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Abstract

Conformal inference, cross-validation+, and the jackknife+ are hold-out methods
that can be combined with virtually any machine learning algorithm to construct
prediction sets with guaranteed marginal coverage. In this paper, we develop
specialized versions of these techniques for categorical and unordered response
labels that, in addition to providing marginal coverage, are also fully adaptive to
complex data distributions, in the sense that they perform favorably in terms of
approximate conditional coverage compared to alternative methods. The heart of
our contribution is a novel conformity score, which we explicitly demonstrate to be
powerful and intuitive for classification problems, but whose underlying principle
is potentially far more general. Experiments on synthetic and real data demonstrate
the practical value of our theoretical guarantees, as well as the statistical advantages
of the proposed methods over the existing alternatives.

1 Introduction

Imagine we have n data samples {(X;,Y;)}? , with features X; € RP and a discrete label Y; €
Y ={1,2,...,C}. The samples are drawn exchangeably (e.g., i.i.d., although exchangeability alone
is sufficient) from some unknown distribution Pxy . Given such data and a desired coverage level
1—a € (0,1), we seek to construct a prediction set CAma C Y for the unseen label of a new data point
(Xn+1, Yni1), also drawn exchangeably from Py, achieving marginal coverage; that is, obeying

P [Yoi1 € Cra(Xnin)| 21— (1
The probability above is taken over all n 4 1 data points, and we ask that (1)) holds for any fixed
a, n, and Pxy. While marginal coverage has the advantage of being both desirable and practically
achievable, it unfortunately does not imply the stronger notion of conditional coverage:

P [Ynﬂ € Cpa(r) | Xng1 = x} >1—a. )

The latter asks for valid coverage conditional on a specific observed value of the features X. It
is already known that conditional coverage cannot be achieved in theory without strong modeling
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assumptions [} 23], which we are not willing to make in this paper. That said, it is undeniable
that conditional coverage would be preferable. We thus seek to develop classification methods that
are provably valid in the marginal sense (1) and also attempt to sensibly approximate conditional
coverage (16). At the same time, we want powerful predictions, in the sense that the cardinality of ¢
should be as small as possible.

1.1 The oracle classifier

Imagine we have an oracle with perfect knowledge of the conditional distribution Py x of Y given
X. This would of course give the problem away; to be sure, we would define optimal prediction sets
Corcle( X, 1) with conditional coverage as follows: for any x € RP, set my(z) = P[Y =y | X = 1]
for each y € ). Denote by m(1)(z) > m(2)(x) > ... > m)(x) the order statistics for 7, (). For
simplicity, let us assume for now that there are no ties; we will relax this assumption shortly. For any
7 € [0, 1], define the generalized conditional quantile functio

L(z;m,7) =min{c € {1,...,C} : mq)(x) + w2y (z) + ... + 7 (2) > 7}, 3)
and the prediction set:
Ot (1) = {*y’ indices of the L(z;m, 1 — o) largest 7, (z)} . 4)

Hence, (4)) is the smallest deterministic set that contains a response with feature values X = x with
probability at least 1 — «. For example, if 71 (x) = 0.3, m2(z) = 0.6, and 73(x) = 0.1, we have
w1y (z) = 0.6, m2)(x) = 0.3, and m(z)(z) = 0.1, with L(x,0.9) = 2, C§%%(z) = {1,2}, and
L(z,0.5) = 1, Cye(x) = {2}. Furthermore, define a function S with input x, u € [0, 1], 7, and 7,
which computes the set of most likely labels up to (but possibly excluding) the one identified by (3):

‘y’ indices of the L(z; 7w, 7) — 1 largest m,(z), ifu <V (z;7,7),
‘y’ indices of the L(z;m, 7) largest my (), otherwise,

S(x,u;m,7) = { )

where

L(a;m,7)

1

V(x’ ™ T) B T(L(z;m,7)) (.1?)

Tey(x) =7
c=1

With this in place, by letting u be the realization of a uniform random variable, we can see that the
oracle has access to tighter randomized prediction sets, namely,

C’gfade(:c) =8z, U;nm,1-a). (6)

Above, U ~ Uniform(0, 1) is independent of everything else. It is easy to verify that the sets in (6))
are the smallest randomized prediction sets with conditional coverage at level 1 — «. In the above
example, we would have C§"!¢(z) = () with probability (0.6 —0.5)/0.6 = 1/6 and CJ">(z) = {2}
otherwise. Finally, if there are any ties among the class probabilities, the oracle could simply break
them at random. Of course, we do not have access to such an oracle since Py|x is unknown.

1.2 Preview of our methods

This paper uses classifiers trained on the available data to approximate the unknown conditional
distribution of Y | X. A key strength of the proposed methods is their ability to work with any
black-box predictive model, including neural networks, random forests, support vector classifiers,
or any other currently existing or possible future alternatives. The only restriction on the training
algorithm is that it should treat all samples exchangeably; i.e., it should be invariant to their order.
Most off-the-shelf tools offer such suitable probability estimates 7, () that we can exploit, regardless
of whether they are well-calibrated, by imputing them into an algorithm inspired by the oracle from
Section [I.T]in order to obtain prediction sets with guaranteed coverage—as we shall see.

Our reader will understand that naively substituting 7, () with 7, (z) into the oracle procedure would
yield predictions lacking any statistical guarantees because 7, (z) may be a poor approximation of
my(x). Fortunately, we can automatically account for errors in 7, (z) by adaptively choosing the

’Recall that the conditional quantiles for continuous responses are: inf{y € R: P[Y <y | X = 2] > 7}.



threshold 7 in (3) in such a way as to guarantee finite-sample coverage on future test points. The
intuition is that setting 7 = 1 — o may not necessarily guarantee coverage at level 1 — « for future
test points, if 7 # m. However, we can compute the empirical coverage on hold-out data as a function
of 7, and then select the smallest value of 7 that leads to the desired 1 — « coverage. Below, we will
show that this adaptive tuning rigorously yields tight coverage.

1.3 Related work

We build upon conformal inference [12} 124} 26] and take inspiration from [3} |5 [8-H10} 113} [18] which
made conformal prediction for regression problems adaptive to heteroscedasticity, thus bringing it
closer to conditional coverage [20]. Conformal inference has been applied before to classification
problems [[7, |19} 24, 25]] in order to attain marginal coverage; however, the idea of explicitly trying to
approximate the oracle from Section[I.T is novel. We will see that our procedure empirically achieves
better conditional coverage than a direct application of conformal inference. While working on this
project, we became aware of the independent work of [2], which also seeks to improve the conditional
coverage of conformal classification methods. However, their approach differs substantially; see
Section Finally, our method also naturally accommodates calibration through cross-validation+
and the jackknife+ [4], which had not yet been extended to classification, although the natural
generality of these calibration techniques has also been very recently noted by others [10].

A different but related line of work focuses on post-processing the output of black-box classification
algorithms to produce more accurate probability estimates [6} 11} 115,116} 122 27, 28], although without
achieving prediction sets with provable finite-sample coverage. These techniques are complementary
to our methods and may help further boost our performance by improving the accuracy of any given
black box; however, we have not tested them empirically in this paper for space reasons.

2 Methods

2.1 Generalized inverse quantile conformity scores

Suppose we have a black-box classifier 7, (z) that estimates the true unknown class probabilities
7y (x). Here, we only assume 7, () to be standardized: 0 < 7, (x) < 1, 25:1 7y () = 1, Vo, y.
An example may be the output of the softmax layer of a neural network, after normalization. In
fact, almost any standard machine learning software, e.g., sklearn, can produce a suitable 7, either
through random forests, k-nearest neighbors, or support vector machines, to name a few options.
Then, we plug 7 into a modified version of the imaginary oracle procedure of Section|1.1 where the
threshold 7 needs to be carefully calibrated using hold-out samples independent of the training data.
We will present two alternative methods for calibrating 7; both are based on the following idea.

We define a function F, with input x, y, u, 7, which computes the smallest value of 7 such that the set
S(x,u; 7, 7) in (5) contains the label y conditional on X = x. We call this the generalized inverse
quantile conformity score function:

E(z,y,u;7) =min{r € [0,1] : y € S(x,u;7,7)}. @)

By construction, our scores evaluated on hold-out samples (X, Y;), namely F; = E(X;,Y;, U;; 7),
are uniformly distributed conditional on X if # = 7. (Each U; is a uniform random variable in
[0, 1] independent of everything else.) Therefore, one could also intuitively look at (7) as a special
type of p-value. It is worth emphasizing that this property makes our scores naturally comparable
across different samples, in contrast with the scores found in the earlier literature on adaptive
conformal inference [18]]. In fact, alternative conformity scores [2, [10} [12} [18]] generally have
different distributions at different values of X, even in the ideal case where the base method (our 7)
is a perfect oracle. Below, we shall see that, loosely speaking, we can construct prediction sets with
provable marginal coverage for future test points by applying (5)) with a value of 7 close to the 1 — «
quantile of {F; };cz,, where I is the set of hold-out data points not used to train 7; see (8.

2.2 Adaptive classification with split-conformal calibration

Algorithm [T implements the above idea with split-conformal calibration, from which we begin
because it is the easiest to explain. Later, we will consider alternative calibration methods based on
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cross-validation+ and the jackknife+; we do not discuss full-conformal calibration in the interest of
space, and because it is often computationally prohibitive. For simplicity, we will apply Algorithm T]
by splitting the data into two sets of equal size; however, this is not necessary and using more data
points for training may sometimes perform better in practice [20].

Algorithm 1: Adaptive classification with split-conformal calibration

Input: data {(X;,Y;)}_,, X, +1, black-box learning algorithm B, level o € (0, 1).
Randomly split the training data into 2 subsets, Z;, Zs.

Sample U; ~ Uniform(0, 1) for each i € {1,...,n + 1}, independently of everything else.
Train B on all samples in Zy: 7 < B({(X;,Y:) biez, )-

Compute E; = E(X;,Y;, U;; ) for each i € Ty, with the function E defined in (7).
Compute Q1 ({E;}iez,) as the [(1 — @) (1 + |Z3|)]th largest value in { E; }iez, .

Use the function S defined in (5)) to construct the prediction set at X,, ;1 as:

CYC(Xns1) = S(Xns1, Uns15 7, Qroa({Ei}icz,))- ®)

Output: A prediction set C3, (X,+1) for the unobserved label Y, 1.

Theorem 1. Ifthe samples (X;,Y;), fori € {1,...,n+1}, are exchangeable and B from Algorithm
is invariant to permutations of its input samples, the output of Algorithm|l|satisfies:

P [YW c éﬁg(xnﬂ)} >1—a. 9)
Furthermore, if the scores E; are almost surely distinct, the marginal coverage is near tight:

P[Yoi1 € GS(Xnin)| <1-a (10)

1

+ |Zo| +1°
The proofs of this theorem and all other results are in Supplementary Section Marginal coverage
holds regardless of the quality of the black-box approximation; however, one can intuitively expect
that if the black-box is consistent and a large amount of data is available, so that 7, (x) ~ 7, (z),
the output of our procedure will tend to be a close approximation of the output of the oracle,
which provides optimal conditional coverage. This statement could be made rigorous under some
additional technical assumptions besides the consistency of the black box [20]. However, we prefer
to avoid tedious technical details, especially since the intuition is already clear. If 7 = m, the sets
S(X;,Ui;m,7) in will tend to contain the true labels for a fraction 7 of the points ¢ € Z,, as
long as |Z,| is large. In this limit, Q1 _ o ({E; }sez,) becomes approximately equal to 1 — c, and the
predictions in (8) will eventually approach those in (6).

2.3 Adaptive classification with cross-validation+ and jackknife+ calibration

A limitation of Algorithm [T is that it only uses part of the data to train the predictive algorithm.
Consequently, the estimate © may not be as accurate as it could have been had we used all the
data for estimation purposes. This is especially true if the sample size n is small. Algorithm [2
presents an alternative solution that replaces data splitting with a cross-validation approach, which is
computationally more expensive but often provides tighter prediction sets.

In words, in Algorithm[2] we sweep over all possible labels y € ) and include y in the final prediction
set CSVi (X o41) if the corresponding score E(X,11,y, Up1; 7?) is smaller than (1 — o) (n + 1)
hold-out scores E(X;,Y;, U;; ﬁk(i)) evaluated on the true labeled data. Note that we have assumed
n/K to be an integer for simplicity; however, different splits can have different sizes. In the special
case where K = n, we refer to the hold-out system in Algorithm [2 as jackknife+ rather than
cross-validation+, consistently with the terminology in [4].

Theorem 2. Under the same assumptions of Theorem([l] the output of Algorithm 2] satisfies:

4 . [21-1/K) 1-K/n
IP’[Yn CV+(x, }>1—2 _ , . 12
o1 €Coa™ (Kna)| 21 =20 —min =7 =5 0y (12)
In the special case where K = n, this bound simplifies to:
P [YnH € c}{fgf(XnH)] >1-2a. (13)

4
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Algorithm 2: Adaptive classification with CV+ calibration
Input: data {(X;,Y;)}:—,, Xn11, black-box B, number of splits K < n, level a € (0,1).

Randomly split the traillﬁnlg data into K disjoint subsets, 71, . . ., Zx, each of size n/K.
Sample U; ~ Uniform(0, 1) for each i € {1,...,n + 1}, independently of everything else.
forke{l,...,K}do

| Train B on all samples except those in Zy,: #% « B({(Xi,Y;) Yie(1,...np\70)-
end

Use the function E defined in (7) to construct the prediction set C

CVH(X,41) as:

n,o

V(X ) = {y cy:

n (1D
S [B(XG, Y5, U #0) < (X9, Uni; #9)] < (1= a)(n + 1)},
i=1
where k(i) € {1,..., K} is the fold containing the ith sample.

Output: A prediction set C$ % (X,,1) for the unobserved label Y, 1.

Note that this establishes that the coverage is slightly below 1 — 2a.. Therefore, to guarantee 1 — «
coverage, we should replace the input «v in Algorithmwith a smaller value near /2. We chose not
to do so because our experiments show that the current implementation already typically covers at
level 1 — « (or even higher) in practice; this empirical observation is consistent with [4]. Furthermore,
there exists a conservative variation of Algorithm [2|for which we can prove 1 — « coverage without
modifying the input level; see Supplementary Section|[S1.1

To see why everything above makes sense, consider what would happen if the black-box estimates
of conditional probabilities in Algorithm 2] were exact. In this case, the final prediction set in (L)
would become

COV (K1) = {y €V B(Xus1,y, Uni1im) < Qua({B(Xs, Y U Mbicqr,my) b (14)

where Ql—a is defined as in Section If n is large, for any fixed threshold 7, we can
expect S(X;,U;;m, 1) to contain Y; for approximately a fraction 7 of samples i. Therefore,

,,,,,

CASY;(Xn—O—l) ~{yeV:E(Xy,y,Upy1im) <1 —a}, (15)

which is equivalent to the oracle procedure from Section[I.1]

2.4 Comparison with alternative conformal methods

Conformal prediction has been proposed before in the context of classification [24], through a very
general calibration rule of the form

Clast) ={yeV: flyla) = t},

where the score f is a function learned by a black-box classifier. However, to date it was not clear how
to best translate the output of the classifier into a powerful score f for the above decision rule. In fact,
typical choices of f(y | =), e.g., the estimated probability of Y = y given X = x;, often lead to poor
conditional coverage because the same threshold ¢ is applied both to easy-to-classify samples (where
one label has probability close to 1 given X)) and to hard-to-classify samples (where all probabilities
are close to 1/|Y| given X). Therefore, this homogeneous conformal classification may significantly
underperform compared to the oracle from Section[I.1] even in the ideal case where the black-box
manages to learn the correct probabilities. This limitation has also been very recently noted in [2]
and is analogous to that addressed by [18]] in problems with a continuous response variable [20].

The work of [2] addresses this problem by applying quantile regression [18] to hold-out scores f .
However, their solution has two limitations. Firstly, it involves additional data splitting to avoid



overfitting, which tends to reduce power. Secondly, its theoretical asymptotic optimality is weaker
than ours because it requires the consistency of two black-boxes instead of one (this should be clear
even though we have explained consistency only heuristically). Practically, experiments suggest that
our method provides superior conditional coverage and often yields smaller prediction sets.

2.5 Extension to label-conditional coverage

Our method can be easily extended to obtain provable coverage separately for each class [[19} 24]:
P (Vi1 € Cra(Xng1) [Yop1=y| 21—-a,  Vye). (16)

The only difference is that the threshold 7 should be calibrated separately for each class. More pre-
cisely, focusing on the extension of Algorithm 1 for simplicity, we would compute ng)a({Ei}iezz)
asthe [(1 — a)(1+ |{i € Iy : YV; = y}|)]th largest value in {E; }ic7,.v;=y, for each y € Y. Then,

we would define 7 = max,cy Q1 ({E;}icz,) and output CSC71¢(X,, 1) = S(Xps1, Ups1; 7, 7).
More details about this extension are in Supplementary Section

In the interest of simplicity, we have not explicitly sought label-conditional coverage in the following
numerical experiments. Nonetheless, we shall see from the results in Figure [3] that our method
performs relatively well in terms of label-conditional coverage even without the explicit constraint.

3 Experiments with simulated data

3.1 Methods and metrics

We compare the performances of Algorithms [T (SC) and 2 (CV+, JK+), which are based on the
new generalized inverse quantile conformity scores in (7)), to those of homogeneous conformal
classification (HCC) and conformal quantile classification (CQC) [2]]. We focus on two different data
generating scenarios in which marginal coverage is not a good proxy for conditional coverage (the
second setting is discussed in Supplementary Section[S3.3). In both cases, we explore 3 different
black-boxes: an oracle that knows the true m,(x) for all y € Y and x; a support vector classifier
(SVC) implemented by the sklearn Python package; and a random forest classifier (RFC) also
implemented by sklearn— see Supplementary Section for more details.

We fix o = 0.1 and assess performance in terms of marginal coverage, conditional coverage, and
mean cardinality of the prediction sets. Conditional coverage is defined using an estimate of the
worst-slice (WS) coverage similar to that in [2], as explained in Supplementary Section The
cardinality of the prediction sets is computed both marginally and conditionally on coverage; the
former is defined as E[|C(X,,+1)|] and the latter as E[|C(X,+1)| | Y1 € C(Xn41)]. Additional
coverage and size metrics defined by conditioning on the value of a given discrete feature, e.g., X1,
are discussed in Supplementary Section [S3]

3.2 Experiments with multinomial model and inhomogeneous features

We generate the features X € RP, with p = 10, as follows: X; = 1 w.p. 1/5 and X; = —8 otherwise,
while Xo, ..., X are independent standard normal. The conditional distribution of Y € {1,...,10}
given X = z is multinomial with weights w;(z) defined as w;(x) = z;(x)/ 3%, _, 2j (), where
z;j(z) = exp(z” B;) and each 3; € R? is sampled from an independent standard normal distribution.

Figure I confirms that our methods have valid conditional coverage if the true class probabilities
are provided by an oracle. If the probabilities are estimated by the RFC, the conditional coverage
appears to be only slightly below 1 — «, and is near perfect with the SVC black box. By contrast,
the conditional coverage of the alternative methods is always significantly lower than 1 — «, even
with the help of the oracle. Our methods produce slightly larger prediction sets when the oracle is
available, but our sets are typically smaller than those of CQC and only slightly larger than those of
HCC when the class probabilities are estimated. Finally, note that JK+ is the most powerful of our
methods, followed by CV+, although SC is computationally more affordable.
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Figure 1: Several classification methods on simulated data with 10 classes, for different choices of
calibration and black-box models. SC, CV+, and JK+ are applied with our new generalized inverse
quantile conformity scores defined in (7). The results correspond to 100 independent experiments
with 1000 training samples and 5000 test samples each. All methods have 90% marginal coverage.
(a): Marginal coverage and worst-slice conditional coverage. (b): Size of prediction sets.

4 Experiments with real data

In this section, we compare the performance of our proposed methods (SC, CV+, and JK+) with the
new generalized inverse quantile conformity scores defined in (7)) to those of HCC and CQC [2]. We
found that the original suggestion of [2] to fit a quantile neural network [21] on the class probability
score can be unstable and yield very wide predictions. Therefore, we offer a second variant of this
calibration method, denoted by CQC-RF, which replaces the quantile neural network estimator with
quantile random forests [[14]; see Supplementary Section [S4]for details.

The validity and statistical efficiency of each method is evaluated according to the same metrics as
in Section 3. In all experiments, we set &« = 0.1 and use the following base predictive models: (i)
kernel SVC, (ii) random forest classifier (RFC), and (iii) two-layer neural network classifier (NNet).
A detailed description of each algorithm and corresponding hyper-parameters is in Supplementary
Section The methods are tested on two well-known data sets: the Mice Protein Expression
data set’| and the MNIST handwritten digit data set. The supplementary material describes the
processing pipeline and discusses additional experiments on the Fashion-MNIST and CIFAR10 data
sets. Supplementary Tables[STHS4|summarize the results of our experiments in more detail and also
consider additional settings.

Figure 2] shows that all methods attain valid marginal coverage on the Mice Protein Expression data,
as expected. Here, HCC, CQC, and CQC-REF fail to achieve conditional coverage, in contrast to the
proposed methods (SC, CV+, JK+) based on our new conformity scores in (7). Turning to efficiency,
we observe that the prediction sets of CV+ and JK+ are smaller than those of SC, and comparable in
size to those of HCC. Here, the original CQC algorithm performs poorly both in terms of conditional
coverage and cardinality. The CQC-RF variant is not as unstable as the original CQC, although it
does not perform much better than HCC.

Figure 3| presents the results on the MNIST data. Here, the sample size is relatively large and hence
we exclude JK+ due to its higher computational cost. As in the previous experiments, all methods
achieve 90% marginal coverage. Unlike CQC, CQC-RF, and HCC, our methods also attain valid
conditional coverage when relying on the NNet or SVC as base predictive models. With the RFC, all
methods tend to undercover, suggesting that this classifier estimates the class probabilities poorly,
and our prediction sets are larger than those constructed by CQC-RF and HCC. By contrast, the

*https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
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Figure 2: Experiments on Mice Protein Expression data. 100 independent experiments with 500
randomly chosen training samples and 580 test samples each. Left: coverage. Right: size of prediction
sets (extremely large values for CQC not shown). Other details are as in Figure|[T]

NNet enables our methods to achieve conditional coverage with prediction sets comparable in size to
those produced by CQC-RF and HCC. The bottom part of Figure [3|demonstrates that CV+ also has
conditional coverage given the true class label Y, while SC performs only slightly worse. In striking
contrast, both HCC, CQC, and CQC-RF fail to achieve 90% conditional coverage.

5 Conclusions

This paper introduced a principled and versatile modular method for constructing prediction sets for
multi-class classification problems that enjoy provable finite-sample coverage, and also behave well
in terms of conditional coverage when compared to alternatives. Our approach leverages the power
of any black-box machine learning classifier that may be available to practitioners, and is easily
calibrated via various hold-out procedures; e.g., conformal splitting, CV+, or the jackknife+. This
flexibility makes our approach widely applicable and offers options to balance between computational
efficiency, data parsimony, and power.

Although this paper focused on classification, using conformity scores similar to those in (7)) to
calibrate hold-out procedures for regression problems [4} [18] is tantalizing. In fact, previous work in
the regression setting focused on conformity scores that measure the distance of a data point from
its predicted interval on the scale of the Y values (which makes sense for homoscedastic regression,
but may not be optimal otherwise), rather than by the amount one would need to relax the nominal
threshold (our 7) until the true value is covered. We leave it to future work to explore the performance
of our intuitive metrics in other settings.

The Python package at https://github.com/msesia/arc|/implements our methods. This reposi-
tory also contains code to reproduce our experiments.

Broader Impact

Machine learning algorithms are increasingly relied upon by decision makers. It is therefore crucial
to combine the predictive performance of such complex machinery with practical guarantees on the
reliability and uncertainty of their output. We view the calibration methods presented in this paper as
an important step towards this goal. In fact, uncertainty estimation is an effective way to quantify and
communicate the benefits and limitations of machine learning. Moreover, the proposed methodologies
provide an attractive way to move beyond the standard prediction accuracy measure used to compare
algorithms. For instance, one can compare the performance of two candidate predictors, e.g., random
forest and neural network (see Figure[3), by looking at the size of the corresponding prediction sets
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Figure 3: Experiments on MNIST data. 100 independent experiments with 10000 randomly chosen
training samples and 5000 test samples each. Top: coverage and size of prediction sets (large values
for CQC not shown). Bottom: coverage with neural network black box, conditional on the true Y, and
size of the corresponding prediction sets, conditional on coverage. Other details are as in Figure|[T]

and/or their their conditional coverage. Finally, the approximate conditional coverage that we seek in
this work is highly relevant within the broader framework of fairness, as discussed by [17] within a
regression setting. While our approximate conditional coverage already implicitly reduces the risk
of unwanted bias, an equalized coverage requirement can also be easily incorporated into our
methods to explicitly avoid discrimination based on protected categories.

We conclude by emphasizing that the validity of our methods relies on the exchangeability of the data
points. If this assumption is violated (e.g., with time-series data), our prediction sets may not have the
right coverage. A general suggestion here is to always try to leverage specific knowledge of the data
and of the application domain to judge whether the exchangeability assumption is reasonable. Finally,
our data-splitting techniques in Section @] offer a practical way to verify empirically the validity of the
predictions on any given data set.
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