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Abstract

In this paper we propose and analyze a second order accurate (in time) numerical scheme

for the square phase field crystal equation, a gradient flow modeling crystal dynamics at the

atomic scale in space but on diffusive scales in time. Its primary difference with the stan-

dard phase field crystal model is an introduction of the 4-Laplacian term in the free energy

potential, which in turn leads to a much higher degree of nonlinearity. To make the numerical

scheme linear while preserving the nonlinear energy stability, we make use of the scalar

auxiliary variable (SAV) approach, in which a second order backward differentiation for-

mula is applied in the temporal stencil. Meanwhile, a direct application of the SAV method

faces certain difficulties, due to the involvement of the 4-Laplacian term, combined with a

derivation of the lower bound of the nonlinear energy functional. In the proposed numerical

method, an appropriate decomposition for the physical energy functional is formulated, so

that the nonlinear energy part has a well-established global lower bound, and the rest terms

lead to constant-coefficient diffusion terms with positive eigenvalues. In turn, the numeri-

cal scheme could be very efficiently implemented by constant-coefficient Poisson-like type

solvers (via FFT), and energy stability is established by introducing an auxiliary variable,

and an optimal rate convergence analysis is provided for the proposed SAV method. A few

numerical experiments are also presented, which confirm the efficiency and accuracy of the

proposed scheme.
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1 Introduction

The phase field crystal (PFC) equation, originally proposed in [29], stands for a new model

to simulate crystal dynamics at the atomic scale in space but on diffusive scales in time. This

model naturally incorporates elastic and plastic deformations, multiple crystal orientations

and defects, and it has already been used to simulate a wide variety of microstructures,

such as epitaxial thin film growth [30], grain growth [54], eutectic solidification [31], and

dislocation formation and motion [54], etc. Also see a related review [48]. In more details,

the phase variable describes a coarse-grained temporal average of the number density of

atoms, which is related to dynamic density functional theory [2,46]. A significant advantage

of this approach has been observed over other atomistic methods, such as molecular dynamics

methods where the time steps are constrained by atomic-vibration time scales. In the PFC

approach, the dimensionless energy is given by the following form [29,30,55]

Epfc(φ) =
∫

�

{

1

4
φ4 + 1 − ε

2
φ2 − |∇φ|2 + 1

2
(�φ)2

}

dx, ε > 0, (1.1)

where � ⊂ RD , D = 2 or 3, φ : � → R is the atom density field, and the parameter

ε represents a deviation from the melting temperature with 0 < ε < 1. For simplicity, a

periodic boundary condition is imposed for φ; the analysis for the homogeneous Neumann

boundary condition case could be similarly extended. In turn, the standard PFC equation

becomes the associated H−1 gradient flow:

∂tφ = �μ, μ := δφ Epfc = φ3 + aφ + 2�φ + �2φ, a = 1 − ε.

For ε > 0, spatial oscillations could be observed in the solution of the PFC equation; typically

in 2D, the peaks and valleys of φ are arranged in a hexagonal pattern. These solutions represent

“solid phase” solutions in the model. Meanwhile, “liquid phase” solutions, which are spatially

uniform and constant, may also be possible. In fact, these solutions even be in coexistence

with the solid phase solutions to describe a crystal in equilibrium with its melt; see the related

discussions in [49].

On the other hand, alternate lattice structures, such as “square” symmetry crystal lattices,

are possible in 2D solutions. As mentioned in [30,35], a different choice of nonlinear term

in the PFC model is needed to obtain a square symmetry crystal lattice rather than the usual

hexagonal structure. In particular, such a symmetry can be obtained [35] by replacing φ4

in (1.1) with |∇φ|4; also see [60] for a related method. This results in the following energy

functional

Espfc(φ) =
∫

�

{

a

2
φ2 + 1

4
|∇φ|4 − |∇φ|2 + 1

2
(�φ)2

}

dx. (1.2)

In fact, there are essential similarities between this energy and the Aviles-Giga-type energy

[1]. The square phase field crystal (SPFC) equation is given by the following dynamics

∂tφ = �μ , μ := δφ Espfc = −∇ ·
(

|∇φ|2∇φ
)

+ aφ + 2�φ + �2φ. (1.3)
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We will assume for simplicity that a = 1 − ε > 0. For the standard PFC model and its

modified version, there have been extensive numerical works [3,4,26,42,56,57,59,64], etc. In

terms of the nonlinearity, the only difference between the standard PFC and SPFC equations

is the replacement of φ4 by |∇φ|4 in the free energy functional, while the analysis and

numerical approximation of the later one are much more challenging, especially when using

pseudo-spectral approximations of spatial derivatives. Very limited numerical results have

been available for the SPFC equation in the existing literature. For instance, some simulation

results are reported for a closely related equation in [35]. A modified backward differentiation

formula (BDF) scheme was presented in a more recent work [18], in which the energy stability

(in the original phase variable) and the convergence analysis have been theoretically justified.

Meanwhile, most existing works of energy stable schemes for a gradient flow containing

|∇φ|4 energy potential are based on an implicit treatment of the 4-Laplacian part; see the

related works [18,32–34,50,56], etc. In particular, the preconditioned steepest descent (PSD)

nonlinear iteration has been proposed in [33] for the 4-Laplacian solver in both the L2 and

H−1 gradient flow, due to its convex structure, so that the computational cost is decomposed

of certain Poisson-like solvers at each iteration stage. Extensive numerical experiments have

implied that, approximately 10 to 15 iteration stages are needed for such a PSD algorithm

in most practical numerical simulations of physical examples. As a result, the computational

cost of implicit nonlinear 4-Laplacian solvers is approximately 10 to 15 times of a linear

scheme for the corresponding physical system .

On the other hand, a theoretical justification of linear schemes for the gradient flows con-

taining 4-Laplacian energy potential turns out to be a challenging issue. The scalar auxiliary

variable (SAV) approach for various gradient flows has attracted more and more attentions

in recent years [23,51–53]. To overcome the difficulty associated with the nonlinearity, the

energy functional is split into two parts: a nonlinear energy functional with a uniform lower

bound, combined with a quadratic surface diffusion energy with constant-coefficients. In

turn, the elevated nonlinear energy part (which contains a global constant to make its value

positive) is rewritten as a quadratic term, not in terms of the original physical variable, but

in terms of an artificially-introduced auxiliary variable. As a result, linear schemes could be

derived for the gradient flow reformulated in the quadratic nonlinear energy and the surface

diffusion energy, so that both the unique solvability and modified energy stability could be

theoretically justified for the linear schemes. Also notice that such an energy estimate is in

terms of the reformulated energy functional, not in terms of the original energy functional.

However, a direct application of the SAV method to the SPFC equation faces certain

technical difficulties. It is observed that, the concave diffusion energy −‖∇φ‖2 corresponds

to a linear part in the chemical potential, while such a functional does not have a global

lower bound. In addition, its combination with two quadratic convex energy parts, namely,
a
2
‖φ‖2 and 1

2
‖�φ‖2, does not have a global lower bound, either. As a result, if the concave

diffusion energy is placed into the linear diffusion energy part, the SAV method would not

be effectively derived. In this article, we come up with an alternate split, which places the

concave diffusion energy −‖∇φ‖2 into the nonlinear energy functional part. In addition, a

combination of the 4-Laplacian energy 1
4
‖∇φ‖4

L4 and the concave energy −‖∇φ‖2 has a

well-established global lower bound, −|�|, so that the nonlinear energy part is well-defined,

and the linear surface diffusion energy only contains two terms with positive eigenvalues.

Based on such an energy split, the PDE system is reformulated, and the SAV scheme could

be derived via the second order BDF2 temporal discretization. Similar to the epitaxial thin

film growth and other related gradient flow models, an explicit extrapolation is applied to

obtain a second order approximation to the nonlinear chemical potential and nonlinear energy

functional value. The resulting numerical system could be very efficiently solved; only a few
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Poisson-like solvers, via the FFT-based algorithms, are needed at each time step, since only

constant-coefficient equations are involved in the numerical scheme.

An unconditional energy stability could be proved via a careful estimate. Again, such a

stability estimate is in terms of the reformulated energy functional, not in terms of the original

energy functional. In the spatial discretization, we use Fourier pseudo-spectral approxima-

tion for its ability to capture more detailed structures with a reduced computational cost.

Summation-by-parts formulas enable us to derive unique solvability and energy stability for

the fully discrete numerical scheme. As a result of this discrete energy stability, a uniform-

in-time discrete H2 bound for the numerical solution becomes available. In addition to this

uniform H2 bound for the numerical solution (of the phase variable), a higher order H3 esti-

mate could also be derived, with the help of various discrete Sobolev inequality in the Fourier

pseudo-spectral space. With such an H3 bound at hand, we are able to control a discrete gra-

dient of the nonlinear chemical potential error function, in the Fourier pseudo-spectral space.

In addition, one nonlinear error inner product could be cancelled between the error evolu-

tionary equations for the original phase variable and the one for the introduced auxiliary

variable. These preliminary estimates enable one to obtain an optimal rate (O(�t2 + hm))

convergence analysis for the proposed numerical scheme in the energy norm, i.e., in the

�∞(0, T ; H2
N )∩ �2(0, T ; H5

N ) norm. In particular, the aliasing error control techniques have

to be applied in the nonlinear error estimate associated with the 4-Laplacian term.

The outline of the paper is given as follows. In Sect. 2 we present the numerical scheme.

First we review the Fourier pseudo-spectral approximation in space and recall an aliasing

error control technique. Then we formulate the proposed numerical scheme, and prove its

unique solvability. Subsequently, the energy stability analyses is provided in Sect. 3, and

an optimal rate convergence analysis is established in Sect. 4. Some numerical results are

presented in Sect. 5. Finally, some concluding remarks are made in Sect. 6.

2 The Numerical Scheme

2.1 Review of Fourier Pseudo-Spectral Approximations

The Fourier pseudo-spectral method is also referred as the Fourier collocation spectral

method. It is closely related to the Fourier spectral method, but complements the basis by an

additional pseudo-spectral basis, which allows to represent functions on a quadrature grid.

This simplifies the evaluation of certain operators, and can considerably speed up the calcu-

lation when using fast algorithms such as the fast Fourier transform (FFT); see the related

descriptions in [5,10,11,13,15–17,19,20,37,38,41,62,63], etc.

To simplify the notation in our pseudo-spectral analysis, we assume that the domain is

given by � = (0, 1)3, Nx = Ny = Nz =: N ∈ N and N · h = 1. We further assume that N

is odd:

N = 2K + 1, for some K ∈ N.

The analyses for more general cases are a bit more tedious, but can be carried out without

essential difficulty. The spatial variables are evaluated on the standard 3D numerical grid �N ,

which is defined by grid points (xi , y j , zk), with xi = ih, y j = jh, zk = kh, 0 ≤ i, j, k ≤
2K + 1. This description for three-dimensional mesh (d = 3) can here and elsewhere be

trivially modified for the two-dimensional case (d = 2).
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We define the grid function space

GN :=
{

f : Z
3 → R

∣

∣

∣
f is �N-periodic

}

. (2.1)

Given any periodic grid functions f , g ∈ GN , the �2 inner product and norm are defined as

〈 f , g〉 := h3
N−1
∑

i, j,k=0

fi, j,k · gi, j,k, ‖ f ‖2 :=
√

〈 f , f 〉. (2.2)

The zero-mean grid function subspace is denoted G̊N :=
{

f ∈ GN

∣

∣

∣
〈 f , 1〉 =: f = 0

}

. For

f ∈ GN , we have the discrete Fourier expansion

fi, j,k =
K
∑

�,m,n=−K

f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

, (2.3)

where the discrete Fourier coefficients are given by

f̂ N
�,m,n := h3

N−1
∑

i, j,k=0

fi, j,k exp
(

−2π i
(

�xi + mx j + nzk

))

. (2.4)

The collocation Fourier spectral first and second order derivatives of f are defined as

Dx fi, j,k :=
K
∑

�,m,n=−K

(2π i�) f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

, (2.5)

D2
x fi, j,k :=

K
∑

�,m,n=−K

(

−4π2�2
)

f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

. (2.6)

The differentiation operators in the y and z directions, Dy , D2
y , Dz and D2

z can be defined in

the same fashion. In turn, the discrete Laplacian, gradient and divergence operators are given

by

�N f :=
(

D2
x + D2

y + D2
z

)

f , ∇N f :=

⎛

⎝

Dx f

Dy f

Dz f

⎞

⎠ ,

∇N ·

⎛

⎝

f1

f2

f3

⎞

⎠ := Dx f1 + Dy f2 + Dz f3, (2.7)

at the point-wise level. It is straightforward to verify that

∇N · ∇N f = �N f . (2.8)

See the derivations in the related references [5,6,36].

Definition 2.1 Suppose that the grid function f ∈ GN has the discrete Fourier expansion (2.3).

Its spectral extension into the trigonometric polynomial space PK (the space of trigonometric

polynomials of degree at most K ) is defined as

fS(x, y, z) =
K
∑

�,m,n=−K

f̂ N
�,m,n exp (2π i(�x + my + nz)) . (2.9)
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We write SN ( f ) = fS and denote SN : GN → PK the spectral interpolation operator.

Suppose g ∈ Cper(�, R). We define the grid projection QN : Cper(�, R) → GN via

QN (g)i, j,k := g(xi , y j , zk), (2.10)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

QN (g)i, j,k =
K
∑

�,m,n=−K

Q̂N (g)
N

�,m,n exp
(

2π i(�xi + my j + nzk)
)

.

We define the de-aliasing operator RN : Cper(�, R) → PK via RN := SN (QN ). In other

words,

RN (g)(x, y, z) =
K
∑

�,m,n=−K

Q̂N (g)
N

�,m,n exp (2π i(�x + my + nz)) . (2.11)

Finally, for any g ∈ L2(�, R), we define the (standard) Fourier projection operator PN :
L2(�, R) → PK via

PN (g)(x, y, z) =
K
∑

�,m,n=−K

ĝ�,m,n exp (2π i(�x + my + nz)) ,

where

ĝ�,m,n =
∫

�

g(x, y, z) exp (−2π i (�x + my + nz)) dx,

are the (standard) Fourier coefficients.

To overcome a key difficulty associated with the Hm bound of the nonlinear term obtained

by collocation interpolation, the following lemma is introduced. The case of r = 0 was proven

in earlier works [27,28], and the case of r ≥ 1 was analyzed in a recent article [38].

Lemma 2.2 Suppose that m and K are non-negative integers, and, as before, assume that

N = 2K + 1. For any ϕ ∈ PmK in Rd , we have the estimate

‖RN (ϕ)‖H r ≤ m
d
2 ‖ϕ‖H r , (2.12)

for any non-negative integer r .

In addition, we introduce the discrete fractional operator (−�N )γ (with γ > 0):

(−�N )γ fi, j,k :=
K
∑

�,m,n=−K

λ
γ

�,m,n f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

,

λ�,m,n = 4π2(�2 + m2 + n2), (2.13)

for a grid function f with the discrete Fourier expansion as (2.3). Similarly, for a grid function

f ∈ G̊N of (discrete) mean zero, a discrete version of the operator (−�)−γ may be defined

as

(−�N )−γ fi, j,k :=
K
∑

�,m,n=−K
(�,m,n)
=0

λ
−γ

�,m,n f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

. (2.14)

123



Journal of Scientific Computing            (2021) 88:33 Page 7 of 36    33 

We notice that the right hand side of (2.14) is a periodic grid function of zero mean, i.e,

(−�N )−γ f ∈ G̊N . Furthermore, to facilitate the analysis in later sections, we introduce an

operator L N as L N f := (aI + �2
N ) f , for any f ∈ GN . The following fractional operator is

similarly defined:

L
1
2
N fi, j,k :=

K
∑

�,m,n=−K

(

a + λ2
�,m,n

)
1
2

f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

, (2.15)

based on the fact that, the Fourier eigenvalue of the operator L N (for the frequency mode

(�, m, n)) is given by a + λ2
�,m,n .

The following summation-by-parts formulas are valid (see the related discussions in [8,

14,37,38]): for any periodic grid functions f , g ∈ GN ,

〈 f ,�N g〉 = − 〈∇N f ,∇N g〉 ,
〈

f ,�2
N g

〉

= 〈�N f ,�N g〉 ,
〈

f ,�3
N g

〉

= −〈∇N �N f ,∇N �N g〉 . (2.16)

Similarly, the following identity could be derived in the same manner:

〈 f , L N g〉 = 〈L
1
2
N f , L

1
2
N g〉, ∀ f , g ∈ GN . (2.17)

Since the SPFC equation (1.3) is an H−1 gradient flow, we need a discrete version of the

norm ‖ · ‖H−1 defined on G̊N . For any f , g ∈ G̊N , we define

〈 f , g〉−1,N :=
〈

f , (−�N )−1g
〉

=
〈

(−�N )−
1
2 f , (−�N )−

1
2 g
〉

, (2.18)

so that the ‖ · ‖−1,N norm could be introduced as

‖ f ‖−1,N :=
√

〈 f , f 〉−1,N = ‖(−�N )−
1
2 f ‖2. (2.19)

In addition to the standard �2 norm, we also introduce the �p , 1 ≤ p < ∞, and �∞ norms

for a grid function f ∈ GN :

‖ f ‖∞ := max
i, j,k

| fi, j,k |, ‖ f ‖p :=
(

h3
N−1
∑

i, j,k=0

| fi, j,k |p
)

1
p
, 1 ≤ p < ∞. (2.20)

The discrete H1 and H2 norms are introduced as

‖ f ‖2
H1

N

= ‖ f ‖2
2 + ‖∇N f ‖2

2, ‖ f ‖2
H2

N

= ‖ f ‖2
H1

N

+ ‖�N f ‖2
2. (2.21)

For any periodic grid function φ ∈ GN , the discrete SPFC energy is defined as

EN (φ) := 1

4
‖∇N φ‖4

4 + a

2
‖φ‖2

2 − ‖∇N φ‖2
2 + 1

2
‖�N φ‖2

2 . (2.22)

The following result corresponds to a discrete Sobolev embedding from H2
N to W

1,6
N in the

pseudo-spectral space. Similar discrete embedding estimates, in the lower order ones, could

be found in Lemma 2.1 of [20]; also see the related results [33,34] in the finite difference

version. A direct calculation is not able to derive these inequalities; instead, a discrete Fourier

analysis has to be applied in the derivation; the details of the proof has been provided in a

recent work [18]. .

Proposition 2.3 [18] For any periodic grid function f , we have

‖∇N f ‖6 ≤ C‖�N f ‖2, for some constant C only dependent on �. (2.23)
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The following discrete elliptic regularity estimate will be used in the later stability analysis;

its proof will be provided in “Appendix 1”.

Proposition 2.4 For any periodic grid function f , we have

‖∇N �N f ‖2 ≤ Ĉ0‖�3
N f ‖2, for some Ĉ0 only dependent on �. (2.24)

2.2 The Fully Discrete Numerical Scheme

The SPFC energy (1.2) is decomposed into two parts:

Espfc(φ) = E1(φ) + 1

2
(φ, Lφ),

E1(φ) =
∫

�

{

1

4
|∇φ|4 − |∇φ|2 + 2

}

dx, Lφ = aφ + �2φ. (2.25)

In particular, due to the point-wise quadratic inequality

1

4
|∇φ|4 − |∇φ|2 + 1 ≥ 0, (2.26)

we conclude that E1(φ) have a well-established lower bound:

E1(φ) ≥ |�|. (2.27)

In turn, the nonlinear chemical potential becomes

N (φ) := δφ E1 = −∇ · (|∇φ|2∇φ) + 2�φ. (2.28)

Therefore, with an introduction of a scalar auxiliary variable

r :=
√

E1(φ), (2.29)

the original SPFC equation (1.3) could be rewritten as the following system:
⎧

⎨

⎩

φt = �

(

r√
E1(φ)

N (φ) + Lφ

)

,

rt = 1
2
√

E1(φ)

∫

�
N (φ)φt dx.

(2.30)

Based on this reformulation, the fully discrete second order SAV scheme is proposed as

follows, with Fourier pseudo-spectral spatial approximation:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

3
2 φn+1−2φn+ 1

2 φn−1

�t
= �N

(

rn+1
√

E1,N (φ̂n+1)
NN (φ̂n+1) + L N φn+1

)

, (2.31a)

3
2 rn+1−2rn+ 1

2 rn−1

�t
= 1

2

√

E1,N (φ̂n+1)
〈NN (φ̂n+1),

3
2 φn+1−2φn+ 1

2 φn−1

�t
〉, (2.31b)

(2.31)

in which NN (φ) := −∇N · (|∇N φ|2∇N φ)+ 2�N φ, L N φ = aφ +�2
N φ, and a second order

explicit extrapolation is applied to obtain φ̂n+1 = 2φn −φn−1. The discrete nonlinear energy

functional is introduced as E1,N (φ) := 1
4
‖∇N φ‖4

4 −‖∇N φ‖2
2 + 2|�|, similar to the notation

in (2.22).

Since (2.31) is a two-step numerical method, a “ghost” point extrapolation for φ−1 is

useful. To preserve the second order accuracy in time, we apply the following approximation:

φ−1 = φ0 − �t�N μ0, μ0 := −∇N · (|∇N φ0|2∇N φ0) + aφ0 + 2�N φ0 + �2
N φ0.

(2.32)
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A careful Taylor expansion indicates an O(�t2 + hm) accuracy for such an approximation:

‖φ−1 − 
−1‖2 ≤ C(�t2 + hm), in which 
 is the exact solution for (1.3). (2.33)

In turn, we take r0 :=
√

E1,N (φ0), r−1 :=
√

E1,N (φ−1)

2.3 Unique Solvability and Efficient Numerical Solver for the Proposed Scheme

In this section we analyze the unique solvability of the proposed SAV scheme (2.31). From

(2.31a), one can get

(

3

2
I − �t�N L N

)

φn+1 = �t�N

⎛

⎝

rn+1

√

E1,N (φ̂n+1)

NN (φ̂n+1)

⎞

⎠ + 2φn − 1

2
φn−1.

(2.34)

Define AN = 3
2

I − �t�N L N , so that the following identity is valid:

φn+1 = �t
rn+1

√

E1,N (φ̂n+1)

A−1
N �N NN (φ̂n+1) + A−1

N

(

2φn − 1

2
φn−1

)

.

From (2.31b), we see that

rn+1 = 4

3
rn − 1

3
rn−1 + 1

3

√

E1,N (φ̂n+1)

〈NN (φ̂n+1),
3

2
φn+1 − 2φn + 1

2
φn−1〉. (2.35)

A substitution of (2.35) into (2.34) gives

(

3

2
I − �t�N L N

)

φn+1 − �N NN (φ̂n+1)

2E1,N (φ̂n+1)
�t〈NN (φ̂n+1), φn+1〉

= �t�N NN (φ̂n+1)
√

E1,N (φ̂n+1)

⎛

⎝

4

3
rn − 1

3
rn−1 + 1

3

√

E1,N (φ̂n+1)

〈NN (φ̂n+1),−2φn + 1

2
φn−1〉

⎞

⎠

+2φn − 1

2
φn−1.

Let gn
N denotes the right-hand of the above equation, then it becomes

AN φn+1 − �N NN (φ̂n+1)

2E1,N (φ̂n+1)
�t〈NN (φ̂n+1), φn+1〉 = gn

N .

Multiplying both sides by A−1
N implies that

φn+1 − 1

2E1,N (φ̂n+1)
�t〈NN (φ̂n+1), φn+1〉 · A−1

N �N NN (φ̂n+1) = A−1
N gn

N . (2.36)

Denote L H S = 〈NN (φ̂n+1), φn+1〉, a scalar value. Taking a discrete inner product

with (2.36) by NN (φ̂n+1) leads to

〈NN (φ̂n+1), φn+1〉 − �t

2E1,N (φ̂n+1)
· L H S · 〈NN (φ̂n+1),
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A−1
N �N NN (φ̂n+1)〉 = 〈NN (φ̂n+1), A−1

N gn
N 〉.

Then we arrive at
(

1 − �t

2E1,N (φ̂n+1)
· 〈NN (φ̂n+1), A−1

N �N NN (φ̂n+1)〉
)

· L H S = 〈NN (φ̂n+1), A−1
N gn

N 〉.

(2.37)

In addition, we notice that

〈NN (φ̂n+1), A−1
N �N NN (φ̂n+1)) ≤ 0, (2.38)

since all the eigenvalues of the symmetric operator A−1
N �N are non-positive. As a direct

consequence, the coefficient on the left hand side of (2.37) is positive, so that the value

of L H S is uniquely solvable. Going back (2.36), the numerical solution φn+1 is uniquely

determined:

φn+1 = �t

2E1,N (φ̂n+1)
· L H S · A−1

N �N NN (φ̂n+1) + A−1
N gn

N . (2.39)

Furthermore, a substitution of φn+1 into (2.35) gives the numerical value of rn+1.

Theorem 2.5 Given φn, φn−1 ∈ GN , two scalar values rn , rn−1, with φn = φn−1, there

exists a unique solution φn+1 ∈ GN for the numerical schemes (2.31). The scheme is mass

conservative, i.e., φk ≡ φ0 := β0, for any k ≥ 0, provided that φ−1 = φ0 = β0.

Proof The unique solvability comes from the derived identities (2.35), (2.37) and (2.39). In

addition, the mass conservation property is a direct consequence of a summation of (2.31a)

over �, which is turn leads to

φn+1 = 4

3
φn − 1

3
φn−1 + 2

3
�N

⎛

⎝

rn+1

√

E1,N (φ̂n+1)

NN (φ̂n+1) + L N φn+1

⎞

⎠

= 4

3
φn − 1

3
φn−1, (2.40)

with the fact that �N f = 0, ∀ f ∈ GN , has been applied. An application of induction implies

that φk = β0, for any k ≥ 0, provided that φ−1 = φ0 = β0. This completes the proof of

Theorem 2.5. ��

3 Unconditional Energy Stability and the Uniform H
3 Estimate

3.1 Modified Energy Stability for the Proposed Numerical Scheme

Theorem 3.1 For k ≥ 1, define the discrete modified energy

EN (φk+1, φk, rk+1, rk) := 1

4

(

‖L
1
2
N φk+1‖2

2

+‖L
1
2
N (2φk+1 − φk)‖2

2

)

+ 1

2

(

|rk+1|2 + |2rk+1 − rk |2
)

.

(3.1)
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Solution of the numerical scheme (2.31) satisfies the following dissipation properties

EN (φk+1, φk, rk+1, rk) ≤ EN (φk, φk−1, rk, rk−1). (3.2)

Proof We begin with a rewritten form of the numerical scheme (2.31):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3
2 φn+1−2φn+ 1

2 φn−1

�t
= �N μn+1

N , (3.3a)

μn+1
N = L N φn+1 + rn+1

√

E1,N (φ̂n+1)
NN (φ̂n+1), (3.3b)

3
2 rn+1−2rn+ 1

2 rn−1

�t
= 1

2

√

E1,N (φ̂n+1)
〈NN (φ̂n+1),

3
2 φn+1−2φn+ 1

2 φn−1

�t
〉. (3.3c)

(3.3)

Subsequently, taking discrete inner product with (3.3a) byμn+1
N , with (3.3b) by−( 3

2
φn+1−

2φn + 1
2
φn−1), with (3.3c) by 2rn+1, we have

〈3

2
φn+1 − 2φn + 1

2
φn−1, μn+1

N 〉 = �t〈�N μn+1
N , μn+1

N 〉 = −�t‖∇N μn+1
N ‖2

2, (3.4)

−〈3

2
φn+1 − 2φn + 1

2
φn−1, μn+1

N 〉 = −〈L N φn+1,
3

2
φn+1 − 2φn + 1

2
φn−1〉

+ rn+1

√

E1,N (φ̂n+1)

〈−NN (φ̂n+1),
3

2
φn+1

−2φn + 1

2
φn−1〉, (3.5)

2rn+1(
3

2
rn+1 − 2rn + 1

2
rn−1) = rn+1

√

E1,N (φ̂n+1)

〈NN (φ̂n+1),
3

2
φn+1

−2φn + 1

2
φn−1〉. (3.6)

In turn, by adding (3.4), (3.5) and (3.6), we obtain

〈L N φn+1,
3

2
φn+1 − 2φn + 1

2
φn−1〉

+2rn+1

(

3

2
rn+1 − 2rn + 1

2
rn−1

)

= −�t‖∇N μn+1
N ‖2

2. (3.7)

Meanwhile, the derivation of the following two identities are straightforward:

〈L N φn+1,
3

2
φn+1 − 2φn + 1

2
φn−1〉 = 〈L

1
2
N φn+1, L

1
2
N

(

3

2
φn+1 − 2φn + 1

2
φn−1

)

〉

= 1

4
(‖L

1
2
N φn+1‖2

2 − ‖L
1
2
N φn‖2

2 + ‖L
1
2
N (2φn+1 − φn)‖2

2 − ‖L
1
2
N (2φn − φn−1)‖2

2

+‖L
1
2
N (φn+1 − 2φn + φn−1)‖2

2), (3.8)

2rn+1

(

3

2
rn+1 − 2rn + 1

2
rn−1

)

= 1

2
(|rn+1|2 − |rn |2

+|2rn+1 − rn |2 − |2rn − rn−1|2 + |rn+1 − 2rn + rn−1|2), (3.9)
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in which identity (2.17) has been applied in the first step of (3.8). Going back (3.7), we arrive

at

EN (φn+1, φn, rn+1, rn) − EN (φn, φn−1, rn, rn−1)

= −1

4
‖L

1
2
N (φn+1 − 2φn + φn−1)‖2

2

−1

2
|rn+1 − 2rn + rn−1|2 − �t‖∇N μn+1

N ‖2
2 ≤ 0. (3.10)

This completes the proof of Theorem 3.1. ��

As a direct consequence of the energy stability, a uniform-in-time H2
N bound for the

numerical solution is derived as follows.

Corollary 3.2 Suppose that the initial data are sufficiently regular so that

1

4
(‖L

1
2
N φ0‖2

2 + ‖L
1
2
N (2φ0 − φ−1)‖2

2) + 1

2
(|r0|2 + |2r0 − r−1|2) ≤ C̃0, (3.11)

for some C̃0 that is independent of h. Then we have the following uniform-in-time H2
N bound

for the numerical solution:

‖φm‖H2
N

≤ C̃1, ∀ m ≥ 1, (3.12)

where C̃1 > 0 depends on � and C̃0, but is independent of h, �t and the time step tm .

Proof As a result of (3.2), the following energy bound is available:

1

4
‖L

1
2
N φm‖2

2 ≤ EN (φm, φm−1, rm, rm−1) ≤ EN (φ0, φ−1, r0, r−1)

= 1

4
(‖L

1
2
N φ0‖2

2 + ‖L
1
2
N (2φ0 − φ−1)‖2

2) + 1

2
(|r0|2 + |2r0 − r−1|2) ≤ C̃0,

(3.13)

for any m ≥ 1. On the other hand, the eigenvalue expansion (2.15) implies the following fact

‖L
1
2
N f ‖2

2 = a‖ f ‖2
2 + ‖�N f ‖2

2, ∀ f ∈ GN . (3.14)

Then we arrive at

‖φm‖2
2 + ‖�N φm‖2

2 ≤ 4C̃0

a
, ∀m ≥ 1. (3.15)

And also, the following estimate is available:

‖∇N φm‖2
2 = −〈φm,�N φm〉 ≤ ‖φm‖2 · ‖�N φm‖2

≤ 1

2
(‖φm‖2

2 + ‖�N φm‖2
2) ≤ 2C̃0

a
. (3.16)

Therefore, the following bound is obvious

‖φm‖H2
N

=
(

‖φm‖2
2 + ‖∇N φm‖2

2 + ‖�N φm‖2
2

)
1
2 ≤

(6C̃0

a

)
1
2 := C̃1, ∀m ≥ 1. (3.17)

This completes the proof of Corollary 3.2. ��
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Remark 3.3 It is obvious that the modified energy functional (3.1) is the second order approx-

imation to the original discrete energy (2.22), under certain regularity assumption for the

numerical solution. Meanwhile, such a modified discrete energy is in terms of a scalar auxil-

iary variable r , combined with the linear surface diffusion energy part, not fully in terms of

the original phase variable φ, as formulated in (2.22). Although a direct bound of the original

energy functional is not available in terms of the initial data, a uniform-in-time H2
N bound

for the numerical solution could be derived, up to a constant multiple, as demonstrated in

Corollary 3.2.

Remark 3.4 For various gradient flow equations, the second order numerical scheme using

the BDF temporal stencil has attracted many attentions in recent years. For these BDF-type

methods applied to the original phase variables, an artificial Douglas–Dupont regularization

term has to be added to ensure the energy stability; see the related works [34,40,43,47,61] for

the epitaxial thin film growth and Cahn–Hilliard equations, respectively. On the other hand,

for an SAV-based numerical algorithm, such an artificial regularization is not needed, since

the concave diffusion term has already been included in the scalar quadrant part.

Remark 3.5 As a combination of the uniform in time H2
N bound (3.12) and the discrete

Sobolev embedding inequality (2.23), we arrive at a uniform in time W
1,6
N estimate for the

numerical solution:

‖∇N φm‖6 ≤ CC̃1, ∀ m ≥ 1. (3.18)

And also, the modified energy inequality (3.13) indicates that

1

2
|rm |2 ≤ C̃0, so that rm ≤ (2C̃0)

1
2 , ∀m ≥ 1. (3.19)

These estimates will be useful in the higher order stability analysis presented below.

Meanwhile, the established energy stability estimate (3.2) is in terms of the modified

energy functional (3.1). On the other hand, for the original discrete energy (2.22), the follow-

ing estimate is available, with the help of the uniform-in-time H2
N bound (3.12), established

in Corollary 3.2.

Proposition 3.6 Suppose that the initial data are sufficiently regular so that (3.11) is satisfied,

for some C̃0 that is independent of h. Then we have the following uniform-in-time bound for

the original energy functional:

EN (φm) ≤ C̃∗
1 , ∀ m ≥ 1, (3.20)

where C̃∗
1 > 0 depends on � and C̃0, but is independent of h, �t and the time step tm .

Proof By the definition of the ‖ · ‖H2
N

norm (2.21), we see that

a

2
‖φm‖2

2 + 1

2

∥

∥�N φm
∥

∥

2

2
≤ 1

2
‖φm‖2

H2
N

≤ 1

2
C̃2

1 , since 0 ≤ a ≤ 1, (3.21)

‖∇N φm‖4 ≤ C‖∇N φm‖6 ≤ C̆1‖�N φm‖2, (3.22)

so that
1

4
‖∇N φm‖4

4 ≤ 1

4
C̆4

1‖�N φm‖4
2 ≤ 1

4
C̆4

1 C̃4
1 , (3.23)

for any m ≥ 1, in which the uniform-in-time H2
N bound (3.12) has been extensively applied.

Also notice that the discrete Hölder inequality, as well as the Sobolev embedding (2.23),
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have been applied in the derivation of (3.22). Then we arrive at

EN (φm) = 1

4
‖∇N φm‖4

4 + a

2
‖φm‖2

2 − ‖∇N φm‖2
2 + 1

2
‖�N φm‖2

2

≤ 1

4
‖∇N φm‖4

4 + a

2
‖φm‖2

2 + 1

2
‖�N φm‖2

2 ≤ 1

4
C̆4

1 C̃4
1 + 1

2
C̃2

1 := C̃∗
1 , (3.24)

for any m ≥ 1. Notice that C̃∗
1 only depends on � and the initial data, henceforth on � and

C̃0, and independent on h, �t and final time. This completes the proof of Proposition 3.6. ��

Remark 3.7 For the proposed SAV scheme (2.31), the uniform energy bound C̃∗
1 in (3.20)

depends on the uniform-in-time H2
N bound C̃1 established in (3.12). Since C̃1 could be

represented as a constant multiple of C̃
1
2
0 (as given by (3.17)), while C̃0 is bounded by the

initial energy plus a fixed constant, we conclude that the original energy bound C̃∗
1 turns out

to be dependent on the original energy in a quadratic way, as revealed by (3.24). In contrast,

the following uniform-in-time bound has been derived in a recent work [18] for the SPFC

equation:

EN (φm) ≤ EN (φ0). (3.25)

Of course, it is a much sharper estimate for the original energy functional than the one

established for the SAV approach, namely (3.24). This difference is based on the fact that,

an auxiliary variable (2.29) has been introduced in the SAV algorithm, so that only the

dissipation for the reformulated energy functional (3.1) is preserved, as established in (3.2).

In comparison, the primitive variable formulation of the SPFC equation was discussed in

[18], which in turn leads to a direct bound of the original energy functional (3.25).

In fact, there have been a great deal of efforts to enforce the stability estimate for the

original energy functional in the SAV numerical approach. For example, in two recent works

[21,22], a Lagrange multiplier approach has been introduced, so that the dissipation law

for the original energy functional becomes available, if the proposed numerical system is

solvable. Meanwhile, due to the nonlinear nature of the Lagrange multiplier approach of

the SAV method presented in [21,22], more detailed investigations of the unique solvability

analysis have to be undertaken. An application of such an approach to the SPFC equation

will also be considered in the future works.

3.2 The �∞(0, T;H3) Bound Estimate for the Numerical Solution

Theorem 3.8 For the numerical solution (2.31), the following estimate is available:

‖φm
S ‖H3 ≤ Q(3), ∀m ≥ 1, (3.26)

in which φm
S stands for the spectral interpolation of the numerical solution φm , as given by

formula (2.9). The constant Q(3) only depends on the initial H3 data and the domain, and it

is independent on �t , h and T .

Proof Taking a discrete inner product with (2.31a) by −2�3
N φn+1, we obtain

1

�t
〈3

2
φn+1 − 2φn + 1

2
φn−1,−2�3

N φn+1〉 + 2〈�N L N φn+1,�3
N φn+1〉

= −2
rn+1

√

E1,N (φ̂n+1)

〈�N NN (φ̂n+1),�3
N φn+1〉. (3.27)
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The temporal stencil term could be analyzed in the same way as in (3.8):

〈3

2
φn+1 − 2φn + 1

2
φn−1,−2�3

N φn+1〉

= 〈∇N �N

(

3

2
φn+1 − 2φn + 1

2
φn−1

)

, 2∇N �N φn+1〉

= 1

2
(‖∇N �N φn+1‖2

2 − ‖∇N �N φn‖2
2

+‖∇N �N (2φn+1 − φn)‖2
2 − ‖∇N �N (2φn − φn−1)‖2

2

+‖∇N �N (φn+1 − 2φn + φn−1)‖2
2). (3.28)

The surface diffusion part could be handled in a more straightforward way:

〈�N L N φn+1,�3
N φn+1〉 = a〈�N φn+1,�3

N φn+1〉 + 〈�3
N φn+1,�3

N φn+1〉
= a‖�2

N φn+1‖2
2 + ‖�3

N φn+1‖2
2. (3.29)

For the right hand side nonlinear inner product, we begin with the following observations:

E1,N (φ̂n+1) ≥ |�|, |rm | ≤ (2C̃0)
1
2 , (by (3.19)). (3.30)

These two bounds imply that

rn+1

√

E1,N (φ̂n+1)

≤
(

2C̃0

|�|

)
1
2

. (3.31)

For the nonlinear inner product, the following expansion is recalled

�N NN (φ̂n+1) = −�N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1) + 2�2
N φ̂n+1. (3.32)

The linear part could be controlled in a standard fashion:

− 2
rn+1

√

E1,N (φ̂n+1)

〈2�2
N φ̂n+1,�3

N φn+1〉 ≤ 4

(

2C̃0

|�|

)
1
2

‖�2
N φ̂n+1‖2 · ‖�3

N φn+1‖2

≤ 16C̃0

|�| ‖�2
N φ̂n+1‖2

2 + 1

2
‖�3

N φn+1‖2
2.

(3.33)

For the nonlinear 4-Laplacian part, the following grid function is introduced:

q̂n+1 := |∇N φ̂n+1|2∇N φ̂n+1. (3.34)

This in turn implies that

‖�N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 = ‖�(∇ · q̂n+1
S )‖L2 , (3.35)

in which q̂n+1
S is the spectral interpolation of q̂n+1, given by formula (2.9). Moreover, since

q̂n+1 is the point-wise interpolation of the continuous function

ϕq̂n+1 := |∇φ̂n+1
S |2∇φ̂n+1

S , with φ̂n+1
S = 2φn

S − φn−1
S ,

(3.36)
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we see that q̂n+1
S = RN (ϕq̂n+1). In turn, by making use of the aliasing error control inequality

stated in Lemma 2.2, we conclude that

‖�(∇ · q̂n+1
S )‖L2 ≤ ‖q̂n+1

S ‖H3 = ‖RN (ϕq̂n+1)‖H3 ≤ 3
3
2 ‖ϕq̂n+1‖H3 , since ϕq̂n+1 ∈ P3K .

(3.37)

Meanwhile, for ϕq̂n+1 given by (3.36), a detailed expansion and repeated applications of

Hölder inequality indicate that

‖ϕq̂n+1‖H3 ≤ C(‖ϕq̂n+1‖ + ‖∇�ϕq̂n+1‖) = C(‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖
+‖∇�(|∇φ̂n+1

S |2∇φ̂n+1
S )‖)

≤ C
(

‖∇φ̂n+1
S ‖2

L∞ · ‖∇φ̂n+1
S ‖H3 + ‖∇∇φ̂n+1

S ‖3
L6

+‖∇φ̂n+1
S ‖L∞ · ‖∇∇φ̂n+1

S ‖L∞ · ‖∇φ̂n+1
S ‖H2

)

, (3.38)

in which the following estimates have been applied

‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖ ≤ ‖∇φ̂n+1
S ‖2

L∞ · ‖∇φ̂n+1
S ‖ ≤ ‖∇φ̂n+1

S ‖2
L∞ · ‖∇φ̂n+1

S ‖H3 ,

�(|∇φ̂n+1
S |2∇φ̂n+1

S ) = 3|∇φ̂n+1
S |2∇�φ̂n+1

S + 6(∇φ̂n+1
S )(∇∇φ̂n+1

S )(∇∇φ̂n+1
S ),

∇�(|∇φ̂n+1
S |2∇φ̂n+1

S ) = 3|∇φ̂n+1
S |2(∇∇�φ̂n+1

S )+6((∇φ̂n+1
S )(∇∇φ̂n+1

S )) ⊗ (∇�φ̂n+1
S )

+ 6(∇∇φ̂n+1
S ) ⊗ (∇∇φ̂n+1

S )(∇∇φ̂n+1
S ) + 12(∇φ̂n+1

S )(∇∇∇φ̂n+1
S )(∇∇φ̂n+1

S ),

‖|∇φ̂n+1
S |2(∇∇�φ̂n+1

S )‖ ≤ ‖∇φ̂n+1
S ‖2

L∞ · ‖∇∇�φ̂n+1
S ‖ ≤ ‖∇φ̂n+1

S ‖2
L∞ · ‖∇φ̂n+1

S ‖H3 ,

‖((∇φ̂n+1
S )(∇∇φ̂n+1

S )) ⊗ (∇�φ̂n+1
S )‖ ≤ C‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖L∞‖∇�φ̂n+1

S ‖
≤ C‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖L∞‖∇φ̂n+1

S ‖H2 ,

‖(∇∇φ̂n+1
S ) ⊗ (∇∇φ̂n+1

S )(∇∇φ̂n+1
S )‖ ≤ C‖∇∇φ̂n+1

S ‖3
L6 ,

‖(∇φ̂n+1
S )(∇∇∇φ̂n+1

S )(∇∇φ̂n+1
S )‖ ≤ ‖∇φ̂n+1

S ‖L∞ · ‖∇∇∇φ̂n+1
S ‖ · ‖∇∇φ̂n+1

S ‖L∞

≤ C‖∇φ̂n+1
S ‖L∞ · ‖∇∇φ̂n+1

S ‖L∞ · ‖∇φ̂n+1
S ‖H2 .

Furthermore, the following 3-D Sobolev embedding and interpolation inequalities could be

derived:

‖∇φ̂n+1
S

‖L∞ ≤ C(‖�φ̂n+1
S

‖ + ‖�φ̂n+1
S

‖
7
8 · ‖�3φ̂n+1

S
‖

1
8 ) ≤ C(C̃1 + C̃

7
8
1 ‖�3φ̂n+1

S
‖

1
8 ),

(3.39)

‖∇φ̂n+1
S

‖H3 ≤ C‖�φ̂n+1
S

‖
1
2 · ‖�3φ̂n+1

S
‖

1
2 ≤ CC̃

1
2
1 ‖�3φ̂n+1

S
‖

1
2 , (3.40)

‖∇∇φ̂n+1
S

‖L6 ≤ C‖∇∇φ̂n+1
S

‖H1 ≤ C‖�φ̂n+1
S

‖
3
4 · ‖�3φ̂n+1

S
‖

1
4 ≤ CC̃

3
4
1 ‖�3φ̂n+1

S
‖

1
4 ,

(3.41)

‖∇∇φ̂n+1
S

‖L∞ ≤ C(‖∇�φ̂n+1
S

‖ + ‖∇�φ̂n+1
S

‖
5
6 · ‖�3φ̂n+1

S
‖

1
6 )

≤ C(‖�φ̂n+1
S

‖
3
4 · ‖�3φ̂n+1

S
‖

1
4 + (‖�φ̂n+1

S
‖

3
4 · ‖�3φ̂n+1

S
‖

1
4 )

5
6 · ‖�3φ̂n+1

S
‖

1
6 )

≤ C(C̃
3
4
1 · ‖�3φ̂n+1

S
‖

1
4 + C̃

5
8
1 ‖�3φ̂n+1

S
‖

3
8 ), (3.42)

‖∇φ̂n+1
S

‖H2 ≤ C‖�φ̂n+1
S

‖
3
4 · ‖�3φ̂n+1

S
‖

1
4 ≤ CC̃

3
4
1 ‖�3φ̂n+1

S
‖

1
4 , (3.43)
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in which the uniform in time H2 bound (3.12) of the numerical solution has been extensively

used. In turn, a substitution of the above estimates into (3.38) yields

‖ϕq̂n+1‖H3 ≤ C(C̃3
1 + C̃

9
4
1 ‖�3φ̂n+1

S ‖ 3
4 ). (3.44)

Subsequently, its combination with (3.35) and (3.37) reveals that

‖�N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 ≤ C(C̃3
1 + C̃

9
4
1 ‖�3φ̂n+1

S ‖ 3
4 )

≤ C(C̃3
1 + C̃

9
4
1 ‖�3

N φ̂n+1‖ 3
4 ), (3.45)

in which the fact that φ̂n+1
S ∈ PK has been applied in the last step. As a consequence, we

arrive at

2
rn+1

√

E1,N (φ̂n+1)

〈�N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1),�3
N φn+1〉

≤ 2
(2C̃0

|�|
)

1
2 ‖�N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 · ‖�3

N φn+1‖2

≤ C(C̃3
1 + C̃

9
4
1 ‖�3

N φ̂n+1‖ 3
4 ) · ‖�3

N φn+1‖2

≤ C(C̃6
1 + C̃

9
2
1 ‖�3

N φ̂n+1‖ 3
2 ) + 1

2
‖�3

N φn+1‖2
2. (3.46)

A combination of (3.33) and (3.46) leads to

−2
rn+1

√

E1,N (φ̂n+1)

〈�N NN (φ̂n+1),�3
N φn+1〉

≤ 16C̃0

|�| ‖�2
N φ̂n+1‖2

2 + C(C̃6
1 + C̃

9
2
1 ‖�3

N φ̂n+1‖ 3
2 ) + ‖�3

N φn+1‖2
2. (3.47)

Finally, a substitution of (3.28), (3.29) and (3.47) into (3.27) results in

1

2�t
(‖∇N �N φn+1‖2

2 − ‖∇N �N φn‖2
2 + ‖∇N �N (2φn+1 − φn)‖2

2

−‖∇N �N (2φn − φn−1)‖2
2)

+2a‖�2
N φn+1‖2

2 + ‖�3
N φn+1‖2

2 ≤ 16C̃0

|�| ‖�2
N φ̂n+1‖2

2 + C(C̃6
1 + C̃

9
2
1 ‖�3

N φ̂n+1‖ 3
2 ).

(3.48)

Meanwhile, the following interpolation inequality and Cauchy inequality are available:

‖�2
N φ̂n+1‖2 ≤ ‖�N φ̂n+1‖

1
2
2 · ‖�3

N φ̂n+1‖
1
2
2 ≤ (3C̃1)

1
2 ‖�3

N φ̂n+1‖
1
2
2 , (3.49)

‖�3
N φ̂n+1‖2

2 = ‖�3
N (2φn − φn−1)‖2

2 = 4‖�3
N φn‖2

2 + ‖�3
N φn−1‖2

2 − 4〈�3
N φn,�2

N φn−1〉
≤ 4‖�3

N φn‖2
2 + ‖�3

N φn−1‖2
2 + 2(‖�3

N φn‖2
2 + ‖�2

N φn−1‖2
2)

≤ 6‖�3
N φn‖2

2 + 3‖�3
N φn−1‖2

2. (3.50)

Then we obtain the following estimates:

16C̃0

|�| ‖�2
N φ̂n+1‖2

2 ≤ 48C̃0C̃1

|�| ‖�3
N φ̂n+1‖2 ≤ 482 · 9C̃2

0 C̃2
1

|�|2 + 1

36
‖�3

N φ̂n+1‖2
2

123



   33 Page 18 of 36 Journal of Scientific Computing            (2021) 88:33 

≤ CC̃2
0 C̃2

1

|�|2 + 1

6
‖�3

N φn‖2
2 + 1

12
‖�3

N φn−1‖2
2, (3.51)

CC̃
9
2
1 ‖�3

N φ̂n+1‖ 3
2 ≤ CC̃18

1 + 1

36
‖�3

N φ̂n+1‖2

≤ CC̃18
1 + 1

6
‖�3

N φn‖2
2 + 1

12
‖�3

N φn−1‖2
2, (3.52)

in which the Young’s inequality has been applied in the first step of (3.52). Going back (3.48),

we arrive at

1

2�t
(‖∇N �N φn+1‖2

2 − ‖∇N �N φn‖2
2 + ‖∇N �N (2φn+1 − φn)‖2

2

−‖∇N �N (2φn − φn−1)‖2
2)

+2a‖�2
N φn+1‖2

2 + ‖�3
N φn+1‖2

2 ≤ 1

3
‖�3

N φn‖2
2

+1

6
‖�3

N φn−1‖2
2 + CC̃2

0 C̃2
1

|�|2 + C1(C̃
18
1 + 1). (3.53)

Moreover, the following quantity is introduced:

Gn+1 := 1

2
(‖∇N �N φn+1‖2

2 + ‖∇N �N (2φn+1 − φn)‖2
2)

+2

3
�t‖�3

N φn+1‖2
2 + 1

6
�t‖�3

N φn‖2
2. (3.54)

By adding 1
3
‖�3

N φn‖2
2 on both sides of (3.53), we obtain the following inequality:

Gn+1 − Gn + 1

3
�t‖�3

N φn+1‖2
2 + 1

6
�t‖�3

N φn‖2
2 ≤ M (0)�t,

M (0) = CC̃2
0 C̃2

1

|�|2 + C1(C̃
18
1 + 1). (3.55)

In addition, the following elliptic regularity estimates are valid, with an application of (2.24)

in Proposition 2.4 (by taking C2 = Ĉ−2
0 ):

C2‖∇N �N φn+1‖2
2 ≤ ‖�3

N φn+1‖2
2, C2‖∇N �N φn‖2

2 ≤ ‖�3
N φn‖2

2, (3.56)

so that we arrive at

1

24
C2Gn+1 ≤ 1

3
‖�3

N φn+1‖2
2 + 1

6
‖�3

N φn‖2
2. (3.57)

Going back (3.55), we get

Gn+1 − Gn + C2

24
�tGn+1 ≤ M (0)�t . (3.58)

An application of induction argument implies that

Gn+1 ≤ (1 + C2

24
�t)−(n+1)G0 + 24M (0)

C2
. (3.59)

Of course, we could introduce a uniform in time quantity B∗
3 := G0 + 24M(0)

C2
, so that

‖∇N �N φm‖2 ≤ 2Gm ≤ 2B∗
3 for any m ≥ 0. In turn, an application of elliptic regularity
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shows that

‖φm
S ‖H3 ≤ C

(

|φm | + ‖∇�φm‖
)

≤ C(|β0| + (2B∗
3 )1/2) := Q(3), ∀m ≥ 0. (3.60)

in which the uniform in time constant Q(3) depends on � and the initial H3 data. This finishes

the proof of Theorem 3.8. ��

Remark 3.9 Higher order Hm estimate (beyond the norm given by the physical energy)

is available for many gradient flows, due to the analytic property of the surface diffusion

parabolic operator; see the related discussions in [7]. There have also been quite a few works

of uniform in time H2 estimate for certain energy stable numerical schemes for the Cahn–

Hilliard equation [20,39,51], beyond the H1 bound given by the energy estimate. Similar

numerical estimates for also expected for epitaxial thin film growth and SPFC flows, in which

the H2 bound is given by the energy estimate, while an H3 estimate could be derived with the

help of higher order analysis, combined with Sobolev inequalities. In fact, similar estimates

have also been reported for 2-D incompressible Navier–Stokes equations, in terms of the

first, second and higher order temporal numerical approximations; see the delated works

[17,37,58], etc.

4 The Optimal Rate Convergence Analysis

Now we proceed into the convergence analysis for the proposed numerical scheme (2.31).

Due to the SAV structure of the algorithm, the error estimate has to be performed in the energy

norm, i.e., in the �∞(0, T ; H2
N ) ∩ �2(0, T ; H5

N ) for the phase variable. Similar techniques

have also been applied to the convergence estimate [44] for the SAV scheme applied to

Cahn–Hilliard equation. These ideas have also been reported for the corresponding analysis

for the phase field flow coupled with fluid motion [9,12,24,25,45]. With an initial data with

sufficient regularity, we could assume that the exact solution has regularity of class R:


 ∈ R := H3(0, T ; C0) ∩ H2(0, T ; H4) ∩ L∞(0, T ; Hm+6). (4.1)

In particular, the following bound is available for the exact solution:

‖∂m
t 
‖L∞(0,T ;L∞) ≤ C∗, (1 ≤ m ≤ 3), ‖
k‖Hm+6 ≤ C∗, ∀k ≥ 0. (4.2)

Theorem 4.1 Given initial data 
0 ∈ Hm+6
per (�), suppose the exact solution for SPFC equa-

tion (1.3) is of regularity class R. For �t and h are sufficiently small, we have

max
0≤n≤M

‖�N (
n − φn)‖2 + (�t

M
∑

k=1

‖∇N �2
N (
k − φk)‖2

2)
1/2 ≤ C(�t2 + hm), (4.3)

where C > 0 is independent of �t and h, and �t = T /M.

4.1 The Consistency Analysis

For 
 ∈ R, we construct an approximate scalar value of R as follows

Rn+1 :=
√

E1,N (
n+1) , En+1
1,N (
n+1) = 1

4
‖∇N 
n+1‖4

4 − ‖∇N 
n+1‖2
2 + 2|�|. (4.4)
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A similar extrapolation 
̂n+1 := 2
n −
n−1 is taken. In turn, a careful consistency analysis

indicates the following truncation error estimate:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

3
2 
n+1−2
n+ 1

2 
n−1

�t
= �N

(

Rn+1
√

E1,N (
̂n+1)
NN (
̂n+1) + L N 
n+1

)

+ τ n+1
φ , (4.5a)

3
2 Rn+1−2Rn+ 1

2 Rn−1

�t
= 1

2

√

E1,N (
̂n+1)
〈NN (
̂n+1),

3
2 
n+1−2
n+ 1

2 
n−1

�t
〉 + τ n+1

r . (4.5b)

(4.5)

with ‖τ n+1
φ ‖2, |τ n+1

r | ≤ C(�t2 + hm). The derivation of (4.5) is accomplished with the

help of the spectral approximation estimate and other related estimates; the details are left to

interested readers.

The numerical error function is defined at a point-wise level:

ek := 
k − φk, Ñ k := NN (
̂k) − NN (φ̂k), ∀k ≥ 0. (4.6)

And also, the following scalar numerical errors are introduced

r̃k := Rk − rk, Ẽk
1 := E1,N (
̂k) − E1,N (φ̂k), ∀k ≥ 0. (4.7)

In turn, subtracting the numerical scheme (2.31) from (4.5) gives
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3
2 en+1−2en+1

2 en−1

�t
=�N

(

( r̃n+1
√

E1,N (φ̂n+1)
−Bn+1 Rn+1 Ẽn+1

1 )NN (φ̂n+1)+ Rn+1
√

E1,N (
̂n+1)
Ñ n+1

+L N en+1
)

+ τ n+1
φ , (4.8a)

3
2 r̃n+1−2r̃n+ 1

2 r̃n−1

�t
= 1

2

√

E1,N (φ̂n+1)
〈NN (φ̂n+1),

3
2 en+1−2en+ 1

2 en−1

�t
〉

+ 1

2

√

E1,N (φ̂n+1)
〈Ñ n+1,

3
2 
n+1−2
n+ 1

2 
n−1

�t
〉

− 1
2

Bn+1 Ẽn+1
1 〈NN (
̂n+1),

3
2 
n+1−2
n+ 1

2 
n−1

�t
〉 + τ n+1

r , (4.8b)

with Bn+1 = 1
√

E1,N (
̂n+1)

√

E1,N (φ̂n+1)(

√

E1,N (
̂n+1)+
√

E1,N (φ̂n+1))
. (4.8c)

(4.8)

4.2 A Few Preliminary Estimates

The following estimates are needed in the later analysis.

Lemma 4.2 We have

E1,N (φ̂n+1) ≥ |�|, E1,N (
̂n+1) ≥ |�|, 0 ≤ Bn+1 ≤ 1

2
|�|− 3

2 , (4.9)

|Ẽn+1
1 | ≤ C̃2‖∇N ên+1‖2, (4.10)

‖∇N NN (φ̂n+1)‖ ≤ C̃3, (4.11)

‖∇N Ñ n+1‖ ≤ C̃4‖∇N �N ên+1‖2, (4.12)

‖∇N �N f ‖2 ≤ ‖�N f ‖
2
3
2 · ‖∇N �2

N f ‖
1
3
2 , ‖∇N �2

N f ‖2 ≤ ‖∇N L N f ‖2, ∀ f ∈ GN ,

(4.13)

‖
3
2

n+1 − 2
n + 1

2

n−1

�t
‖−1,N , ‖

3
2

n+1 − 2
n + 1

2

n−1

�t
‖2 ≤ CC∗, (4.14)

123



Journal of Scientific Computing            (2021) 88:33 Page 21 of 36    33 

in which ên+1 := 
̂n+1 − φ̂n+1 = 2en − en−1, and C̃ j are independent of �t and h,

j = 2, 3, 4.

Proof The lower bound for E1,N (φ̂n+1) and E1,N (
̂n+1) comes from their definition, and

the estimate 0 ≤ Bn+1 ≤ 2|�|− 3
2 is a direct result of its representation given by (4.8c).

Moreover, a detailed expansion for E1,N (φ̂n+1) and E1,N (
̂n+1) implies that

Ẽn+1
1 = E1,N (
̂n+1) − E1,N (φ̂n+1)

= 1

4
(‖∇N 
̂n+1‖4

4 − ‖∇N φ̂n+1‖4
4) − (‖∇N 
̂n+1‖2

2 − ‖∇N φ̂n+1‖2
2)

= 1

4
〈|∇N 
̂n+1|2 + |∇N φ̂n+1|2,∇N (
̂n+1 + φ̂n+1) · ∇N ên+1〉

−〈∇N (
̂n+1 + φ̂n+1),∇N ên+1〉. (4.15)

For the first error expansion, an application of discrete Hölder inequality shows that

1

4

∣

∣

∣〈|∇N 
̂n+1|2 + |∇N φ̂n+1|2,∇N (
̂n+1 + φ̂n+1) · ∇N ên+1〉
∣

∣

∣

≤ 1

4
(‖∇N 
̂n+1‖2

6 + ‖∇N φ̂n+1‖2
6) · (‖∇N 
̂n+1‖6 + ‖∇N φ̂n+1‖6) · ‖∇N ên+1‖2

≤ 1

4
((C∗)2 + CC̃2

1 ) · (C∗ + CC̃1) · ‖∇N ên+1‖2 ≤ C((C∗)3 + C̃3
1 )‖∇N ên+1‖2,

(4.16)

in which the regularity assumption (4.2) for the exact solution and the discrete W 1,6 bound

(3.18) for the numerical solution have been applied. The second error expansion term in (4.15)

could be controled in an even simpler way:
∣

∣

∣〈|∇N (
̂n+1 + φ̂n+1),∇N ên+1〉
∣

∣

∣ ≤ (‖∇N 
̂n+1‖2 + ‖∇N φ̂n+1‖2) · ‖∇N ên+1‖2

≤ (C∗ + CC̃1)‖∇N ên+1‖2, (4.17)

with (4.2), (3.18), applied again. This comletes the proof of inequality (4.10), by setting

C̃2 := C((C∗)3 + C̃3
1 + C∗ + C̃1).

To obtain a discrete �2 estimate for ∇N NN (φ̂n+1), we recall the grid function q̂n+1 intro-

duced in (3.34), so that the following identity is valid:

‖∇N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 = ‖∇(∇ · q̂n+1
S )‖L2 , (4.18)

in which q̂n+1
S is the spectral interpolation of q̂n+1. Because of the the fact q̂n+1

S = RN (ϕq̂n+1),

as indicated by the point-wise interpolation given by (3.36), we make use of the aliasing error

control inequality in Lemma 2.2 and get

‖∇(∇ · q̂n+1
S )‖L2 ≤ ‖q̂n+1

S ‖H2 = ‖RN (ϕq̂n+1)‖H2 ≤ 3
3
2 ‖ϕq̂n+1‖H2 , (4.19)

an inequality similar to (3.37). Moreover, a detailed expansion and repeated applications of

Hölder inequality lead to

‖ϕq̂n+1‖H2 ≤ C(‖ϕq̂n+1‖ + ‖�ϕq̂n+1‖) = C(‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖ + ‖�(|∇φ̂n+1
S |2∇φ̂n+1

S )‖)

≤ C
(

‖∇φ̂n+1
S ‖2

L∞ · ‖∇φ̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖2

L4

)

≤ C‖∇φ̂n+1
S ‖3

H2 ≤ C‖φ̂n+1
S ‖3

H3 ≤ C(Q(3))3, (4.20)

123



   33 Page 22 of 36 Journal of Scientific Computing            (2021) 88:33 

in which the uniform in time H3 estimate (3.26) (for the numerical solution) has been applied

in the last step. Going back (4.19) and (4.18), we arrive at

‖∇N ∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 ≤ C(Q(3))3. (4.21)

The other expansion term in ∇N NN (φ̂n+1) could be bounded in a more standard way:

‖2∇N �N φ̂n+1‖2 ≤ 2‖φ̂n+1
S ‖H3 ≤ 6Q(3). (4.22)

Therefore, a combination of (4.21) and (4.22) gives the inequality (4.11), by taking C̃3 =
C(Q(3))3 + 6Q(3).

Inequality (4.12) could be derived in a similar manner. Making a comparison between

NN (
̂n+1) and NN (φ̂n+1), we observe that Ñ n+1 turns out to be the point-wise interpolation

of the following continuous function

Ñ n+1
S = −∇ · (RN (ϕ

Ñ n+1) + 2�ên+1
S ,

ϕ
Ñ n+1 := |∇
̂n+1

S |2∇
̂n+1
S − |∇φ̂n+1

S |2∇φ̂n+1
S , (4.23)

with 
̂n+1
S = 2
n

S −
n−1
S , ên+1

S = 2en
S − en−1

S . A similar expansion is available for ϕ
Ñ n+1 :

ϕ
Ñ n+1 = |∇
̂n+1

S |2∇ ên+1
S + (∇(
̂n+1

S + φ̂n+1
S ) · ∇ ên+1

S )∇φ̂n+1
S . (4.24)

Again, repeated applications of Hölder inequality gives the following estimates

‖ϕ
Ñ n+1‖ ≤ ‖|∇
̂n+1

S |2∇ ên+1
S ‖ + ‖(∇(
̂n+1

S + φ̂n+1
S ) · ∇ ên+1

S )∇φ̂n+1
S ‖

≤ ‖∇
̂n+1
S ‖2

L∞ · ‖∇ ên+1
S ‖ + (‖∇
̂n+1

S ‖L∞ + ‖∇φ̂n+1
S ‖L∞)‖∇ ên+1

S ‖ · ‖∇φ̂n+1
S ‖L∞

≤ C(‖∇
̂n+1
S ‖2

H2 + (‖∇
̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖H2)
2)‖∇ ên+1

S ‖,
�(|∇
̂n+1

S |2∇ ên+1
S ) = |∇
̂n+1

S |2(∇�ên+1
S ) + 2(∇
̂n+1

S )(∇∇
̂n+1
S )(∇∇ ên+1

S )

+ 2�
̂n+1
S (∇∇
̂n+1

S )(∇ ên+1
S ) + 2(∇
̂n+1

S · ∇�
̂n+1
S )(∇ ên+1

S ),

‖�(|∇
̂n+1
S |2∇ ên+1

S )‖ ≤ ‖∇
̂n+1
S ‖2

L∞ · ‖∇�ên+1
S ‖

+ 2‖∇
̂n+1
S ‖L∞ · ‖∇∇
̂n+1

S ‖L4 · ‖∇∇ ên+1
S ‖L4

+ C‖�
̂n+1
S ‖L4 · ‖∇∇
̂n+1

S ‖L4 · ‖∇ ên+1
S ‖L∞

+ C‖∇
̂n+1
S ‖L∞ · ‖∇�
̂n+1

S ‖ · ‖∇ ên+1
S ‖L∞

≤ C‖∇
̂n+1
S ‖2

H2 · ‖∇ ên+1
S ‖H2 ,

‖�((∇(
̂n+1
S + φ̂n+1

S ) · ∇ ên+1
S )∇φ̂n+1

S )‖
≤ C(‖∇
̂n+1

S ‖2
H2 + ‖∇φ̂n+1

S ‖2
H2)‖∇ ên+1

S ‖H2 , (by a similar analysis),

‖�ϕ
Ñ n+1‖ ≤ C

(

‖�(|∇
̂n+1
S |2∇ ên+1

S )‖ + ‖�((∇(
̂n+1
S + φ̂n+1

S ) · ∇ ên+1
S )∇φ̂n+1

S )‖
)

≤ C(‖∇
̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖H2)
2 · ‖∇ ên+1

S ‖H2 ,

‖ϕ
Ñ n+1‖H2 ≤ C(‖ϕ

Ñ n+1‖ + ‖�ϕ
Ñ n+1‖)

≤ C(‖∇
̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖H2)
2 · ‖∇ ên+1

S ‖H2

≤ C(‖∇
̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖H2)
2 · ‖∇ ên+1

S ‖H2

≤ C((C∗)2 + (Q(3))2)‖∇ ên+1
S ‖H2 ,

(4.25)

with the uniform in time H3 estimate (3.26) and the regularity assumption (4.2) recalled. Also

notice that the 3-D Sobolev embedding, from H2 to L∞ and W 1,4, has also been repeatedly
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applied in the derivation of (4.25). Since ϕ
Ñ n+1 ∈ P3K , we go back (4.23) and arrive at

‖∇N Ñ n+1‖2 = ‖∇ Ñ n+1
S ‖ = ‖∇(−∇ · (RN (ϕ

Ñ n+1)))

+2�ên+1
S ‖

≤ 3
3
2 ‖ϕ

Ñ n+1‖H2 + 2‖�ên+1
S ‖ ≤ C((C∗)2 + (Q(3))2)‖∇ ên+1

S ‖H2

+2‖∇ ên+1
S ‖H2

≤ C((C∗)2 + (Q(3))2 + 1)‖∇ ên+1
S ‖H2

≤ C((C∗)2 + (Q(3))2 + 1)‖∇�ên+1
S ‖

≤ C((C∗)2 + (Q(3))2 + 1)‖∇N �N ên+1‖2, (4.26)

in which the elliptic regularity, ‖∇ ên+1
S ‖H2 ≤ C‖∇�ên+1

S ‖, has been applied in the fourth

step, due to the fact that
∫

�
∇ ên+1

S dx = 0, and the last step comes from the fact that ên+1
S

is the spectral interpolation function of ên+1. This completes the proof of inequality (4.12),

by setting C̃4 = C((C∗)2 + (Q(3))2 + 1).

For the first inequality in (4.13), we see that an application of the summation by parts

formula (2.16) gives

‖∇N �N f ‖2
2 = −〈�N f ,�2

N f 〉 ≤ ‖�N f ‖2 · ‖�2
N f ‖2. (4.27)

Meanwhile, another summation by parts formula reveals that

‖�2
N f ‖2

2 = −〈∇N �N f ,∇N �2
N f 〉 ≤ ‖∇N �N f ‖2 · ‖∇N �2

N f ‖2. (4.28)

Therefore, a combination of (4.27) and (4.28) leads to

‖∇N �N f ‖ ≤ ‖�N f ‖
1
2
2 · ‖�2

N f ‖
1
2
2 ≤ ‖�N f ‖

1
2
2 · (‖∇N �N f ‖

1
2
2 · ‖∇N �2

N f ‖
1
2
2 )

1
2

= ‖�N f ‖
1
2
2 · ‖∇N �N f ‖

1
4
2 · ‖∇N �2

N f ‖
1
4
2 , (4.29)

which in turn results in

‖∇N �N f ‖ 3
4 ≤ ‖�N f ‖

1
2
2 · ‖∇N �2

N f ‖
1
4
2 , i.e.,

‖∇N �N f ‖ ≤ ‖�N f ‖
2
3
2 · ‖∇N �2

N f ‖
1
3
2 . (4.30)

This finishes the proof of the first inequality in (4.13).

For the second inequality, we see that ∇N �2
N f and ∇N L N have the following discrete

Fourier expansions

∇N �2
N fi, j,k :=

K
∑

�,m,n=−K

(

2�π i, 2mπ i, 2nπ i
)T

λ2
�,m,n f̂ N

�,m,n

exp
(

2π i(�xi + my j + nzk)
)

, (4.31)

∇N L N fi, j,k :=
K
∑

�,m,n=−K

(

2�π i, 2mπ i, 2nπ i
)T (

a + λ2
�,m,n

)

f̂ N
�,m,n

exp
(

2π i(�xi + my j + nzk)
)

, (4.32)
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for f given by (2.3). In turn, an application of the Parseval inequality implies that

‖∇N �2
N f ‖2

2 =
K
∑

�,m,n=−K

|λ�,m,n |5| f̂ N
�,m,n |2, (4.33)

‖∇N L N f ‖2
2 =

K
∑

�,m,n=−K

λ�,m,n

(

a + λ2
�,m,n

)2
| f̂ N

�,m,n |2. (4.34)

As a result, the second inequality in (4.13) comes from the fact that |λ2
�,m,n | ≤ |a + λ2

�,m,n |.
The last inequality (4.14) is a direct consequence of the following estimates

‖
n+1 − 
n

�t
‖∞ ≤ C∗, ‖
n − 
n−1

�t
‖∞ ≤ C∗, by (4.2), (4.35)

combined with the fact that ‖ · ‖∞ is a norm stronger than ‖ · ‖2 and ‖ · ‖−1,N . ��

4.3 Proof of the Convergence Theorem

Now we proceed into the proof of Theorem 4.1.

Proof Taking a discrete inner product of (4.8a) with (−�N )−1(
3
2 en+1−2en+ 1

2 en−1

�t
), with a

repeated application of summation by parts, we get

1

�t
〈3

2
en+1 − 2en + 1

2
en−1, L N en+1〉 + ‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N

= −〈∇N (NLE1 + NLE2 + NLE3 − (�N )−1τ n+1
φ ),∇N (−�N )−1

×
(

3
2

en+1 − 2en + 1
2

en−1

�t

)

〉,

NLE1 = r̃n+1

√

E1,N (φ̂n+1)

NN (φ̂n+1),

NLE2 = −Bn+1 Rn+1 Ẽn+1
1 NN (φ̂n+1), NLE3 = Rn+1

√

E1,N (
̂n+1)

Ñ n+1. (4.36)

The temporal stencil term could be analyzed in the same manner as (3.8):

〈3

2
en+1 − 2en + 1

2
en−1, L N en+1〉

= 1

4
(‖L

1
2
N en+1‖2

2 − ‖L
1
2
N en‖2

2 + ‖L
1
2
N (2en+1 − en)‖2

2 − ‖L
1
2
N (2en − en−1)‖2

2

+‖L
1
2
N (en+1 − 2en + en−1)‖2

2). (4.37)

A bound for the truncation error inner product term is standard:

〈∇N (�N )−1τ n+1
φ ,∇N (−�N )−1

(

3
2

en+1 − 2en + 1
2

en−1

�t

)

〉

≤ ‖τ n+1
φ ‖−1,N · ‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖−1,N
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≤ 2‖τ n+1
φ ‖2

−1,N + 1

8
‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N . (4.38)

The first nonlinear inner product term could be rewritten as follows:

−〈∇N NLE1,∇N (−�N )−1

(

3
2

en+1 − 2en + 1
2

en−1

�t

)

〉

= −〈 r̃n+1

√

E1,N (φ̂n+1)

NN (φ̂n+1),

3
2

en+1 − 2en + 1
2

en−1

�t
〉. (4.39)

For the second and third nonlinear inner product terms, we begin with the following estimates:

‖∇N NLE2‖2 = ‖Bn+1 Rn+1 Ẽn+1
1 ∇N NN (φ̂n+1)‖2 ≤ |Bn+1| · |Rn+1|

·|Ẽn+1
1 | · ‖∇N NN (φ̂n+1)‖2

≤ 1

2
|�|− 3

2 · (C̃0 + 1)
1
2 · C̃2‖∇N ên+1‖2 · C̃3

= C̃5‖∇N ên+1‖2, with C̃5 = 1

2
C̃2C̃3(C̃0 + 1)

1
2 |�|− 3

2 , (4.40)

‖∇N NLE3‖2 = ‖Rn+1(E1,N (
̂n+1))−
1
2 ∇N Ñ n+1‖2 ≤ |Rn+1| · |�|− 1

2 · ‖∇N Ñ n+1‖2

≤ (C̃0 + 1)
1
2 |�|− 1

2 · C̃4‖∇N �N ên+1‖2

= C̃6‖∇N �N ên+1‖2, with C̃6 = C̃4(C̃0 + 1)
1
2 |�|− 1

2 , (4.41)

in which the preliminary estimates (4.9–4.12) in Lemma 4.2 have been extensively applied

in the derivation. We also notice that the inequality |Rn+1| ≤ (C̃0 + 1)
1
2 comes from the

fact that E(
(t)) ≤ E(
0) = C̃0 +hm , the pseudo-spectral approximation order, combined

with the inequalityE1,N (
k) ≤ EN (
k). And also, the following estimate for ‖∇N NLE1‖2

is derived below, which will be needed in the later analysis:

‖∇N NLE1‖2 = ‖r̃n+1(E1,N (φ̂n+1))−
1
2 ∇N NN (φ̂n+1)‖2

≤ |r̃n+1| · |�|− 1
2 · ‖∇N NN (φ̂n+1)‖2

≤ |�|− 1
2 · C̃3 · r̃n+1 = C̃7r̃n+1, with C̃7 = C̃3|�|− 1

2 . (4.42)

As a consequence of (4.40), (4.41), the following inequalities are available:

−〈∇N (NLE2 + NLE3),∇N (−�N )−1(

3
2

en+1 − 2en + 1
2

en−1

�t
)〉

≤ (‖∇N NLE2‖2 + ‖∇N NLE3‖2) · ‖
3
2

en+1 − 2en + 1
2

en−1

�t
‖−1,N

≤ 2(‖∇N NLE2‖2
2 + ‖∇N NLE3‖2

2) + 1

4
‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N

≤ 2(C̃2
5‖∇N ên+1‖2

2 + C̃2
6‖∇N �N ên+1‖2

2) + 1

4
‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N

≤ C̃8‖∇N �N ên+1‖2
2 + 1

4
‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N , C̃8 = 2(C̃2

5 C2
3 + C̃2

6 ),

(4.43)
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in which C3 corresponds to the elliptic regularity, ‖∇N f ‖2 ≤ C3‖∇N �N f ‖2, an inequality

similar to (3.56). Therefore, a substitution of (4.37–4.39) and (4.43) into (4.36) yields

1

4�t
(‖L

1
2
N en+1‖2

2 − ‖L
1
2
N en‖2

2 + ‖L
1
2
N (2en+1 − en)‖2

2 − ‖L
1
2
N (2en − en−1)‖2

2)

+5

8
‖

3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N ≤ −〈 r̃n+1

√

E1,N (φ̂n+1)

NN (φ̂n+1),

3
2

en+1 − 2en + 1
2

en−1

�t
〉 + C̃8‖∇N �N ên+1‖2

2 + 2‖τ n+1
φ ‖2

−1,N . (4.44)

On the other hand, the original error evolutionary equation (4.8a) gives

∇N (−�N )−1

(

3
2

en+1 − 2en + 1
2

en−1

�t

)

= −∇N (L N en+1 + NLE1

+NLE2 + NLE3 − (�N )−1τ n+1
φ ). (4.45)

In turn, an application of quadratic inequality implies that

‖
3
2

en+1 − 2en + 1
2

en−1

�t
‖2
−1,N

≥ 1

2
‖∇N L N en+1‖2

2 − 2‖∇N (NLE1 + NLE2 + NLE3 − (�N )−1τ n+1
φ )‖2

2

≥ 1

2
‖∇N L N en+1‖2

2 − 4(‖∇N (NLE1 + NLE2 + NLE3)‖2
2 + ‖τ n+1

φ ‖2
−1,N )

≥ 1

2
‖∇N L N en+1‖2

2 − 12(‖∇N NLE1‖2
2 + ‖∇N NLE2‖2

2

+‖∇N NLE3‖2
2) − 4‖τ n+1

φ ‖2
−1,N

≥ 1

2
‖∇N L N en+1‖2

2 − 12(C̃2
7 (r̃n+1)2 + (C̃2

5 C2
3 + C̃2

6 )‖∇N �N ên+1‖2
2)

−4‖τ n+1
φ ‖2

−1,N , (4.46)

with the estimates (4.40–4.42) recalled. Going back (4.44), we arrive at

1

4�t
(‖L

1
2
N en+1‖2

2 − ‖L
1
2
N en‖2

2 + ‖L
1
2
N (2en+1 − en)‖2

2 − ‖L
1
2
N (2en − en−1)‖2

2)

+ 5

16
‖∇N L N en+1‖2

2

≤ −〈 r̃n+1

√

E1,N (φ̂n+1)

NN (φ̂n+1),

3
2

en+1 − 2en + 1
2

en−1

�t
〉

+12C̃2
7 (r̃n+1)2 + 7C̃8‖∇N �N ên+1‖2

2 + 6‖τ n+1
φ ‖2

−1,N . (4.47)

Taking a discrete inner product of (4.8b) with 2r̃n+1 gives

1

�t
(

3

2
r̃n+1 − 2r̃n + 1

2
r̃n−1) · 2r̃n+1 = r̃n+1

√

E1,N (φ̂n+1)

〈NN (φ̂n+1),

3
2

en+1 − 2en + 1
2

en−1

�t
〉

123



Journal of Scientific Computing            (2021) 88:33 Page 27 of 36    33 

+ r̃n+1

√

E1,N (φ̂n+1)

〈Ñ n+1,

3
2

n+1 − 2
n + 1

2

n−1

�t
〉

−Bn+1 Ẽn+1
1 r̃n+1〈NN (
̂n+1),

3
2

n+1 − 2
n + 1

2

n−1

�t
〉 + 2τ n+1

r · r̃n+1. (4.48)

The estimate for the temporal stencil term is similar to that of (3.9):

2r̃n+1(
3

2
r̃n+1 − 2r̃n + 1

2
r̃n−1)

= 1

2
(|r̃n+1|2 − |r̃n |2 + |2r̃n+1 − r̃n |2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2).

(4.49)

The inner product associated with the truncation error could be controlled via Cauchy inequal-

ity:

2τ n+1
r · r̃n+1 ≤ |τ n+1

r |2 + |r̃n+1|2. (4.50)

The first nonlinear inner product on the right hand side is kept. The second and third nonlinear

inner product terms could be analyzed as follows

r̃n+1

√

E1,N (φ̂n+1)

〈Ñ n+1,

3
2

n+1 − 2
n + 1

2

n−1

�t
〉

≤ |r̃n+1| · |�|− 1
2 · ‖∇N Ñ n+1‖2 · ‖

3
2

n+1 − 2
n + 1

2

n−1

�t
‖−1,N

≤ |r̃n+1| · |�|− 1
2 · C̃4‖∇N �N ên+1‖2 · CC∗

≤ C̃9|r̃n+1| · ‖∇N �N ên+1‖2 ≤ C̃9

2
(|r̃n+1|2 + ‖∇N �N ên+1‖2

2),

C̃9 = CC̃4C∗|�|− 1
2 , (4.51)

−Bn+1 Ẽn+1
1 r̃n+1〈NN (
̂n+1),

3
2

n+1 − 2
n + 1

2

n−1

�t
〉

≤ |Bn+1| · |Ẽn+1
1 | · |r̃n+1| · ‖∇N NN (
̂n+1)‖2 · ‖

3
2

n+1 − 2
n + 1

2

n−1

�t
‖−1,N

≤ 1

2
|�|− 3

2 · C̃2‖∇N ên+1‖2 · |r̃n+1| · C̃3 · CC∗

≤ C̃10|r̃n+1| · ‖∇N �N ên+1‖2 ≤ C̃10

2
(|r̃n+1|2 + ‖∇N �N ên+1‖2

2),

C̃10 = CC̃2C̃3C3C∗|�|− 3
2 , (4.52)

with repeated application of the preliminary estimates (4.9–4.14) in Lemma 4.2. Subse-

quently, a substitution of (4.49–4.52) into (4.48) yields

1

2�t
(|r̃n+1|2 − |r̃n |2 + |2r̃n+1 − r̃n |2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2)

≤ r̃n+1

√

E1,N (φ̂n+1)

〈NN (φ̂n+1),

3
2

en+1 − 2en + 1
2

en−1

�t
〉
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+ C̃9 + C̃10

2
(|r̃n+1|2 + ‖∇N �N ên+1‖2

2) + |r̃n+1|2 + |τ n+1
r |2. (4.53)

Finally, a combination of (4.47) and (4.53) results in

1

4�t
(‖L

1
2
N en+1‖2

2 − ‖L
1
2
N en‖2

2 + ‖L
1
2
N (2en+1 − en)‖2

2 − ‖L
1
2
N (2en − en−1)‖2

2)

+ 5

16
‖∇N L N en+1‖2

2

+ 1

2�t
(|r̃n+1|2 − |r̃n |2 + |2r̃n+1 − r̃n |2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2)

≤ C̃11|r̃n+1|2 + C̃12‖∇N �N ên+1‖2
2 + 6‖τ n+1

φ ‖2
−1,N + |τ n+1

r |2. (4.54)

with C̃11 = 12(C̃2
7 + C̃2

9 + C̃2
10) + 1, C̃12 = 7C̃8 + C̃9+C̃10

2
. In particular, we notice that the

first nonlinear error inner product terms have been cancelled; this subtle fact has played a

crucial role in the analysis. In addition, the following inequalities are observed:

‖∇N �N ên+1‖2
2 = ‖∇N �N (2en − en−1)‖2

2 ≤ 6‖∇N �N en‖2
2 + 3‖∇N �N en−1‖2

2,

(4.55)

‖∇N �N ek‖2
2 ≤ ‖�N ek‖

4
3
2 · ‖∇N �2

N ek‖
2
3
2 (by (4.13))

≤ 4
√

3

3
C̃

1
2
12‖�N ek‖2

2 + 1

36C̃12

‖∇N �2
N ek‖2

2, k = n, n − 1, (4.56)

in which Young’s inequality has been applied in the last step of (4.56). This in turn leads to

C̃12‖∇N �N ên+1‖2
2 ≤ C̃12(6‖∇N �N en‖2

2 + 3‖∇N �N en−1‖2
2)

≤ 4
√

3C̃
3
2
12(2‖�N en‖2

2 + ‖�N en−1‖2
2)

+1

6
‖∇N �2

N en‖2
2 + 1

12
‖∇N �2

N en−1‖2
2. (4.57)

Going back (4.54), we arrive at (by denoting C̃13 = 8
√

3C̃
3
2
12)

1

�t
(Hn+1 − Hn) + 5

16
‖∇N L N en+1‖2

2

≤ C̃11|r̃n+1|2 + C̃13(‖�N en‖2
2 + ‖�N en−1‖2

2)

+1

6
‖∇N �2

N en‖2
2 + 1

12
‖∇N �2

N en−1‖2
2

+6‖τ n+1
φ ‖2

−1,N + ‖τ n+1
r ‖2

2, (4.58)

with Hn+1 := 1

4
(‖L

1
2
N en+1‖2

2 + ‖L
1
2
N (2en+1 − en)‖2

2)

+1

2
(|r̃n+1|2 + |2r̃n+1 − r̃n |2). (4.59)

Moreover, the following inequalities are recalled

‖�N ek‖2
2 ≤ ‖L

1
2
N ek‖2

2 ≤ 4Hk, |rk |2 ≤ 2Hk,

‖∇N �2
N ek‖2

2 ≤ ‖∇N L N ek‖2
2, (by (4.13)), (4.60)
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for k = n + 1, n, n − 1. Then we obtain the following estimate

1

�t
(Hn+1 − Hn) + 5

16
‖∇N L N en+1‖2

2

≤ (2C̃11 + 4C̃13)(H
n+1 + Hn + Hn−1) + 1

6
‖∇N L N en‖2

2 + 1

12
‖∇N L N en−1‖2

2

+6‖τ n+1
φ ‖2

−1,N + |τ n+1
r |2. (4.61)

Therefore, with an application of discrete Gronwall inequality, and making use of the fact

that ‖τ n+1
φ ‖−1,N , ‖τ n+1

r ‖ ≤ C(�t2 + hm), we arrive at

Hn+1 + 1

16
�t

n+1
∑

j=1

‖∇N L N e j‖2
2 ≤ Ĉ(�t4 + h2m), (4.62)

with Ĉ independent on �t and h. In turn, the desired convergence estimate is available

‖�N en+1‖2 +
(

�t

k+1
∑

j=1

‖∇N �2
N e j‖2

2

)
1
2 ≤ CĈ

1
2 (�t2 + hm), (4.63)

in which the estimates (4.60) has been recalled. This completes the proof of Theorem 4.1. ��

Remark 4.3 In an earlier error analysis work [44] for the SAV scheme applied to the Cahn-

Hilliard flow, a linear refinement requirement for the time step size, �t ≤ Ch, has to be

imposed for the convergence estimate, since an inverse inequality has to be applied in the

error estimate in the energy norm. In contrast, we have derived a higher order H3 bound

for the numerical solution, which in turn leads to an unconditional convergence estimate (no

scaling law constraint between �t and h) for the proposed SAV scheme.

Remark 4.4 With the help of the optimal rate convergence estimate in the �∞(0, T ; H2
N )

norm, we are able to derive a sharper bound for the original energy functional. In more

details, the error estimate (4.3) leads to the following inequalities

‖∇N φm‖4
4 − ‖∇N 
m‖4

4 ≤ 4(max(‖∇N φm‖4, ‖∇N 
m‖4))
3‖∇N em‖4

≤ CC̃3
1‖�N em‖2 ≤ CC̃3

1 Ĉ(�t2 + hm),

‖�N φm‖2
2 − ‖�N 
m‖2

2 ≤ 2 max(‖�N φm‖2, ‖�N 
m‖2)‖�N em‖2

≤ CC̃1Ĉ(�t2 + hm),

‖φm‖2
2 − ‖
m‖2

2, ‖∇N φm‖2
2 − ‖∇N 
m‖2

2 ≤ CC̃1Ĉ(�t2 + hm), (similar analysis),

(4.64)

in which the discrete Sobolev inequality (2.23) and the uniform-in-time H2
N bound (3.12)

have been extensively applied. Then we get

|EN (φm) − EN (
m)| ≤ C(C̃1 + C̃3
1)Ĉ(�t2 + hm),

EN (
m) − EN (
(tm)) = O(hm), EN (
(tm)) − E(
(tm)) = O(hm),

E(
(tm)) ≤ E(
(t0)) := C0, so that EN (φm) ≤ C0 + C(C̃3
1 + 1)Ĉ(�t2 + hm)

≤ C0 + 1,

(4.65)

provided that �t and h are sufficiently small. Of course, it is a much sharper estimate than

the uniform-in-time bound (3.20), in which C̃∗
1 depends on C̃0 in a quadratic way. On the

other hand, it is notice that the refined estimate (4.65) is local-in-time, since the convergence
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constant Ĉ depends on the final time, while the rough bound (3.20) turns out to be a global

quantity.

Remark 4.5 In a recent work [18], a modified BDF scheme is applied to the SPFC equa-

tion (1.3) in the primitive formulation, the energy stability and optimal rate convergence

estimates have been provided as well. Due to the primitive formulation involved, the highly

complicated 4-Laplacian term has been treated implicitly to ensure an unconditional energy

stability. This leads to a nonlinear system to be solved at each time step, and the correspond-

ing computational cost for the nonlinear system is approximately three times the linear SAV

scheme proposed in this work, with the same spatial and temporal resolution. As a result, the

computational efficiency has been improved in this SAV approach.

In addition, only the �∞(0, T ; �2) ∩ �2(0, T ; H3
N ) error estimate has been performed in

the existing work [18], in comparison with the �∞(0, T ; H2
N ) ∩ �2(0, T ; H5

N ) error estimate

provided in this article. In turn, the uniform-in-time H3
N bound of the numerical solution,

as established in (3.26) (Theorem 3.8), is not needed in [18]. Therefore, this article has

provided further technical tools for the theoretical analysis of higher order stability estimate

and convergence analysis, in comparison with [18].

5 Numerical Results

5.1 Convergence Test for the Numerical Scheme

In this subsection we perform some numerical experiments to verify the accuracy order of the

proposed SAV scheme. To test the convergence rate, we choose the following exact solution

for (1.3) on the square domain � = (0, 1)2:

φe(x, y, t) = 1

2π
sin(2πx) cos(2π y) cos(t). (5.1)

We set a = 0.975, and the final time is taken as T = 1.

To make 
 satisfy the original PDE (1.3), we have to add an artificial, time-dependent

forcing term. Then the proposed second order BDF-type scheme (2.31) can be implemented

to solve for the original PDE. To explore the temporal accuracy, we fix the spatial resolution

as N = 128 so that the numerical error is dominated by the temporal ones. We compute

solutions with a sequence of time step sizes, �t = T
NT

, with NT = 100 to NT = 1000 in

increments of 100, and the same final time T = 1. Fig. 1 shows the discrete �2 norms of

the errors between the numerical and exact solutions, computed by the proposed numerical

scheme (2.31). The fitted line displayed in Fig. 1 shows an approximate slope of -2, which

in turn verifies a nice second order temporal convergence order, in both the discrete �2 and

�∞ norms.

5.2 Numerical Simulation of Square Symmetry Patterns

The 4-Laplacian term in (1.3) gives preference to rotationally invariant patterns with square

symmetry. In this subsection, we perform two-dimensional numerical simulations showing

the emergence of these patterns. The rest of the parameters are given by a = 0.5 and

� = (0, L)2, with L = 100. The initial data for the simulations are given by

φ0
i, j = 0.05 · (2ri, j − 1), (5.2)
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Fig. 1 The discrete �2 and �∞ numerical errors versus temporal resolution NT for NT = 100 : 100 : 1000,

with a spatial resolution N = 128. The data lie roughly on curves C N−2
T

, for appropriate choices of C ,
confirming the full second-order accuracy of the scheme

where the ri, j are uniformly distributed random numbers in [0, 1]. For the temporal step size

�t , we use increasing values of �t in the time evolution: �t = 0.01 on the time interval

[0, 1000] and �t = 0.02 on the time interval [1000, 21000]. Whenever a new time step

size is applied, we initiate the two-step numerical scheme by taking φ−1 = φ0, with the

initial data φ0 given by the final time output of the last time period. The time snapshots of

the evolution by using the given parameters are presented in Figs. 2 (one nucleation site).

These tests confirm the emergence of the rotationally invariant square-symmetry patterns in

the density field.

To illustrate the energy stability property of the proposed numerical scheme, we display

the energy evolution of the one nucleation site example, up to t = 1000, in The solid and

dotted plots stand for the time evolution of the original energy functional and the SAV-

introduced energy functional, given by formula (2.22) and Ĕ(φ, r) = a
2
‖φ‖2

2 + 1
2
‖�N φ‖2

2 +
|r |2, respectively. The plots overlap so that differences are indistinguishable, and the energy

dissipation property is clearly observed in the numerical simulation (Fig. 3). This shows that

the SAV approach is indeed an accurate numerical approximation to the original physical

model.

Our numerical experiments have also demonstrated that, the SAV numerical scheme works

well for the smooth gradient flows, such as the numerical example presented above, with a

mild amplitude of random initial perturbation. On the other hand, if a more singular pertur-

bation is included at the initial data, such a nucleation at the center (50, 50), with magnitude

of 10, a direct application of the SAV numerical scheme is not able to create a reason-

able numerical solution. Meanwhile, extensive numerical experiments have demonstrated

that, a stabilized SAV scheme, with an inclusion of artificial regularization in the form of

−A�t�N (φn+1 − φn) (such as the one in the existing work [18]), could overcome such a

rough initial data difficulty and produce much nicer numerical results. In general, we con-

clude that, for smooth gradient flows in which there is no sharp gradient, the SAV scheme
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t = 10, 20 t = 40, 80

t = 100, 200 t = 500, 1000

t = 3000, 9000 t = 15000, 21000

Fig. 2 Time snapshots of the evolution for squared phase field crystal model, with
random initial perturbation. The time sequence for the snapshots is set as t =
10, 20, 40, 80, 100, 200, 500, 1000, 3000, 9000, 15000and21000. The parameters are a = 0.5,� =
[0, 100]2

has greatly improved the computational efficiency. For a challenging numerical example in

which an initial singularity is included, the stabilized SAV approach will overcome the subtle

numerical difficulties and be able to enhance the scientific computing performances.

6 Concluding Remarks

In this article, we have proposed and analyzed an scalar auxiliary variable (SAV)-based

numerical scheme for the square phase field crystal (SPFC) equation, a gradient flow to

model the crystal growth. An appropriate decomposition for the physical energy functional

is formulated, so that the nonlinear energy part has a well-established global lower bound,

and the rest terms lead to constant-coefficient diffusion terms with positive eigenvalues. This

overcomes a key difficulty in the application of SAV idea to the SPFC model. In turn, the

resulting numerical scheme could be very efficiently implemented by constant-coefficient

Poisson-like type solvers (via FFT), and energy stability is established by introducing an

auxiliary variable. As a result of this modified energy stability, a uniform in time H2 bound

is available for the numerical solution. In addition, we are able to derive a uniform in time H3

bound for the numerical solution, with the help of discrete Sobolev embedding techniques.
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Fig. 3 Semi-log plot of the temporal evolution the energy up to t = 1000. The solid and dotted plots stand for
the time evolution of the original energy functional and the SAV-introduced energy functional, respectively.
The plots overlap so that differences are indistinguishable

Such an H3 bound for the numerical solution plays an essential role in the optimal rate

convergence analysis in the energy norm, i.e., the error estimate in the �∞(0, T ; H2) ∩
�2(0, T ; H5) space. A few numerical experiments are presented to demonstrate the efficiency

and accuracy of the proposed scheme, including the numerical accuracy test and numerical

simulations of square symmetry patterns.

Acknowledgements This work is supported in part by NSFC 11971047 (Q. Huang) and NSF DMS-2012669
(C. Wang).

Appendix

Proof of Proposition 2.4

Due to the periodic boundary condition for f and its cell-centered representation, it has a

corresponding discrete Fourier transformation, as the form given by (2.3):

fi, j,k =
K
∑

�,m,n=−K

f̂ N
�,m,n exp

(

2π i(�xi + my j + nzk)
)

. (A.1)

Then we make its extension to a continuous function:

fN (x, y, z) =
K
∑

�,m,n=−K

f̂ N
�,m,n exp (2π i(�x + my + nz)) . (A.2)

We denote a discrete grid function, g := Dx f , at a point-wise level. Since f corresponds to

fN ∈ BK (the space of trigonometric polynomials of degree at most K ), an application of
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Parseval identity implies that

‖∇N �N f ‖2
2 = ‖∇� fN ‖2 =

K
∑

�,m,n=−K

λ6
�,m,n | f̂ N

�,m,n |2,

‖�3
N f ‖2

2 = ‖�3 fN ‖2 =
K
∑

�,m,n=−K

λ12
�,m,n | f̂ N

�,m,n|2,

(A.3)

with λ�,m,n introduced in (2.13). Meanwhile, the elliptic regularity for the continuous function

fN indicates that

‖∇� fN ‖ ≤ Ĉ0‖�3 fN ‖, for some Ĉ0 only dependent on �. (A.4)

Finally, the discrete elliptic regularity inequality (2.24) is a direct combination of (A.3) and

(A.4). This completes the proof of Proposition 2.4.
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