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Abstract

We present a flexible framework for learning predictive models that approximately
satisfy the equalized odds notion of fairness. This is achieved by introducing a
general discrepancy functional that rigorously quantifies violations of this criterion.
This differentiable functional is used as a penalty driving the model parameters
towards equalized odds. To rigorously evaluate fitted models, we develop a formal
hypothesis test to detect whether a prediction rule violates this property, the first
such test in the literature. Both the model fitting and hypothesis testing leverage a
resampled version of the sensitive attribute obeying equalized odds, by construction.
We demonstrate the applicability and validity of the proposed framework both in
regression and multi-class classification problems, reporting improved performance
over state-of-the-art methods. Lastly, we show how to incorporate techniques for
equitable uncertainty quantification—unbiased for each group under study—to
communicate the results of the data analysis in exact terms.

1 Introduction

Machine learning algorithms are now frequently used to inform high-stakes decisions—and even to
make them outright. As such, society has become increasingly critical of the ethical implications
of automated decision making, and researchers in algorithmic fairness are responding with new
tools. While fairness is context dependent and may mean different things to different people, a suite
of recent work has given rise to a useful vocabulary for discussing fairness in automated systems
[1, 2, 3, 4, 5, 6, 7]. Fairness constraints can often be articulated as conditional independence relations,
and in this work we will focus on the equalized odds criterion [8], defined as

Ŷ ?? A | Y, (1)

where the relationship above applies to test points; here, Y is the response variable, A is a sensitive
attribute (e.g. gender), X is a vector of features that may also contain A, and Ŷ = f̂(X) is the
prediction obtained with a fixed prediction rule f̂(·). While the idea that a prediction rule obeying the
equalized odds property is desirable has gained traction, actually finding such a rule for a real-valued
or multi-class response is a relatively open problem. Indeed, there are only a few recent works
attempting this task [9, 10]. Moreover, there are no existing methods to rigorously check whether a
learned model achieves this property.

We address these two questions by introducing a novel training scheme to fit models that approx-
imately satisfy the equalized odds criterion and a hypothesis test to detect when a prediction rule
violates this same criterion. Both solutions build off of one key idea: we create a synthetic version
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(a) Baseline, majority. (b) Baseline, minority. (c) Proposed, majority. (d) Proposed, minority.

Figure 1: The effect of our learning framework on simulated data: (a,b) predictions from the baseline
linear model; (c,d) predictions from the linear model fitted with the proposed equalized odds penalty.

Ã of the sensitive attribute such that the triple (Ŷ , Ã, Y ) obeys (1) with Ã in lieu of A. To achieve
equitable model fits, we regularize our models toward the distribution of the synthetic data. Similarly,
to test whether equalized odds holds, we compare the observed data to a collection of artificial data
sets. The synthetic data is straightforward to sample, making our framework both simple to implement
and modular in that it works together with any loss function, architecture, training algorithm, and so
on. Based on real data experiments on both regression and multi-class classification tasks, we find
improved performance compared to state-of-the-art methods.

1.1 A synthetic example

To set the stage for our methodology, we first present an experiment demonstrating the challenges of
making equitable predictions as well as a preview of our method’s results. We simulate a regression
data set with a binary sensitive attribute and two features:

(X1, X2) | (A = 0)
d
= (Z1, 3Z2) and (X1, X2) | (A = 1)

d
= (3Z1, Z2),

where Z1, Z2 ⇠ N (0, 1) is a pair of independent standard normal variables, and the symbol d
=

denotes equality in distribution. We create a population where 90% of the observations are from
the group A = 0 in order to investigate a setting with a large majority group. After conditioning
on A, the model for Y | X is linear: Y = X>�A + ✏, with noise ✏ ⇠ N (0, 1) and coefficients
�0 = (0, 3) and �1 = (3, 0). We designed the model in this way so that the distribution of Y given
X is the same for the two groups, up to a permutation of the coordinates. (In some settings, we
might say that both groups are therefore equally deserving.) Consequently, the best model has equal
performance in both groups. We therefore find it reasonable to search for a fitted model that achieves
equalized odds in this setting.

To serve as an initial point of comparison, we first fit a classic linear regression model with coefficients
�̂ 2 R2 on the training data, minimizing the mean squared error. Figures (1a) and (1b) show the
performance of the fitted model for each group on a separate test set. The fitted model performs
significantly better on the samples from the majority group A = 0 than those from the minority group
A = 1. This is not surprising since the model seeks to minimize the overall prediction error. Here,
the overall root mean squared error (RMSE) evaluated on test points is equal to 2.40, with an average
value of 1.79 for group A = 0 and of 5.48 for group A = 1. It is visually clear that for any vertical
slice of the graph at a fixed value of Y , the distribution of Ŷ is different in the two classes, i.e. the
equalized odds property in (1) is violated. This fact can be checked formally with our hypothesis test
for (1) described later in Section 3. The resulting p-value on the test set is 0.001 providing rigorous
evidence that equalized odds is violated in this case.

Next, we apply our proposed fitting method (see Section 2) on this data set. Rather than a naive least
squares fit, we instead fit a linear regression model that approximately satisfies the equalized odds
criterion. The new predictions are displayed in Figures (1c) and (1d). In contrast to the naive fit,
the new predictive model achieves a more balanced performance across the two groups: the blue
points are dispersed similarly in these two panels. This observation is consistent with the results of
our hypothesis test; the p-value on the test set is equal to 0.476, which provides no indication that
the equalized odds property is violated. Turning to the statistical efficiency, the equitable model has
improved performance for observations in the minority group A = 1 with an RMSE equal to 3.31, at
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the price of reduced performance in the majority group A = 0, where the RMSE rises to 3.41. The
overall RMSE is 3.40, larger than that of the baseline model.

1.2 Related work

The notion of equalized odds as a criterion for algorithmic fairness was introduced in [8]. In
the special case of a binary target variables and a binary response variable, the aforementioned
work offered a procedure to post-process any predictive model to construct a new model achieving
equalized odds, possibly at the cost of reduced accuracy. Building off this notion of fairness, [11] and
[12] show how to fit linear and kernel classifiers that are aligned with this criterion as well—these
methods apply when the response and sensitive attribute are both binary. Similarly, building on the
Hirschfeld-Gebelein-Renyi (HGR) Maximum Correlation Coefficient, [10] introduces a penalization
scheme to fit neural networks that approximately obey equalized odds, applying to continuous targets
and sensitive attributes. Coming at the problem from a different angle, [13, 9] fit models with an
equalized odds penalty using an adversarial learning scheme. The main idea behind this method is to
maximize the prediction accuracy while minimizing the adversary’s ability to predict the sensitive
attribute. Our method has the same objective as the latter two, but uses a new subsampling technique
for regularization, which also leads to the first formal test of the equalized odds property in the
literature.

2 Fitting fair models

2.1 Regularization with fair dummies

This section presents a method for fitting a predictive function f̂(·) on i.i.d. training data
{(Xi, Ai, Yi)} indexed by i 2 Itrain that approximately satisfies the equalized odds property (1). In
regression settings, let Ŷ = f̂(X) 2 R be the predicted value of the continuous response Y 2 R. In
multi-class classification problems where the response variable Y 2 {1, . . . , L} is discrete, we take
the output of the classifier to be Ŷ = f̂(X) 2 RL, a vector whose entries are estimated probabilities
that an observation with X = x belongs to class Y = y. We use this formulation of Ŷ because
it is the typical information available to the user when deploying a neural network for regression
or classification, and our methods will use neural networks as the underlying predictive model.
Nonetheless, the material in this subsection holds for any formulation of Ŷ , such as an estimated
class label.

Our procedure starts by constructing a fair dummy sensitive attribute Ãi for each training sample:

Ãi ⇠ PA|Y (Ai | Yi) , i 2 Itrain,
where PA|Y denotes the conditional distribution of Ai given Yi. This sampling is straightforward; see
(4) below. Importantly, we generate Ãi without looking at Ŷi so that we have the following property:

Ŷi ?? Ãi | Yi, i 2 Itrain. (2)

Notice that the above is exactly the equalized odds relation in (1), with a crucial difference that the
original sensitive attribute Ai is replaced by the artificial one Ãi. We will leverage this fair, synthetic
data for both model fitting and hypothesis testing in the remainder of this work.

Motivated by (2), we propose the following objective function for equalized odds model fitting:

f̂(x) = argmin
f2F

1� �

|Itrain|
X

i2Itrain

`(Yi, f(Xi)) + �D
⇣
(Ŷ,A,Y), (Ŷ, Ã,Y)

⌘
. (3)

Here, `(·) is a loss function that measures the prediction error, such as the mean squared error for
regression, or the cross-entropy for multi-class classification. The second term on the right hand side
is a penalty promoting the equalized odds property, described in detail soon. The hyperparameter
� trades off accuracy versus equalized odds. Above, the ith row of Ŷ 2 R|Itrain|⇥k is f(Xi) 2 Rk,
with k = 1 in regression and k = L in multi-class classification. Similarly, we define X 2 R|Itrain|⇥p

A 2 R|Itrain|, Ã 2 R|Itrain|, and Y 2 R|Itrain|, whose entries correspond to the features, sensitive
attributes, fair dummies, and labels, respectively. As a result, both (Ŷ,A,Y) and (Ŷ, Ã,Y) are
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matrices of size |Itrain|⇥ (k+2). The function D(U,V) is any measure of the discrepancy between
two probability distributions PU and PV based on the samples U and V, summarizing the differences
between the two samples into a real-valued score. A large value suggests that PU and PV are distinct,
whereas a small value suggests that they are similar. We give a concrete choice based on adversarial
classification in Section 2.2. Since (Ŷ, Ã,Y) obeys the equalized odds property by construction,
making the discrepancy with (Ŷ,A,Y) small forces the latter to approximately obey equalized odds.

Proposition 1. Take (X,A, Y ) ⇠ PXAY and set Ŷ = f̂(X) for some fixed f̂(·) (again, X may

include A). Let Ã be sampled indpendently from PA|Y (A|Y ).1 Then, Ŷ ?? A | Y if and only if

(Ŷ , A, Y )
d
=(Ŷ , Ã, Y ).

The proof of this proposition as well as all other proofs are in Supplementary Section S1. We
argue that this equivalence is particularly fruitful: indeed, if we find a prediction rule f̂(·) such that
(Ŷ,A,Y) has the same distribution as (Ŷ, Ã,Y) (treating the prediction rule as fixed), then f̂(·)
exactly satisfies equalized odds. Motivated by this, our penalty drives the model to a point where
these two distributions are close based on the training set. When this happens, then, informally
speaking, we expect that equalized odds approximately holds for future observations.

The regularization term in (3) can be used with essentially any existing machine learning framework,
allowing us to fit a predictive model that is aligned with the equalized odds criterion, no matter
whether the response is discrete, continuous, or multivariate. It remains to formulate an effective
discriminator D(·) to capture the difference between the two distributions, which we turn to next.

2.2 The discrepancy measure

A good discrepancy measure D(·) should detect differences in distribution between the training data
and the fair dummies in order to better promote equalized odds. Many examples have already been
developed for the purpose of two-sample tests; examples include the Friedman-Rafsky test [14], the
popular maximum mean discrepancy (MMD) [15], the energy test [16], and classifier two-sample
tests [17, 18]. The latter are tightly connected to the idea of generative adversarial networks [19]
which serves as the foundation of our procedure.

To motivate our proposal, suppose we are given two independent data sets {Ui} and {Vi}: the
first contains samples of the form Ui = (Ŷi, Ai, Yi), and the second includes Vi = (Ŷi, Ãi, Yi).
Our goal is to design a function that can distinguish between the two sets, so we assign a positive
(resp. negative) label to each Ui (resp. Vi) and fit a binary classifier d̂(·). Under the null hypothesis
that PU = PV , the classification accuracy of d̂(·) on hold-out points should be close to 1/2, while
larger values provide evidence against the null. To turn this idea into a training scheme, we repeat
the following two steps: first, we fit a classifier d̂(·) whose goal is to recognize any difference in
distribution between U and V , and second, we fit a prediction function f̂(·) that attempts to “fool”
the classifier d̂(·) while also minimizing the prediction error. In our experiment, the function d̂(·) is
formulated as a deep neural network with a differentiable loss function, so as the two models—f̂(·)
and d̂(·)—can be simultaneously trained via stochastic gradient descent.

While adversarial training is powerful, it can be sensitive to the choice of parameters and requires
delicate tuning [13, 9]. To improve stability, we add an additional penalty that forces the relevant
second moments of U and V to approximately match; we penalize by kcov(Ŷ,A)� cov(Ŷ, Ã)k2
where Ã is as in (2) and cov denotes the covariance, since under equalized odds this would be zero
in the population (because (Ŷ , A)

d
=(Ŷ , Ã) by Proposition 1). Combining all of the above elements,

we can now give the full proposed procedure in Algorithm 1.

2.3 Sampling fair dummies

To apply the proposed framework we must sample fair dummies Ã from the distribution PA|Y . Since
this distribution is typically unknown, we use the training examples {(Ai, Yi)}i2Itrain to estimate the

1This means that we can write Ã = h(Y, ✏) for some function h(·), where the random variable ✏ is
independent of everything else.
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Algorithm 1 Fair Dummies Model Fitting

Input: Data {(Xi, Ai, Yi)}i2Itrain ; predictive model f̂✓f (·) and discriminator d̂✓d(·).
1: for k = 1, . . . ,K do

2: Sample fair dummies Ãi ⇠ PA|Y (Ai | Yi), i 2 Itrain. See Section 2.3 for details.
3: Update the discriminator parameters ✓d by repeating the following for Ng gradient steps:

Jd(✓d) =
�1

|Itrain|
X

i2Itrain


log

⇣
d̂✓d

⇣
f̂✓f (Xi), Ai, Yi

⌘⌘
+ log

⇣
1� d̂✓d

⇣
f̂✓f (Xi), Ãi, Yi

⌘⌘�

✓d  ✓d � µr✓dJd(✓d)

4: Update the predictive model parameters ✓f by repeating the following for Ng gradient steps:

Jf (✓f ) =
1� �

|Itrain|
X

i2Itrain

`
⇣
Yi, f̂✓f (Xi)

⌘
+ ��kcov(Ŷ,A)� cov(Ŷ, Ã)k2

+
�

|Itrain|
X

i2Itrain

�

log

⇣
d̂✓d

⇣
f̂✓f (Xi), Ãi, Yi

⌘⌘
+ log

⇣
1� d̂✓d

⇣
f̂✓f (Xi), Ai, Yi

⌘⌘�

✓f  ✓f � µr✓fJf (✓f )

Output: Predictive model f̂✓f (·) approximately satisfying equalized odds.

conditional density of A | Y . For example, when the sensitive attribute of interest is binary, we apply
Bayes’ rule and obtain

P{A = 1|Y = y} =
P{Y = y | A = 1}P{A = 1}

P{Y = y | A = 1}P{A = 1}+ P{Y = y | A = 0}P{A = 0} . (4)

All the terms in the above equation are straightforward to estimate; in practice, we approximate terms
of the form P{Y = y | A = a} using a linear kernel density estimation. For a non-binary sensitive
attribute A, the fair dummies Ã can be sampled by estimating the conditional distribution of A | Y .
For instance, one can use quantile regression for a continuous variable A.

3 Validating equalized odds

Once we have a fixed predictive model f̂(·) in hand (for example, a model fit on a separate train-
ing set), it is important to carefully evaluate whether equalized odds is violated on test points
{(Xi, Ai, Yi)}i2Itest . To this end, we develop a hypothesis test for the relation (1). Our test leverages
once again the fair dummies Ãi, but we emphasize that it applies to any prediction rule, not just
those trained with our proposed fitting method. The idea is straightforward: we generate many
instances of the test fair dummies Ã and compare the observed test data (Ŷ,A,Y) to those with
the dummy attributes (Ŷ, Ã,Y), since the latter triple obeys equalized odds. One can compare
these distributions with any test statistic to obtain a valid hypothesis test; this is a special case of the
conditional randomization test of [20]. In Algorithm 2 below, we present a version of this general
test using [21] to form test statistic based on a deep neural network r̂(·). Invoking [20], the output of
the test is a p-value for the hypothesis that equalized odds holds:

Proposition 2. Suppose the test observations (Yi, Xi, Ai) for i 2 Itest are i.i.d.. Set Ŷi = f̂(Xi) for

a fixed function f̂(·) and construct independently distributed fair dummies Ãi as in Proposition 1.

If equalized odds holds for each i, i.e., Ŷi ?? Ai | Yi, then the distribution of the output pv of

Algorithm 2 stochastically dominates the uniform distribution; in other words, it is a valid p-value.

We reiterate that this holds for any choice of the test statistic T (·), so we next discuss a good all-
around choice. For problems with a continuous response Y 2 R and prediction Ŷ 2 R, we define the
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Algorithm 2 The Fair Dummies Test

Input: Data {(Ŷi, Ai, Yi)}, i 2 Itest
1: Split Itest into disjoint subsets I1 and I2.
2: Fit a model r̂(Ai, Yi) on {(Ŷi, Ai, Yi) : i 2 I1}, aiming to predict Ŷi given (Ai, Yi).
3: Compute the test statistic on the validation set: t⇤ = 1

|I2|
P

i2I2
T (Ŷi, Yi, r̂(Ai, Yi)).

4: for k = 1, . . . ,K do

5: Sample a fresh copy of the fair dummies Ãi ⇠ PA|Y (Ai | Yi), i 2 I2.
6: Compute the test statistic using the fair dummies: t(k) = 1

|I2|
P

i2I2
T (Ŷi, Yi, r̂(Ãi, Yi)).

7: Compute the quantile of the true statistic t⇤ among the fair dummy statistics t1, . . . , tK :

pv =
1 +#{k : t⇤ � t(k)}

K + 1
.

Output: A p-value pv for the hypothesis that (1) holds, valid under the assumptions of Proposition 2.

RMSE Fairness p−value

0.88 0.90 0.93 0.95 0.97 0.00 0.25 0.50 0.75 1.00

Fair−Dummies NNet
Fair−Dummies Linear

HGR NNet
HGR Linear

Debiasing NNet
Debiasing Linear

Baseline NNet
Baseline Linear

meps

RMSE Fairness p−value

0.14 0.16 0.18 0.20 0.00 0.25 0.50 0.75 1.00

Fair−Dummies NNet
Fair−Dummies Linear

HGR NNet
HGR Linear

Debiasing NNet
Debiasing Linear

Baseline NNet
Baseline Linear

crimes

Figure 2: Real data regression experiments on the MEPS (left) and Communities and Crimes (right)
data sets. The results are shown over 20 random splits of the data. Each figure presents the RMSE as
well as the equalized odds p-values obtained with the fair dummies test.

test statistic as the squared error function, T (Ŷi, Yi, r̂(Ai, Yi)) = (Ŷi � r̂(Ai, Yi))2. Here, r̂(·) can
be any model predicting Ŷi 2 R from (Ai, Yi); we use a two-layer neural network in our experiments.
We describe a similar test statistic for multi-class classification in Supplementary Section S2.

As a final remark, note that a naive resampling scheme where we instead randomly resample A
unconditionally would result in a test of the hypothesis Ŷ ?? A, a property called demographic parity

[2, 3]. The fair dummies test, in contrast, is able to test a richer notion of fairness by resampling in a
way that reflects the structure of the more sophisticated equalized odds property.

4 Experiments

We now evaluate our proposed fitting method in real data experiments. We compare our approach to
two recently published methods, adversarial debiasing [9] and HGR [10], demonstrating moderately
improved performance. While our fitting algorithm also applies to binary classification, we only
consider regression and multi-class classification tasks here because there are very few available
techniques for such problems. In all experiments, we randomly split the data into a training set
(60%), a hold-out set (20%) to fit the test statistic for the fair-dummies test, and a test set (20%) to
evaluate their performance. We do not use the sensitive attribute as a feature in our experiments.
See Supplementary Section S3 for a synthetic experiment in which we include the sensitive attribute
as an additional feature and further discussion of this point. The software is available online at
https://github.com/yromano/fair_dummies.

4.1 Real data: regression

We begin with experiments on two data sets with real-valued responses: the 2016 Medical Expenditure
Panel Survey (MEPS), where we seek to predict medical usage based on demographic variables,
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Figure 3: The effect of the regularization parameter on model training. The results are reported across
20 random splits of the MEPS data. Left: accuracy. Right: fair dummies test p-value.

and the widely used UCI Communities and Crime data set, where we seek to predict violent crime
levels from census and police data. See Supplementary Section S5.1 for more details. Decision
makers may wish to predict medical usage or crime rates to better allocate medical funding, social
programs, police resources and so on [e.g., 22], but such information must be treated carefully.
For both data sets we use race information as a binary sensitive attribute, and it is not used as a
covariate for the predictive model. An equalized odds model in this context can add a layer of
protection against possible misuse of the model predictions by downstream agents: any two people
(neighborhoods) with the same underlying medical usage (crime rate) would be treated the same by
the model, regardless of racial makeup. Further care is still required to ensure that such a model is
deployed ethically, but equalized odds serves as a useful safeguard.

We will consider two base predictors: a linear model and a neural network. As fairness-unaware
baselines, we fit each of the above by minimizing the MSE, without any fairness promoting penalty.
We also use each of the base regression models together with the adversarial debiasing method [9],
the HGR method [10], and our proposed method; see Supplementary Section S6 for technical details.
The methods that promote equalized odds, including our own, each have many hyperparameters, and
we find it challenging to automate the task of finding a set of parameters that maximizes accuracy
while approximately achieving equalized odds, as also observed in [9]. Therefore, we choose to tune
the set of parameters of each method only once and treat the chosen set as fixed in future experiments;
see Supplementary Section S6.1 for a full description of the tuning of each method.

The performance of these methods is summarized in Figure 2. We observe that the p-values of the
two fairness-unaware baseline algorithms are small, indicating that the underlying predictions may
not satisfy the equalized odds requirement. In contrast, adversarial debiasing, HGR, and our approach
are all better aligned with the equalized odds criterion as the p-values of the fair dummies test are
dispersed on the [0, 1] range. Turning to the predictive accuracy, we find that the fairness-aware
methods perform similarly to each other, although our proposed methods perform a little better than
the alternatives. Each of the fairness-aware models have slightly worse RMSE than the corresponding
fairness-unaware baselines, as expected.

Figure 3 presents the trade-off between accuracy and fairness (measured by our p-value for the
equalized odds requirement) across values of the regularization parameter � for the MEPS data set.
We fit a neural network model with the same hyperparameters as in Figure 2. The left panel of
Figure 3 shows that an increase in � reduces the RMSE of the trained model, as expected. The right
panel demonstrates that the fair dummies test p-values increase with more regularization and that for
small values of �, the proposed test detects violations of equalized odds.

4.2 Real data: multi-class classification

Next, we consider a multi-class classification example using the UCI Nursery data set, where we
aim to rank nursery school applications based on family information. The response has four classes
and we use financial standing as a binary sensitive attribute. See Supplementary Section S5.2 for
more details. Similar to our regression experiments, we use a linear multi-class logistic regression
and neural network as fairness-unaware baseline algorithms. As before, we also fit predictive models
using our proposed method and compare the results to those from adversarial debiasing and HGR.
The latter only handles one-dimensional Ŷ , so we adapted it to the multi-class setting by evaluating
the penalty separately on each element of the vector of class-probabilities Ŷ 2 RL and summing all
L of the penalty scores. See Supplementary Section S6 for additional details.
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Length A=0 Length A=1 Coverage A=0 Coverage A=1

1.00 1.50 2.00 2.50 3.00 1.00 1.50 2.00 2.50 3.00 0.86 0.90 0.94 0.86 0.90 0.94

EC Fair−Dummies NNet
EC Fair−Dummies Linear

EC HGR NNet
EC HGR Linear

EC Debiasing NNet
EC Debiasing Linear

EC Baseline NNet
EC Baseline Linear

Figure 5: Classification experiment on the Nursery data set. The results are shown for 20 random
splits. Left to right: average size of prediction set per group, coverage per group (target 90%).

Error Rate

0.0 0.2 0.4

Fair−Dummies NNet
Fair−Dummies Linear

HGR NNet
HGR Linear

Debiasing NNet
Debiasing Linear

Baseline NNet
Baseline Linear

Fairness p−value

0.0 0.2 0.5 0.8 1.0

Figure 4: Classification experiment on the Nursery
data set. Results are shown for 20 random splits.
Left: misclassification error. Right: fair dummies
test p-value. Large values for HGR not shown.

We report the results in Figure 4. The p-values
that correspond to the fairness-unaware baseline
algorithms are close to zero, indicating that these
methods violate the equalized odds requirement.
In contrast, HGR, adversarial debiasing, and our
method lead to a nice spread of the p-values over
the [0, 1] range, with the exception of adversarial
debiasing with the linear model which appears to
violate equalized odds. Turning to the prediction
error, when forcing the equalized odds criterion
the statistical efficiency is significantly reduced
compared to the fairness-unaware baselines, and
since the linear adversarial debiasing method
violates the equalized odds property, our method
has the best performance among procedures that
seem to satisfy this criterion.

5 Evaluating performance with uncertainty sets

Quantifying uncertainty in predictive modeling is essential, and, as a final case study, we revisit
the previous data set with a new metric based on prediction sets. In particular, using the equalized

coverage method [23], we create predictive sets C(X,A) ✓ {1, 2, . . . , L} that are guaranteed to
contain the unknown response Y with probability 90%. To ensure the prediction sets are unbiased to
the sensitive attribute, the coverage property is made to hold identically across values of A = a:

P{Y 2 C(X,A) | A = a} � 90% for all a 2 {0, 1}.

Such sets can be created using any base predictor, and we report on these sets for the methods
previously discussed in Figure 5; see Supplementary Section S7. We observe that all methods
obtain exactly 90% coverage per group, as guaranteed by the theory [23]. To compare the statistical
efficiency, we look at the size of the prediction sets; smaller size corresponds to more precise
predictions. Among the prediction rules that approximately satisfy equalized odds, a neural network
trained with our proposed penalty performs the best (recall from Figure 4 that the linear method with
adversarial debiasing violates equalized odds in this case).

6 Discussion

6.1 Connection with other notions of fairness

Up to now, our work has dealt with equalized odds, and we pause here to discuss its place within
the broader landscape of algorithmic fairness. There are four groups of fairness formalisms in the
literature. First, fairness through unawareness asks that you fit the model without the sensitive

8



attribute A. This notion fails in that other features in use by the model may serve as a proxy for
A. Note that if you simply flipped A randomly and then fit a model, you would end up with a
model obeying fairness through unawareness. In contrast, our proposed fitting algorithm uses a more
nuanced resampling scheme to target a sharper notion of fairness, equalized odds. Second, individual

fairness approaches require that similar individuals (according to some chosen metric) get similar
predictions [1]. Third, statistical parity notions require that some conditional independence relation
is satisfied in the population. Equalized odds is one example, and two others are calibration and
demographic parity—see [2, 3, 8] for a rich discussion of these three. Lastly, there are a set of causal

fairness notions that are gaining recognition. Counterfactual fairness requires that the predictions
will remain unchanged after an intervention is carried out on the sensitive attribute and the resulting
changes are propagated through the causal graph [6, 24]. Related notions define fairness as the
blocking of causal paths deemed to be unfair by the researcher [7, 25, 26]. The relationship between
the causal notions and statistical parity notions is discussed in detail in [24].

While we focus on equalized odds for concreteness, our proposal is at its core about training models to
satisfy a conditional independence relation among the predictions, response, and sensitive attribute(s).
Our method can be easily adapted to promote the calibration property in training. Some causal
notions of fairness can also be cast as more complex conditional independence relations. Extending
our work as a hypothesis test and model fitting algorithm for counterfactual fairness, say, is possible,
but is more complex because the dimensionality would be larger than in our setting. Nonetheless,
such an extension appears within reach, and we view it as a promising next step.

6.2 Looking forward

In this work we presented a novel method for fitting models that approximately satisfy the equalized
odds criterion, as well as a rigorous statistical test to detect violations of this property. The latter
is the first of its kind, and we view it as an important step toward understanding the equalized
odds property with complex models. Returning to the former, a handful of other approaches have
been proposed, and we demonstrated similar or better performance to state-the-art methods in our
numerical experiments. Beyond statistical efficiency, we wish to highlight the flexibility of our
proposed approach. Our penalization scheme can be used with any discriminator or two sample test,
any loss function, any architecture, any training algorithm, and so on, with minimal modification.
Moreover, the inclusion of the second moment penalty makes our scheme stable, alleviating the
sensitivity to the choice of hyperparameters. From a mathematical perspective, the synthetic data
allows us to translate the problem of promoting and testing a conditional independence relation to the
potentially more tractable problem of promoting and testing equality in distribution of two samples.
We expect this reframing will be useful broadly within algorithmic fairness. Lastly, we point out
our procedure applies more generally to the task of fitting a predictive model while promoting a
conditional independence relation [e.g., 13], and leveraging this same technique in domains other
than algorithmic fairness is a promising direction for future work.

We view our proposal as a way to move beyond mean squared error; with modern flexible methods,
there are often many prediction rules that achieve indistinguishable predictive performance, but
they may have different properties with respect to robustness, fairness, and so on. When there
is a rich enough set of good prediction rules, we can choose one that approximately satisfies the
equalized odds property. Nonetheless, we point out two potential problems with exclusively focusing
on the equalized odds criterion. First, it is well-known that forcing a learned model to satisfy the
equalized odds can lead to decreased predictive performance [27, 28, 2, 3, 29, 30], as illustrated in
Figure 3. Demanding that the equalized odds is exactly satisfied may force us to intentionally destroy
information, as clearly seen in the algorithms for binary prediction rules in [8, 11, 12, 9, 10], and as
implicitly happens in some of our experiments. Second, for regression and multi-class classification
problems, there is no known way to certify that a prediction rule exactly satisfies equalized odds or to
precisely bound the violation from this ideal, so the resulting prediction rules do not come with any
formal guarantee. Both of these issues are alleviated when we return uncertainty intervals that satisfy
the equalized coverage property, as shown in Section 5. With this approach, we regularize models
towards equalized odds to the extent desired, while returning uncertainty sets valid for each group
separately to accurately convey any difference in performance across the groups. Importantly, this
gives an interpretable, finite-sample fairness guarantee only relying on the assumption of i.i.d. data.
For these reasons, we see the combination of an (approximately) equalized odds model with equalized
coverage predictive sets as an attractive combination for models in high-stakes deployments.
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Broader Impact

This work aims to build tools for fair, reliable machine learning algorithms for high-stakes decisions—
an essential task for the ethical use of machine learning. The immediate positive outcome from this
work is a new algorithm for training algorithms to satisfy the equalized odds property. Our technique
explicitly detects biases in a learned model to alert the analyst to any imbalanced performance, while
training a model to seek equal performance, when possible. One technical point of failure is that
our hypothesis test assumes i.i.d. data. If this assumption fails, the test may lead to incorrect and
potentially biased results. Furthermore, while our hypothesis test can detect some violations of the
equalized odds property, it is not guaranteed to detect any such violation. Lastly, one possible negative
impact is that with the increasing availability of so-called “fair” training algorithms, researchers
will accept that an algorithm is fair or ethical without sufficient scrutiny. We emphasize that ethical
machine learning must be viewed as an important unsolved problem that requires both further
algorithmic and conceptual advances, as well as rigorous, critical thought on the part of the researcher
in each new setting.
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