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Abstract—Latency and energy are two fundamental parame-
ters that characterize communications systems performance. In
this paper we investigate the fundamental relationship between
these quantities using finite blocklengh information theory. We
take into account realistic models of hardware, including over-
head power, power amplifier inefficiency and the receiver noise
factor. With these models we find that energy and latency behaves
quite different from the ideal case.

I. INTRODUCTION
The focus of this paper is to understand the relationship

between delay and energy in wireless communications, taking
into consideration realistic models of communications hard-
ware. With the proliferation of mobile devices, such as smart
phones and tablet PCs, wireless communications are increas-
ingly used to serve traffic with stringent delay constraints,
such as video streaming, online gaming, VoIP, and video
conferencing. Nowadays most of the internet traffic are video.
Therefore, providing stringent delay guarantees becomes an
important challenge for enhancing the quality of service (QoS)
of end users.
On the other hand, energy consumption of communications

is becoming an increasing focus under the banner of “green”
communications (IEEEXplore returns thousands of hits on
“green communications”). The main reason for this is the
prevalence of mobile battery powered devices. The two trends,
delay sensitive communications and the desire for energy
conservation, are basically conflicted. Hence it is important
to understand the basic tradeoff between energy and delay.
In [1] we analyzed this relationship for idealized models of
communications hardware. The current paper will extend this
analysis to more realistic hardware models.

II. STREAMING WITH LATENCY CONSTRAINTS
We consider the following streaming model. Consider an

AWGN (additive white Gaussian noise) channel with symbol
spacing Tc. An infinite stream b[t], t = 1, 2, . . . of bits arrive
periodically at a transmitter with spacing Ts, i.e., arrival rate
λ = T−1

s ; we let Ra = Tc
Ts

= λTc be the unit-less arrival rate.
Equivalently, the bandwidth for transmission is B = T−1

c =
R−1
a T−1

s . The decoder needs to decode bit b[t] no later than
at time (t+ d)Ts, where d is the (unit-less) delay.
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For a finite delay and finite energy, error-free transmission
is not possible. The most natural setting for the problem we
consider is clearly sequential decoding, which was studied by
Fano in [3] with practical coding considered in [5]. However,
in this work we will only consider block coding. There are a
number of reasons for this: packet based transmission is used
in most practical communications systems, practical block
coding is more developed than sequential coding, and we can
use the theory initiated with [7].
For packet transmission, the transmitter takes k bits from

the input bit stream and packs them into a packet. This packet
is then transmitted in n channel uses; all the bits must arrive
at the receiver within dTs seconds after the first bit in the
packet arrived at the transmitter, see Fig. 1 (we assume zero
transmission and decoding delay). We assume that a packet is
either received without error or is lost with probability δ. This
means that independent of the packet length k, the fraction of
bits lost is δ. We consider δ as a fixed and given constraint in
our system independent of Ra and d.
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Fig. 1. Packet transmission modes. Blue are transmitted packets.

From Fig. 1 we get the following constraints
d

2
≤ k ≤ d; n =

d− k

Ra
(1)

The energy to transmit the packet is
Eb
N0

2

=
nP

k
(2)

For simplicity we set N0 = 1 so that

Eb =
nP

2k
. (3)

with P the transmit power.
From [7], [8] we get the following relationship between n

and k,

k = nC(P )−
󰁳
nV (P )Q−1(󰂃) +

1

2
log n+O (1) . (4)
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Here Q (·) is the Q-function,

V (P ) =
P

2

P + 2

(P + 1)
2 log2 e (5)

is the channel dispersion, and

C(P ) =
1

2
log(1 + P ) (6)

is the channel capacity. Previously, in order to use information
theory to analyze delay, the packet size k would have to
converge to infinity to use asymptotic results. This is of course
a contradiction: with infinite packet size k, the delay d is
infinite. That can be circumvented somewhat by carefully
scaling different time scales jointly and suitable interpretation.
Still, it leads to somewhat convoluted results. With finite
blocklength theory it we are finally able to analyze, for
example, what is the actual energy needed to meet a given
delay constraint.
In [1] we derived rigorous results for this problem. When

we fix Ra and let d → ∞, we have the following result:

Theorem 1. For fixed Ra the energy per bit is given by

Eb (d) =
P0
2Ra

+
(P0 + 1)

√
2V0P0√

Ra log e
Q−1(δ)

√
d−1 + o

󰀓√
d−1

󰀔

(7)

where
V0 =

P0(P0 + 2)

2(P0 + 1)2
log2 e

and P0 = 22Ra − 1. This limit can be achieved by continuous
transmission.

III. HARDWARE CONSTRAINTS

In [1] we have assumed ideal models of hardware for
communications. The aim of this paper is to include more
realistic models of communications hardware. This can quite
dramatically change some conclusions. For example, in the
ideal model time and bandwidth are equivalent, i.e., wideband
communications is equivalent to slow, narrowband commu-
nications with respect to energy. However, from a hardware
perspective these are no longer equivalent. As an example,
if there is a cost of staying on, slow communications might
not be energy efficient. How hardware constraints influence
energy from an information theory point of view has been
considered before. However, as mentioned above, when there
is a delay constraint, one has to consider finite blocklength, and
more realistic insights to the relationship between energy and
hardware can therefore be obtained by using finite blocklength
theory.

A. A Simple Hardware Model

In this section, we will show how the results in [1] can
be extended to take into account hardware constraints. In the
ideal model, the capacity of an AWGN channel is given by
(6), which we rewrite as

C =
1

2
log(1 + P̌ ) (8)

  16  

 
Figure 3. Block diagram of a generic direct-conversion or low-IF RF transceiver. 

A simplified block diagram of a low-IF or direct conversion RF transceiver is shown in 

Figure 3, including only the most relevant circuit blocks.  The basic functions of the 

transmitter are:  generate a stable RF signal, modulate the frequency, phase and/or 

amplitude of the RF signal according to information to be transmitted, and drive the 

modulated signal onto the antenna with a PA.  The receiver functions can be summarized 

as:  low-noise, linear amplification, selection of communication channel, and 

demodulation.  The low noise amplifier (LNA) boosts the incoming signal amplitude to 

overcome the noise of subsequent stages while adding as little of its own noise and 

distortion as possible.   

3.2.1 Transmitter 

To maximize the first term in (3.1), the largest possible proportion of the system’s power 

budget should be dedicated to the PA generating the RF output power because this 

directly increases link margin.  However, there are several circuits blocks necessary to 

generate the stable RF signal internally before it can be transmitted.  Though these 

Fig. 2. Hardware model, from [2]. This paper uses eLNA for α in the figure.

where P̌ now denotes the received SNR, with Eb given by

Eb =
nP̌

2k
(9)

The thesis [2] considered the interplay between information
theory and hardware design in detail. We will consider the
models in [2], see Fig. 2. According to [2, Equation (3.2)] the
power consumed by the transmitter is

PTX = POH−TX +
1

ePA
POUT .

Here POUT is the power that can actually be used for
transmission, ePA is power amplifier efficiency factor, and
POH−TX is an overhead power. The power consumed by the
receiver is PRX = POH−RX + PLNA where PLNA is the
power consumed by the low noise amplifier (LNA). The LNA
affects the system performance through the receiver noise
factor [2, Equation (3.8)] 1 FLNA = 1 + eLNA

PLNA
Based on this model there are many different objectives

and models that can be considered. We consider the case
where the desire is to minimize total energy consumption
and the transceivers are able to completely switch off when
not transmitting. If we desire to find the total energy per bit
consumed by the system (by both transmitter and receiver),
we can take this into account as follows. We replace (8) by

C =
1

2
log(1 + P ) = C(P ) (10)

where

P = γ
POUT
FLNA

, (11)

with γ the path loss in the channel, is what we could call the
equivalent received power, and we replace (9) by

Eb =
n(PTX + PRX)

2k
(12)

The objective is to minimize the total energy consumption by
adjusting POUT and PLNA. We solve this as follows. Suppose

1We use eLNA for α in [2] as α has a different meaning below.
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P is given; the objective is to minimize POUT
ePA

+ PLNA. It is
easily seen that the solution is

PLNA =

󰁶
eLNAP/γ

ePA

POUT = P +
󰁳
eLNAePAP/γ (13)

We first consider what happens in the limit as d → ∞. Let
α be the duty cycle. Then k = (1− α)d, n = dαR−1

a , where
α ∈

󰀃
0, 12

󰀆
due to (1). In the limit d → ∞

k

n
=

1− α

α
Ra = C(P )

or P (α) = C−1
󰀃
1−α
α Ra

󰀄
= 22(

1−α
α Ra) − 1 and

Eb =
nPTOT

2k
=

α
󰀃
POH + e−1

PAPOUT + PLNA
󰀄

2(1− α)Ra

=

α

󰀕
POH + P (α)

γePA
+ 2

󰁴
eLNAP (α)

γePA

󰀖

2(1− α)Ra
(14)

with POH = POH−TX + POH−RX . Notice that the energy
depends only on the product γePA, and in the following we
there include γ in ePA. We can now minimize Eb over α,
which must be done numerically.
Denote by α0 and P0 the optimum solution to (14) with C0

the corresponding value in (10).
Since α ≤ 1

2 , for some values of the parameters we may
have α0 = 1

2 and then C0 = Ra and P0 = 22Ra − 1
corresponding to continuous transmission, while for others
α0 <

1
2 , C0 > Ra and P0 > 22Ra − 1, bursty transmission.

As opposed to the ideal solution, bursty transmission might be
more energy efficient than continuous transmission. This has
been observed previously in [4] in a slightly different context.
If we keep all other parameters fixed and decrease POH , α0

will increase until it hits 1
2 for some value P ∗

OH > 0. Thus,
for POH ≤ P ∗

OH , continuous transmission minimizes energy.
We can explicitly calculate P ∗

OH by solving ∂Eb
∂α

󰀏󰀏
α= 1

2

< 0

getting

P ∗
OH =

2(Pc + 1)Ra ln 2− Pc
ePA

+ 2
(Pc + 1)Ra ln 2− Pc

ePA

󰁵
eLNA
ePAPc

where Pc = 22Ra − 1 is the power required for continuous
transmission. It is possible that P ∗

OH < 0, meaning that even
without overhead power, bursty transmission is optimum. This
happens if

eLNA >
Pc

4ePA

(2(Pc + 1)Ra ln 2− Pc)
2

((Pc + 1)Ra ln 2− Pc)
2

B. Finite Blocklength

We can now generalize Theorem 1 to take into account
the more realistic hardware model above. The result does
depend on α0 and P0, but given those we can get closed form
solutions, as follows

Theorem 2. If α0 = 1
2 ,

Eb (d) =
PTOT
2Ra

+ β
(P0 + 1)

√
2V0P0√

Ra log e
Q−1(δ)

√
d−1

+ o
󰀓√

d−1
󰀔

(15)

where β = e−1
PA +

󰁴
eLNA
ePAP0

and PTOT = POH + P0
γePA

+

2
󰁴

eLNAP0
γePA

. On the other hand, for α0 < 1
2 we get

Eb(d) =
α0PTOT

2(1− α0)Ra

+

󰁶
V0

(C0 +Ra)3
PTOT

2(α0 − 1)2
Q−1(δ)

√
d−1 + o

󰀓√
d−1

󰀔

(16)

This can be achieved by letting

P = P0 +K
√
d−1

α = α0 +

󰀣
Ra

󰁶
V0

(C0 +Ra)3
Q−1(δ)

−K Ra
2 ln 2(P0 + 1)(C0 +Ra)2

󰀖√
d−1 (17)

where K ∈ R is arbitrary.

Proof: The case of α0 = 1
2 is a small variation to [1], and

we will not repeat the proof here. We will therefore consider
the case α0 <

1
2 . We can write (4) in terms of α,

(1− α) = αR−1
a C −

󰁳
d−1αR−1

a V Q−1(δ)

+
1

2

log(αdR−1
a )

d
+
b(n, P )

d
, (18)

In this case, both P and α are variable. First we solve (18)
with respect to α, up to terms of order o

󰀓√
d−1

󰀔
. To reduce

equation size, in the following let Ṽ = V (Q−1(δ))2

α

=

󰁴
−4Cdo(

√
d−1)R2

a
˜̃V+4CdR2

aṼ−4do(
√
d−1)R3

aṼ+4dR
3
aṼ+R

2
aṼ

2

d

2 (C2 + 2CRa +R2
a)

−
2Co

󰀓√
d−1

󰀔
Ra + 2CRa +

RaṼ
d − 2o

󰀓√
d−1

󰀔
R2
a + 2R2

a

2 (C2 + 2CRa +R2
a)

=

√
4CdR2

aṼ+4dR
3
aṼ

d + 2CRa + 2R2
a

2 (C2 + 2CRa +R2
a)

+ o
󰀓√

d−1
󰀔

=
2Ra

󰁴
(C +Ra)Ṽ

√
d−1 + 2CRa + 2R2

a

2 (C2 + 2CRa +R2
a)

+ o
󰀓√

d−1
󰀔

=
2CRa + 2R2

a

2 (C2 + 2CRa +R2
a)

+
2Ra

󰁴
(C +Ra)Ṽ

2 (C2 + 2CRa +R2
a)

√
d−1

+ o
󰀓√

d−1
󰀔

= Ra
1

C +Ra
+Ra

󰁶
V

(C +Ra)3
Q−1(δ)

√
d−1 + o

󰀓√
d−1

󰀔

(19)
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We can expand this as a series in ∆P as follows

α = α0 +A0

√
d−1 +A1∆P + (A2∆P

+ o(∆P ))
√
d−1 + o(∆P ) + o

󰀓√
d−1

󰀔
(20)

and find

α0 =
Ra

C0 +Ra

A0 = Ra

󰁶
V0

(C0 +Ra)3
Q−1(δ)

A1 = − Ra
2 ln(2)(P0 + 1)(C0 +Ra)2

Equation (14) is still true, but now with P (α) given for
finite d, specifically from (19), as follows

Eb =
α(P )

󰀓
POH + P

γePA
+ 2

󰁴
eLNAP
γePA

󰀔

2(1− α(P ))Ra
(21)

Here

α(P )

1− α(P )
=

α0
1− α0

+
∆α

(1− α0)2
+

∆α2

(1− α0)3
+ o(∆α2)

=
α0

1− α0

+
1

(1− α0)2

󰀓
A0

√
d−1 +A1∆P

󰀔

+
1

(1− α0)2

󰀓
(A2∆P + o(∆P ))

√
d−1 + o(∆P )

󰀔

+
1

(1− α0)3

󰀓
A0

√
d−1A1∆P

󰀔

+ o
󰀓√

d−1
󰀔

(22)

and

POH +
P

γePA
+ 2

󰁶
eLNAP

γePA

= POH +
P0

γePA
+ 2

󰁶
eLNAP0
γePA

+
∆P

γePA
+

󰁶
eLNAP0
γePA

∆P

P0
+ o(∆P ) (23)

Let f(d) = ∆P = P − P0. We must have limd→∞ f(d) = 0.
It is also seen from (22) and (23) that if f(d) increases at a
rate faster than

√
d−1, this will lead to Eb also increasing at a

faster rate, while any order lower than
√
d−1 can be included

in the o
󰀓√

d−1
󰀔
term. We can therefore put

∆P = C2

√
d−1

∆α = C1

√
d−1 = A0

√
d−1 +A1C2

√
d−1 (24)

We expand (21) to first order in
√
d−1 using (24)

Eb = Eb,min +

󰀓
α20(−C2)

󰀓
ePA

󰁴
eLNAP0
ePA

+ P0

󰀔󰀔

2(α0 − 1)2ePAP0Ra

√
d−1

+

󰀓
α0C2

󰀓
ePA

󰁴
eLNAP0
ePA

+ P0

󰀔󰀔

2(α0 − 1)2ePAP0Ra

√
d−1

+

󰀓
C1P0

󰀓
ePA

󰀓
2
󰁴

eLNAP0
ePA

+ POH

󰀔
+ P0

󰀔󰀔

2(α0 − 1)2ePAP0Ra

√
d−1

which for C2 = 0 gives

Eb = Eb,min +
A0

󰀓
ePA

󰀓
2
󰁴

eLNAP0
ePA

+ POH

󰀔
+ P0

󰀔

2(α0 − 1)2ePARa

√
d−1

= Eb,min

+

󰁶
V0

(C0 +Ra)3

ePA

󰀓
2
󰁴

eLNAP0
ePA

+ POH

󰀔
+ P0

2(α0 − 1)2ePA

×Q−1(δ)
√
d−1

This result might be somewhat surprising, specifically (19).
Consider the following question. How should we compensate
for decreasing d? In Theorem 1 and in (15) this is done by
keeping α fixed at 1

2 (continuous transmission) and increasing
the transmission power P . When α0 <

1
2 , resulting in bursty

transmission for infinite delay, one might ask if it is optimum
to increase the duty cycle or the power to compensate for
decreasing delay. But (19) shows that this question has no
answer. Since K can be both positive and negative, one could
increase or decrease P , which might lead to increase or
decrease in α. The resulting increase in Eb is always the same,
as long as (19) is observed. This seems paradoxal: couldn’t
one then change α0 and P0 arbitrarily, contradicting the claim
that α0 and P0 is an optimum solution? But exactly because
this is a minimum, changing α and P does not change Eb
to the first order. On the other hand, changes in α and P to
compensate for decreasing d only concerns first order changes.
While this seems odd, it is confirmed by numerical results.

IV. NUMERICAL RESULTS

In this section, we compare the theoretical results with
"simulated" results. Specifically, we put b(n, P ) = 0 in (20)
(i.e., ignore the O(1) term in (4)) and solve numerically for P
as a function of α. Then we insert that in (14) and optimize
numerically over α. We use the following parameters

Ra = 1

δ = 0.001

POH ∈ {1, 5, 0.5}
eLNA ∈ {1, 0.05, 0.01}
ePA ∈ {0.5, 0.1, 0.05}

(named hp1, hp2, hp3). The results can be seen in Fig. 3-5.
The optimization is well-posed and with a distinct minimum
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Fig. 3. Duty cycle α as a function of d.

Fig. 4. Power P as a function of d.

and gives specific functions for P and α as a function of d.
Yet, the resulting Eb agrees with the theory, where P and
α are arbitrary. Are the optimum functions illusions? The
optimization does take into account more terms, so perhaps
they are indeed optimum, but the theory shows that changing
them will have essentially no influence on Eb, as long as (19)
is satisfied.

V. CONCLUSION

In this paper we have shown how to extend the finite delay
theory in [1] to more realistic hardware models. Now, it is
well known that to approach the Shannon minimum energy
per bit

(Eb/N0)min = ln 2 = −1.59 dB, (25)

it is necessary to have P → 0, or in our model, Ra → 0. In
[6], [1] this limit was considered for ideal hardware models.
The interesting question is how this limit behaves for more
realistic hardware models; probably one will have to look more
fundamentally at hardware behavior than the models in [2].

Fig. 5. Energy per bit Eb as a function of d.
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