ2))(D y(1− φ1 − φ2))
2),ε2

3

〉

�
. (3.6)

Lemma 3.2 (Existence of a convex-concave decomposition). Suppose (φ1, φ2) ∈ �CGper . The functions

Gh,c(φ1, φ2) := 〈S(φ1, φ2),1〉� (3.7)

+
〈

ax(κ(Axφ1)(Dxφ1)
2) + ay(κ(A yφ1)(D yφ1)

2),ε2
1

〉

�

+
〈

ax(κ(Axφ2)(Dxφ2)
2) + ay(κ(A yφ2)(D yφ2)

2),ε2
2

〉

�

+
〈

ax(κ(Ax(1− φ1 − φ2))(Dx(1 − φ1 − φ2))
2),ε2

3

〉

�

+
〈

ay(κ(A y(1− φ1 − φ2))(D y(1 − φ1 − φ2))
2),ε2

3

〉

�
,

Gh,e(φ1, φ2) := −〈H(φ1, φ2),1〉� , (3.8)

are convex. Therefore, Gh(φ1, φ2) = Gh,c(φ1, φ2) − Gh,e(φ1, φ2) is a convex-concave decomposition of the discrete energy.

Proof. We look at the detailed expansions of Gh,c(φ1, φ2) and Gh,e(φ1, φ2):

Gh,c(φ1, φ2) = h2
N

∑

i, j=1

(

S(φ1i, j, φ2i, j)

+ε2
1T3(φ1i+1, j, φ1i, j, Dxφ1i+1/2, j) + ε2

1T3(φ1i, j, φ1i−1, j, Dxφ1i−1/2, j)

+ε2
1T3(φ1i, j+1, φ1i, j, D yφ1i, j+1/2) + ε2

1T3(φ1i, j, φ1i, j−1, D yφ1i, j−1/2)

+ε2
2T3(φ2i+1, j, φ2i, j, Dxφ2i+1/2, j) + ε2

2T3(φ2i, j, φ2i−1, j, Dxφ2i−1/2, j)

+ε2
2T3(φ2i, j+1, φ2i, j, D yφ2i, j+1/2) + ε2

2T3(φ2i, j, φ2i, j−1, D yφ2i, j−1/2)

8
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+ε2
3T3((1− φ1 − φ2)i+1, j, (1 − φ1 − φ2)i, j, Dx(1− φ1 − φ2)i+1/2, j)

+ε2
3T3((1− φ1 − φ2)i, j, (1 − φ1 − φ2)i−1, j, Dx(1− φ1 − φ2)i−1/2, j)

+ε2
3T3((1− φ1 − φ2)i, j+1, (1 − φ1 − φ2)i, j, D y(1− φ1 − φ2)i, j+1/2)

+ε2
3T3((1− φ1 − φ2)i, j, (1 − φ1 − φ2)i, j−1, D y(1− φ1 − φ2)i, j−1/2)

)

,

Gh,e(φ1, φ2) = −h2
N

∑

i, j=1

H(φ1i, j, φ2i, j).

It’s clear that Gh,c and Gh,e are linear combination of certain convex functions; see the analysis in Proposition 2.1. Therefore, 

they are both convex. �

Proposition 3.3. Suppose (φ1, φ2) ∈ �CGper . The variational derivatives of Gh,c and Gh,e with respect to φ1 and φ2 are grid functions 

satisfying

δφi
Gh,c(φ1, φ2) =

∂

∂φi

S(φ1, φ2) (3.9)

+ ε2
i ax(κ

′(Axφi)(Dxφi)
2) − 2ε2

i dx(κ(Axφi)Dxφi)

+ ε2
i ay(κ

′(A yφi)(D yφi)
2) − 2ε2

i dy(κ(A yφi)D yφi)

− ε2
3ax(κ

′(Ax(1 − φ1 − φ2))(Dx(1− φ1 − φ2))
2)

+ 2ε2
3dx(κ(Ax(1− φ1 − φ2))Dx(1− φ1 − φ2))

− ε2
3ay(κ

′(A y(1 − φ1 − φ2))(D y(1− φ1 − φ2))
2)

+ 2ε2
3dy(κ(A y(1− φ1 − φ2))D y(1− φ1 − φ2)),

δφi
Gh,e(φ1, φ2) = −

∂

∂φi

H(φ1, φ2), (3.10)

for i = 1, 2.

Proof. Fix (φ1, φ2) ∈ �CGper and let ψ1 ∈ Cper . Define the function of one variable

J1,c(λ) = Gh,c(φ1 + λψ1, φ2),

for all λ ∈ R sufficiently small that (φ1 +λψ1, φ2) ∈ �CGper . The function J1,c(λ) is continuous and differentiable. By definition, 

the variational derivative satisfies

J ′1,c(0) =
〈

δφ1Gh,c(φ1, φ2),ψ1

〉

�
.

Since the operators ax, Ax, Dx, ay, A y and D y are all linear, the following derivation is available

J ′1,c(0) =

〈

∂

∂φ1
S(φ1, φ2)ψ1,1

〉

�

+ ε2
1

[

κ ′(Axφ1)Axψ1(Dxφ1)
2 + 2κ(Axφ1)Dxφ1Dxψ1, Ax1

]

x

+ ε2
1

[

κ ′(A yφ1)A yψ1(D yφ1)
2 + 2κ(A yφ1)D yφ1D yψ1, A y1

]

y

+ ε2
3[−κ ′(Ax(1− φ1 − φ2))Axψ1(Dx(1− φ1 − φ2))

2

− 2κ(Ax(1− φ1 − φ2))Dx(1− φ1 − φ2)Dxψ1, Ax1]x

+ ε2
3[−κ ′(A y(1− φ1 − φ2))A yψ1(D y(1− φ1 − φ2))

2

− 2κ(A y(1− φ1 − φ2))D y(1− φ1 − φ2)D yψ1, A y1]y

=

〈

∂

∂φ1
S(φ1, φ2),ψ1

〉

�

+ ε2
1

〈

ax(κ
′(Axφ1)(Dxφ1)

2) − 2dx(κ(Axφ1)Dxφ1),ψ1

〉

�

9
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+ ε2
1

〈

ay(κ
′(A yφ1)(D yφ1)

2) − 2dy(κ(A yφ1)D yφ1),ψ1

〉

�

+ ε2
3〈−ax(κ

′(Ax(1− φ1 − φ2))(Dx(1− φ1 − φ2))
2)

+ 2dx(κ(Ax(1− φ1 − φ2))Dx(1− φ1 − φ2)),ψ1〉�

+ ε2
3〈−ay(κ

′(A y(1− φ1 − φ2))(D y(1− φ1 − φ2))
2)

+ 2dy(κ(A y(1− φ1 − φ2))D y(1− φ1 − φ2)),ψ1〉�.

Therefore,

δφ1Gh,c(φ1, φ2) =
∂

∂φ1
S(φ1, φ2)

+ ε2
1ax(κ

′(Axφ1)(Dxφ1)
2) − 2ε2

1dx(κ(Axφ1)Dxφ1)

+ ε2
1ay(κ

′(A yφ1)(D yφ1)
2) − 2ε2

1dy(κ(A yφ1)D yφ1)

− ε2
3ax(κ

′(Ax(1− φ1 − φ2))(Dx(1− φ1 − φ2))
2)

+ 2ε2
3dx(κ(Ax(1− φ1 − φ2))Dx(1− φ1 − φ2))

− ε2
3ay(κ

′(A y(1− φ1 − φ2))(D y(1− φ1 − φ2))
2)

+ 2ε2
3dy(κ(A y(1− φ1 − φ2))D y(1− φ1 − φ2)).

The derivations for δφ2Gh,c(φ1, φ2), δφ1Gh,e(φ1, φ2) and δφ2Gh,e(φ1, φ2) are quite similar and are omitted for the sake of 

brevity. �

Lemma 3.4. Suppose that �φ, �ψ ∈ �CGper . Consider the canonical convex splitting of the energy Gh( �φ) in (3.6) into Gh = Gh,c − Gh,e

given by (3.7) – (3.8). The following inequality is available

Gh( �φ) − Gh( �ψ) ≤
〈

δφ1Gh,c( �φ) − δφ1Gh,e( �ψ),φ1 − ψ1

〉

�
(3.11)

+
〈

δφ2Gh,c( �φ) − δφ2Gh,e( �ψ),φ2 − ψ2

〉

�
.

Proof. Fix �φ ∈ �CGper and �ϕ ∈ Cper × Cper . Let N ⊂ R be a sufficiently small neighborhood of 0. For all λ ∈ N , we can define 

the continuous and differentiable function Jc(λ) := Gh,c( �φ + λ �ϕ). It is clear that Jc(λ) is convex, since Gh,c is convex. We 

have Jc(λ) − Jc(0) ≥ J ′c(0)λ, for any λ ∈N . This implies that

Gh,c( �φ + λ �ϕ) − Gh,c( �φ) ≥
〈

δφ1Gh,c( �φ),λϕ1

〉

�
+

〈

δφ2Gh,c( �φ),λϕ2

〉

�
.

We may assume that �ψ := �φ + λ �ϕ ∈ �CGper since λ is small in magnitude. Then we have

Gh,c( �ψ) − Gh,c( �φ) ≥
〈

δφ1Gh,c( �φ),ψ1 − φ1

〉

�
+

〈

δφ2Gh,c( �φ),ψ2 − φ2

〉

�
.

For Gh,e , we have a similar inequality:

Gh,e( �ψ) − Gh,e( �φ) ≥
〈

δφ1Gh,e( �φ),ψ1 − φ1

〉

�
+

〈

δφ2Gh,e( �φ),ψ2 − φ2

〉

�
.

Combining these inequalities, we obtain

Gh( �φ) − Gh( �ψ) =
(

Gh,c( �φ) − Gh,c( �ψ)
)

−
(

Gh,e( �φ) − Gh,e( �ψ)
)

≤
〈

δφ1Gh,c( �φ),φ1 − ψ1

〉

�
+

〈

δφ2Gh,c( �φ),φ2 − ψ2

〉

�

−
〈

δφ1Gh,e( �ψ),φ1 − ψ1

〉

�
−

〈

δφ2Gh,e( �ψ),φ2 − ψ2

〉

�

=
〈

δφ1Gh,c( �φ) − δφ1Gh,e( �ψ),φ1 − ψ1

〉

�

+
〈

δφ2Gh,c( �φ) − δφ2Gh,e( �ψ),φ2 − ψ2

〉

�
. �

10
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Using the standard approach in the convex splitting, the fully discrete scheme is as follows: for n ≥ 0, given (φn
1, φ

n
2) ∈

�CGper , find (φn+1
1 , φn+1

2 ) ∈ �CGper such that

φn+1
1 − φn

1


t
= M1
hμ

n+1
1 , (3.12)

μn+1
1 := δφ1Gh,c(φ

n+1
1 , φn+1

2 ) − δφ1Gh,e(φ
n
1, φ

n
2), (3.13)

φn+1
2 − φn

2


t
= M2
hμ

n+1
2 , (3.14)

μn+1
2 := δφ2Gh,c(φ

n+1
1 , φn+1

2 ) − δφ2Gh,e(φ
n
1, φ

n
2). (3.15)

4. Positivity-preserving property and unique solvability

The proof of the following lemma can be found in [7].

Lemma 4.1. [7]. Suppose that φ1 , φ2 ∈ Cper , with 〈φ1 − φ2,1〉� = 0, that is, φ1−φ2 ∈ C̊per , and assume that ‖φ1‖∞ < 1, ‖φ2‖∞ ≤ M. 

Then, we have the following estimate:

∥

∥(−
h)
−1(φ1 − φ2)

∥

∥

∞
≤ C1,

where C1 > 0 depends only upon M and �. In particular, C1 is independent of the mesh size h.

The following theorem is the main result of the paper. It guarantees the well-defined nature of the proposed scheme.

Theorem 4.2. Given (φn
1, φ

n
2) ∈

�CGper , then (φn
1, φ

n
2) ∈ G , and there exists a unique solution (φn+1

1 , φn+1
2 ) ∈ �CGper to (3.12) – (3.14), with 

φn
1 = φn+1

1 and φn
2 = φn+1

2 .

Proof. For bookkeeping, we introduce the following notation:

δφ1Gh,c(φ1, φ2) =

9
∑

�=1

Q �(φ1, φ2),

where

Q 1(φ1, φ2) :=
∂

∂φ1
S(φ1, φ2),

Q 2(φ1, φ2) := ε2
1ax(κ

′(Axφ1)(Dxφ1)
2),

Q 3(φ1, φ2) := −2ε2
1dx(κ(Axφ1)Dxφ1),

Q 4(φ1, φ2) := ε2
1ay(κ

′(A yφ1)(D yφ1)
2),

Q 5(φ1, φ2) := −2ε2
1dy(κ(A yφ1)D yφ1),

Q 6(φ1, φ2) := −ε2
3ax(κ

′(Ax(1 − φ1 − φ2))(Dx(1− φ1 − φ2))
2),

Q 7(φ1, φ2) := 2ε2
3dx(κ(Ax(1 − φ1 − φ2))Dx(1 − φ1 − φ2)),

Q 8(φ1, φ2) := −ε2
3ay(κ

′(A y(1 − φ1 − φ2))(D y(1− φ1 − φ2))
2),

Q 9(φ1, φ2) := 2ε2
3dy(κ(A y(1 − φ1 − φ2))D y(1 − φ1 − φ2)).

The numerical solution of (3.12) – (3.14) is a minimizer of the following discrete energy functional:

J n
h (φ1, φ2) =

1

2M1
t
‖φ1 − φn

1‖
2
−1,h +

1

2M2
t
‖φ2 − φn

2‖
2
−1,h + 〈S(φ1, φ2),1〉�

+
〈

ax(κ(Axφ1)(Dxφ1)
2) + ay(κ(A yφ1)(D yφ1)

2),ε2
1

〉

�

+
〈

ax(κ(Axφ2)(Dxφ2)
2) + ay(κ(A yφ2)(D yφ2)

2),ε2
2

〉

�

+ 〈ax(κ(Ax(1− φ1 − φ2))(Dx(1 − φ1 − φ2))
2)

+ ay(κ(A y(1− φ1 − φ2))(D y(1− φ1 − φ2))
2),ε2

3〉�

+

〈

∂

∂φ1
H(φn

1, φ
n
2),φ1

〉

�

+

〈

∂

∂φ2
H(φn

1, φ
n
2),φ2

〉

�

,

11
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over the admissible set

Ah :=
{

(φ1, φ2) ∈ �CGper

∣

∣

∣
〈φ1,1〉� = |�|φ0

1 , 〈φ2,1〉� = |�|φ0
2

}

⊂ R
2N2

.

It is clear that J n
h

is a strictly convex functional.

Now, consider the following closed domain:

Ah,δ :=
{

(φ1, φ2) ∈ Cper × Cper

∣

∣

∣ φ1, φ2 ≥ g(δ), δ ≤ φ1 + φ2 ≤ 1− δ,

〈φ1,1〉� = |�|φ0
1 , 〈φ2,1〉� = |�|φ0

2

}

⊂ R
2N2

,

where g(δ) > 0 will be given later. Define the hyperplane

V :=
{

(φ1, φ2)

∣

∣

∣
〈φ1,1〉� = |�|φ0

1 , 〈φ2,1〉� = |�|φ0
2

}

⊂ R
2N2

.

Since Ah,δ is a bounded, compact, and convex subset of V , there exists (not necessarily unique) a minimizer of J n
h
(φ1, φ2)

over Ah,δ . The key point of the positivity analysis is that, such a minimizer could not occur at a boundary point of Ah,δ , if 

δ and g(δ) are sufficiently small.

Assume the minimizer of J n
h
(φ1, φ2) over Ah,δ occurs at a boundary point of Ah,δ .

Case 1: We suppose the minimizer (φ�
1, φ

�
2) ∈ Ah,δ , satisfies (φ

�
1)�α0

= g(δ), for some grid point �α0 := (i0, j0). Assume that 

φ�
1 reaches its maximum value at the grid point �α1 := (i1, j1). It is obvious that (φ

�
1)�α1

≥ φ�
1 = φ0

1 .

A careful calculation gives the following directional derivative

dsJ
n
h (φ�

1 + sψ,φ�
2)|s=0 =

1

M1
t

〈

(−
h)
−1

(

φ�
1 − φn

1

)

,ψ
〉

�

+
〈

δφ1Gh,c(φ
�
1, φ

�
2),ψ

〉

�
+

〈

∂

∂φ1
H(φn

1, φ
n
2),ψ

〉

�

,

for any ψ ∈ C̊per . Let us pick the direction

ψi, j = δi,i0δ j, j0 − δi,i1δ j, j1 ,

where δi, j is the Dirac delta function. Note that ψ is of mean zero. The derivative may be expressed as

1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 =

1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α0
(4.1)

−
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α1

+ δφ1Gh,c(φ
�
1, φ

�
2)�α0

− δφ1Gh,c(φ
�
1, φ

�
2)�α1

+

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

=
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α0

−
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α1

+

9
∑

�=1

Q �(φ
�
1, φ

�
2)�α0

−

9
∑

�=1

Q �(φ
�
1, φ

�
2)�α1

+

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

.

For the first and second terms appearing in (4.1), we apply Lemma 4.1 and obtain

−
2C1

M1
≤

1

M1
(−
h)

−1
(

φ�
1 − φn

1

)

�α0
−

1

M1
(−
h)

−1
(

φ�
1 − φn

1

)

�α1
≤

2C1

M1
. (4.2)

For the Q 1 terms, the following inequality is available:

12
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Q 1(φ
�
1, φ

�
2)�α0

− Q 1(φ
�
1, φ

�
2)�α1

=
∂

∂φ1
S(φ�

1, φ
�
2)�α0

−
∂

∂φ1
S(φ�

1, φ
�
2)�α1

(4.3)

=

(

1

M0
ln

α(φ�
1)

M0
− ln(1− φ�

1 − φ�
2)

)

�α0

−

(

1

M0
ln

α(φ�
1)

M0
− ln(1 − φ�

1 − φ�
2)

)

�α1

=

(

ln
(φ�

1)
1/M0

1− φ�
1 − φ�

2

)

�α0

−

(

ln
(φ�

1)
1/M0

1− φ�
1 − φ�

2

)

�α1

≤ ln
(g(δ))

1/M0

δ
− ln

(φ0
1)

1/M0

1 − δ

≤ ln
(g(δ))

1/M0

δ
−

1

M0
lnφ0

1 .

Using the logarithm property ln(ab) = lna + lnb, we have eliminated the constant 1
M0

ln α
M0

. The next-to-last step comes 

from the facts that (φ�
1)�α0

= g(δ), (φ�
1)�α1

≥ φ0
1 and δ ≤ φ1 + φ2 ≤ 1 − δ. The last step comes from the inequality that 

ln(1 − δ) < 0.

For the Q 2 terms, we have

Q 2(φ
�
1, φ

�
2)�α0

− Q 2(φ
�
1, φ

�
2)�α1

= ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α0
(4.4)

− ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α1

≤ −ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α1

≤
ε2
1

9h2
.

The second step above comes from the fact that

ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α0
≤ 0,

since κ ′(φ) = − 1
36φ2 < 0. The last step is based on the definitions of κ ′(φ), ax , Ax , and Dx , as well as the fact that | a−b

a+b
| < 1, 

∀a > 0, b > 0. In details, we observe the following expansion

−ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α1
=

ε2
1

18h2

[

(φ�
1)i1+1, j1 − (φ�

1)i1, j1

(φ�
1)i1+1, j1 + (φ�

1)i1, j1

]2

+
ε2
1

18h2

[

(φ�
1)i1, j1 − (φ�

1)i1−1, j1

(φ�
1)i1−1, j1 + (φ�

1)i1, j1

]2

≤
ε2
1

9h2
.

The Q 4 terms can be similarly handled:

Q 4(φ
�
1, φ

�
2)�α0

− Q 4(φ
�
1, φ

�
2)�α1

= ε2
1ay(κ

′(A yφ
�
1)(D yφ

�
1)

2)�α0
(4.5)

− ε2
1ay(κ

′(A yφ
�
1)(D yφ

�
1)

2)�α1

≤
ε2
1

9h2
.

For the Q 3 terms, we see that

Q 3(φ
�
1, φ

�
2)�α0

− Q 3(φ
�
1, φ

�
2)�α1

= −2ε2
1dx(κ(Axφ

�
1)Dxφ

�
1)�α0

(4.6)

+ 2ε2
1dx(κ(Axφ

�
1)Dxφ

�
1)�α1

≤ 0,

in which the last step comes from the fact that (Dxφ
�
1)i0−1/2, j0≤0, (Dxφ

�
1)i0+1/2, j0≥0, (Dxφ

�
1)i1−1/2, j1 ≥ 0, and (Dxφ

�
1)i1+1/2, j1 ≤

0.

13
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A bound for the Q 5 terms could be similarly derived:

Q 5(φ
�
1, φ

�
2)�α0

− Q 5(φ
�
1, φ

�
2)�α1

= −2ε2
1dy(κ(A yφ

�
1)D yφ

�
1)�α0

(4.7)

+ 2ε2
1dy(κ(A yφ

�
1)D yφ

�
1)�α1

≤ 0.

Use a technique similar to that used for Q 2 , the Q 6 terms could be controlled as follows:

Q 6(φ
�
1, φ

�
2)�α0

− Q 6(φ
�
1, φ

�
2)�α1

= −ε2
3ax

(

κ ′(Ax(1 − φ�
1 − φ�

2))(Dx(1 − φ�
1 − φ�

2))
2
)

�α0

(4.8)

+ ε2
3ax

(

κ ′(Ax(1− φ�
1 − φ�

2))(Dx(1− φ�
1 − φ�

2))
2
)

�α1

≤ −ε2
3ax

(

κ ′(Ax(1− φ�
1 − φ�

2))(Dx(1− φ�
1 − φ�

2))
2
)

�α0

≤
ε2
3

9h2
.

A similar inequality could be derived for the Q 8 terms:

Q 8(φ
�
1, φ

�
2)�α0

− Q 8(φ
�
1, φ

�
2)�α1

= −ε2
3ay

(

κ ′(A y(1 − φ�
1 − φ�

2))(D y(1 − φ�
1 − φ�

2))
2
)

�α0

(4.9)

+ ε2
3ay

(

κ ′(A y(1− φ�
1 − φ�

2))(D y(1− φ�
1 − φ�

2))
2
)

�α1

≤ −ε2
3ay

(

κ ′(A y(1− φ�
1 − φ�

2))(D y(1− φ�
1 − φ�

2))
2
)

�α0

≤
ε2
3

9h2
.

For the Q 7 terms, we have

Q 7(φ
�
1, φ

�
2)�α0

− Q 7(φ
�
1, φ

�
2)�α1

= 2ε2
3dx(κ(Ax(1 − φ�

1 − φ�
2))Dx(1− φ�

1 − φ�
2))�α0

(4.10)

− 2ε2
3dx(κ(Ax(1 − φ�

1 − φ�
2))Dx(1− φ�

1 − φ�
2))�α1

=
ε2
3

18h

(

Dx(1− φ�
1 − φ�

2)

Ax(1 − φ�
1 − φ�

2)

)

i0+1/2, j0

−
ε2
3

18h

(

Dx(1− φ�
1 − φ�

2)

Ax(1− φ�
1 − φ�

2)

)

i0−1/2, j0

−
ε2
3

18h

(

Dx(1− φ�
1 − φ�

2)

Ax(1− φ�
1 − φ�

2)

)

i1+1/2, j1

+
ε2
3

18h

(

Dx(1− φ�
1 − φ�

2)

Ax(1− φ�
1 − φ�

2)

)

i1−1/2, j1

≤
4ε2

3

9h2
.

The last step above is based on the definitions of Ax and Dx , as well as the fact that | a−b
a+b

| < 1, ∀a > 0, b > 0.

Similarly, for the Q 9 terms, we have

Q 9(φ
�
1, φ

�
2)�α0

− Q 9(φ
�
1, φ

�
2)�α1

= 2ε2
3dy(κ(A y(1 − φ�

1 − φ�
2))D y(1− φ�

1 − φ�
2))�α0

(4.11)

− 2ε2
3dy(κ(A y(1 − φ�

1 − φ�
2))D y(1− φ�

1 − φ�
2))�α1

≤
4ε2

3

9h2
.

For the numerical solution φn
i at the previous time step, the a-priori assumption 0 < φn

i < 1 indicates that

−1 ≤ (φn
1)�α0

− (φn
1)�α1

≤ 1, i = 1,2. (4.12)

For the last two terms appearing in (4.1), we see that

14
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(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

= −2χ13[(φ
n
1)�α0

− (φn
1)�α1

] (4.13)

+ (χ12 − χ13 − χ23)[(φ
n
2)�α0

− (φn
2)�α1

]

≤ χ12 + 3χ13 + χ23.

Putting everything together, we have

1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 ≤ ln

(g(δ))
1/M0

δ
−

1

M0
lnφ0

1 +
2C1

M1
t

+
2ε2

1

9h2
+

10ε2
3

9h2
+ χ12 + 3χ13 + χ23.

The following quantity is introduced:

D0 := −
1

M0
lnφ0

1 +
2C1

M1
t
+

2ε2
1

9h2
+

10ε2
3

9h2
+ χ12 + 3χ13 + χ23.

Notice that D0 is a constant for a fixed 
t, h, while it becomes singular as 
t, h → 0. For any fixed 
t, h, we could choose 

g(δ) small enough so that

ln
(g(δ))

1/M0

δ
+ D0 < 0. (4.14)

In particular, we can choose

g(δ) := (δ exp(−D0 − 1))M0 .

This in turn shows that

1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 < 0,

provided that g(δ) satisfies (4.14). But, this contradicts the assumption that J n
h

has a minimum at (φ�
1, φ

�
2), since the 

directional derivative is negative in a direction pointing into (Ah,δ)
o , the interior of Ah,δ .

Case 2: Using similar arguments, we are able to prove that, the global minimum of J n
h

over Ah,δ could not occur on the 

boundary section where (φ�
2)�α0

= g(δ), if g(δ) is small enough, for any grid index �α0 .

Case 3: Suppose the minimum point (φ�
1, φ

�
2) satisfies

(φ�
1)�α0

+ (φ�
2)�α0

= 1− δ,

with �α0 := (i0, j0). We could choose δ ∈ (0, 1/3). Without loss of generality, it is assumed that (φ�
1)�α0

≥ 1
3
. In addition, we 

see that

1

N2

N
∑

i, j=1

(φ1 + φ2)i, j = φ0
1 + φ0

2 .

There exists one grid point �α1 := (i1, j1), so that φ�
1 +φ�

2 reaches the minimum value at �α1 . Then it is obvious that (φ�
1)�α1

+

(φ�
2)�α1

≤ φ�
1 + φ�

2 = φ0
1 + φ0

2 . In turn, the following directional derivative could be derived:

dsJ
n
h (φ�

1 + sψ,φ�
2)|s=0 =

1

M1
t

〈

(−
h)
−1

(

φ�
1 − φn

1

)

,ψ
〉

�

+
〈

δφ1Gh,c(φ
�
1, φ

�
2),ψ

〉

�
+

〈

∂

∂φ1
H(φn

1, φ
n
2),ψ

〉

�

,

for any ψ ∈ C̊per . Setting the direction as

ψi, j = δi,i0δ j, j0 − δi,i1δ j, j1 ,

then the derivative may be expanded as

15
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1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 =

1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α0
(4.15)

−
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α1

+ δφ1Gh,c(φ
�
1, φ

�
2)�α0

− δφ1Gh,c(φ
�
1, φ

�
2)�α1

+

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

=
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α0

−
1

M1
t
(−
h)

−1
(

φ�
1 − φn

1

)

�α1

+

9
∑

�=1

Q �(φ
�
1, φ

�
2)�α0

−

9
∑

�=1

Q �(φ
�
1, φ

�
2)�α1

+

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

.

For the first and second terms appearing in (4.15), we apply Lemma 4.1 and obtain

−2C1 ≤ (−
h)
−1

(

φ�
1 − φn

1

)

�α0
− (−
h)

−1
(

φ�
1 − φn

1

)

�α1
≤ 2C1. (4.16)

For the Q 1 terms, we have

Q 1(φ
�
1, φ

�
2)�α0

− Q 1(φ
�
1, φ

�
2)�α1

=
∂

∂φ1
S(φ�

1, φ
�
2)�α0

−
∂

∂φ1
S(φ�

1, φ
�
2)�α1

(4.17)

=

(

1

M0
ln

α(φ�
1)

M0
− ln(1− φ�

1 − φ�
2)

)

�α0

−

(

1

M0
ln

α(φ�
1)

M0
− ln(1 − φ�

1 − φ�
2)

)

�α1

=

(

ln
(φ�

1)
1/M0

1− φ�
1 − φ�

2

)

�α0

−

(

ln
(φ�

1)
1/M0

1− φ�
1 − φ�

2

)

�α1

≥ ln
( 1
3
)
1/M0

δ
− ln

1

1− φ0
1 − φ0

2

.

The last step above comes from the facts that (φ�
1)�α0

≥ 1
3
, (φ�

1)�α1
+ (φ�

2)�α1
≤ φ0

1 + φ0
2 , and (φ�

1)�α1
< 1.

For the Q 2 terms, we have

Q 2(φ
�
1, φ

�
2)�α0

− Q 2(φ
�
1, φ

�
2)�α1

= ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α0
(4.18)

− ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α1

≥ ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α0

≥ −
ε2
1

9h2
,

in which the second step comes from the fact that −ε2
1ax(κ

′(Axφ
�
1)(Dxφ

�
1)

2)�α1
≥ 0, since κ ′(φ) = − 1

36φ2 < 0, and the last 

step is based on the definitions of κ ′(φ), ax , Ax , and Dx , as well as the fact that | a−b
a+b

| < 1, ∀a > 0, b > 0.

For the Q 4 terms, similarly, we get

Q 4(φ
�
1, φ

�
2)�α0

− Q 4(φ
�
1, φ

�
2)�α1

= ε2
1ay(κ

′(A yφ
�
1)(D yφ

�
1)

2)�α0
(4.19)

− ε2
1ay(κ

′(A yφ
�
1)(D yφ

�
1)

2)�α1

≥ −
ε2
1

9h2
.

The Q 3 and Q 5 terms could be analyzed as follows
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Q 3(φ
�
1, φ

�
2)�α0

− Q 3(φ
�
1, φ

�
2)�α1

= −2ε2
1dx(κ(Axφ

�
1)Dxφ

�
1)�α0

(4.20)

+ 2ε2
1dx(κ(Axφ

�
1)Dxφ

�
1)�α1

≥ −
4ε2

1

9h2
,

Q 5(φ
�
1, φ

�
2)�α0

− Q 5(φ
�
1, φ

�
2)�α1

= −2ε2
1dy(κ(A yφ

�
1)D yφ

�
1)�α0

(4.21)

+ 2ε2
1dy(κ(A yφ

�
1)D yφ

�
1)�α1

≥ −
4ε2

1

9h2
.

The estimates for Q 6 and Q 8 terms are similar:

Q 6(φ
�
1, φ

�
2)�α0

− Q 6(φ
�
1, φ

�
2)�α1

= −ε2
3ax

(

κ ′(Ax(1 − φ�
1 − φ�

2))(Dx(1 − φ�
1 − φ�

2))
2
)

�α0

(4.22)

+ ε2
3ax

(

κ ′(Ax(1− φ�
1 − φ�

2))(Dx(1− φ�
1 − φ�

2))
2
)

�α1

≥ +ε2
3ax

(

κ ′(Ax(1− φ�
1 − φ�

2))(Dx(1− φ�
1 − φ�

2))
2
)

�α1

≥ −
ε2
3

9h2
,

Q 8(φ
�
1, φ

�
2)�α0

− Q 8(φ
�
1, φ

�
2)�α1

= −ε2
3ay

(

κ ′(A y(1 − φ�
1 − φ�

2))(D y(1 − φ�
1 − φ�

2))
2
)

�α0

(4.23)

+ ε2
3ay

(

κ ′(A y(1− φ�
1 − φ�

2))(D y(1− φ�
1 − φ�

2))
2
)

�α1

≥ +ε2
3ay

(

κ ′(A y(1− φ�
1 − φ�

2))(D y(1− φ�
1 − φ�

2))
2
)

�α1

≥ −
ε2
3

9h2
.

For the Q 7 terms, we see that

Q 7(φ
�
1, φ

�
2)�α0

− Q 7(φ
�
1, φ

�
2)�α1

= 2ε2
3dx(κ(Ax(1 − φ�

1 − φ�
2))Dx(1− φ�

1 − φ�
2))�α0

(4.24)

− 2ε2
3dx(κ(Ax(1 − φ�

1 − φ�
2))Dx(1− φ�

1 − φ�
2))�α1

≥ 0.

The last step above comes from the fact that

(Dx(1− φ�
1 − φ�

2))i0−1/2, j0 ≤ 0,

(Dx(1− φ�
1 − φ�

2))i0+1/2, j0 ≥ 0,

(Dx(1− φ�
1 − φ�

2))i1−1/2, j1 ≥ 0,

(Dx(1− φ�
1 − φ�

2))i1+1/2, j1 ≤ 0.

Similarly, for the Q 9 terms, we see that

Q 9(φ
�
1, φ

�
2)�α0

− Q 9(φ
�
1, φ

�
2)�α1

= +2ε2
3dy(κ(A y(1− φ�

1 − φ�
2))D y(1 − φ�

1 − φ�
2))�α0

(4.25)

− 2ε2
3dy(κ(A y(1 − φ�

1 − φ�
2))D y(1− φ�

1 − φ�
2))�α1

≥ 0.

For the numerical solution at the previous time step, similar bounds could be derived for the last two terms appearing in 

(4.15)

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α0

−

(

∂

∂φ1
H(φn

1, φ
n
2)

)

�α1

= −2χ13[(φ
n
1)�α0

− (φn
1)�α1

] (4.26)

+ (χ12 − χ13 − χ23)[(φ
n
2)�α0

− (φn
2)�α1

]

≥ −χ12 − 3χ13 − χ23.
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Putting estimates together, we arrive at

1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 ≥ ln

( 1
3
)
1/M0

δ
− ln

1

1− φ0
1 − φ0

2

−
2C1

M1
t

−
10ε2

1

9h2
−

2ε2
3

9h2
− χ12 − 3χ13 − χ23.

The following quantity is introduced:

D1 :=
1

M0
ln3+ ln

1

1− φ0
1 − φ0

2

+
2C1

M1
t
+

10ε2
1

9h2
+

2ε2
3

9h2
+ χ12 + 3χ13 + χ23.

For any fixed 
t, h, we could choose δ small enough so that

− ln δ − D1 > 0, (4.27)

in particular, δ = min{exp(−D1 − 1), 1/3}. This in turn shows that

1

h2
dsJ

n
h (φ�

1 + sψ,φ�
2)|s=0 > 0,

provided that δ satisfies (4.27). This contradicts the assumption that J n
h

has a minimum at (φ�
1, φ

�
2).

Case 4: Using similar arguments, we can also prove that, the global minimum of J n
h

over Ah,δ could not occur on the 

boundary section where (φ�
1)�α0

+ (φ�
2)�α0

= δ, if δ is small enough, for any grid index �α0 . The details are left to the interested 

readers.

Finally, a combination of these four cases reveals that, the global minimizer of J n
h

(φ1, φ2) could only possibly occur at 

interior point of (Ah,δ)
0 ⊂ (Ah)

0 . We conclude that there must be a solution (φ1, φ2) ∈ (Ah)
0 that minimizes J n

h
(φ1, φ2) over 

Ah , which is equivalent to the numerical solution of (3.12) – (3.14). The existence of the numerical solution is established.

In addition, since J n
h
(φ1, φ2) is a strictly convex function over Ah , the uniqueness analysis for this numerical solution is 

straightforward. The proof of Theorem 4.2 is complete. �

Remark 4.3. For the two-phase MMC model with Flory-Huggins-deGennes free energy density, the energy functional could 

be represented in terms of a single phase variable, and the positivity-preserving property has been established for the 

energy stable numerical schemes [15,16]. However, a theoretical justification of this property for the ternary MMC system 

is much more complicated, due to the mixed terms involved in the highly nonlinear and singular surface diffusion part. For 

example, to overcome the difficulty associated with the coupling between the φ1 and φ3 variables in the surface diffusion 

energy, we have to set different lower and upper bounds for the two variables in the set-up of Ah,δ , and a nonlinear scaling 

(such as (4.14)) between g(δ) and δ is needed, which turns out to be a crucial step in the nonlinear analysis.

5. Unconditional energy stability

Theorem 5.1 (Energy stability). The fully discrete scheme (3.12) – (3.14) is unconditionally energy stable, i.e., for any time step size 


t > 0, we have

Gh(φ
n+1
1 , φn+1

2 ) ≤ Gh(φ
n
1, φ

n
2). (5.1)

Proof. Let �φ = (φn+1
1 , φn+1

2 ), and �ψ = (φn
1, φ

n
2) in the (3.11). Applying the fully discrete scheme (3.12) – (3.14) and 

Lemma 3.1, we have

Gh(φ
n+1
1 , φn+1

2 ) − Gh(φ
n
1, φ

n
2)

≤
〈

δφ1Gh,c(φ
n+1
1 , φn+1

2 ) − δφ1Gh,e(φ
n
1, φ

n
2),φ

n+1
1 − φn

1

〉

�

+
〈

δφ2Gh,c(φ
n+1
1 , φn+1

2 ) − δφ2Gh,e(φ
n
1, φ

n
2),φ

n+1
2 − φn

2

〉

�

=
〈

μn+1
1 , φn+1

1 − φn
1

〉

�
+

〈

μn+1
2 , φn+1

2 − φn
2

〉

�

= M1

〈

μn+1
1 ,
t
hμ

n+1
1

〉

�
+M2

〈

μn+1
2 ,
t
hμ

n+1
2

〉

�

= −M1
t‖∇hμ
n+1
1 ‖22 −M2
t‖∇hμ

n+1
2 ‖22

≤ 0. �
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Table 1

The �2 error and convergence rate for φ1 and φ2 . The initial data are defined in (6.1). The 
parameters are given by: T = 0.8, δt = 1.25 × 10−5 and ε1 = ε2 = ε3 = 1.0.


t 8δt 4δt 2δt δt

�2-error-φ1 9.5934 × 10−8 4.7472 × 10−8 2.3249 × 10−8 1.1140 × 10−8

Rate - 1.0150 1.0299 1.0615

�2-error-φ2 7.0928 × 10−7 3.5108× 10−7 1.7196 × 10−7 8.2400 × 10−8

Rate - 1.0146 1.0297 1.0614

Table 2

The �∞ error and convergence rate for φ1 and φ2 , with the same initial data and physical 
parameters as in Table 1.


t 8δt 4δt 2δt δt

�∞-error-φ1 1.9507× 10−7 9.6531 × 10−8 4.7275 × 10−8 2.2654 × 10−8

Rate - 1.0150 1.0299 1.0613

�∞-error-φ2 1.4499 × 10−6 7.1765 × 10−7 3.5151 × 10−7 1.6844 × 10−7

Rate - 1.0146 1.0297 1.0614

Fig. 1. Example 6.1: Evolution of the energy over time, 
t = 1.0× 10−4 .

6. Numerical results

In this section, we present several numerical experiments based on the proposed scheme. The nonlinear Full Approxima-

tion Scheme (FAS) multigrid method is used for solving the semi-implicit numerical scheme (3.12) – (3.14). The details are 

similar to earlier works [1,7,14,17,20,22,38], etc. We take the domain as � = [0, 64]2 , fix the space resolution N = 256 and 

choose the parameters in the model as M0 = 0.16, N0 = 5.12, χ12 = 4, χ13 = 10, χ23 = 1.6 and M1 =M2 = 1.0.

Example 6.1. The initial data is set as

φ0
1(x, y) = 0.1+ 0.01cos

(

3πx/32
)

cos
(

3π y/32
)

, (6.1)

φ0
2(x, y) = 0.5+ 0.01cos

(

3πx/32
)

cos
(

3π y/32
)

.

This example is designed to study the numerical accuracy in time. Since the exact solution is unknown, we treat the 

numerical solution obtained by 
t = 1.0 × 10−6 as the “exact solution” to calculate the error at the final time. The �2

and �∞ errors for φ1 and φ2 are displayed in Table 1 and Table 2, respectively. In addition, the energy evolution of the 

numerical solution with 
t = 1.0 × 10−4 is illustrated in Fig. 1, which indicates a clear energy decay. We also present the 

error evolution of the total mass of φ1 and φ2 in Fig. 2. In Fig. 3, the snapshot plots of φ1 , φ2 and φ3 at a sequence of time 

instants are displayed, to make a comparison with the existing binary MMC results. Moreover, the maximum values and 

minimum values of φ1 , φ2 and φ1 + φ2 are presented in Fig. 4 and Fig. 5.

This example is also designed to study the influence of the Huggins interaction parameters, χ12, χ13 , and χ23 , on the 

phase transition of MMC hydrogels. The snapshot plots of the three phase variables, φ1 , φ2 , and φ3 , with three different 

values of χ12 , χ13 and χ23 , are presented in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, respectively. In particular, it is observed that, 

the phase transition process becomes faster with decreasing values of χ12 , as well as increasing values of χ13 and χ23 . As 

a result, the proposed numerical method is able to predict a map of morphologies as a function of the model’s Huggins 

interaction parameters.

19



L. Dong, C. Wang, S.M. Wise et al. Journal of Computational Physics 442 (2021) 110451

Fig. 2. Example 6.1: The error developments of the total mass for φ1 and φ2 , respectively.

Fig. 3. Example 6.1: Evolution of three phase variables at t = 14,19,30 and 100. The time step size is taken as 
t = 1.0× 10−4 .

Example 6.2. A random initial perturbation is included in the initial data:

φ0
1(x, y) = φ10 + ri, j, (6.2)

φ0
2(x, y) = φ20 + ri, j,

where the ri, j are uniformly distributed random numbers in [-0.01, 0.01].
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Fig. 4. Example 6.1: The time evolution of the maximum and minimum values for φ1 and φ2 , respectively.

Fig. 5. Example 6.2: The time evolutions of the maximum and minimum values for φ1 + φ2 , with 
t = 1.0× 10−4 .

Fig. 6. Example 6.1: The phase plots of three variables with different values of χ12 at T = 20, and the time step size is taken as 
t = 1.0× 10−4 .

This example is designed to study the influence of the different initial function and the statistical segment length on the 

phase transition of MMC hydrogels. We separately depict the phase states of the three variables, with four different εi in 

Fig. 10. The snapshot plots with four different φ10 and φ20 are presented in Fig. 11 and Fig. 12, respectively.
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Fig. 7. Example 6.1: The phase plots of three variables with different values of χ13 at T = 20, and the time step size is taken as 
t = 1.0× 10−4 .

Fig. 8. Example 6.1: The phase plots of three variables with different values of χ23 at T = 20, and the time step size is taken as 
t = 1.0× 10−4 .

Example 6.3. The initial data is taken as:

φ0
1(x, y) = 0.1+ ri, j, (6.3)

φ0
2(x, y) = 0.5+ ri, j,

where the ri, j are uniformly distributed random numbers in [-0.01, 0.01].

The energy evolution of the numerical solution (with 
t = 1.0 ×10−4) is illustrated in Fig. 13, which indicates an energy 

decay. In addition, we present the error evolution of the total mass of φ1 and φ2 in Fig. 14. The maximum values and 
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Fig. 9. Example 6.1: The phase plots of three variables with different values of χ23 at T = 75, and the time step size is taken as 
t = 1.0× 10−4 .

Fig. 10. Example 6.2: The phase plots of three variables with different εi , i = 1,2,3 at T = 40, and the time step size 
t = 1.0× 10−4 .

minimum values of φ1 , φ2 and φ1 + φ2 are displayed in Fig. 15 and Fig. 16. Moreover, in Fig. 17, we plot the numerical 

solutions of φ1 , φ2 and φ3 at a sequence of time instants to compare with the existing binary MMC results.

Example 6.4. The initial data is taken as:

φ0
1(x, y) = 0.1+ ri, j, (6.4)

φ0
2(x, y) = 0.3+ ri, j,

where the ri, j are uniformly distributed random numbers in [-0.01, 0.01].
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Fig. 11. Example 6.2: The phase plots of three variables with different φ10 at T = 40, and the time step size 
t = 1.0 × 10−4 .

Fig. 12. Example 6.2: The phase plots of three variables with different φ20 at T = 20, and the time step size 
t = 1.0× 10−4 .

This example is designed to study the influence of the Huggins interaction parameter values χ12 , χ13 , and χ23 on the 

phase transition of MMC hydrogels under the random initial conditions. The snapshot graphs with comparison values of 

χ12 , χ13 and χ23 are displayed in Fig. 18, Fig. 19, and Fig. 20, respectively, taken at T = 100. Similarly, these numerical 

results indicate that, the phase transition process becomes faster with decreasing values of χ12 , as well as increasing values 

of χ13 and χ23 .

7. Concluding remarks

In this paper, we develop a uniquely solvable, positivity preserving and unconditionally energy stable finite difference 

scheme for the ternary Cahn-Hilliard-like model, describing the dynamics of the MMC hydrogels system. The free energy 

functional of the phase model is of Flory-Huggins-deGennes type, dependent on three variables, which could be reduced to 
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Fig. 13. Example 6.3: Evolution of the energy over time, 
t = 1.0× 10−4 .

Fig. 14. Example 6.3: The error development of the total mass for φ1 and φ2 , respectively.

Fig. 15. Example 6.3: The time evolution of the maximum and minimum values for φ1 and φ2 , respectively.

two variables by the total mass identity. The numerical scheme is designed based on the convex-concave decomposition of 

the physical energy, which is highly non-standard due to the multi phase variables involved. A theoretical justification of 

the positivity-preserving property has been established, by constructing a strictly convex discrete energy functional in two 

variables via the mass conservation identity, combined with the following subtle fact: the singular feature of the logarithmic 

functions ensures that a pair of minimizers could not occur on the limit values. In addition, the appearance of the highly 

nonlinear and singular coefficients in the surface diffusion part has also ensured the positivity-preserving property. The 

unique solvability and unconditional energy stability come from the convexity analysis. The FAS nonlinear multigrid method 

and Newton iteration algorithm are employed to improve the efficiency in the practical computation. A few numerical 

results have also been presented to demonstrate the robustness of the proposed scheme.
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Fig. 16. Example 6.3: The time evolution of the maximum and minimum values for φ1 + φ2 .

Fig. 17. Example 6.3: Evolution of the three phase variables with at t = 2,30 and 100, with 
t = 1.0× 10−4 .
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Fig. 18. Example 6.4: The phase plots of three variables with different values of χ12 at T = 100, and the time step size is taken as 
t = 1.0× 10−4 .

Fig. 19. Example 6.4: The phase plots of three variables with different values of χ13 at T = 100, and the time step size is taken as 
t = 1.0× 10−4 .
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