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Abstract—Deployment of 5G requires increased data trans-
mission capacity in the metro fiber network. Besides deploying
new dark fiber operators are also looking into solutions that
improve fiber spectrum utilization by means of high-order mod-
ulation formats, flexible grid, and subcarrier multiplexing (SCM)
technologies. An important factor that limits fiber spectrum
utilization in metro network is the penalty inflicted on the optical
signals that are routed by wavelength selective switches (WSS).
In this paper, an intelligent WSS filtering penalty estimator is
proposed based on neural network. With the achieved accuracy of
0.34 dB of mean absolute error in estimating the optical signal-to-
noise ratio penalties caused by WSS filtering, the trained neural
network is applied to estimate the fiber throughput gains that
can be obtained by optimally selecting the signal symbol rate in
a number of use cases.

Index Terms—optical communication, WSS filtering penalty,
neural network, elastic optical networks, subcarrier multiplexing

I. INTRODUCTION

With the expanding use of 5G and Internet of Things
(IoT), the number of Internet users and connected devices is
growing rapidly [1]. The demand for higher communication
throughput especially in the metro area network (MAN) raises
a great deal of concern among network operators. Dense
wavelength-division multiplexing (DWDM) optical transport
networks have been deployed for decades and their ability to
support high data rate transmissions continues to improve. In
such networks, higher spectral efficiency (SE) can be real-
ized in three ways: adopting high-order modulation formats,
allowing tighter channel spacing with flexible bandwidths, and
implementing subcarrier multiplexing (SCM) [2]. First, apply-
ing high-order modulation format enables the optical signal
to carry more bits per symbol, especially for polarization-
multiplexed coherent modulation. However, higher optical-
signal-to-noise ratio (OSNR) is required to achieve low bit-
error rates (BER). Second, there is increasing interest in
moving from traditional fixed-grid DWDM networks (typically
with 50-GHz channel spacing) to elastic optical network
(EON) with finer channel granularity, such as 12.5 GHz
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or 6.25 GHz [3]. Despite the fact that there exists a large
theoretical gain in optical capacity with EON, tighter channel
spacing brings up additional impairment, mainly from wave-
length selective switches (WSS) filtering penalties [4]. Third,
SCM has been proven to be an efficient way to mitigate the
fiber nonlinearity and WSS filtering impairments [5] [6]. SCM
brings new opportunities and challenges in DWDM system
design and network planning.

In transparent optical networks, data carried by optical
circuits travel from the source node to the destination node
through multiple intermediate nodes without requiring optical-
electrical-optical conversion. Each node hosts a reconfigurable
optical add/drop multiplexer (ROADM) to add, drop, or sim-
ply switch through the optical circuit. WSSs are the key
components in ROADM nodes which individually route each
optical circuit towards the intended destination. The number of
WSSs an optical signal must traverse depends on the network
path hop count and the chosen ROADM node architecture.
In colorless and directionless (CD) ROADMs, two WSSs
must be traversed by the signal at the add, drop, and pass-
through node. In colorless, directionless, and contentionless
(CDC) ROADMs [7], three WSSs must be traversed by the
signal at both the add and drop node, and only two at the
pass-through node. Signal penalties induced by WSS filtering
are typically negligible in conventional 50-GHz grid DWDM
networks when using standard symbol rates, such as 28 Gbd
and 32 Gbd. However, these penalties become quite relevant
in EON as the channel spacing gets tighter [8]. Moreover,
with the rise of edge computing and edge storage, MANs are
expected to host more ROADM nodes, resulting in network
paths with increased hop count and even more significant WSS
filtering penalties. Accurately estimating the WSS filtering
penalty in these emerging scenarios is therefore of the essence.

In this paper, we present a neural network (NN) solution1 to
estimate the WSS filtering penalty experienced by the routed
optical signal in a wide range of cases. Combined features of
the optical signal and WSS configuration are chosen to form

1NNs have been successfully applied to modeling complex problems and
have been widely adopted in many fields and applications, including optical
communications and network [9].



the NN input, including symbol rate, filter bandwidth, signal
center frequency relative to the center of the optical filter,
signal root-raised-cosine roll-off factor, modulation format,
and the number of cascaded WSSs.

The described NN solution circumvents the challenge of
having to derive non-straightforward analytical models and/or
close formula in order to quickly estimate the WSS filtering
penalties in a variety of scenarios. Unlike time consuming
physical layer simulation-based or experimental approaches
[10], the NN solution produces penalty estimations in sub-
second time, typically less than 0.1 s.

Once trained, the NN solution reaches an accuracy of
0.34 dB of mean absolute error in the OSNR penalty estimated
value. Thanks to this accuracy and the NN short computation
time it is possible to investigate the fiber throughput gains that
can be achieved by selecting the optimal symbol rate and SCM
configuration that best make use of the available OSNR margin
as a function of the path hop count in MAN. Two specific use
cases are considered. First, the highest throughput in a flexible
symbol rate scenario is found to produce up to 64% gain
when compared to the standard fixed symbol rate solution in a
typical MAN. Second, the optimal SCM channel configuration
is obtained, which is found to produce further throughput gains
up to 35%.

II. WSS FILTERING PENALTY

A. WSS Transfer Function

The frequency response of a WSS device can be analytically
characterized by (1) (2) [11], where BWOTF is the roll-off
factor and B is the bandwidth of the aperture of the WSS
(usually set to match channel spacing). This model shows good
agreement with practical WSS device measurements.
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Cascading multiple WSS devices has the net effect of mul-
tiplying their bandpass frequency responses together. Fig. 1
shows the equivalent 6 dB bandwidth after a number of
cascaded WSS modules, assuming that the WSS modules have
ideal and identical frequency responses.

B. WSS Filtering Penalty Estimation through Simulation

To estimate the WSS filtering penalty on an optical signal,
we built a coherent transmission simulator in MATLAB with
(1) (2) implemented to simulate the WSS transfer function.
Dual polarization coherent optical transmission with quadra-
ture amplitude modulation (QAM) is considered. The trans-
mitter can be programmed to generate different modulation
formats, variable symbol rates, and Nyquist filtering. At the re-
ceiver the signal is first matched-filtered, then down-converted
to baseband for demodulation and symbol-to-bit mapping for

Fig. 1. Equivalent 6 dB bandwidth of cascaded WSS modules, where
BWOTF = 10.5 GHz and B = 37.5 GHz.

bit error counting. The digital-to-analog and analog-to-digital
converters (DACs/ADCs) in the transmitter and receiver are
assumed to have frequency-independent bit resolution of 8.
With a 9 sample per symbol resolution each simulation run
generates at least 105 QAM symbols to achieve reliable BER
counting.

Fig. 2 shows the WSS filtering OSNR penalty in a 32 Gbd
256 Gbps optical signal modulated as PM-16QAM with
37.5 GHz channel spacing as it is routed through WSS
modules. Considering that a minimum of 4 cascaded WSSs are
needed to provision an optical circuits between two ROADMs
(a single hop path), the resulting OSNR penatly (14.4 dB)
quickly becomes prohibitively high. This example shows how
the WSS filtering effect can induce significant transmission
degradation in EON with narrow channel spacing. Consider-
ing that numerical simulation techniques to estimate OSNR
penalty for each of the possible link configurations are time
consuming, a faster and comprehensive alternative solution is
highly desirable in a network controller or planning tool.

Fig. 2. OSNR penalty for 32 Gbd 256 Gbps optical signal modulated as
PM-16QAM with 37.5 GHz channel spacing due to cascaded WSS filtering.

III. WSS FILTERING PENALTY ESTIMATION THROUGH NN

A. Introduction on Neural Networks

Neural network (NN) is a group of models with varying
structures that can be applied to learn how to solve most



complex numerical problems through an effective input-output
variable mapping. Viable structures may vary based on the
specific problems under consideration. Typical NN struc-
tures include artificial neural networks, convolutional neural
networks, and recurrent neural networks. Classification and
regression are two typical tasks neural networks are designed
for. In this paper, artificial neural network is chosen to model
the WSS filtering characteristics and estimate the resulting
OSNR penalty through non-linear regression.

A generalized artificial neural network structure is shown in
Fig. 3. The input layer contains a number of neurons matching
the number of input features. Since the purpose here is to
estimate the OSNR penalty corresponding to the applied input
features, the output layer contains only one neuron, which
provides the computed OSNR. Between the input and output
layer, one or more hidden layers are deployed, each hosting
a number of neurons. Each neuron is fully connected with
the neurons in the previous and successive layers and applies
a non-linear activation function to the weighted sum of the
incoming values to produce its outgoing value. This NN type
is also known as feedforward neural network for supervised
learning. The NN training process requires a backpropagation
algorithm that calculates the gradient of the loss function with
respect to the weights iterating backward from the last layer
to the first layer [12].

Fig. 3. A generalized artificial neural network structure.

B. Dataset
Due to insufficient experimental data for WSS filtering

penalty available to the authors, the training dataset is gen-
erated with the help of the simulator in Section II-B. Features
(illustrated in Fig. 4) and restrictions are described next.

• Rs: Symbol rate, is a continuous value from 2 Gbd to
42 Gbd. The 2 Gbd lower limit is set to account for to
SCM channels which may use only part of B. The 42 Gbd
upper limit is set to account for most signal width with
respect to the 50 GHz upper limit of B.

• B: WSS filter bandwidth (channel spacing), is a contin-
uous value from max(6.25 GHz, Rs) to 50 GHz. The
minimum nominal central frequency granularity defined
by the ITU-T is 6.25 GHz [13]. The upper limit is
50 GHz as it is the grid for traditional fixed grid DWDM
network. Other values such as 67.5, 100 GHz, etc. are
also acceptable.

• ∆f : Signal center frequency relative to the center of the
optical filter, is a continuous value from (−B+Rs)/2 to

(B−Rs)/2 that accounts for all possible relative positions
of a SCM channel.

• σ: Signal root-raised-cosine roll-off factor, is a continuous
value from 0.01 to 1.

• M : Modulation format, is one of the following six cate-
gories: PM-BPSK, PM-QPSK, PM-8QAM, PM-16QAM,
PM-32QAM, and PM-64QAM.

• n: Number of cascaded WSSs, is a discrete value from
1 to 20.

• OSNRWSS : WSS filtering OSNR penalty, is the output
value the neural network needs to make regression on.

By selecting a sufficient number of key features that may
affect the WSS filtering penalty, the trained neural network
is supposed to be valid in a wide range of uses. Feature
values are randomly selected within their respective ranges
when generating the training dataset.

Fig. 4. Parameters used to generate the training dataset.

C. Pre-processing

Pre-processing of the input features is necessary to increase
the NN accuracy. For continuous-valued features, Rs, B, ∆f ,
and σ, each feature is scaled by its maximum absolute value.
For discrete-valued features, values are encoded using binary
digits. Three digits are needed for feature M and five digits
are needed for feature n. A total of 12 features are used.

D. NN Structure

The input layer contains 12 neurons to account for the 12
features. Two hidden layers, each hosting 256 neurons, are
applied. ReLu is used as the activation function of each hidden
neuron. ReLu is selected because it causes fewer vanishing
gradient problems compared to other activation functions.
Based on our preliminary research by trail and compare, we
determined that this structure provides a good accuracy.

E. Training Process and Results

The dataset contains 38,606 training samples and 9,652
validation samples. Samples are shuffled in each epoch. Adam
optimizer is used during the training process. The training
process is conducted in TensorFlow environment. The mean
absolute error is used as performance indicator.

The training and validation error against the training epoch
is shown in Fig. 5. The blue curve is training loss/error, and
orange is validation loss/error, which are labeled in the legend.
The validation error histogram is shown in Fig. 6.

The mean absolute error on the validation set is 0.34 dB,
with 92.26% of validation samples falling within 1 dB and



Fig. 5. Training and validation error (dB) over 300 epochs.

Fig. 6. Validation error (dB) histogram.

85.98% falling within 0.5 dB from the OSNR value obtained
from the simulator. We believe this accuracy is sufficient to
make realistic predictions on the WSS filtering penalty. Once
the NN is trained, it can be deployed in optical network
controller, planning tool, simulation, and real-time emula-
tion engines. Improved accuracy can be achieved by further
training the neural network with more training samples or
experimental data.

The NN runtime to estimate the WSS filtering penalty for
one set of feature values is around 0.08 s, which is more than
two orders of magnitude faster than getting the estimation from
the simulator. The NN short runtime facilitates the two studies
discussed in the next section.

IV. TWO USE CASES

The OSNR penalty estimated using the NN in Section III
only accounts for the presence of the WSS filtering penalties
along the circuit path. Additional OSNR penalties may be due
to amplified spontaneous emission noise (ASE) from ampli-
fiers and nonlinear interference noise (NLI). These two addi-
tional impairments are estimated through the GN model [14]
as

PASE = hf0FBref (G− 1), (3)

and
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where h is Plank’s constant, f0 is the center frequency of
the C-band, F is the amplifier noise figure, Bref is the

resolution bandwidth (RBW) of the OSNR measurement, G
is the amplifier gain, PS is the signal power, α is the fiber
attenuation, β2 is the chromatic dispersion coefficient, γ is
the nonlinear coefficient, Leff is the effective fiber length,
and Bopt is the occupied bandwidth. For an optical circuit
with multiple line spans (LS), the path OSNR is computed as

OSNRPath = (
∑
LS,i

1

OSNRLS,i
)−1 (5)

OSNRLS =
PS

PASE + PNLI
, (6)

where i identifies the LS in the path. Assuming that ASE and
NLI are independent of the WSS filtering penalty, the circuit
OSNR should satisfy

OSNRPath −OSNRWSS >

OSNRreceiver +OSNRguard,
(7)

where OSNRWSS is the WSS filtering penalty after 4 +
(i − 1) × 2 cascaded WSSs (CD ROADM is considered),
OSNRreceiver is the OSNR required to achieve the desired
low BER at the optical receiver at the destination node, and
OSNRguard is the safety margin, set at 1 dB.

A. Flexible Symbol Rate

Conventional transmitter-receiver pairs operate at fixed stan-
dard symbol rates, e.g., 28 Gbd or 32 Gbd. Transmission data
rates can only be varied by changing the modulation format
subject to the available OSNRreceiver. In this section we
explore the throughput gain that is achievable by introducing
transmitter-receiver pairs that can operate with flexible symbol
rates. Throughput is defined as the highest achievable data rate
subject to (7). The applied OSNRreceiver accounts for typical
SD-FEC BER threshold (2.4e−2) and the reported data rates
(throughput) include FEC overheads.

Fig. 7. Throughput of standard fixed symbol rate and flexible symbol rate
solutions versus path hop count (CD ROADM is considered).

Fig. 7 compares the throughput of standard fixed symbol
rate solutions against flexible symbol rate solutions as a
function of the hop-count of the path routed through CD
ROADMs. A single carrier is used per channel and the channel



spacing is set to 37.5 GHz. LSs have equal length which is
set to either 10 km (dashed) or 75 km (solid). In the fixed
symbol rate solution (black) PM-16QAM is only possible
when operating the channel over a single hop with LS length
of 10 km. In all other cases up to 7 hop count PM-QPSK
must be applied. For higher hop counts the WSS filtering
penalties do not allow PM-QPSK to operate successfully. In
contrast, PM-16QAM is always used in the flexible symbol
rate solution. By adjusting the applied symbol rate this solution
can mitigate the penalties induced by the cascaded WSS filters
on the transmitted signal. Two symbol rate resolutions are
applied when searching for the highest data rate — 0.5 Gbd
(blue) or 1 Gbd (red) — starting with the initial symbol rate
of B (37.5 Gbd). Reducing the symbol rate resolution below
1 Gbd does not yield significant throughput gains. Overall the
flexible symbol rate solutions are able to yield considerable
through gain when compared to the fixed solution. For large
hop count (>7) the variable symbol rate solution is still able
to offer about 180 Gbps while the fixed symbol rate solution
cannot even operate with PM-QPSK.

Fig. 8. Throughput comparation between three different modulation formats
under flexible symbol rate circumstance.

Fig. 8 reports the throughput of the flexible symbol rate
solution for three modulation formats, i.e., PM-QPSK, PM-
8QAM and PM-16QAM as a function of the path hop count.
These results are obtained assuming LS length of 75 km and
symbol rate resolution of 0.5 Gbd. As one would intuitively
anticipate, high-order modulation formats are heavily affected
when the number of traversed WSS filters increases. Their
throughput declines sharply as the hop count increases. Low-
order modulation formats on the other hand are able to operate
at increased symbol rates even in excess of the 32 Gbd
standard fixed value when the hop count is low.

Next, we further investigate the throughput gain in an
hypothetical MAN. Fig. 9 shows the network topology of
an hypothetical MAN in Toronto city2 [15]. Between each
node pair, two shortest paths are pre-computed [16]. The
average throughput for each path group categorized by hop

2Span lengths shown in the figure are estimated based on the segment length
and city size measured on Google Maps.

count is shown in Fig. 10 for both fixed symbol rate and
flexible symbol rate solutions. The two solutions yield similar
throughput in single-hop paths. For larger hop counts the
flexible symbol rate solution consistently outperforms the
standard fixed symbol rate solution, which is forced to operate
at the low-level modulation format PM-QPSK. A 64.67%
network throughput gain is obtained when using the flexible
symbol rate solution.

Fig. 9. Toronto-MAN topology (LS length in km).

Fig. 10. Average throughput for both flexible (orange) and fixed (blue) symbol
rate solutions in the Toronto-MAN.

B. Best Subcarrier Configuration

The NN in Section III is applied next to estimate the WSS
filtering penalties when using multiple subcarriers in the same
channel to form a superchannel. The subcarriers that are close
to the edge of the WSS filter transfer function are more heavily
affected when compared to the subcarriers that are closer to the
central frequency of the WSS filter. Consequently, for optimal
throughput each subcarrier is individually assigned the highest-
order modulation format subject to (7).

Channel spacing is set to 37.5 GHz. When four subcarriers
are used, the symbol rate of each subcarrier is 8 Gbd with
a guardband of 0.8 GHz between adjacent subcarriers. When
eight subcarriers are used, the symbol rate of each subcarrier
is 4 Gbd with a guardband of 0.4 GHz between adjacent
subcarriers. Fig. 11 reports throughput versus path hop count



for 4 possible scenarios: (green) 8 subcarriers and LS length
of 10 km; (yellow) 8 subcarriers and LS length of 75 km;
(red) 4 subcarriers and LS length of 10 km; and (blue) 4
subcarriers and LS length of 75 km. Other superchannel
configurations are outside the scope of this study. Arrays in
the figure report the modulation formats found by the NN
for each optimal solution starting with the two innermost
subcarriers — closest to the filter central frequency — and
ending with the two outermost subcarriers — closest to the
filter edge. (Modulation formats are applied symmetrically
with respect to the filter central frequency.) For example array
[64, 64, 16, 2] applies to 8 subcarriers in which PM-64QAM
is used in the two innermost subcarriers and PM-BPSK is
used in the outermost subcarrier. In some configurations not
all the 8 subcarriers can be established, like in the case of
6 hops and LS length=75 km (yellow). The solution in this
case is [32, 32, 4], which indicates that the two outermost
subcarriers cannot be successfully operated due to the heavy
WSS filtering penalties. In paths with low hop count the
8 subcarrier solutions always outperform the 4 subcarrier
solutions regardless of the LS length, with up to 35% of
throughput gain. However, when the LS length is 75 km and
the hop count exceeds 5 only 6 of the 8 subcarriers can be
practically used thus reducing the throughput of these solutions
(yellow) to match that of the 4 subcarrier solutions (blue).

Fig. 11. Throughput versus hop count in superchannels using 4 and 8
subcarriers.

C. Dynamic Bandwidth Allocation

Due to its fast and accurate estimation of the WSS filtering
induced OSNR penalties, we believe that the proposed NN so-
lution is quite useful in both network controllers and network
planning tools. With the ability to quickly estimate the WSS
filtering penalties incurred in any network path this technique
has the potential to be used in highly dynamic scenarios,
like assisting the network controller in concurrently choosing
the best restoration path, flexible symbol rate, SCM channel
configuration, and modulation format of a disrupted primary
optical circuit.

V. CONCLUSION

An artificial neural network (NN) comprising 12 features,
two hidden layers of 256 neurons each, and one output is
applied to estimate the OSNR penalties caused by cascaded
WSS filtering in a DWDM metro network. These penalties are
particularly relevant when designing and operating networks
that make use of high-order modulation formats, flexible grid,
an subcarrier multiplexing (SCM) technologies for improved
spectral efficiency. The NN is used to estimate the fiber
throughput gains that are achievable when transmitting with
flexible symbol rates compared to the conventional fixed
standard symbol rates. Another application of this NN is the
selection of the optimal SCM superchannel configurations as
a function of the network path hop count and length. Thanks
to its sub-second run time this NN solution may find good
applications in DWDM network controllers and planning tools.
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