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Abstract

In this paper we propose and analyze a second order accurate (in time) numerical scheme
for the square phase field crystal equation, a gradient flow modeling crystal dynamics at the
atomic scale in space but on diffusive scales in time. Its primary difference with the stan-
dard phase field crystal model is an introduction of the 4-Laplacian term in the free energy
potential, which in turn leads to a much higher degree of nonlinearity. To make the numerical
scheme linear while preserving the nonlinear energy stability, we make use of the scalar
auxiliary variable (SAV) approach, in which a second order backward differentiation for-
mula is applied in the temporal stencil. Meanwhile, a direct application of the SAV method
faces certain difficulties, due to the involvement of the 4-Laplacian term, combined with a
derivation of the lower bound of the nonlinear energy functional. In the proposed numerical
method, an appropriate decomposition for the physical energy functional is formulated, so
that the nonlinear energy part has a well-established global lower bound, and the rest terms
lead to constant-coefficient diffusion terms with positive eigenvalues. In turn, the numeri-
cal scheme could be very efficiently implemented by constant-coefficient Poisson-like type
solvers (via FFT), and energy stability is established by introducing an auxiliary variable,
and an optimal rate convergence analysis is provided for the proposed SAV method. A few
numerical experiments are also presented, which confirm the efficiency and accuracy of the
proposed scheme.
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1 Introduction

The phase field crystal (PFC) equation, originally proposed in [29], stands for a new model
to simulate crystal dynamics at the atomic scale in space but on diffusive scales in time. This
model naturally incorporates elastic and plastic deformations, multiple crystal orientations
and defects, and it has already been used to simulate a wide variety of microstructures,
such as epitaxial thin film growth [30], grain growth [54], eutectic solidification [31], and
dislocation formation and motion [54], etc. Also see a related review [48]. In more details,
the phase variable describes a coarse-grained temporal average of the number density of
atoms, which is related to dynamic density functional theory [2,46]. A significant advantage
of this approach has been observed over other atomistic methods, such as molecular dynamics
methods where the time steps are constrained by atomic-vibration time scales. In the PFC
approach, the dimensionless energy is given by the following form [29,30,55]
l—¢

1 1
Epfc(¢)=/g{1¢4+ 5 ¢2—|V¢|2+5(A¢>>2}dx, e >0, (1.1)

where @ ¢ R?, D = 2 or 3, ¢ : Q — R is the atom density field, and the parameter
¢ represents a deviation from the melting temperature with 0 < ¢ < 1. For simplicity, a
periodic boundary condition is imposed for ¢; the analysis for the homogeneous Neumann
boundary condition case could be similarly extended. In turn, the standard PFC equation
becomes the associated H~! gradient flow:

0 =Ap, pi=08pEpre=¢ +ap+20¢+ A, a=1-¢

For e > 0, spatial oscillations could be observed in the solution of the PFC equation; typically
in 2D, the peaks and valleys of ¢ are arranged in a hexagonal pattern. These solutions represent
“solid phase” solutions in the model. Meanwhile, “liquid phase” solutions, which are spatially
uniform and constant, may also be possible. In fact, these solutions even be in coexistence
with the solid phase solutions to describe a crystal in equilibrium with its melt; see the related
discussions in [49].

On the other hand, alternate lattice structures, such as “square” symmetry crystal lattices,
are possible in 2D solutions. As mentioned in [30,35], a different choice of nonlinear term
in the PFC model is needed to obtain a square symmetry crystal lattice rather than the usual
hexagonal structure. In particular, such a symmetry can be obtained [35] by replacing ¢*
in (1.1) with |V¢|4; also see [60] for a related method. This results in the following energy
functional

1 1
Egpte(¢) = fg {g¢2 + IVo|* — |VoI* + 5<A¢>2}dx. (1.2)

In fact, there are essential similarities between this energy and the Aviles-Giga-type energy
[1]. The square phase field crystal (SPFC) equation is given by the following dynamics

hp=Ap, pi=38yEpre =—V-(IVOI*Vo) +ap +2A¢ + A% (1.3)
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We will assume for simplicity that a = 1 — ¢ > 0. For the standard PFC model and its
modified version, there have been extensive numerical works [3,4,26,42,56,57,59,64], etc. In
terms of the nonlinearity, the only difference between the standard PFC and SPFC equations
is the replacement of ¢* by |V¢|* in the free energy functional, while the analysis and
numerical approximation of the later one are much more challenging, especially when using
pseudo-spectral approximations of spatial derivatives. Very limited numerical results have
been available for the SPFC equation in the existing literature. For instance, some simulation
results are reported for a closely related equation in [35]. A modified backward differentiation
formula (BDF) scheme was presented in a more recent work [ 18], in which the energy stability
(in the original phase variable) and the convergence analysis have been theoretically justified.

Meanwhile, most existing works of energy stable schemes for a gradient flow containing
|[V|* energy potential are based on an implicit treatment of the 4-Laplacian part; see the
related works [18,32-34,50,56], etc. In particular, the preconditioned steepest descent (PSD)
nonlinear iteration has been proposed in [33] for the 4-Laplacian solver in both the L? and
H ! gradient flow, due to its convex structure, so that the computational cost is decomposed
of certain Poisson-like solvers at each iteration stage. Extensive numerical experiments have
implied that, approximately 10 to 15 iteration stages are needed for such a PSD algorithm
in most practical numerical simulations of physical examples. As a result, the computational
cost of implicit nonlinear 4-Laplacian solvers is approximately 10 to 15 times of a linear
scheme for the corresponding physical system .

On the other hand, a theoretical justification of linear schemes for the gradient flows con-
taining 4-Laplacian energy potential turns out to be a challenging issue. The scalar auxiliary
variable (SAV) approach for various gradient flows has attracted more and more attentions
in recent years [23,51-53]. To overcome the difficulty associated with the nonlinearity, the
energy functional is split into two parts: a nonlinear energy functional with a uniform lower
bound, combined with a quadratic surface diffusion energy with constant-coefficients. In
turn, the elevated nonlinear energy part (which contains a global constant to make its value
positive) is rewritten as a quadratic term, not in terms of the original physical variable, but
in terms of an artificially-introduced auxiliary variable. As a result, linear schemes could be
derived for the gradient flow reformulated in the quadratic nonlinear energy and the surface
diffusion energy, so that both the unique solvability and modified energy stability could be
theoretically justified for the linear schemes. Also notice that such an energy estimate is in
terms of the reformulated energy functional, not in terms of the original energy functional.

However, a direct application of the SAV method to the SPFC equation faces certain
technical difficulties. It is observed that, the concave diffusion energy —|| V|| corresponds
to a linear part in the chemical potential, while such a functional does not have a global
lower bound. In addition, its combination with two quadratic convex energy parts, namely,
%||¢>||2 and %H A ||, does not have a global lower bound, either. As a result, if the concave
diffusion energy is placed into the linear diffusion energy part, the SAV method would not
be effectively derived. In this article, we come up with an alternate split, which places the
concave diffusion energy —||V¢||? into the nonlinear energy functional part. In addition, a
combination of the 4-Laplacian energy %||V¢||i4 and the concave energy —IV#|? has a
well-established global lower bound, —|€2|, so that the nonlinear energy part is well-defined,
and the linear surface diffusion energy only contains two terms with positive eigenvalues.
Based on such an energy split, the PDE system is reformulated, and the SAV scheme could
be derived via the second order BDF2 temporal discretization. Similar to the epitaxial thin
film growth and other related gradient flow models, an explicit extrapolation is applied to
obtain a second order approximation to the nonlinear chemical potential and nonlinear energy
functional value. The resulting numerical system could be very efficiently solved; only a few
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Poisson-like solvers, via the FFT-based algorithms, are needed at each time step, since only
constant-coefficient equations are involved in the numerical scheme.

An unconditional energy stability could be proved via a careful estimate. Again, such a
stability estimate is in terms of the reformulated energy functional, not in terms of the original
energy functional. In the spatial discretization, we use Fourier pseudo-spectral approxima-
tion for its ability to capture more detailed structures with a reduced computational cost.
Summation-by-parts formulas enable us to derive unique solvability and energy stability for
the fully discrete numerical scheme. As a result of this discrete energy stability, a uniform-
in-time discrete H? bound for the numerical solution becomes available. In addition to this
uniform H? bound for the numerical solution (of the phase variable), a higher order H? esti-
mate could also be derived, with the help of various discrete Sobolev inequality in the Fourier
pseudo-spectral space. With such an H> bound at hand, we are able to control a discrete gra-
dient of the nonlinear chemical potential error function, in the Fourier pseudo-spectral space.
In addition, one nonlinear error inner product could be cancelled between the error evolu-
tionary equations for the original phase variable and the one for the introduced auxiliary
variable. These preliminary estimates enable one to obtain an optimal rate ( O(Ar? + ™))
convergence analysis for the proposed numerical scheme in the energy norm, i.e., in the
£%°(0, T HI%,) N £2(0, T: H 1%,) norm. In particular, the aliasing error control techniques have
to be applied in the nonlinear error estimate associated with the 4-Laplacian term.

The outline of the paper is given as follows. In Sect. 2 we present the numerical scheme.
First we review the Fourier pseudo-spectral approximation in space and recall an aliasing
error control technique. Then we formulate the proposed numerical scheme, and prove its
unique solvability. Subsequently, the energy stability analyses is provided in Sect. 3, and
an optimal rate convergence analysis is established in Sect. 4. Some numerical results are
presented in Sect. 5. Finally, some concluding remarks are made in Sect. 6.

2 The Numerical Scheme

2.1 Review of Fourier Pseudo-Spectral Approximations

The Fourier pseudo-spectral method is also referred as the Fourier collocation spectral
method. It is closely related to the Fourier spectral method, but complements the basis by an
additional pseudo-spectral basis, which allows to represent functions on a quadrature grid.
This simplifies the evaluation of certain operators, and can considerably speed up the calcu-
lation when using fast algorithms such as the fast Fourier transform (FFT); see the related
descriptions in [5,10,11,13,15-17,19,20,37,38,41,62,63], etc.

To simplify the notation in our pseudo-spectral analysis, we assume that the domain is
givenby Q = (0, 1)3, N, = Ny =N,;=:N e Nand N - h = 1. We further assume that N
is odd:

N =2K + 1, forsome K € N.

The analyses for more general cases are a bit more tedious, but can be carried out without
essential difficulty. The spatial variables are evaluated on the standard 3D numerical grid Q,
which is defined by grid points (x;, y;, zx), with x; = ih, y; = jh,zp = kh,0 <i, j, k <
2K + 1. This description for three-dimensional mesh (d = 3) can here and elsewhere be
trivially modified for the two-dimensional case (d = 2).
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We define the grid function space

oy = {12 > R 1 is O perocic |- 2.1)
Given any periodic grid functions f, g € Gy, the £2 inner product and norm are defined as
N—1
(fog) =0 > ik gk 1fla =D 2.2)
i,jk=0

The zero-mean grid function subspace is denoted Gy = { fegn ‘ (f,1)=:f= 0}. For
f € Gn, we have the discrete Fourier expansion

K

fijk= Z ﬂ{\’m’n exp (2mi(lx; +myj + nzx)), (2.3)
tm,n=—K

where the discrete Fourier coefficients are given by
N—1
ﬂ]’\[m,n =53 Z fijkexp (—Zni (Ex,- +mx; + nzk)) . 2.4)
i,jk=0
The collocation Fourier spectral first and second order derivatives of f are defined as

K
Difijui= », @uil) £, ,exp 2mi(tx; +my; +nzp)), 2.5)
tm,n=—K
K
DY fijuki= ., (—4x70%) £, exp 2mi(lx; + my; +nzp)). (2.6)
tm,n=—K

The differentiation operators in the y and z directions, Dy, Df, D, and Df can be defined in
the same fashion. In turn, the discrete Laplacian, gradient and divergence operators are given
by

Dy f
D.f
h
Vn-| f2 ::I&fi+ﬂpyfé+ﬁDLﬁv (2.7)
13
at the point-wise level. It is straightforward to verify that
VN -Vnf=Anf. (2.8)

See the derivations in the related references [5,6,36].

Definition 2.1 Suppose that the grid function f € Gy hasthe discrete Fourier expansion (2.3).
Its spectral extension into the trigonometric polynomial space Pk (the space of trigonometric
polynomials of degree at most K) is defined as

K

fs(x,y,2) = Z ﬂNmn exp 2ri(fx + my + nz)). 2.9)
Lm,n=—K
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We write Sy(f) = fs and denote Sy : Gy — Pk the spectral interpolation operator.
Suppose g € Cper($2, R). We define the grid projection Qn : Cper (2, R) — Gy via

ON (i jk = 8(Xis ¥j: 2k), (2.10)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

K N .
ONijk= Y.  ON(pmnexp (2milxi +my; +nzp)).
{,mn=—K

We define the de-aliasing operator Ry : Cper (2, R) — Pk via Ry := Sy(Qp). In other
words,

K
———N
Ry(g)(x,y,2) = Z ON(8)p,m,nexp 2ri(lx +my + nz)). (2.11)
Lm,n=—K

Finally, for any g € L*(2, R), we define the (standard) Fourier projection operator Py :
L*(Q,R) — Pk via

K

Py@)(x.y.2)= > &emnexpQui(tx +my +n2)),
l,m,n=—K

where
éé,m,n = / g(x,y,z)exp (—2mi(€x + my + nz)) dx,
Q
are the (standard) Fourier coefficients.

To overcome a key difficulty associated with the H™ bound of the nonlinear term obtained
by collocation interpolation, the following lemma is introduced. The case of r = O was proven
in earlier works [27,28], and the case of r > 1 was analyzed in a recent article [38].

Lemma 2.2 Suppose that m and K are non-negative integers, and, as before, assume that
N =2K + 1. Forany ¢ € Pk in R, we have the estimate

d
IRy @)l gr =m?2 llolpur, (2.12)

for any non-negative integer r.

In addition, we introduce the discrete fractional operator (—Ay)? (with y > 0):

K
(AN fijk = Z )‘Zm,n]?gm,n exp (27‘[i(€x,~ +myj + nzk)) ,
,mn=—K
Memn = 42 (0 +m* +n?), (2.13)

fora %ﬂd function f with the discrete Fourier expansion as (2.3). Similarly, for a grid function
f € Gy of (discrete) mean zero, a discrete version of the operator (—A) ™" may be defined
as
K
(AN fijki= D g o exp (il +my; +nz)) . (2.14)

Lm,n=—K
(€,m,n)#0
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We notice that the right hand side of (2.14) is a periodic grid function of zero mean, i.e,
(—AN)Vf e QON. Furthermore, to facilitate the analysis in later sections, we introduce an
operator Ly as Ly f = (al + A?v) f,forany f € Gy. The following fractional operator is
similarly defined:

1 K I
Lfvfi,j,k = Z (a + )\%’m’n) : fé\’m’n exp (2ni(€x,~ +my; + nzk)) ,  (2.15)
¢mn=—K

based on the fact that, the Fourier eigenvalue of the operator Ly (for the frequency mode
(¢,m,n))is givenby a + A7, .

The following summation-by-parts formulas are valid (see the related discussions in [8,
14,37,38]): for any periodic grid functions f, g € Gy,

(f,Ang) = — (YN[, Vng), (f. A%g)=(ANS, ANg),
(f.A%8) = — (VNANS. VnANg). (2.16)

Similarly, the following identity could be derived in the same manner:

TR
(f.Lng)=(Lyf.Lyg). Yf.g€gn. (2.17)

Since the SPFC equation (1.3) is an H ! gradient flow, we need a discrete version of the
norm || - || z-1 defined on Gy. For any f, g € Gy, we define

(fr8)-tn = (f, (—AM) ') = (AN T2 fL (AN 2g), 2.18)
so that the || - ||—1, 5 norm could be introduced as
Fl—1n == Vs frmin = I(=AN)2 flla. (2.19)

In addition to the standard ¢? norm, we also introduce the £7, 1 < p < oo, and £>° norms
for a grid function f € Gy:
N—1

— — (53
1 Floe = maxl il W71, o= (1030 1fejal”)”s 1= p<oo 220)

i.jk=0

==

The discrete H'! and H? norms are introduced as
LA, = 1A+ UVN A5, 11 =115 + AN 5. 221
N N N

For any periodic grid function ¢ € Gy, the discrete SPFC energy is defined as
1 4 4y 2 1 2
En(¢) = 4I|V1v¢>||4 + 2||¢>||z IVaollz + > ANl - (2.22)

The following result corresponds to a discrete Sobolev embedding from H 1%, to W;,'6 inthe
pseudo-spectral space. Similar discrete embedding estimates, in the lower order ones, could
be found in Lemma 2.1 of [20]; also see the related results [33,34] in the finite difference
version. A direct calculation is not able to derive these inequalities; instead, a discrete Fourier
analysis has to be applied in the derivation; the details of the proof has been provided in a
recent work [18]. .

Proposition 2.3 [18] For any periodic grid function f, we have
IVy flle < CllAN fll2, for some constant C only dependent on Q. (2.23)
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The following discrete elliptic regularity estimate will be used in the later stability analysis;
its proof will be provided in “Appendix 1”.

Proposition 2.4 For any periodic grid function f, we have

IVNANfll2 < CollAY flla,  for some Co only dependent on 2. (2.24)

2.2 The Fully Discrete Numerical Scheme
The SPFC energy (1.2) is decomposed into two parts:
1
Espfc(d)) = E1(¢) + 5(¢, L¢),

1
E1(@) =/ {Z|V¢|“—|V¢|2+2}dx, L =ap + A%, (2.25)
Q
In particular, due to the point-wise quadratic inequality
1 4 2
Z|V¢| — VeI~ +1=0, (2.26)
we conclude that E(¢) have a well-established lower bound:
Ev(¢) = 1€]. (2.27)
In turn, the nonlinear chemical potential becomes
N(¢) :=0pE1 =—-V - (|V¢|2V¢) +2A¢. (2.28)
Therefore, with an introduction of a scalar auxiliary variable

ri=VE|($), (2.29)

the original SPFC equation (1.3) could be rewritten as the following system:

& = A(l EFN@ + L), 30
rr = szg N(¢)¢tdx

Based on this reformulation, the fully discrete second order SAV scheme is proposed as
follows, with Fourier pseudo-spectral spatial approximation:

%¢n+l_2¢n+%¢n71 et

= AN(iA
Al JEL N @)

3. .n+l_n,.n 1 .n—1 ~ 3 n+l_~ ny 1 n—1
2 ST (Ny(@rth), 22000 ) 231h)

Ny @D+ Lyg™),  @31a)
(2.31)

_ 1
2/ELn @)

in which Ny (¢) := —Vy - (|VN¢|2VN¢) +2ANG, LN = adp + Ai,q&, and a second order
explicit extrapolation is applied to obtain dB’H‘l = 2¢" —¢"~!. The discrete nonlinear energy
functional is introduced as E| y(¢) := % IVNo ||f1 — I VNquI% + 2|€2|, similar to the notation
in (2.22).

Since (2.31) is a two-step numerical method, a “ghost” point extrapolation for ¢~ is
useful. To preserve the second order accuracy in time, we apply the following approximation:

o7 =9 — Aranp®, 1= Vi - (VN P VNE") +ag® +2A8¢° + A
(2.32)
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A careful Taylor expansion indicates an O (A#* 4+ h™) accuracy for such an approximation:

g~ — @', < C(Ar> + #™), in which @ is the exact solution for (1.3). (2.33)

In turn, we take 70 := \/E; y(¢0), r ! := /E| y(¢~ D)

2.3 Unique Solvability and Efficient Numerical Solver for the Proposed Scheme

In this section we analyze the unique solvability of the proposed SAV scheme (2.31). From
(2.31a), one can get

rn-H . 1
Ny@" ™ | +2¢" — ~¢" ",

VELN (@) 2

Define Ay = %I — AtAn Ly, so that the following identity is valid:

3
(51 — AtANLN> " = AtAy

(2.34)

it . 1
" = At————AJ AyNN(@"T) + A} <2¢>" - f¢"—1> :

VELN(@™) 2

From (2.31b), we see that

1 A 3 1
n+l _ Zon_ ~ n—1 N n+ly = n+l — 2" ~an—1 Q.
r 37 T3 +7An+l (NN (@), 50 ¢t 4 50" ). (235)
3V ELN(@"T)

A substitution of (2.35) into (2.34) gives
AvN on+1

N N(iﬁ )At
2E; N(¢")

AtANNy (@™ [ 4 1 1 . 1
_ N N(¢ ) 7rn_7rn71+ (NN(¢”+1),—2¢"+§¢’171>

JEv@ \3 3 3 Epy (@)

1
20" — = n—l'
207 =3¢

(%1 - AtANLN> Pt — (NN (@™, ")

Let g}y, denotes the right-hand of the above equation, then it becomes

ANNy ("1

AN¢n+l _ a4
2E; N (9"t

ANy (@', ¢"t!) = g
Multiplying both sides by A;l implies that

1 R ~
o - mAuNNW“), o) AV ANNN @) = Ayl (236)
I,N

Denote LHS = (NN(<13”+1),¢”+1), a scalar value. Taking a discrete inner product
with (2.36) by Ny (¢"+1) leads to

(Nn (@™, ") — “LHS - (Ny(@"™),

2E N (¢

@ Springer



33 Page 100f 36 Journal of Scientific Computing (2021) 88:33

AV ANNN (@) = (Ny (9", Ay gh).

Then we arrive at

At 1 —1 n+1 _ an+1 -1 _n
<1 — m (NN(@"T), Ay ANNN (& ))) “LHS = (NN(@""), Ay gN)-

(2.37)
In addition, we notice that
(NN (@"Th), Ayt Ay Ny (@"T)) <0, (2.38)

since all the eigenvalues of the symmetric operator AX,IA N are non-positive. As a direct
consequence, the coefficient on the left hand side of (2.37) is positive, so that the value
of LH S is uniquely solvable. Going back (2.36), the numerical solution ¢"*! is uniquely
determined:

n+1 __ At

=——— . LHS-AJ'ANNN@"H + A gh . (2.39)
2E; n(9"T) N N8N

Furthermore, a substitution of ¢! into (2.35) gives the numerical value of prtl

Theorem 2.5 Given ¢, ¢"~' € Gu, two scalar values r", r"~', with " = ¢"~!, there
exists a unique solution "' € Gy for the numerical schemes (2.31). The scheme is mass
conservative, i.e., p*¥ = @0 := By, for any k > 0, provided that $—! = ¢ = B.

Proof The unique solvability comes from the derived identities (2.35), (2.37) and (2.39). In
addition, the mass conservation property is a direct consequence of a summation of (2.31a)
over €2, which is turn leads to

— 41— 2 prtl
¢n+l = —¢" — §¢n71 + —Ay

3 3 VELN (@™

4o 1
=30 - 30", (2.40)

Ny ((z,n+l) + Lygntl

with the fact that Ay /' = 0,V f* € Gy, has been applied. An application of induction implies
that ¢* = By, for any k > 0, provided that ¢—1 = ¢9 = By. This completes the proof of
Theorem 2.5. O

3 Unconditional Energy Stability and the Uniform H3 Estimate
3.1 Modified Energy Stability for the Proposed Numerical Scheme
Theorem 3.1 For k > 1, define the discrete modified energy
1
EN@ L @ ) = % (llLM”‘n%
1 1
+||L[2V(2¢k+1 _ d)k)“%) + 5 (lrk+l |2 4 |2rk+l _ rk|2) .
3.1
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Solution of the numerical scheme (2.31) satisfies the following dissipation properties
EN@ T @8 L) < ey (@h, ot Pk P, (3.2)

Proof We begin with a rewritten form of the numerical scheme (2.31):
3 n+l_ngn 1 n—1
% — ANMV;VH’ (3.3a)
n+1 ~
" Ny@™h,  (3.3b)

VELN@Y (3.3)

%rn+l_2rn+%rn71 _ 1 (NN (én-‘rl) %¢n+1_2¢n+%¢n*l > (33C)
A 2/ELn @) A

ﬂr;\;H — LN¢n+1 +

Subsequently, taking discrete inner product with (3.3a) by 11!, with (3.3b) by —(3¢"*+! —
2¢" + 1¢"1), with (3.3¢) by 2r"*!, we have

3 1
(S¢" = 20" + " ) = A AT W) = — AV I3, (B4

2 2
3 n+1 n 1 n—1 n+1 n+1 3 n+1 n 1 n—1
—(=¢ —2¢" + Z¢",uy ) = —(Lno" T, S —2¢" + =¢"7)
2 2 2 2
1
@, %«p"“
Ei n(@"th
1
—2¢" + 5¢”‘1>, 3.5)
1,3 1 1 1 it Antly d 1
2 G 2 g o) = e (NN @), 9
VELN@"Th
1
~20" + 29" ). (3.6)
In turn, by adding (3.4), (3.5) and (3.6), we obtain
n+1 3 n+1 n 1 n—1
(Lno 7505 —2¢ +§¢ )
3 1
42, <5r"+1 —2r" + 5r"—‘> = —Ar|| Va3, (3.7)

Meanwhile, the derivation of the following two identities are straightforward:

3 1 _ 1 173 1 _
(LN¢n+l’§¢n+l_2¢n+§¢n 1>=<L]2v¢n+laL]2V (§¢n+1_2¢n+§¢n l>>

1 1 1 1 1 _
= Z(IILM”*‘ 13— IL3 ™13 + 1L} 20" — ™13 — 1L} (26" — " )13
1
HIL} (@™ —2¢" + ¢ D113, (3.8)
2rn+l Ern+l B, P lrnfl
2 2

1
— 7(|rn+1|2 _ |rl’l|2

2
H2rm 2 2t — Tt g 2, (3.9)
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in which identity (2.17) has been applied in the first step of (3.8). Going back (3.7), we arrive
at

En(@"T, ", Ty — En(e", "
11 _
= — Iy @" —2¢" + 6" I3

1
—§|r"+1 =2 " = A VS < 0. (3.10)
This completes the proof of Theorem 3.1. O

As a direct consequence of the energy stability, a uniform-in-time Hl%, bound for the
numerical solution is derived as follows.

Corollary 3.2 Suppose that the initial data are sufficiently regular so that
11 1 B 1 B .
JULRIE + L5700 =™ DID + S U P+ 120 =1 < Co, GBI

for some Co that is independent of h. Then we have the following uniform-in-time Hl%, bound
for the numerical solution:

16" 12 < Cr. Vm =1, (3.12)
where Cy > 0 depends on Q2 and Co, but is independent of h, At and the time step t™.
Proof As a result of (3.2), the following energy bound is available:

1 1
JILRO™I5 < Enig™, "L T < en @ 70 T
1 1 1 _ 1 _ ~
= JULFS I3+ 1L3 20° =47 DID) + S (71 + 1270 =71 P) < Co,
(3.13)

for any m > 1. On the other hand, the eigenvalue expansion (2.15) implies the following fact

1
ILZ FI13 = al fI3+ 1ANfI3, VS €Gn. (3.14)
Then we arrive at
46()
6™ 13 + I AN@™ I3 < 2, Vmz 1, (3.15)

And also, the following estimate is available:
IVN@™II3 = — (@™, And™) < 4™ 12 - |Ane™[I2

1 2C
< 539" 15 + 1 AN9"13) < 70 (3.16)

A

Therefore, the following bound is obvious

1 ~ 1
2 6Co\ 2 ~
19" 13 = (1615 + 196" 13+ 1ang"13) " = (=2)" = C1 ¥m=1. G17)

This completes the proof of Corollary 3.2. O
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Remark 3.3 Ttis obvious that the modified energy functional (3.1) is the second order approx-
imation to the original discrete energy (2.22), under certain regularity assumption for the
numerical solution. Meanwhile, such a modified discrete energy is in terms of a scalar auxil-
iary variable r, combined with the linear surface diffusion energy part, not fully in terms of
the original phase variable ¢, as formulated in (2.22). Although a direct bound of the original
energy functional is not available in terms of the initial data, a uniform-in-time H}%/ bound
for the numerical solution could be derived, up to a constant multiple, as demonstrated in
Corollary 3.2.

Remark 3.4 For various gradient flow equations, the second order numerical scheme using
the BDF temporal stencil has attracted many attentions in recent years. For these BDF-type
methods applied to the original phase variables, an artificial Douglas—Dupont regularization
term has to be added to ensure the energy stability; see the related works [34,40,43,47,61] for
the epitaxial thin film growth and Cahn—Hilliard equations, respectively. On the other hand,
for an SAV-based numerical algorithm, such an artificial regularization is not needed, since
the concave diffusion term has already been included in the scalar quadrant part.

Remark 3.5 As a combination of the uniform in time H 1%, bound (3.12) and the discrete

Sobolev embedding inequality (2.23), we arrive at a uniform in time WI{,’6 estimate for the
numerical solution:

IVNd™ll6 < CCi, Ym > 1. (3.18)

And also, the modified energy inequality (3.13) indicates that

1 ~ -

S < o, sothat " < 2Co)z, Vm > 1. (3.19)
These estimates will be useful in the higher order stability analysis presented below.

Meanwhile, the established energy stability estimate (3.2) is in terms of the modified
energy functional (3.1). On the other hand, for the original discrete energy (2.22), the follow-
ing estimate is available, with the help of the uniform-in-time H,%, bound (3.12), established
in Corollary 3.2.

Proposition 3.6 Suppose that the initial data are sufficiently regular so that (3.11) is satisfied,
for some Cy that is independent of h. Then we have the following uniform-in-time bound for
the original energy functional:

En@™) <Cf, Vm=1, (3.20)
where C | > 0 depends on Q and Co, but is independent of h, At and the time step t™.

Proof By the definition of the || - || g3 norm (2.21), we see that

I~ .
*Ild) 13+ 5 ||AN¢’"H2 < 2||¢> I3 < 5C since0<a<1, (321
IVng™ ||4<C||VN¢> ||6<c1||AN¢ 2. (322)
1
s0 that fnvw I3 < fc lang™ I3 < S CICY, (3.23)

for any m > 1, in which the uniform-in-time HZ%, bound (3.12) has been extensively applied.
Also notice that the discrete Holder inequality, as well as the Sobolev embedding (2.23),
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have been applied in the derivation of (3.22). Then we arrive at

1 a 1
Ex(@™) = ZIVNg" I3+ S19™ 13 — IVne™ I3+ S 1 Ane™ I3

IA

1 a 1 1oy~ 1~ -
ZIVN" 15+ S 10" 13 + S 1Ane™ 15 < 7 CICl + 5CF = Cf, (3.24)
4 2 2 4 2

for any m > 1. Notice that C | only depends on €2 and the initial data, henceforth on € and

Co, and independent on 4, At and final time. This completes the proof of Proposition 3.6. O

Remark 3.7 For the proposed SAV scheme (2.31), the uniform energy bound @i“ in (3.20)
depends on the uniform-in-time HI%, bound C; established in (3.12). Since Ci could be

1
represented as a constant multiple of Cg (as given by (3.17)), while C‘o is bounded by the
initial energy plus a fixed constant, we conclude that the original energy bound C | turns out
to be dependent on the original energy in a quadratic way, as revealed by (3.24). In contrast,
the following uniform-in-time bound has been derived in a recent work [18] for the SPFC
equation:

En(@™) < En(¢%). (3.25)

Of course, it is a much sharper estimate for the original energy functional than the one
established for the SAV approach, namely (3.24). This difference is based on the fact that,
an auxiliary variable (2.29) has been introduced in the SAV algorithm, so that only the
dissipation for the reformulated energy functional (3.1) is preserved, as established in (3.2).
In comparison, the primitive variable formulation of the SPFC equation was discussed in
[18], which in turn leads to a direct bound of the original energy functional (3.25).

In fact, there have been a great deal of efforts to enforce the stability estimate for the
original energy functional in the SAV numerical approach. For example, in two recent works
[21,22], a Lagrange multiplier approach has been introduced, so that the dissipation law
for the original energy functional becomes available, if the proposed numerical system is
solvable. Meanwhile, due to the nonlinear nature of the Lagrange multiplier approach of
the SAV method presented in [21,22], more detailed investigations of the unique solvability
analysis have to be undertaken. An application of such an approach to the SPFC equation
will also be considered in the future works.

3.2 The £°(0, T; H?) Bound Estimate for the Numerical Solution

Theorem 3.8 For the numerical solution (2.31), the following estimate is available:
g s < 0¥, Vm > 1, (3.26)

in which ¢ stands for the spectral interpolation of the numerical solution ™, as given by
formula (2.9). The constant Q@ only depends on the initial H® data and the domain, and it
is independent on At, h and T.

Proof Taking a discrete inner product with (2.31a) by —ZAi,qb’”‘l, we obtain

1 3 1
E<§¢n+1 _2¢n + E(ﬁn_lv _ZA?V¢H+1> +2<ANLN¢H+19 A:[;Vd)n-‘rl)

pntl n
=2 (ANNN(@"T)), AY ™). (3.27)

VELN (@)
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The temporal stencil term could be analyzed in the same way as in (3.8):

3 1
(§¢n+l_2¢n+§¢n l’_ZA?Vd)YH—l)

3 1
= (VNAy (5"’"“ —2¢" + 5«»"—1) ,2VyAng"th

1
= 5(||VNAN¢”+‘ I3 = IVN ANe" I3

HIVNAN Q™ — 9" — IVN AN Q29" — ¢" D3
+HIVN AN @ = 20" + " H13). (3.28)

The surface diffusion part could be handled in a more straightforward way:

<ANLN¢”+1, A:};v¢n+l> — a(AN¢n+l, A:]‘)V¢n+l> + (A:]"\/¢n+ly A?\/¢n+l)
= a| AR " I3 + AR 3. (3.29)

For the right hand side nonlinear inner product, we begin with the following observations:
Ein@"th =1l 7 < 2C0)%, (by (3.19)). (3.30)

These two bounds imply that

1

n+l ~ o\ 2
L <2C°> . (3.31)
\/E],N(¢A’"+l) €]

For the nonlinear inner product, the following expansion is recalled
ANNN(@") = —ANVy - (IVN@" T PV + 2454 (3.32)

The linear part could be controlled in a standard fashion:

! 2 2+l A3 g+l 26 \* 2 A+l 3 i+l
— 2 ———add A" <4 (Tgr ) 18Rk 1aRe
VELN@")
16Co 5 - 1
< o 1ARG"THE + SR I3,
12| 2
(3.33)
For the nonlinear 4-Laplacian part, the following grid function is introduced:
én+1 — |VN$n+l|2vNén+1. (3.34)
This in turn implies that
1ANVN - (V" PUNG" DI = AV - 45D 2, (3.35)
in which ég“ is the spectral interpolation of §"*!, given by formula (2.9). Moreover, since
4" is the point-wise interpolation of the continuous function
Qg1 = VL PVEE with ¢t =208 — ¢3!,
(3.36)
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we see that q'“rl = RN (@gn+1). In turn, by making use of the aliasing error control inequality

stated in Lemma 2.2, we conclude that

~ ~ 3 .
1A - 35D < 135 s = IRN gl s < 33 l@gnet [l since ggue € Pak.
(3.37)

Meanwhile, for @g.+1 given by (3.36), a detailed expansion and repeated applications of
Holder inequality indicate that

lpgnsillgs < Clll@gnrill + IV Aggs ) = C(IVPet Vet
HIVA(VEEH PVeith

= (1985 I - IV s + 19985 1

HIVEE e - IVVGS i - IV I ), (3.38)

in which the following estimates have been applied

IV PVl < IVE I - IVET I < 1VE 1 - IV I 3.
A(|V¢”+l| V¢"+] 3|V¢"+1| VA¢"+1 +6(V¢”+')(Vv¢”+‘)(vv¢”+‘),
VAV PV = 31Ves T A(VV A TH+6((VhetH (VYT ® (Vageth)
+6(VV¢”+I) ® (VV¢"+1)(VV¢n+]) + 12(V¢”+|)(VVV¢"+I)(VV¢n+I ’
IV (VY AGEHI < IV 17 - IVVASET I < 1Y@ 1 - IV 3.
I(VeEH(VVET) ® (VAGETHII < CIV Il - VYL L VAP |
< CUVEEH I - IV I IV 2.

I(VVETh @ (VVgET)(VVeethIl < CIVVeet 1.
I(VeetY VYV (VYT < IVEE Il - IVVVEET - VY5t | oo

< CIVEE Lo - IVVGET 1 - IV 2.

Furthermore, the following 3-D Sobolev embedding and interpolation inequalities could be
derived:

7
IV Lo < CAAGET I+ 1AL IS - A3GIHI5) < C(€) + EF a3 ),

(3.39)
1
IVETH s < ClAdTH 2 - a3t )2 < cc1 IA3gEty 2, (3.40)
.3 n 1
VG s < CIVVEH I < CIAGET I3 - Ia3gaH | < i adgit!ys,
(3.41)

~ 1
IV e < CAVAGET I + IVAGET G - 1 A3G2 T 6)
~ 1
< COAgTE A ¢”+1||4 F AT A3G )E - a3t )
< C(C“ IA3gEH | E 4 CF ||A3¢”+1||8) (3.42)

IV 2 < CIAGET S - 1a3nH 3 < CC1 IA3gEth s, (3.43)
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in which the uniform in time H2 bound (3.12) of the numerical solution has been extensively
used. In turn, a substitution of the above estimates into (3.38) yields

lpgntillgs < C(CT + CFf ||A3¢>”+1 1. (3.44)

Subsequently, its combination with (3.35) and (3.37) reveals that

IANVN - (V" T 2PV ] < C(CF +c 1AL 3)
< C(@ + EHaléh, (3.45)

in which the fact that ¢” *1 ¢ Pk has been applied in the last step. As a consequence, we
arrive at

rn+1 R R
2 (ANVn - (VNG T VNG, A"

\/EI,N((IAanrl)
C an+12 n+l n+l
<2(|Q|) IANVN - (VN@" T PNz - 836" I

<C(C3+c INTASENY ||A "2
<C(C1+C1 a3 ¢>”+‘||2)+ ||A 3" I3 (3.46)

A combination of (3.33) and (3.46) leads to

rn+1
~2 e (AN NN ")), A"

VELN @™

16C 3
SWIIA ¢”“||2+C<cﬁ+c [AY ") + 1A% " 3. (3.47)

Finally, a substitution of (3.28), (3.29) and (3.47) into (3.27) results in

1
Z—At(nvmw“u% —IVNANG" 3 + VN AN QY™ — ¢™)113
—IVyANQY" —¢" )3

3
+2al|A% "I + 1A} T3 < ||A ¢"+‘||2+C<cﬁ+c 1A% " 12).

| |
(3.48)

Meanwhile, the following interpolation inequality and Cauchy inequality are available:

1A% " l2 < ||AN¢3"+1||§ : ||Aiv<z3"“||§ < (36‘1)%||A§vq3"“||§, (3.49)
1A 5 = 1A% 29" — ¢" I3 =41l A3¢" 15 + 1 AN0" '3 — 4(A% 0", AY ")
< AIAXS" 13 + 1A%0" 113 + 231 A%0" 113 + 1A ¢" " 113)
< 6llA}¢" 13 +31A%e" 3. (3.50)

Then we obtain the following estimates:

16C, CoCy

alia 48 482 .9C2C?
—=llaj "5 < 1] — s

A 1 A
3 An+l i 3 An+l2
2 [ANe" 2 = T +3lAne™ Iz
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CCiC? 1 o
= Q2 +6” N¢ ”2"‘*”A ¢ ||2, 3.51)

/\

- 1 ~
cc INTRRE cc}8+—||A3 N

<cC+ ,”A " ||2+—||A " 13, (3.52)

in which the Young’s inequality has been applied in the first step of (3.52). Going back (3.48),
we arrive at

1

E(IIVNAW”“II% — IVNANG" I3+ VN AN (20" — ¢™)II3
—IVNANQY" —¢" D3
+2a)| A% "B + 1A% ¢ T3 < 3||A 30" 13

=2 =0

an "I + €%
|s2|2

+CI(CE+ D). (3.53)
Moreover, the following quantity is introduced:
1
G = (VN AN TS + VN AN 24" = 9)I13)
2 ntl 1
+§AtllA A"+ < AtllA ¢"1I3. (3.54)

By adding %II A%,qb" II% on both sides of (3.53), we obtain the following inequality:

1
Gt —G”+7At||A "+ At||A "5 < MO Ar,
cC c2
MO = |Q°| +C(CE+1). (3.55)

In addition, the following elliptic regularlty estimates are valid, with an application of (2.24)
in Proposition 2.4 (by taking C, = C0 2):

ColIVNANG" L < 1AY6" 5. C2 Vv ANG" I3 < 1AV 5. (3.56)
so that we arrive at
iCzG”Jrl A" 3 + - IIA o113 (3.57)
Going back (3.55), we get
G"T' - G" + %AtG”“ < MDAz, (3.58)

An application of induction argument implies that

c 24M©
Gn+l <1+ —QA[)_(n-H)GO R — (3.59)
24 C

GO + 24M©

Of course, we could introduce a uniform in time quantity B;f = S0 that

[VNANG™ > < 2G™ < 2Bj for any m > 0. In turn, an application of elliptic regularity
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shows that
1681 = C(171 + IVAG™ 1) = C(Bol + @B 1= 0P, Vi = 0. (3.60)

in which the uniform in time constant Q® depends on €2 and the initial /3 data. This finishes
the proof of Theorem 3.8. O

Remark 3.9 Higher order H™ estimate (beyond the norm given by the physical energy)
is available for many gradient flows, due to the analytic property of the surface diffusion
parabolic operator; see the related discussions in [7]. There have also been quite a few works
of uniform in time H? estimate for certain energy stable numerical schemes for the Cahn—
Hilliard equation [20,39,51], beyond the H' bound given by the energy estimate. Similar
numerical estimates for also expected for epitaxial thin film growth and SPFC flows, in which
the H? bound is given by the energy estimate, while an H3 estimate could be derived with the
help of higher order analysis, combined with Sobolev inequalities. In fact, similar estimates
have also been reported for 2-D incompressible Navier—Stokes equations, in terms of the
first, second and higher order temporal numerical approximations; see the delated works
[17,37,58], etc.

4 The Optimal Rate Convergence Analysis

Now we proceed into the convergence analysis for the proposed numerical scheme (2.31).
Due to the SAV structure of the algorithm, the error estimate has to be performed in the energy
norm, i.e., in the £°(0, T’ HI%,) N 20, T; Hi,) for the phase variable. Similar techniques
have also been applied to the convergence estimate [44] for the SAV scheme applied to
Cahn-Hilliard equation. These ideas have also been reported for the corresponding analysis
for the phase field flow coupled with fluid motion [9,12,24,25,45]. With an initial data with
sufficient regularity, we could assume that the exact solution has regularity of class R:

®eR:=H0,T;CNH*0,T; H)NL®0, T; H"°). 4.1)
In particular, the following bound is available for the exact solution:

197" @l L0, 7:2%) < C*, (1 <m <3), || ymss < C*, Vk > 0. (4.2)

Theorem 4.1 Given initial data ®¢ € Hrf';r*(’(ﬂ), suppose the exact solution for SPFC equa-

tion (1.3) is of regularity class R. For At and h are sufficiently small, we have

M
AN (D" — ¢" At Vy AL (DF — o) 12)2 < c(Ar? + 1™), (4.3
omax [ An( "2+ ( ];n NAX( P3? < c(art +h™), 4.3)

where C > 0 is independent of At and h, and At =T /M.

4.1 The Consistency Analysis

For & € R, we construct an approximate scalar value of R as follows
1
R i= JELn (@), B (@) = Wy @™ — [Vn @™ 5 42191 (44)
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A similar extrapolation @ t! .= 29" — d"~! s taken. In turn, a careful consistency analysis
indicates the following truncation error estimate:

ot oottt A Rt
Ar = 2N -
VELN (@)
3 +1 1 -1
iRn 72R”+§Rn
At

Ny @) + Lyen ) 4o+, @.5a)

~ 3 pnt+l_ n 1 gqn—1
(Ny(@nty, 222000207 ) ol (4.5p)

" 2By
4.5)

with ||r¢’)”rl ll2, 127t < C(A#% 4+ h™). The derivation of (4.5) is accomplished with the

p
help of the spectral approximation estimate and other related estimates; the details are left to

interested readers.
The numerical error function is defined at a point-wise level:
k= F — ¢k, N¥ .= Ny(@ — Ny(@5), VK> 0. (4.6)
And also, the following scalar numerical errors are introduced
= RE =k EN = By y(®F) — E; N (@F), VK> 0. (4.7)

In turn, subtracting the numerical scheme (2.31) from (4.5) gives

3 - ~ ~
je”+1—2e”+%e” 1 n+1 _Bn+1R,1+1EII/1+1)NN(¢VL+])+ R+l

Al JELN @) JELn (@11

+LNe”‘H) + rgH, (4.8a)

Nn+]

%F;IJrl_zA’:itz_,’_%Fn—] _ 1 i (NN((E,VHLI)’ %elz+l_2::+%en—l )
2/ELn @)
n 1 N'H’l, %¢l1+]72¢n+%¢n—l
2/ELn @) A
~ A 3apntl_ngn 1 gn—1
_%Bn+1E;l+1 (NN((DnJrl)’ %) + 'L':l+l, (4.8b)
with B"t! = _ S . (4.8¢)
JELN @By @) G Er @)+ By @)
(4.8)
4.2 A Few Preliminary Estimates
The following estimates are needed in the later analysis.
Lemma 4.2 We have
. . 1
En@hz 1@ Ev@h) =il 0= B < Sja 4.9)
|E{H < Gl Vve ™ a, (4.10)
IV Ny @™ TH] < G5, (4.11)
VNN < Call Vv Ane™ . 4.12)
2 1
IVNANFllz < IANFIS - IVNAY FI . IVNAY fllz < IVNLy fll2, Y € Gw,
4.13)
3 mn+1 n 1 xn—1 3 mn+l1 n 1 sn—1
3pntl _ 29" + Lo 3prtl 29 4+ 1o
|2 = It 112 : I < CC*, (4.14)

At At
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in which &"t1 = ¢ntl — q3”+l = 2¢" — " ! and éi are independent of At and h,
j=2,3,4

Proof The lower bound for Ej, N((]S”'H) and Eq, N(&"“) comes from their definition, and

the estimate 0 < B"*+! < 2| Q|’% is a direct result of its representation given by (4.8c).
Moreover, a detailed expansion for E y (@"Yand E 1, N(@"Th implies that

EPT = Ep y (") — Ey n (9"
= %(nwé"“ 15— 1VNe™ D — (AIVN @3 — IV ™ 113)
— %(|VN&>”+1|2 + |VN¢A)"+1|2, VN(&)nJrl + qgnJrl) X VNé”+1>
—(Vn (@™ 4"t wyerth). (4.15)

For the first error expansion, an application of discrete Holder inequality shows that

1 A A - N
VN @I 4 [Vn G2, Oy (87T 4 g - vve )

IA

1 N
1<||VN¢"+1||6+||VN¢>"“||6> VN6 + 1VNd" L l6) - 1VNE 1

1 8 8 . .
Z((C*)2+CC%>-<C*+CCI) Vel < CUC*)? + CHIVNE 2,
(4.16)

IA

in which the regularity assumption (4.2) for the exact solution and the discrete W' bound
(3.18) for the numerical solution have been applied. The second error expansion termin (4.15)
could be controled in an even simpler way:

<|VN(q)n+1+¢n+1) VN"VL+1> < (||VN&)n+1||2+ ||VN(Z§”+1||2) ||VN€”+1||2
< (C*+ COYIVNE™ 2, @.17)

with (4.2), (3.18), applied again. This comletes the proof of inequality (4.10), by setting
Cy:=CUC*P+ C{+C* +Cy).

To obtain a discrete £Z estimate for Vy Ny (qb"“) we recall the grid function §"*! intro-
duced in (3.34), so that the following identity is valid:

IVN Yy - (VNG" T PVNG D2 = V(Y- 45D 2, (4.18)

in which é lis the spectral interpolation of §"*!. Because of the the fact as = Ry (@gn+1),

as indicated by the point-wise interpolation given by (3.36), we make use of the aliasing error
control inequality in Lemma 2.2 and get

a ~ 3
IV(V -Gtz < 145 a2 = RN (@gue) L2 < 37 [l@gns 2. (4.19)

an inequality similar to (3.37). Moreover, a detailed expansion and repeated applications of
Holder inequality lead to

lpgnsillz < Cll@gnill + 1 Aggs 1) = CUIVEEH PV + 1AV T PVt
= C(IVEE W - 1V i + 1985 e - IV V12
< CIVPL 3, < Cllge™ 13,5 < (W), (4.20)
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in which the uniform in time H?3 estimate (3.26) (for the numerical solution) has been applied
in the last step. Going back (4.19) and (4.18), we arrive at

IVy V- (Vg™ PVNG" 2 < C(@D). 4.21)
The other expansion term in Vy Ny (¢3"+1) could be bounded in a more standard way:
12V An" 2 < 20105 113 < 609 (4.22)

Therefore, a combination of (4.21) and (4.22) gives the inequality (4.11), by taking 6’3 =
C(@¥) +60.

Inequality (4.12) could be derived in a similar manner. Making a comparison between
Ny (®"t1) and Ny ("), we observe that N+ turns out to be the point-wise interpolation
of the following continuous function

NgTH = =V - (Ry(pgaen) + 2085,
Pt = VO PV — Vgt 2vpit! (4.23)
with (iDVSLH =205 — @ 1 Ag“ =2¢e — e"_l. A similar expansion is available for ¢ 5,1
<P1\7n+1 — |VCD’;+1| ven-H —|—(V(CI>"+1 +¢n+1) VAn+l)vq§g+l' (4.24)
Again, repeated applications of Holder inequality gives the following estimates
g Il < MVEEHPVELH | + 1V + @5 - vegth vt
< IV 2o - IVET I 4+ (VS I + IV o) VLT - Vet e
< CUVOET 2, + (VST 2 + VR gD Vet
A(|VCDn+1| VAn+l) |VCI>”+1| (VAAn—H)+2(Vq>n+1)(VVCDn+1)(VVAn+1)
+2APETH VLT Vet 4 2Vt vADLT (v,
1AV Pverth < [V i~ - VA
+ 2 VL oo - VYL e [VVEEH || 0
+ CIAD s - VYR s - VS 1o
+ CIVE oo - VAR - [ VEEH | 1o
< CIVEE 2, - Ve | e,
||A((V(q>”“ +¢n+l) VAn+1)V¢n+l)”
< CUVOET 2, + 1IVEet 12,)1Vee 2, (by a similar analysis),

(4.25)

I8¢l = CIAGVEET PV + AT @5 + g5t - vert v )
< CUVOE g2 + VRS 1 g2)? - Ve | e

legniillgz < CUl@gnetll + 1A@ 11D

< CUVYE g2 + VO 152D - 1V 1 12

< CUVYE g2 + IVET 1 52) - 1V | 42

< CUCH?+ (QOIIVEE | 2,

with the uniform in time H? estimate (3.26) and the regularity assumption (4.2) recalled. Also
notice that the 3-D Sobolev embedding, from H? to L> and W'+#, has also been repeatedly
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applied in the derivation of (4.25). Since ¢.+1 € P3k, we go back (4.23) and arrive at

IVNN" o = [VNET ) = V(=Y - (RN (@53041)))
+2Am+1 I
< 33 lggun g2 + 21885 || < CCH? + QDD Ve | o
+2/ eyt | e
< C((C)? + (D) + DVEr | 2
< CUCH?+ (@) + Dvaeyt!|
< CUCH?+ (0 + D[y AN 2, (4.26)

in which the elliptic regularity, ||Ve”+] g2 < C ||VAA”Jrl ||, has been applied in the fourth

step, due to the fact that fQ "+1 dx = 0, and the last step comes from the fact that e’”rl
is the spectral interpolation functlon of &"*1. This completes the proof of inequality (4. 12)
by setting C4 = C((C*)? 4+ (Q®)2 + 1).

For the first inequality in (4.13), we see that an application of the summation by parts
formula (2.16) gives

IVNANFI5 = (AN, AN ) < AN Fll2 - I1AR 2. (4.27)

Meanwhile, another summation by parts formula reveals that
IAX FI5 = —(VNANf, VNAR f) < IVNANFllz - IVN AR 2. (4.28)

Therefore, a combination of (4.27) and (4.28) leads to

IVNANfII < IIANfI|2 IIA f||2 = IIANf||2 (IIVNANf||2 IVN AL £I13 )2
1
=llAnfll; - ||VNANf||2 IVNAY fllz, (4.29)

which in turn results in

3 3 T
IVNANFII* < ”ANf”zz : ||VNA%vf||§a Le.,
IVNANFIl = ||ANf||2 IVN AR fllz (4.30)

This finishes the proof of the first inequality in (4.13).
For the second inequality, we see that Vy A%v f and Vy Ly have the following discrete
Fourier expansions

K
T PN
VA figko= > (2emiamai 2nmi) 3, A
tm,n=—K
exp (2mi(lx; +my; +nzp)), (4.31)
K

T A
VwLnfigei= Y. (26w 2mai 2nmi) (a2, ) i
Lm,n=—K

exp (2mi(ex; +myj + nzp)), (4.32)
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for f given by (2.3). In turn, an application of the Parseval inequality implies that

K
IVNARFIE = D hemnl 1 al® (4.33)
¢m,n=—K
K 2
IVNINFIB = > demn(a+3d ) 1Al (434)
{m,n=—K
As aresult, the second inequality in (4.13) comes from the fact that |)»% 2 < la+ 22 T als
The last inequality (4.14) is a direct consequence of the following estlmates
‘Dn+1 —_ o P — q:)n—l
———— o = C*, |———loc <C*, by 4.2), 4.35
I A7 oo = ll AL oo = y (4.2) (4.35)
combined with the fact that || - ||« is a norm stronger than || - |2 and || - [|—1,~- ]

4.3 Proof of the Convergence Theorem

Now we proceed into the proof of Theorem 4.1.

3 n+l 726"#»%6"_1

Proof Taking a discrete inner product of (4.8a) with (—Ay) ! (2= A ), with a
repeated application of summation by parts, we get
13 . 1, L st —2en 4 Lot
oz — 2" e L n+
At(ze e +2 Ne'"T) A 1< v
—(VNNLEL + NLE + NLE — (An) 't ”H) Vn(=ay)™!
3 n+l n n—1
e —2e" 4+ 5
X (2 26 ))7
At
~n+1 .
NLE| = ————=Ny@""").
VE1LN(@"™)
- R Rnt1 .
NLE = —B"RTEM Ny ("), NLE; = N (4.36)

VE1LN (@

The temporal stencil term could be analyzed in the same manner as (3.8):

3 1
(Een-ﬁ—l —2¢" + Een—l, LNen+1>

1 1 1 1 1 B
= Z(anve"“n% —ILZ €13 + L3 (2" —eM)I3 — L7, (2" — " N3
1
FILZ (T = 2" 4+ 1|2, (4.37)
N 2

A bound for the truncation error inner product term is standard:

3 n+1 —2e" + e
(VNN Vv (=Aan) ! ( ~ )

3 n+1 n—1
BT iltodi L
= o —1,N IN, 1,N
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3 n+l n 1,n—1
1 se —2e" + 5e
<20yt + gl = = 2 v (4.38)

The first nonlinear inner product term could be rewritten as follows:

3 n+l1 n 1 n—1
[ ze — 2" + 5e
—(VNNLEL, Vn(—Ay) ™! <2 - ))

At

~n+1 3n+l _9on 4 1,n—1
r Ny (@) 2¢ 2" 4 e

\/El,N(‘ZgnJ'_l) At

For the second and third nonlinear inner product terms, we begin with the following estimates:

I ). (4.39)

IVNNLE |l = | B"FIRLETTIVy Ny (0" )2 < |B"H - |R™|
JETT IV Ny (@Y 1

IA

1 3~ 1~ ] -
§|Q| 2-(Co+ 1D2-Co|Vne" 2+ C3
- ~ 1. ~ - :
= Cs||Vye" |2, with Cs = 5C2C3(Co + 1)%|Q|_%, (4.40)

IVNNLEs 2 = [R™(E y (@) 2y N |y < [RMH Q72 - [V N
< Co+DIQI"2 - Gyl IyANe" s
= CollVnAne" 2, with Cs = C4(Co + 12|27, (4.41)

in which the preliminary estimates (4.9—4.12) in Lemma 4.2 have been extensively applied
in the derivation. We also notige that the inequality |R"+1| < (C‘o + 1)% comes from the
fact that E(® (1)) < E(®%) = Co+h™, the pseudo-spectral approximation order, combined
with the inequality E; (d%) < En(®%). And also, the following estimate for | VNN LE |2
is derived below, which will be needed in the later analysis:
- N 1 N
IVNNLE 2 = 17" (E1n (@) T2V Ny 6" )2
~ _1 ~
<[P 1Q177 - IV NN @Dl

<1QI77 -Gy = G with & = G372, (442)

As a consequence of (4.40), (4.41), the following inequalities are available:

. %en-H —26”4—%6”_1
—(VNNLEy + NLE3), V(—AN)"I(

At
%en+l P %en—l
< (IVNNLE 2 + IVNNLES2) - || r Y
1 §6n+1 —2e" 4+ len—l
< 2(IVNNLE I3 + IVNNLES ) + 4112 v Em— B
. A ~ . 1 3ontl _npn + Ln—1
= 2C5IVNE G + CEIVN AN IR + 112 v ER

3 n+l n 1 _n—1
= 1 se —2e" 4 5e
12 2 2
< CsllVyAne" 5+~

1 = 121y, Cs=2(C3C3+ CP).

(4.43)
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in which C3 corresponds to the elliptic regularity, |[Vy fll2 < C3||VNAp f ]2, an inequality
similar to (3.56). Therefore, a substitution of (4.37—4.39) and (4.43) into (4.36) yields

1 1 1
—(M L Ze" T3 — ILZe" 13+ ILE Q" —eMI3 — 1L} (2" — " D)

4At
5 3en+l — D + 1 e 1 Fn—H R
gl - 121 5 < —(——=Nn(@"™h,
VELN(@"
3 n+l1 n 1, n—1
se —2e" 4+ 5e ~ .
2 ) + Call Vv AN s+ 20T Iy (4.44)

At

On the other hand, the original error evolutionary equation (4.8a) gives

3 n+l —2e" + len 1
Vn(—Ay)™"! ( At = —Vy(Lye"T + NLE

ANLEY + NLE3 — (Ay) ! ”+‘). (4.45)

In turn, an application of quadratic inequality implies that

%en+1 26+lnl

I Ar [y
1 n+12 -1 n+1
> 2||VNLN€ 5 —2IVNNLEL + NLEy + NLE3 — (An) I3
1
> SIVNLye" I3 = 4V WLE + NLE + NLEDIZ + T 12 »)
1
= SIVNLye™ 3 — 1201 VN LE I + VNN LE 3

HIVNNLENZ) — 4lry T2,
1 - N
> SIVNLye"™ 3 = 12(CFGE" 2 + (G363 + COIVN AN )
Sl 7 (4.46)
with the estimates (4.40—4.42) recalled. Going back (4.44), we arrive at
1 1 1 1 1 _
m(llLfve"“II% — L3 I3 + L3 Qe —eM)|3 — L3 Q2e" — " D)

5 12
+R||VNLNen+ 5

Fntl . Qen-H e +1 n—1
< —(=—=Nn@"), 2 -~
VE1n (@™
+H12C3 " +7Cs | Vv AN B + 6llTy 2 - (4.47)
Taking a discrete inner product of (4.8b) with 27" ! gives
“ntl
1 (3~n+l 2;]1_'_1 ~n— ]) 2rn+1 er+ (NN(d’;nJrl),

At 2 2 JELy (@)

3 n+l _~,n 4 1, n—1
e 2e" + e
At
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Fntl . 3pntl _opn + Lpn—1
4 (Nn+1, 2 2 >

VELN(@™) At

3 pn+l 1 -1
Bn+1En+1 ~n+1 (N (q>n+l) an 223: + Eq)n ) + 2.[;1+l . ;:n+l. (448)

The estimate for the temporal stencil term is similar to that of (3.9):

~n+l( Fn —_ 2N + 1~” 1)

_ 5(|17n+1| PR 4 2 2 — R g o ),
(4.49)
The inner product associated with the truncation error could be controlled via Cauchy inequal-
ity:
2r,”+l Sl < |Trn+1|2 T2, (4.50)

The first nonlinear inner product on the right hand side is kept. The second and third nonlinear
inner product terms could be analyzed as follows

~n+1 3 +1 1 —1
et o ot — 29" 4 Jn )
~ ’ At
VE1LN@
3 n+l_2(bn+l(bn71
_1 ~
< [T QIT2 VYN - )2 2 -1 n

At
< 79 c4||vNANe"+1||z cc*

< ColF™™ - ||VNANA”+’||2< (|~"“| +IVy AN D),

Co = CCLCHQ72, 4.51)
3 +1 1 —1

Bn+lEn+l~n+l(N (q>n+1) q>n 2q>n + qun )

At
. . 3pntl _opn + Lpn—1
< [B"F [ ETT L Vy Ny (@ - ) 2 < 2 1N
1 -3 . -
=l ColIVne" - 7Y G5 - cc*

. C
~n+1 ~n+1 10 ~nd12 ~n+1
< CiolP™| - [Vyaye™ s < 70 I 4 Vv Ane D),

Cio = CC2C3C3CH 973, (4.52)

with repeated application of the preliminary estimates (4.9—4.14) in Lemma 4.2. Subse-
quently, a substitution of (4.49-4.52) into (4.48) yields

S (PR — 772 2 = P2 — R — P 2 )
Fntl 3 n+l _ o0 4 1, n—1
(@, 2Tl

\/El,N(qS”“) At

=
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69 + 610 - N -
+T<|r”“|2 + VN ANE D) + P2 4 2 (4.53)
Finally, a combination of (4.47) and (4.53) results in
1 1 1 1 1 -~
E(IlLi,e”“H% —ILZe" 13+ 1L} 2" —eM3 = IIL3(2e" — " H|I3)
5 12
+1—6||VNLNe"+ 3
1
+2At(|;n+1|2 _ |F”|2 + |2;n+1 _ ;n|2 _ |2’~.n _ ;n71|2 + |Fn+1 _ o + ;n71|2)
< CulF'P + CallVy a5 + 6l 12y + 1 (4.54)
with C‘n = 12(6‘% + C‘& + 6‘120) +1, 6‘12 = 76‘8 + % In particular, we notice that the

first nonlinear error inner product terms have been cancelled; this subtle fact has played a
crucial role in the analysis. In addition, the following inequalities are observed:

IVN AN 3 = VN AN (2e" — " N3 < 6|V Ane |15 + 31 Vy Axe" 113,

(4.55)
4 2
IVyAne I3 < 1ANEEIS - IV AR RIS (by (4.13))
43 -1 1
= S Chllane3 + e IVyARe 3. k=n.n—1, (456)
12

in which Young’s inequality has been applied in the last step of (4.56). This in turn leads to
CialVnAne" 3 < Cra(6]Vy Ane™ 15 + 31V Ane" " 13)
< 4V3C5QI AN I3 + Ay 1)
+é||vNA§Ve" 13 + %IIVNA?\,e"_I 13. (4.57)
Going back (4.54), we arrive at (by denoting Ci3 = 8V3C 1%2)
Lt =) + 2 VL3
At 16
< CulP* '+ Cis(lAne" 5 + llane ' [3)
IV AREI + 1N Ak
+6lTp 2y + I (4.58)
with H"™+! = %(HLI%Ve"HII% + ||L,%(2e"+1 —eMd
+Lapp 4 i -y, (4.59)

2

Moreover, the following inequalities are recalled

1
lanebI3 < IL3 k13 < 4k, k7 <2k,

IVyAX et I3 < IVnLyek|3, (by (4.13)), (4.60)
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fork =n + 1,n,n — 1. Then we obtain the following estimate
1

5
- HnJrl —H" VL n+12
N )+ g IVaLne™ 3

- - 1 1
< 2C1 +4CHH"™ T+ H +HT + gnvNLNe”u% + EMVNLNe"*‘ 113

+6lTy Ry + 1 (4.61)
Therefore, with an application of discrete Gronwall inequality, and making use of the fact
that ||r$Jrl ll—1n, 12771 < C(AL? + B™), we arrive at

1 n+1 . R
H'H 4 Ty > IVNLyel |5 < C(Art + 1*™), (4.62)

Jj=1
with C independent on At and 4. In turn, the desired convergence estimate is available
k+1 . 1 '
lane" o+ (a0 Y IVwakel13)” < €C3ar+am, (4.63)

j=1
in which the estimates (4.60) has been recalled. This completes the proof of Theorem 4.1. O
Remark 4.3 In an earlier error analysis work [44] for the SAV scheme applied to the Cahn-
Hilliard flow, a linear refinement requirement for the time step size, At < Ch, has to be
imposed for the convergence estimate, since an inverse inequality has to be applied in the
error estimate in the energy norm. In contrast, we have derived a higher order H> bound

for the numerical solution, which in turn leads to an unconditional convergence estimate (no
scaling law constraint between At and /) for the proposed SAV scheme.

Remark 4.4 With the help of the optimal rate convergence estimate in the £*°(0, T; H ]%,)
norm, we are able to derive a sharper bound for the original energy functional. In more
details, the error estimate (4.3) leads to the following inequalities

IVNG™ 13— VN @™ [} < 4(max(|VNg" 14, VN " 14} I Vne™ 14
< CCY|ANe™ 2 < CCIC(A +h™),
IANG™ I3 — I AND™ 3 < 2max(|And™ 12, AN D™ [2) [ Aye™ |l (4.64)
< CCiC(AL> +h™),
1™ 15 = 19" 115, Vg™ I3 — IV @™ (5 < CC1C(AL + 1™),  (similar analysis),

in which the discrete Sobolev inequality (2.23) and the uniform-in-time H,%, bound (3.12)
have been extensively applied. Then we get

|En(@™) — Ex(@™)] < C(Cy + CC(AP + h™),
EN(®") — EN(®(@™)) = O(h™), En(®(1™)) — E(®(™)) = O(h™),
E(®(1™) < E(@ (%) := Co, sothat Ex(¢p™) < Co+ C(C; + HC(A> +h
<Co+1,

214).65)

provided that Az and h are sufficiently small. Of course, it is a much sharper estimate than
the uniform-in-time bound (3.20), in which C} depends on Cy in a quadratic way. On the
other hand, it is notice that the refined estimate (4.65) is local-in-time, since the convergence
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constant C depends on the final time, while the rough bound (3.20) turns out to be a global
quantity.

Remark 4.5 In a recent work [18], a modified BDF scheme is applied to the SPFC equa-
tion (1.3) in the primitive formulation, the energy stability and optimal rate convergence
estimates have been provided as well. Due to the primitive formulation involved, the highly
complicated 4-Laplacian term has been treated implicitly to ensure an unconditional energy
stability. This leads to a nonlinear system to be solved at each time step, and the correspond-
ing computational cost for the nonlinear system is approximately three times the linear SAV
scheme proposed in this work, with the same spatial and temporal resolution. As a result, the
computational efficiency has been improved in this SAV approach.

In addition, only the £°°(0, T'; 62) N 62(0, T: H 1%,) error estimate has been performed in
the existing work [18], in comparison with the £°°(0, T'; HI%,) N Zz(O, T; Hf,) error estimate
provided in this article. In turn, the uniform-in-time H 1%, bound of the numerical solution,
as established in (3.26) (Theorem 3.8), is not needed in [18]. Therefore, this article has
provided further technical tools for the theoretical analysis of higher order stability estimate
and convergence analysis, in comparison with [18].

5 Numerical Results
5.1 Convergence Test for the Numerical Scheme

In this subsection we perform some numerical experiments to verify the accuracy order of the
proposed SAV scheme. To test the convergence rate, we choose the following exact solution
for (1.3) on the square domain 2 = (0, 12

Pe(x,y,1) = % sin(2w x) cos(2m y) cos(t). 5.1)

We set a = 0.975, and the final time is taken as 7 = 1.

To make & satisty the original PDE (1.3), we have to add an artificial, time-dependent
forcing term. Then the proposed second order BDF-type scheme (2.31) can be implemented
to solve for the original PDE. To explore the temporal accuracy, we fix the spatial resolution
as N = 128 so that the numerical error is dominated by the temporal ones. We compute
solutions with a sequence of time step sizes, At = NLT, with Ny = 100 to Ny = 1000 in

increments of 100, and the same final time 7 = 1. Fig. 1 shows the discrete ¢2 norms of
the errors between the numerical and exact solutions, computed by the proposed numerical
scheme (2.31). The fitted line displayed in Fig. 1 shows an approximate slope of -2, which
in turn verifies a nice second order temporal convergence order, in both the discrete £ and
£%° norms.

5.2 Numerical Simulation of Square Symmetry Patterns

The 4-Laplacian term in (1.3) gives preference to rotationally invariant patterns with square
symmetry. In this subsection, we perform two-dimensional numerical simulations showing
the emergence of these patterns. The rest of the parameters are given by ¢ = 0.5 and
Q= (0, L)2, with L = 100. The initial data for the simulations are given by

¢y =0.05-(2ri j — 1), (5.2)
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Fig. 1 The discrete €2 and £ numerical errors versus temporal resolution N7 for N7 = 100 : 100 : 1000,

with a spatial resolution N = 128. The data lie roughly on curves CN, 2, for appropriate choices of C,
confirming the full second-order accuracy of the scheme

where the 7; ; are uniformly distributed random numbers in [0, 1]. For the temporal step size
At, we use increasing values of At in the time evolution: A¢ = 0.01 on the time interval
[0, 1000] and Ar = 0.02 on the time interval [1000, 21000]. Whenever a new time step
size is applied, we initiate the two-step numerical scheme by taking ¢~! = ¢°, with the
initial data ¢° given by the final time output of the last time period. The time snapshots of
the evolution by using the given parameters are presented in Figs. 2 (one nucleation site).
These tests confirm the emergence of the rotationally invariant square-symmetry patterns in
the density field.

To illustrate the energy stability property of the proposed numerical scheme, we display
the energy evolution of the one nucleation site example, up to t = 1000, in The solid and
dotted plots stand for the time evolution of the original energy functional and the SAV-
introduced energy functional, given by formula (2.22) and E (p,r) = % o ||% + % AN ||% +
|r|?, respectively. The plots overlap so that differences are indistinguishable, and the energy
dissipation property is clearly observed in the numerical simulation (Fig. 3). This shows that
the SAV approach is indeed an accurate numerical approximation to the original physical
model.

Our numerical experiments have also demonstrated that, the SAV numerical scheme works
well for the smooth gradient flows, such as the numerical example presented above, with a
mild amplitude of random initial perturbation. On the other hand, if a more singular pertur-
bation is included at the initial data, such a nucleation at the center (50, 50), with magnitude
of 10, a direct application of the SAV numerical scheme is not able to create a reason-
able numerical solution. Meanwhile, extensive numerical experiments have demonstrated
that, a stabilized SAV scheme, with an inclusion of artificial regularization in the form of
—AATAN (" — ¢™) (such as the one in the existing work [18]), could overcome such a
rough initial data difficulty and produce much nicer numerical results. In general, we con-
clude that, for smooth gradient flows in which there is no sharp gradient, the SAV scheme

@ Springer



33 Page32o0f36 Journal of Scientific Computing (2021) 88:33

t = 3000, 9000

Fig. 2 Time snapshots of the evolution for squared phase field crystal model, with
random initial perturbation. The time sequence for the snapshots is set as ¢ =
10, 20, 4;0, 80, 100, 200, 500, 1000, 3000, 9000, 15000and21000. The parameters are a = 0.5,Q =
[0, 100]

has greatly improved the computational efficiency. For a challenging numerical example in
which an initial singularity is included, the stabilized SAV approach will overcome the subtle
numerical difficulties and be able to enhance the scientific computing performances.

6 Concluding Remarks

In this article, we have proposed and analyzed an scalar auxiliary variable (SAV)-based
numerical scheme for the square phase field crystal (SPFC) equation, a gradient flow to
model the crystal growth. An appropriate decomposition for the physical energy functional
is formulated, so that the nonlinear energy part has a well-established global lower bound,
and the rest terms lead to constant-coefficient diffusion terms with positive eigenvalues. This
overcomes a key difficulty in the application of SAV idea to the SPFC model. In turn, the
resulting numerical scheme could be very efficiently implemented by constant-coefficient
Poisson-like type solvers (via FFT), and energy stability is established by introducing an
auxiliary variable. As a result of this modified energy stability, a uniform in time H? bound
is available for the numerical solution. In addition, we are able to derive a uniform in time H3
bound for the numerical solution, with the help of discrete Sobolev embedding techniques.
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Fig.3 Semi-log plot of the temporal evolution the energy up to t = 1000. The solid and dotted plots stand for
the time evolution of the original energy functional and the SAV-introduced energy functional, respectively.
The plots overlap so that differences are indistinguishable

Such an H3 bound for the numerical solution plays an essential role in the optimal rate
convergence analysis in the energy norm, i.e., the error estimate in the £*°(0, T; H 2) N
£2(0, T; H) space. A few numerical experiments are presented to demonstrate the efficiency
and accuracy of the proposed scheme, including the numerical accuracy test and numerical
simulations of square symmetry patterns.

Acknowledgements This work is supported in part by NSFC 11971047 (Q. Huang) and NSF DMS-2012669
(C. Wang).

Appendix
Proof of Proposition 2.4

Due to the periodic boundary condition for f and its cell-centered representation, it has a
corresponding discrete Fourier transformation, as the form given by (2.3):

K
fijk = flmaexp(2mi(xi +my; +nzp)). (A.1)
tm,n=—K
Then we make its extension to a continuous function:
K

nx,y,2) = Z ]?ZNmn exp 2ri(€x + my 4+ nz)). (A.2)
Lm,n=—K

We denote a discrete grid function, g := D f, at a point-wise level. Since f corresponds to
fn € BX (the space of trigonometric polynomials of degree at most K), an application of
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Parseval identity implies that

K
2 2 6 N 2
IVNANFIE = IVASNIE = > A8l fal®
{mn=—K
T A3
. (A.3)
3 2 3 2 12 AN 2
1AV FIE =18 P = > Al ol
tm,n=—K

with A¢ », , introduced in (2.13). Meanwhile, the elliptic regularity for the continuous function
fn indicates that

VA fxll < CollA® fyll,  for some Co only dependent on 2. (A4)

Finally, the discrete elliptic regularity inequality (2.24) is a direct combination of (A.3) and
(A.4). This completes the proof of Proposition 2.4.
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