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Abstract

Several works have shown that perturbation
stable instances of the MAP inference problem
in Potts models can be solved exactly using a
natural linear programming (LP) relaxation.
However, most of these works give few (or no)
guarantees for the LP solutions on instances
that do not satisfy the relatively strict pertur-
bation stability definitions. In this work, we
go beyond these stability results by showing
that the LP approximately recovers the MAP
solution of a stable instance even after the
instance is corrupted by noise. This “noisy
stable” model realistically fits with practical
MAP inference problems: we design an algo-
rithm for finding “close” stable instances, and
show that several real-world instances from
computer vision have nearby instances that
are perturbation stable. These results suggest
a new theoretical explanation for the excellent
performance of this LP relaxation in practice.

1 Introduction

In this work, we study the MAP inference problem in
the ferromagnetic Potts model, which is also known as
uniform metric labeling (Kleinberg & Tardos, 2002).
Given a graph G = (V, E), this problem is:

(w2 () + 3w, v) () # ()]

ueV (u,v)EE

Here we are optimizing over labelings x : V. — [k|
where [k] = {1,2,...,k}. The objective is comprised
of “node costs” ¢ : V x [k] = R, and “edge weights”
w: E — Rsp; a labeling « pays the cost ¢(u,i) when
it labels node u with label 7 and pays w(u,v) on edge
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(u,v) when it labels u and v differently. This problem
is NP-hard for variable k£ > 3 (Kleinberg & Tardos,
2002) even when the graph G is planar (Dahlhaus et al.,
1992). However, there are several efficient and empiri-
cally successful approximation algorithms for the MAP
inference problem—such as TRW (Wainwright et al.,
2005) and MPLP (Globerson & Jaakkola, 2008)—that
are related in some way to the local LP relazation,
which is also sometimes called the pairwise LP (Wain-
wright & Jordan, 2008; Chekuri et al., 2001). This
LP relaxation returns an approximate MAP solution
for most problem instances. However, when the pa-
rameters of these models are learned so as to enable
good structured prediction, often the LP relaxation
exactly or almost exactly recovers the MAP solution
(Meshi et al., 2019). The connection between the LP
relaxation and commonly used approximate MAP infer-
ence algorithms then leads to the following compelling
question, which is of great practical relevance for under-
standing the “tightness” of the LP solution (informally,
how close the LP solution is to the MAP solution).

Can we explain the exceptional performance of the lo-
cal LP relaxation in recovering the MAP solution in
practice?

Several works have studied different conditions that im-
ply the local relaxation or related relaxations are tight
(e.g., Kolmogorov & Wainwright, 2005; Wainwright &
Jordan, 2008; Thapper et al., 2012; Weller et al., 2016;
Rowland et al., 2017). Recent work on tightness of the
local relaxation has focused on a class of several related
conditions known as perturbation stability. Intuitively,
an instance is perturbation stable if the solution x* to
the MAP inference problem is unique, and moreover,
x* is the unique solution even when the edge weights w
are multiplicatively perturbed by a certain adversarial
amount (Bilu & Linial, 2010). This structural assump-
tion about the instance (G, ¢, w) captures the intuition
that, on “real-world” instances, the ground-truth so-
lution is stable and does not change much when the
weights are slightly perturbed.

For constants 8,y > 1, we say that w’ is a (8,7)-
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Figure 1: Left: prior work (Lang et al., 2018) showed that a stable instance can be exactly solved efficiently.
Colors indicate the label of each vertex in the MAP solution 2*. On stable instances, solving the LP relaxation
(represented by the arrow) recovers the MAP solution. However, real-world instances are not suitably stable for
this result to apply in practice (Lang et al., 2019). Right: in this work, we show that solving the LP relaxation
on a (slightly) corrupted stable instance (corruptions shown as bold edges) approximately recovers the original
MAP solution. This is true even if the corruption changes the MAP solution (as in the bottom example). In
other words, we prove that “easy” instances are still approximately easy even after small perturbations.

perturbation of the weights w if % cw(u,v) < w'(u,v) <
v - w(u,v) for all (u,v) € E. Suppose z* is the unique
MAP solution to the instance (G,c¢,w). Then, we
say (G,c,w) is a (B,)-stable instance if z* is also
the unique MAP solution to every instance (G, ¢, w’)
where w’ is a (f,7)-perturbation of w. Lang et al.
(2018) showed that when (G, ¢, w) is (2, 1)-stable, the
solution to the local LP relaxation is persistent i.e., the
LP solution exactly recovers the MAP solution z*.

While theoretically interesting, (2, 1)-stability is a strict
condition that is unlikely to be satisfied in practice:
the solution x* is not allowed to change at all when the
weights are perturbed. No real-world instances have
yet been shown to be (2,1)-stable (Lang et al., 2019).
Moreover, the LP relaxation is also not persistent on
most of those instances. However, the solution of the
local LP relaxation is still nearly persistent i.e., the
LP solution is very close to the MAP solution z* (see
Definition 3.1 for a formal definition). Those examples
made it clear that theory must go beyond perturbation
stability to explain this phenomenon of near-persistence
that is prevalent in practice (see e.g., Sontag, 2010;
Shekhovtsov et al., 2017).

Why is the LP relaxation nearly persistent on MAP
inference instances in practice?

There are several theoretical frameworks to explain
exactness or tightness of LP relaxations, such as total
unimodularity, submodularity (Kolmogorov & Wain-
wright, 2005), and perturbation stability (Lang et al.,
2018, 2019), as well as structural assumptions about

the graph G (Wainwright & Jordan, 2008), or combined
assumptions about G and the form of the objective
function (Weller et al., 2016; Rowland et al., 2017).
However, these frameworks can not be used to prove
near-persistence.

Figure 1 (informally) shows our main result. The left
side depicts the previous result of Lang et al. (2018): if
the instance is (2, 1)-stable (a fairly strong structural
assumption), the LP relaxation exactly recovers the full
solution x*. This result is limited because real-world
instances have been shown to not satisfy (2, 1)-stability
(Lang et al., 2019). The right side shows our main
result: if the instance is a slightly corrupted (2,1)-
stable instance, the LP relaxation still approzimately
recovers the solution z* to the stable instance.

Intuitively, we may expect a real-world instance to be
“close” to a stable instance (i.e., to be a “corrupted sta-
ble” instance, as in Figure 1) even if the instance itself
is not stable. We design an algorithm to check whether
this is the case. We find that on several real examples,
sparse and small-norm changes to the instance make it
appropriately stable for our theorems to apply. In other
words, we certify that these real instances are close to
stable instances. For these instances, our theoretical
results explain why the LP relaxation approximately
recovers the MAP solution.

More formally, we assume that there is some latent
stable instance (G, ¢, w), and that the observed instance
(G, é,) is a noisy version of (G, ¢, w) that is close to it.
Let & be the solution to the local LP on the observed
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instance (G, ¢, %), and let Z be the (unknown) MAP
solution on the unseen stable instance (G,c,w). We
prove that under certain conditions, the LP solution
& is nearly persistent i.e., the Hamming error ||& — Z||;
is small (see Definition 3.1). In other words, the local
LP solution to the observed instance approximately
recovers the latent integral solution z.

We complement this by studying a natural generative
model that generates noisy stable instances which, with
high probability, satisfy the above conditions for near
persistency. In other words, the observed instance
(G, ¢, ) is obtained by random perturbations to the
latent stable instance (G, ¢, w), and the LP relaxation
approximately recovers the MAP solution to the latent
instance with high probability.

Our theoretical results imply that the local LP approx-
imately recovers the MAP solution when the observed
instance is close to a stable instance. Our empirical re-
sults suggest that real-world instances are very close to
stable instances. These results together suggest a new
explanation for the near-persistency of the solution of
the local LP relaxation for MAP inference in practice.
To prove these results and derive our algorithm for
finding a “close-by” stable instance, we make several
novel technical contributions, which we outline below.

Technical contributions.

« In Section 4, we generalize the (2, 1)-stability result
of Lang et al. (2018) to work under a much weaker
assumption, which we call (2, 1)-expansion stabil-
ity. That is, we prove the local LP is tight on (2, 1)-
expansion stable instances. Additionally, given the
instance’s MAP solution, (2, 1)-expansion stabil-
ity is efficiently checkable. To the best of our
knowledge, most other perturbation stability as-
sumptions are not known to satisfy this desirable
property. This generalization is crucial for the effi-
ciency of our algorithm for finding stable instances
that are close to a given observed instance.

o In Section 5, we give a simple extension of (2,1)-
expansion stability called (2, 1,)-expansion sta-
bility. We prove it implies a “curvature” result
around the MAP solution z. On instances that
satisfy this condition, if a labeling & is close in
objective value to x, it must also be close in the so-
lution space. This result lets us translate between
objective gap and Hamming distance.

e In Section 6, we study a natural generative model
where the observed instance is generated from an
arbitrary latent stable instance by random (sub-
Gaussian) perturbations to the costs and weights.
We prove that, with high probability, every feasi-
ble LP solution takes close objective values on the

latent and observed instances. The proof uses a
rounding algorithm for metric labeling in a novel
way to obtain stronger guarantees. When com-
bined with our other results, this proves that when
the latent instance is (2, 1, 1)-expansion stable, the
LP solution is nearly persistent on the observed
instance with high probability. These results sug-
gest a theoretical explanation for the phenomenon
of near-persistence of the LP solution in practice.

e We design an efficient algorithm for finding
(2, 1,)-expansion stable instances that are “close”
to a given instance (G, & @) in Section 7. To the
best of our knowledge, this is the first algorithm for
finding close-by stable instances, and is also an effi-
cient algorithm for checking (2, 1, ¢)-expansion sta-
bility. This algorithm allows us to check whether
real-world instances can plausibly be considered
“corrupted stable” instances as shown in Figure 1.

e We run our algorithm on several real-world in-
stances of MAP inference in Section 8, and find
that the observed instances (G, é, ®) often admit
close-by (2, 1,)-stable instances (G, ¢, w). More-
over, we find that the local LP solution Z typically
has very close objective to z in (G,¢,w). Our
curvature result for (2, 1,)-stable instances thus
gives an explanation for the tightness of the local
LP relaxation on (G, é,0).

2 Related work

Perturbation stability. Several works have given
recovery guarantees for the local LP relaxation on
perturbation stable instances of uniform metric label-
ing (Lang et al., 2018, 2019) and for similar problems
(Makarychev et al., 2014; Angelidakis et al., 2017).

Lang et al. (2019) give partial recovery guarantees
for the local LP when parts (blocks) of the observed
instance satisfy a stability-like condition, and they
showed that practical instances have blocks that satisfy
their condition. However, the required block stability
condition in turn depends on certain quantities related
to the LP dual. This is unsatisfactory since this does
not explain when and why such instances are likely to
arise in practice. For a more extensive treatment of
the subject, we refer the reader to the “Perturbation
Resilience” chapter from Roughgarden (2021).

Easy instances corrupted with noise. Our ran-
dom noise model is similar to several planted average-
case models like stochastic block models (SBMs) con-
sidered in the context of problems like community de-
tection, correlation clustering and partitioning (see e.g.,
MecSherry, 2001; Abbe, 2018; Globerson et al., 2015).
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Instances generated from these models can also be
seen as the result of random noise injected into an
instance with a nice block structure that is easy to
solve. Several works give exact recovery and approxi-
mate recovery guarantees for semidefinite programming
(SDP) relaxations for such models in different parame-
ter regimes (Abbe, 2018; Guédon & Vershynin, 2016).
In our model however, we start with an arbitrary sta-
ble instance as opposed to an instance with a block
structure (which is trivial to solve). Moreover, we
are unaware of such analysis in the context of linear
programs. Please see Section 6 for a more detailed
comparison. To the best of our knowledge, we are
the first to study instances generated from random
perturbations to stable instances.

Partial optimality algorithms. Several works
have developed fast algorithms for identifying parts
of the MAP assignment. These algorithms output an
approximate solution Z and a set of vertices where &
provably agrees with the MAP solution z* (e.g., Kov-
tun, 2003; Shekhovtsov, 2013; Swoboda et al., 2016;
Shekhovtsov et al., 2017). Like these works, our results
also prove that an approximate solution & has small
error |2 — z*|. However, these previous approaches are
more concerned with designing fast algorithms for find-
ing such Z. In contrast, we focus on giving structural
conditions that explain why a particular & (the solu-
tion to the local LP relaxation) often approximately
recovers x*. Our algorithm in Section 7 is thus not
meant as an efficient method for certifying that | — z*|
is small, but rather as a method for checking whether
our structural condition (that the observed instance is
close to a stable instance) is satisfied in practice.

3 Preliminaries

In this section we introduce our notation, define the
local LP relaxation for MAP inference, and give more
details on perturbation stability. As in the previous sec-
tion, the MAP inference problem in the ferromagnetic
Potts model on the instance (G, c,w) can be written
in energy minimization form as:

c(u, z(uw)) + Z w(u, v)1[z(u) # z(v)].

ueV (u,v)EE
(1)

Here z is an assignment (or labeling) of vertices to
labels i.e. z:V — {1,2,...,k}. We can identify each
labeling  with a point (2, : u € V;xy, @ (u,v) € E),
where each z,, € {0,1}* and each z,, € {0, 1}**¥.

In this work, we consider all node costs c(u,i) € R
and all edge weights w(u,v) > 0. We note that this is
equivalent to the formulation where all node costs and
edge weights are non-negative (Kleinberg & Tardos,

2002). See Appendix A for a proof of this equivalence.

We encode the node costs and the edge weights in a
vector 6 € R +m** where n = V| and m = |E| s.t.
0(u,i) = c(u,1),0(u,v,4,5) = w(u,v)L[i # j]. Then
the objective can be written as (6, ). We set (i) = 1
when z(u) = 4, and 0 otherwise. Similarly, we set
Tuw(i,7) = 1 when z(u) = i and z(v) = j, and 0
otherwise. Where convenient, we use z to refer to this
point rather than the labeling z : V' — [k]. We can
then rewrite (1) as:

k
min. Y Y e i)z (i) + Y wuv) Yzl j)

weV i=1 (u,)EE i#£]
k
subject to: Zzu(i) =1 VueV
i=1

k
Zzuv(iaj) =2u(j) V (wv) €E, j€E K]

k
quv(iaj) =zy(i) VY (u,v) €E, i€ [K]

xu'“(ihj) € {07 1}
x4, (i) € {0,1}
This is equivalent to (1), and is an integer linear pro-

gram (ILP). By relaxing the integrality constraints
from {0,1} to [0,1], we obtain the local LP relazation:

k
min >0 D el (i) + 3 w(w,0) Y (i),

ueV i=1 (u,w)ER i#]

v (u,v), (4,5)
YV u, 1.

where L(G) is the polytope defined by the same con-
straints as above, with € {0,1} replaced with
x € [0,1]. This is known as the local polytope (Wain-
wright & Jordan, 2008). The vertices of L(G) are either
integral, meaning all z,, and x,, take values in {0, 1},
or fractional, when some variables take values in (0,1).
Integral vertices of this polytope correspond to label-
ings « : V — [k], so if the LP solution is obtained at
an integral vertex, then it is also a MAP assignment.

If the solution z* of this relaxation on an instance
(G, ¢, w) is obtained at an integral vertex, we say the
LP is tight on the instance, because the LP has exactly
recovered a MAP assignment. If the LP is not tight,
there may still be some vertices u where x}, takes in-
tegral values. In this case, if 2% (i) = 1 and Z(u) = i,
i.e., the LP solution agrees with the MAP assignment
x at vertex w, the LP is said to be persistent at u.
xk (1) € {0,1} does not imply the LP is persistent at u,
in general. The LP solution x* is said to be persistent
if it agrees with x at every vertex u € V.

Recovery error: In practice, the local LP relaxation
is often not tight, but is nearly persistent. We will
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measure the recovery error of our LP solution in terms
of the “Hamming error” between the LP solution and
the MAP assignment.

Definition 3.1 (Recovery error). Given an instance
(G, c,w) of (1), let  be a MAP assignment, and let z*
be a solution to the local LP relaxation. The recovery
error is given by (with some abuse of notation)

1. . _ 1., _
2" =2l = gllay —2vih

;>3

u€eV ielk]

ap (i) — L[z (u) =]

zy € R™ denotes the portion of x restricted to the
vertex set V. If z* is integral, the recovery error mea-
sures the number of vertices where z* disagrees with
Z. When the recovery error of x* is 0, the solution z*
is persistent. We will say that the LP solution z* is
nearly persistent when the recovery error of solution z*
is a small fraction of n.

In our analysis, we will consider the following subset
L*(G) of L(G) which is easier to work with, and which
contains all points we are interested in.

Definition 3.2 (L*(G)). We define L*(G) C L(G) to
be the set of points € L(G) which further satisfy
the constraint that x,,(¢,4) = min(a,,(7), 2, (7)) for all
(u,v) € F and i € [k].

Claim 3.3. For a given graph G, every solution x €
L(G) that minimizes (8,x) for some valid objective
vector 8 = (¢, w) also belongs to L*(G). Further, all
integer solutions in L(G) also belong to L*(QG).

We prove this claim in Appendix A.
Our new stability result relies on the set of expansions
of a labeling x.

Definition 3.4 (Expansion). Let z : V. — [k] be a
labeling of V. For any label « € [k], we say that 2’ is
an a-expansion of x if 2’ # z and the following hold
forallu e V:

r(u) =a = 2'(u)
' (u) # a = 2'(u) = x(u).

Q,

That is, 2’ may only expand the set of points labeled
«, and cannot make other changes to x.

4 Expansion Stability

In this section, we generalize the stability result of Lang
et al. (2018) to a much broader class of instances. This
generalization allows us to efficiently check whether a
real-world instance could plausibly have the structure

Node Costs

1 + e 1 + e u 5 ) 00
v 1 0 oo
W 1 oo O

1+e

Figure 2: (2, 1)-expansion stable instance that is not
(2,1)-stable. In the original instance (shown left), the
optimal solution labels each vertex with label 1, for
an objective of 2.5. This instance is not (2, 1)-stable:
consider the (2, 1)-perturbation that multiples all edge
weights by 1/2. In this perturbed instance, the original
solution still has objective 2.5, and the new optimal
solution labels (u,v,w) — (1,2,3). This has a node
cost of 0.5 and an edge cost of (3 4 3¢)/2, for a to-
tal of 2 4+ 3¢/2 < 2.5. Since the original solution is
not optimal in the perturbed instance, this instance
is not (2, 1)-perturbation stable. However, note that
the only expansions of the original solution (which
had all label 1) that have non-infinite objective are
(u,v,w) = (1,2,1) and (u,v,w) — (1,1,3). These
each have objective 2.5 + ¢, which is strictly greater
than the perturbed objective of the original solution.
In fact, checking this single perturbation, known as the
adversarial perturbation is enough to verify expansion
stability: this instance is (2, 1)-expansion stable. We
include the full details in Appendix B.

shown in Figure 1 (that is, whether the instance is close
to a suitably stable instance).

Consider a fixed instance (G,c,w) with a unique
MAP solution z. Theorem 1 of Lang et al
(2018) requires that for all @ € {(c,w’) | w' €
{(2,1)-perturbations of w}}, (¢',x) > (¢, z) for all la-
belings  # z. That is, that result requires Z to be
the unique optimal solution in any (2, 1)-perturbation
of the instance. By contrast, our result only requires
Z to have better perturbed objective than the set of
expansions of T (c.f. Definition 3.4).

Definition 4.1 ((2,1)-expansion stability). Let z be
the unique MAP solution for (G, ¢, w), and let £ be
the set of expansions of  (see Definition 3.4). Let

O = {(c,w’) | w’ € {(2,1)-perturbations of w}}

be the set of all objective vectors within a (2,1)-
perturbation of § = (c,w). We say the instance
(G, c,w) is (2,1)-expansion stable if the following holds
for all 0’ € © and all z € &;:

0, z) > (0, 7).

That is,  is better than all of its expansions x # Z in
every (2, 1)-perturbation of the instance.



Beyond Perturbation Stability: LP Recovery Guarantees for MAP Inference on Noisy Stable Instances

Theorem 4.2 (Local LP is tight on (2, 1)-expansion
stable instances). Let T and & be the MAP and local LP
solutions to a (2,1)-expansion stable instance (G, c,w),
respectively. Then x = & i.e. the local LP is tight on

(G, c,w).

We defer the proof of this theorem to Appendix B as
it is similar to the proof of Theorem 1 from Lang et al.
(2018). The (2, 1)-expansion stability assumption is
much weaker than (2, 1)-stability because the former
only compares z to its expansions, whereas the latter
compares T to all labelings. While the rest of our results
can also be adapted to the (2,1)-stability definition,
this relaxed assumption gives better empirical results.
Figure 2 shows an example of a (2, 1)-expansion stable
instance that is not (2, 1)-stable. This shows that our
new stability condition is less restrictive.

5 Curvature around MAP solution
and near persistence of the LP
solution

In this section, we show that a condition related to
(2, 1)-expansion stability, called (2,1, ¢)-expansion sta-
bility, implies a “curvature” result for the objective
function around the MAP solution z. On instances
satisfying this condition, any point & € L(G) with ob-
jective close to T also has small ||Z — Z||1, so & and Z
are close in solution space. In other words, if the LP
solution Z to a “corrupted” (2, 1, 1)-expansion stable in-
stance is near-optimal in the original (2, 1, v)-expansion
stable instance (whose solution is ), then the result in
this section implies ||Z — Z||; is small. This immediately
gives a version of the result in the right panel of Fig-
ure 1: suppose we define an instance to be close to a
(2,1, )-expansion stable (G, ¢, w) if its LP solution & is
approximately optimal in (G, ¢, w). Then the curvature
result implies that the LP approximately recovers the
stable instance’s MAP solution z for all close instances.
In Section 6, we give a generative model where the gen-
erated instances are “close” according to this definition
with high probability.

The (2,1, v)-expansion stability condition, for ¢ > 0,
says that the instance is (2, 1)-expansion stable even if
we allow all node costs ¢(u, 1) to be additively perturbed
by up to . This extra additive stability will allow us
to prove the curvature result. This is related to the
use of additive stability in Lang et al. (2019) to give
persistency guarantees.

Definition 5.1 ((2, 1, ¢))-expansion stable). For ¢ > 0,
we say an instance (G, ¢, w) is (2, 1,4)-expansion stable
if (G,c,w) is (2,1)-expansion stable for all ¢’ with
c<cd <c+1-1 where 1 is the all-ones vector.

The following theorem shows low recovery error i.e.,

near persistence of the LP solution on (2, 1,1) expan-
sion stable instances in terms of the gap in objective
value.

Theorem 5.2. Let (G,c,w) be a (2,1,)-expansion
stable instance with MAP solution . Let 8 = (c,w).
Then for any x € L*(G), the recovery error (see
Def. 3.1) satisfies

1 _ 1 _ 1 _
gz = alh = gllzv —avih < 710, 2) = (6. 7)]. (2)

Proof (sketch). For any x € L*(G), we construct a
feasible solution & which is a strict convex combination
of x and z that is very close to . Then, we apply
a rounding algorithm to & to get a random integer
solution h. Let @ represent the worst (2, 1)-perturbation
for z. This is the instance where all the edges not cut by
Z have their weights multiplied by 1/2. We define the
objective difference using  as A, = (9, h)— (0, ). First
we show an upper bound for E[A}] using properties of
the rounding algorithm. Then we show that for any
solution A in the support of our rounding algorithm,
Ay, > ¢ - By, where By, is the Hamming error of h
(when compared to ). On the other hand, one can
also use the properties of the rounding algorithm to
get a lower bound on E[By] in terms of the recovery
error (i.e., Hamming error) of the LP solution. These
bounds together imply the required upper bound on
the recovery error of the LP solution. O

We defer the complete proof and an alternate dual-
based proof to Appendix C.

Theorem 5.2 shows that on a (2,1, )-expansion stable
instance, small objective gap (6, x) — (6, Z) implies small
distance ||xy — Zy |1 in solution space. Although this
holds for any € L*(G), we will be interested in x that
are LP solutions to an observed, corrupted version of
the stable instance.

We now show that if the observed instance has a nearby
stable instance, then the LP solution for the observed in-
stance has small Hamming error. For any two instances
0 = (¢,%) and 0 = (¢, w) on the same graph G, the met-
ric between them d(6, ) = SUPze () 10, z) — (0, z)].

Corollary 5.3 (LP solution is good if there is a nearby
stable instance). Let 2MAF and & be the MAP and local
LP solutions to an observed instance (G, é,w). Also, let
Z be the MAP solution for a latent (2,1,1)-expansion
stable instance (G, ¢,w). If 6 = (¢,%) and 6 = (¢, w),

1 .
Sliv — A7y <

2d(6, 6)
Y

1, _
+ 1A — 3y

We defer the proof of this corollary to Appendix C.
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6 Generative model for noisy stable
instances

In the previous section, we showed that if an instance
(G,¢,w) is “close” to a (2,1,1)-expansion stable in-
stance (G, ¢, w) (i.e., the LP solution & to (G,é,0)
has good objective in (G, ¢, w)), then ||& — Z|| is small,
where Z is the MAP solution to the stable instance.
In this section, we give a natural generative model
for (G, é,w), based on randomly corrupting (G, ¢, w),
in which & has good objective in (G, ¢, w) with high
probability. Together with the curvature result from
the previous section (Theorem 5.2), this implies that
the LP relaxation, run on the noisy instances (G, &, ),
approximately recovers z with high probability.

We now describe our generative model for the prob-
lem instances, which starts with an arbitrary stable
instance and perturbs it with random additive pertur-
bations to the edge costs and node costs (of potentially
varying magnitudes). The random perturbations re-
flect possible uncertainty in the edge costs and node
costs of the Markov random field. We will assume
the random noise comes from any distribution that is
sub-Gaussian'. However, there is a small technicality:
the edge costs need to be positive (node costs can be
negative). For this reason we will consider truncated
sub-Gaussian random variables for the noise for the
edge weights. We define sub-Gaussian and truncated
sub-Gaussian random variables in Appendix D.

Generative Model: We start with an instance
(G, ¢, w) that is (2, 1,1)-expansion stable, and perturb
the edge costs and node costs independently. Given
any instance (G, ¢,w), an instance (G,é, @) from the
model is generated as follows:

1. For all node-label pairs (u,4), é(u,i) = ¢(u,i) +
é(u, 1), where ¢(u, 1) is sub-Gaussian with mean 0
and parameter oy, ;.

2. For all edges (u,v), @(u,v) = w(u,v) + w(u,v),
where w(u,v) is an independent r.v. that
is (—w(u,v), yu,p)-truncated sub-Gaussian with
mean 0.

3. (G, ¢é,w) is the observed instance.

By the definition of our model, the edge weights
Ww(u,v) > 0 for all (u,v) € E. The parameters of
the model are the unperturbed instance (G, ¢, w), and
the noise parameters { vy 4, 0u.i }u,veV,iE[k]' On the
one hand, the above model captures a natural average-
case model for the problem. For a fixed ground-truth
solution z* : V — [k], consider the stable instance

(H,c,w) where w}, = 2 for all u,v in the same clus-

LAll of the results that follow can also be generalized to
sub-exponential random variables; however for convenience,
we restrict our attention to sub-Gaussians.

ter (i.e., *(u) = 2*(v)) and w}, = 1 otherwise; and
with ¢*(u,i) = 1 if 2*(u) = 4, and ¢*(u,i) = 1+
otherwise. The above noisy stable model with stable
instance (H,c,w) generates instances that are remi-
niscent of (stochastic) block models, with additional
node costs. On the other hand, the above model is
much more general, since we can start with any stable
instance (G, ¢, w).

With high probability over the random corruptions
of our stable instance, the local LP on the corrupted
instance approximately recovers the MAP solution Z
of the stable instance. The key step in the proof of
this theorem is showing that, with high probability, the
observed instance is close to the latent stable instance
in the metric we defined earlier.

Lemma 6.1 (d(0,0) is small w.h.p. ). There exists a
universal constant ¢ < 1 such that for any instance in
the above model, with probability at least 1 — o(1),

A — k.2
supl(0.) = (.0)] < vk, | 3o+ Dok

zeL*(Q) wi

Proof (sketch). For any fized x € L*(G), we can show
that (4, z) — (4, z)| is small w.h.p. using a standard
large deviations bound for sums of sub-Gaussian ran-
dom variables. The main technical challenge is in
showing that the supremum over all feasible solutions
is small w.h.p. The standard approach is to perform
a union bound over an e-net of feasible LP solutions
in L*. However, this gives a loose bound. Instead,
we upper bound the supremum by using a rounding
algorithm for LP solutions in L*(G), and union bound
only over the discrete solutions output by the rounding
algorithm. This gives significant improvements over the
standard approach; for example, in a d-regular graph
with equal variance parameter +,,, this saves a factor
of v/d apart from logarithmic factors in n. O

We defer the details to Appendix D. The above proof
technique that uses a rounding algorithm to provide a
deviation bound for a continuous relaxation is similar
to the analysis of SDP relaxations for average-case
problems (see e.g., Makarychev et al., 2013; Guédon &
Vershynin, 2016). The above lemma, when combined
with Theorem 5.2 gives the following guarantee.

Theorem 6.2 (LP solution is nearly persistent). Let
Z be the local LP solution to the observed instance
(G,¢é,®) and T be the MAP solution to the latent
(2,1, 1)-expansion stable instance (G, ¢, w). With high
probability over the random noise,

1 _ 2
slev —avihi< Zoevnk- > ol +k2D 7,
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Proof. We know that for any feasible solution = €
L(G),(0,x) > (0,z). Therefore, (0,2) > (0,). Re-
member that we defined d(6,0) as sup,¢ () (0, 7) —
(6, z)|. Since & and Z are both points in L*(G),

(0,2) < (0,2) +d(0,0) < (0,7) +d(0,0)
< (0,7) + 2d(0.0)
The first and third inequalities follow from the defini-
tion of d(6,0). The second inequality follows from
the fact that & is the minimizer of (f,z) over all
z € L(G). Therefore,0 < (0,%) — (0,7) < 2d(0,0).
Using this in Theorem 5.2, we get 3|2 — Z||; < %.
Lemma 6.1 then gives an upper bound on al(é7 6) that
holds w.h.p. O

For a d-regular graph in the uniform setting, we get
the following useful corollary:

Corollary 6.3 (MAP solution recovery for regular
graphs ). Suppose we have a d-regular graph G with
'yﬁ,v = 42 for all edges (u,v), and ai)i = o2 for all
vertez-label pairs (u,i). Also, suppose only a fraction
p of the vertices and 1 of the edges are subject to the
noise. With high probability over the random noise,

dk
&y — 27 |h B 2cky/po? + TgEA2

2n - P

Note that when Z is an integer solution, the left-hand-
side is the fraction of vertices misclassified by Z.

7 Finding nearby stable instances

In this section, we describe an algorithm for efficiently
finding (2,1, 1)-expansion stable instances that are
“close” to an observed instance (G, é,®@). This algorithm
allows us to check whether we can plausibly model real-
world instances as “corrupted” versions of a (2,1,1)-
expansion stable instance.

In addition to an observed instance (G, &, ), the al-
gorithm takes as input a “target” labeling x!. For
example, ! could be a MAP solution of the observed
instance. Surprisingly, once given a target solution,
this algorithm is efficient.

We want to search over costs ¢ and weights w. The
broad goal to solve the following optimization problem:

minimize  f(c,w) (3)
subject to (G, c,w) is (2,1, )-expansion stable

with MAP solution z¢,

where f(c,w) is any convex function of ¢ and w. In
particular, we will use fi(c, w) = ||(¢, w) — (& w)||; and

fale,w) = 3|[(c,w) — (&, @)|[3 for minimizing the L1
and L2 distances between to the observed instance.
The output of this optimization problem will give the
closest objective vector (¢, w) for which the instance
(G,¢,w) is (2,1,)-expansion stable. If the optimal
objective value of this optimization is 0, the observed
instance (G, é,®) is (2, 1, )-expansion stable.

There is always a feasible (¢, w) for (3) (see Appendix E
for a proof), but it may change many weights and costs.
Next we derive an efficiently-solvable reformulation of
(3). In the next section, we find that the changes to
¢ and W required to find a (2, 1,)-expansion stable
instance are relatively sparse in practice.

Theorem 7.1. The optimization problem (3) can be
expressed as a convex minimization problem over a
polytope described by poly(n,m, k) constraints. When
fle,w) = ||(c,w) — (& W)]||1, (3) can be expressed as a
linear program.

The instance (G, c,w) is (2, 1,1)-expansion stable if
xt is better than every expansion y of z! in every
(2,1,4)-perturbation of (¢, w). Let £ be the set of all
expansions of the target solution x!. Then for all ¢’
within a (2, 1, v)-perturbation of § = (¢, w), we should
have that (¢',z') < minyeg(#’,2"). It is enough to
check the adversarial (2, 1,)-perturbation 6,4,. This
perturbation makes the target solution 2? as bad as
possible. If xt is better than all the expansions y € £
in this perturbation, it is better than all y € £ in every
(2,1, 4)-perturbation (see Appendix E for a proof). We
set aadv = (Cadvawadv) as:

o Jewiy o i=at(w),
Cadu(u,Z) = {c(u,i) otherwise.
Jw(u,v) 2t () # 2t (u),
wadv(U;'U) - {;w(u,v) otherwise.

The target solution ! is fixed, s0 (0440, z') is a linear
function of the optimization variables ¢ and w. For
a € [k], let £~ be the set of a-expansions of 2. Because
E = Uae€®, we have (0, x") < minyee (0, 2") if and
only if (¢/,2") < minyega(#',2") for all a € [k]. We
can simplify the original optimization problem to:

e Jew)
subject to (Oaaw, ") < m@gn Oadv, y) Vo€ (K],
JEED

fadv is a linear function of ¢, w as defined above. We
now use the structure of the sets £ to simplify the con-
straints. The optimal value of minycga (fgav,y) is the
objective value of the best (w.r.t. 8,4,) c-expansion
of z!. The best a-expansion of a fixed solution z*
can be found by solving a minimum cut problem in
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Table 1: Results from the output of (5) on three stereo vision instances. More details in Appendix F.

Instance Costs changed Weights changed (normalized) Recovery error bound ||&y — #MAP||; /2n
tsukuba 4.9% 2.3% 0.0518 0.0027
venus 22.5% 1.3% 0.0214 0.0016
cones 1.2% 2.1% 0.0437 0.0022

an auxiliary graph GZ,_(a) whose weights depend on
linearly on the objective 6,4, and therefore depend
linearly on our optimization variables (¢, w) (Boykov
et al., 2001, Section 4). Therefore, the optimization
problem mingego (faqv, y) can be expressed as a mini-
mum cut problem. Because this minimum cut problem
can be written as a linear program, we can rewrite each
constraint as

(Oadn, 2) < min

00. Uy ) 4
7z:A(a)z:b(oz),220< d Z> ()

where {A(a)z = b(a), z > 0} is the feasible region of
the standard metric LP corresponding to the minimum
cut problem in GZ, (). The number of vertices in
G~ (a) and the number of constraints in A(a)z = b(a)
is poly(m,n, k) for all «. We now derive an equivalent
linear formulation of (4) using a careful application of
strong duality. The dual to the LP on the RHS is:
maxli/mize (bla),v), st. A(a)Tv < Oaq,.
Because strong duality holds for this linear program,
we have that (4) holds if and only if there exists v with
A()Tv < 0,4, such that (0,4, 2) < (b(a), V).

This is a linear constraint in (¢, w,v). By using this
dual witness trick for each label « € [k], we obtain:

fe,w) (5)

(Bage, 7)) < (b(ar), V) vV a
A(a)Tya < Oado Y a.

minimize
¢>0,w>0,{va}

subject to

The constraints of (5) are linear in the optimization
variables (¢, w) and v,. The dimension of 0,4, is nk +
mk?, so there are k(nk + mk? + 1) constraints and
nk+m+>" |b(a)| = poly(m,n, k) variables. Because
minimization of the L1 distance fi (¢, w) can be encoded
using a linear function and linear constraints, (5) is
a linear program in this case. It is clear from the
derivation of (5) that it is equivalent to (3). This
proves Theorem 7.1. This formulation (5) can easily be
input into “off-the-shelf” convex programming packages
such as Gurobi (Gurobi Optimization, 2020).

8 Numerical results

Table 1 shows the results of running (5) on real-world
instances of MAP inference to find nearby (2,1,)-

expansion stable instances. We study stereo vision mod-
els using images from the Middlebury stereo dataset
(Scharstein & Szeliski, 2002) and Potts models from
Tappen & Freeman (2003). Please see Appendix F for
more details about the models and experiments.

We find, surprisingly, that only relatively sparse
changes are required to make the observed instances
(2,1,%)-expansion stable with ¢» = 1. On these in-
stances, we evaluate the recovery guarantees by our
bound from Theorem 5.2 and compare it to the actual
value of the recovery error ||Z — #MAP||;/2n. In all of
our experiments, we choose the target solution x* for (5)
to be equal to the MAP solution 2M4¥ of the observed
instance. Therefore, we find a (2, 1,1)-expansion sta-
ble instance that has the same MAP solution as our
observed instance. The recovery error bound given by
Theorem 5.2 is then also a bound for the recovery error
between & and 2MAF | because £MAF = zt. On these
instances, the bounds from our curvature result (The-
orem 5.2) are reasonably close to the actual recovery
value. However, this bound uses the property that &
has good objective in the stable instance and so it is
still a “data-dependent” bound in the sense that it uses
an empirically observed property of the LP solution Z.
In Appendix F, we show how to refine Corollary 5.3 to
give non-vacuous recovery bounds that do not depend
on Z.

9 Conclusion

We studied the phenomenon of near persistence of the
local LP relaxation on instances of MAP inference in
ferromagnetic Potts model. We gave theoretical re-
sults, algorithms (for finding nearby stable instances)
and empirical results to demonstrate that even after a
(2,1, 9)-perturbation stable instance is corrupted with
noise, the solution to the LP relaxation is nearly persis-
tent i.e., it approximately recovers the MAP solution.
Our theoretical results imply that the local LP approx-
imately recovers the MAP solution when the observed
instance is close to a stable instance. Our empirical re-
sults suggest that real-world instances are very close to
stable instances. These results together suggest a new
explanation for the near-persistency of the solution of
the local LP relaxation for MAP inference in practice.
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Beyond Perturbation Stability: Supplementary Material

A Preliminaries Details

Claim A.1. For Uniform Metric Labeling, we can assume c(u,i) > 0 and w(u,v) > 0 without loss of generality.

Proof. For problem instances where some node costs are strictly negative, let cpin be the minimum value
among all the node costs. Consider a new problem instance where we keep the edge costs the same, but set
¢ (u,i) = c(u,%) + |emin| for all w € V and 4 € [k]. This new problem instance has all non-negative node costs, and
the optimization problem is equivalent, because we added the same constant for all solutions. This reformulation
also does not affect the (2, 1)-expansion stability or (2,1, v)-expansion stability of the instance.

Likewise, for problem instances where some edge weights are 0, let Ey be the set of all edges with 0 edge weight.
Consider a new problem instance with E' = E'\ Ey, with w(u,v) unchanged for (u,v) € E'\ Ey, and identical
node costs. The MAP optimization problem remains the same, and the new instance ((V, E’), ¢, w) is equivalent:
it has the same MAP solution, and satisfies the stability definitions if and only if the original instance does as
well. O

Claim 3.3. For a given graph G, every solution x € L(G) that minimizes (0, z) for some valid objective vector
0 = (c,w) also belongs to L*(G). Further, all integer solutions in L(G) also belong to L*(G).

Proof of Claim 3.3. Recall the local LP:

min. Y Y elu,iaa(i) + D wuw) Y vl ) (6)

ueV i (u,v)EE i#£]
subject to: qu(z) =1 VueV (7
Za:uv(i,j) =z,(j) VY (u,v)€E, jelk] (8)
wa(i,j) =z,(i) VY (uwv)€E, i€k (9)
xuv(iaj) € [07 1] v (U’U)v (7’7]) (10)
2, (1) € [0,1] Y ou, i. (11)

The feasible region defined by the above constraints is L(G). L*(G) C L(G) is the set of points that satisfy
the additional constraint that ., (i,7) = min(x, (i), z,(2)) for all (u,v) € F and i € [k]. For any feasible node
variable assignments {r,}, L*(G) is not empty: a simple flow argument? implies that the constraints (8), (9),
and (10) are always satisfiable even when we set @, (7, ¢) = min(x,(¢), z,(¢)). For all integer feasible solutions in
L(G), notice that x,,(i,j) =1 if 2,(i) = 1 and z,(j) = 1 or 0 otherwise. Therefore, all integer solutions satisfy
this additional constraint. Consider a 6 where all edge weights are strictly positive. If z minimizes (0, z),  must

*For an edge (u,v), consider the bipartite graph G = ((U,V), E), where |U| = [V| = k. We let z,(i) represent
the supply at node 7 in U, and let z,(¢) represent the demand at node j in V. Because =, and z, are both feasible,
the total supply equals the total demand. E contains all edges between U and V, so we can send flow from i € U to
j € V for any (4,7) pair. Let Ty (i,7) represent this flow, and set xyy(4,4) = min(xy(2), z,(2)). For every i, this either
satisfies the demand at node V; or exhausts the supply at node U;. In each case, we can remove that satisfied/exhausted
node from the graph. After this choice of z,(,7), the total remaining supply equals the total remaining demand
(>, wu(i) —min(zy (2), 20 (7)) = Y, 20 (1) —min(zy (i), 2,(2))), all supplies and demands are nonnegative, and the remaining
graph G’ is a complete bipartite graph (over fewer nodes). This implies that the flow constraints (8), (9), (10) are still
feasible.
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Figure 3: (2,1)-expansion stable instance that is not (2,1)-stable. In the original instance (shown left), the
optimal solution labels each vertex with label 1, for an objective of 2.5. The adversarial (2, 1)-perturbation for
this instance replaces all the edge weights of 1+ ¢ with (14 ¢)/2. In this perturbed instance, the optimal solution
labels (u, v, w) — (1,2,3). This has a node cost of 0.5 and an edge cost of (3+ 3¢)/2, for a total of 2+ 3¢/2 < 2.5.
Since the original solution is not optimal in the perturbed instance, this instance is not (2, 1)-perturbation stable.
However, note that the only expansions of the original solution (which had all label 1) that have non-infinite
objective are (u,v,w) — (1,2,1) and (u,v,w) — (1,1,3). These each have objective 2.5 + €, which is strictly
greater than the perturbed objective of the original solution. Therefore, this instance is (2, 1)-expansion stable.

pay the minimum edge cost consistent with its node variables x,,(¢). So if we fix the x, (i) portion of z, we know
that the edge variables x,, of x are a solution to:

,min > w(u,v) Yz, g)-

(u,v)EE i#£j

Notice that since we have fixed the node variables z, (i), there is no interaction between the x,,, variables across
different edges. So we can minimize this objective by minimizing each individual term w(u,v) Y2, Tuv(4, J)-
Since wy,y > 0 for all edges, we need to minimize ), ,; 2y (i, 7). Notice that for every edge (u,v) € E, we get
that >, > @uu(i,j) = 1 by substituting x, (i) in constraint 7 with }_ y,(i, ) from constraint 9. Therefore
>igj Tuv(ij) =1 = 32 @yp(d,4). Thus, minimizing ;24 (4, j) is the same as maximizing ), zy,(4,4). And
the maximizing choice for z,(%,4) = min(z, (i), z,(¢)) due to constraints 8 and 9.

B Expansion Stability details

Claim B.1. An instance (G, w,c) is (2,1)-expansion stable iff the MAP solution T is strictly better than all its
expansions in the adversarial perturbation 0,q,. That is, for all x € &z, (Baav, ) > (Oadaw, T) where O,q, has the

%w(u,v) Z(u) = z(v)

w(u,v)  Z(u) # z(v).

same node costs ¢ but has weights wagy(u,v) = {

Proof. Consider 6" = (¢,w’), any valid (2, 1)-perturbation of § = (¢, w) i.e. for every edge (u,v) € E, w <

w'(u,v) < w(u,v). For any valid labeling x, let E, represent the edges cut by x. Then, for any x which is an
expansion of T i.e. x € &z,

0,2y — (0, 7) = Z c(u, z(u)) — c(u, z(u)) + Z w'(u,v) — Z w'(u, v)

ueV (u,v)EE, (u,v)EEz
= clwa(w) —clw,z@w)+ Y. w(we)— > w(ww)
ueV (u,w)EEL\Ez (u,v)EEz\E,
= (Oadv: @) = Baan, B+ Y W (W,0) — Waan(w,0) + D Waay — W' (u,v)
(u,v)EE\Es (u,w)EEz\Ey
_ w(u,v
= (Oadv, ) — (Oad, T) + Z w'(u,v) — (2 ) + Z w(u,v) —w' (u,v)
(u,v)EEL\Es (u,v)EEz\Ey

Since w’ is a valid (2, 1)-perturbation, w’(u,v) > w(u,v)/2 and w’(u,v) < w(u,v). Therefore, for any valid
(2, 1)-perturbation 6, we have
<9I7x> - <0l7j> Z <6ad'u7m> - <0adv7j>~

If the instance is (2, 1)-expansion stable, then certainly (0uay, ) > (Qudw, ) for all x € E7; since 0,4, is a valid
(2, 1)-perturbation of 6. If the instance is not (2, 1)-expansion stable, there exists a # and an x € £% for which
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(0", 2y — (0',Z) < 0. But the above inequality then implies that (6,4,, %) — (Badw, T) < 0 as well. This gives both
directions. O

This claim shows that to check whether an instance is (2, 1)-expansion stable, it is sufficient to check that the
MAP solution is strictly better than all its expansions in the adversarial perturbation 6,4,. We don’t need to
verify that this condition is satisfied in every valid (2, 1)-perturbation. Because the optimal expansion of Z in the
instance with objective 6,4, can be computed efficiently, this claim also implies that (2, 1)-expansion stability can
be efficiently checked once the MAP solution z is known.

Claim B.2. (2,1)-expansion stability is strictly weaker than (2, 1)-perturbation stability.

Proof. Figure 2 gives an instance of uniform metric labeling that is (2, 1)-expansion stable but not (2,1)-
perturbation stable. Here, 0 < & < 1/3. O

Theorem 4.2 (Local LP is tight on (2, 1)-expansion stable instances). Let & and & be the MAP and local LP
solutions to a (2,1)-expansion stable instance (G, c,w), respectively. Then T = & i.e. the local LP is tight on
(G, c,w).

Proof. First, we note that for any x € L*(G), the objective value of the local LP can be written in a form that
depends only on the node variables xy . The objective term corresponding to the edges

Z w(u,v)Zazuv(i,j)z Z w(u,v) quv(i,j)—quv(i,i)

(u,v)EE i#j (u,v)EE
= Z w(u,v) <1 — quv(z,z)> = Z w(u,v) (1 — Zmin(mu(i),xv(i))>
(u,v)EE i (u,v)EE i

i

= 3 wuw) (;ZIxu(i)—xu(m)
(u,v)EE (

= w(u, v) <1 - (““’“(Z) - (i) _ |7u(i) - zv<z>|>>
(u,v)EE

Here we used the definition of L*(G) and the facts that 3, x,, (i) = 1 for all (u, i) and }; 2y (i, ) = (i) for all
(u,v) € E, i € [k].

Thus, for any € L*(G), the objective of the local LP can be written as

ZZC(U,i)$u(i)+ Z w(u, v)d(u,v)

ueV i (u,v)EE

where d(u,v) == 2 3", |2,(i) — 2,(i)|. This is the objective function of another LP relaxation for uniform metric
labeling called the “metric LP”, which is equivalent to the local LP (Archer et al., 2004). Note that both z and &
are in L*(G) by Claim 3.3. Therefore, the objective function can be written in the above form for both of them.

In the next section, we introduce a rounding algorithm and prove some guarantees for the random solutions
h output by it. We then use these guarantees to show an upper bound on the expected cost of these random
solutions in a perturbed instance of the problem. Finally, we use this upper bound to prove that & = .

B.1 e-close rounding:

Given any feasible solution z € L(G) and a valid labeling Z, we construct a related feasible solution =’ which is
e-close to Z in the loo-norm i.e. |2/ — Z||oo < e

o =ex+(1-e)z, (12)
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where ¢ < 1/k and we have identified the labeling Z : V — £ with its corresponding vertex of the marginal
polytope (a vector in {0, 1}”’“+mk2). We consider the following rounding algorithm applied to z’, which is a
modified version of the e-close rounding algorithm used in Lang et al. (2018):

Algorithm 1 e-close rounding

1: Choose i € {1,...,k} uniformly at random.
2: Choose 7 € (0,1/k) uniformly at random.
3: Initialize labeling h : V — [k].

4: for each u € V do

5. if 2/,(i) > r then

6: Set h(u) =

7.  else

8: Set h(u) = Z(u)

9: endif
10: end for
11: Return h

Lemma B.3 (Rounding guarantees). Given any «’ constructed using (12), the labeling h output by Algorithm 1
satisfies the following guarantees:

P{h(u) =1} = z,(i) VueVie [k
P{h(u) # h(v) } <2d(u,v) V (u,v) € E: Z(u) = Z(v)
P{h(u) = h(v) } = (1 — d(,v)) ¥ (u,0) € B 5(w) £ 5(0),

where d(u,v) = 1 3. @), (i) — 2,,(i)| is the edge separation of the constructed feasible point x'.

Proof of Lemma B.3 (rounding guarantees). First, fix u € V and a label i # Z(u). We output h(u) = i precisely

when i is chosen and 0 < r < a/,(i), which occurs with probability + 1/(;) = x,(i) (we used here that z,(i) < e <
1/k for all'i # Z(u)). Now we output h(u) = z(u) with probability 1=3" -\ P{h(u) =j} =1=3_, ;) z.(j) =

x, (Z(u)), since ). x;, () = 1. This proves the first guarantee.

u

For the second, consider an edge (u,v) not cut by z, so Z(u) = Z(v). Then (u,v) is cut by h when some i # z(u)
is chosen and r falls between z/,(7) and 2 (¢). This occurs with probability

Ly max(w@(z‘),r@(i))l/—kmin(w u(), = Y Jal(6) — 2, ()] < 2d(u,v).
i#7(w) 73 (u)

Finally, consider an edge (u,v) cut by z, so that Z(u) # Z(v). Here h(u) = h(v) if some 4,7 are chosen with
r < min(a,(i), 2}, (i)). We have r < min(x/, (i), 2} (i)) with probability w Note that this is still valid

tiad V) » v
if i = z(u) or i = z(v), since only one of those equalities can hold. So we get

kzmm 1/)7 E— <Z$ Iw()—x;(m):l—d(u,u),

where we used again that ), ) (i) = 1. O

Given these rounding guarantees, we can relate the expected cost difference between h and Z in a perturbation of
the original instance to the cost difference between x and x in the original instance. We are only interested in the
case when « € L*(G) and so the objective function f(z) =3, ¢y 22, c(u, )zu(i) + X2, e p wlu, v)d(u,v).
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B.2 Using the rounding guarantees

Lemma B.4. Given an integer solution Z, a feasible LP solution x € L*(G), and a random output h of Algorithm
1 on an input &' = ex + (1 — €)Z, define

Low(u, v
w’(u,v):{Q (u,v)

w(u,v)

I

(u) = Z(v)
(u) # Z(v)
and let f'(y) = X ey 20 c(s D)Yu (i) + 220y ep W' (u, v)d(y, u, v) be the objective in the instance with the original
costs, but using weights w'. Here d(y,u,v) = 3 3. [yu(i) — 4o (i)|. Let Ay == f'(h) — f'(Z) be the difference in

this perturbed objective between h and x. Then,

E[A] =E[f'(h) = f((@)] < - (f(z) = f(2)).

81

Proof.
E[f'(h) = f'@] =Y > clw,dP{h(u) =i} =Y clw,zw)+ > w'(u,0)P{h(u)#h()}
ueV 1 ueV wv:T(u)=%(v)

- Y w(wo)P{h(u) =h(v)}

wv:x(u)#x(v)

= Z Z c(u, i)z, (i) — Z c(u, z(u)) + Z 2w’ (u,v)d(z', u,v)

u wv:Z(u)=z(v)
- Z w/(u,v)(l —d(Jf/,U,, U))
wv:Z(u)#£T(v)
=D > w2l (i) = Y elwz(w) + Y wluv)d(@ uw) = Y w(u,v)
u u weE wv:Z(u)#Z(v)
= /) - §@).

where the second-to-last equality used the definition of w’ (note that w’ is identical to the worst-case perturbation
Wady for T). Because f is convex (in particular, d(x,u,v) is convex in x), we have f(z') < ef(z) + (1 —¢) f(Z).

Therefore,
E[f'(h) = f'(@)] < ef(2) + (1 —e)f(2) — f(2) = e(f(z) — f(2)),

which is what we wanted. O

B.3 Final proof of Theorem 4.2:

Suppose the local LP solution & is not the same as the MAP solution Z i.e. & # Z. Consider 2’ = e + (1 — )&
where 0 < £ < 1/k (see equation (12)). Let h be the random integer solution output by using Algorithm 1 on z’.
By Lemma B.4, we have

E[f'(h) = f@)] <e- (f(2) - (@)

We note that any solution h that we get from rounding ' is either Z or an expansion move of z. This is because
we pick only a single label ¢ in step 1 of Algorithm 1 and label all vertices u either ¢ or Z(u). Therefore, for the 4
picked in step 1, h is an i-expansion of T if h # Z.

E[f'(h) — @) = E[f'(h) - /'@)Ih # &) Plh# 2] + E[f'(h) - £ @Ik = & Plh = 7]
—E[/'(h) - f'@h # 3] Pl # 4]

Since (G, ¢, w) is a (2, 1)-expansion stable instance, we know that f'(h) > f'(Z) when h # Z since all h in the
support of the rounding (other than Z) are expansion moves of  and we get f’ by a valid (2, 1)-perturbation of
(G, c,w). Therefore, E[f'(h) — f'(Z)|h # Z] > 0. We also have that P[h # ] > 0 since we assumed that & # .
Therefore, E [f'(h) — f'(Z)] > 0. But we know that f(2) — f(z) < 0 since % is the minimizer of f(z) among all
feasible z € L(G). So Lemma B.4 implies E [f'(h) — f/(Z)] < 0. Thus we have a contradiction and so the local
LP solution & has to be the same as the MAP solution Z.

O
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C Stability and Curvature around MAP solution: details

Theorem 5.2. Let (G,c,w) be a (2,1,9)-expansion stable instance with MAP solution x. Let 0 = (c,w). Then
for any x € L*(G), the recovery error (see Def. 3.1) satisfies

$|<9,x> —(0,3)] 2)

e — 2 = Ljay - 2v]h <
2:10 x1.—2$v vl >

Here, we provide two proofs for this theorem, one deals directly with the local LP relaxation and the other uses
the dual of the relaxation. The dual proof is more general than the primal proof as it works for all € L(G), not
just for those in L*(G).

C.1 Primal-based proof

Proof. For any x € L*(G), consider a feasible solution 2’ which is e-close to & constructed using Equation 12 i.e.
' =ex + (1 —€)z. Let h be the random solution output by Algorithm 1 on ’.

Lemma C.1 (Bound for E[By]). For any h in the support of the rounding of ¥’ = ex + (1 — &)z, let us define

By, to be the number of vertices which it labels differently from x. In other words, it is the number of vertices
which are misclassified by h i.e. B =), v 1[h(u) # Z(u)]. Then,

1 _
E[B]=c¢ Z 5”3711 — Zulh
ucV

Proof.

E[By] = ) E[Lh(u) # 2(w)]] = Y P{h(w) #2(u)} =Y 1-P{h(u)=2(u)}

ueV ueV ueV
=Y 1-a,(@w) =Y 1- (@) +(1—-e) = > c(l—zu(z(w)))
ueV ueV ueV
DI LGRS DRG] B S PR A
ueV i£T(u) ueV

Here, we used the fact that for all u € V,z,(Z(u)) = 1 and %, (i) = 0 V ¢ # Z(u) and since z is a feasible solution
to the LP, it satisfies 3, ;) #u(i) = 1 — zu(Z(u)) for all u € V. O

Lemma C.2 (Lower bound for A, using (2,1, ¢)-expansion stability). If (G,w,c) is a (2,1,1)-expansion stable
instance, then for any h in the support of the rounding of ' = ex + (1 — &)z,

Ap > - By

where Ap = f'(h) — f'(Z) and ' is the objective in the instance (G, c,w’) where w' is the worst (2,1) perturbation
for x i.e.

W) =\ ) B u) £ F0)

{%w(u,v) Z(u)

Proof. Note that Aj here is the same as the one defined for Lemma B.4. Since the instance (G, ¢, w) is (2,1, 9)-
expansion stable, we know that (G, ¢, w) should be (2, 1)-expansion stable for all ¢ such that ¢ < ¢ <c+ - 1.
c(u, i) +¢ i=z(u)
c(u, 1) i # Z(u)
As discussed in section B.3, we know that any h # Z in the support of the rounding is an expansion move of z.
Therefore, for any h # Z in the support of the rounding of z’,

Consider the worst ¢’ for z i.e. ¢/(u,i) = { . Let f” be the objective in the instance (G, ¢/, w’).
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P - @ >0 = Y duhw) - dwrw) + Y. wwe)— Y w(ww) >0

ueV (u,0):h(u)#h(v) (u,0):2(u)#Z(v)
— > cluhw) = (c(uw,2(w) + ¢ - Lh(u) 2+ > w(wv)— > w(wv)>0
ueVv (u,v):h(u)#h(v) (u,v):z(u)#z(v)
= f'(h) = f'(9) > ¢ Y U[h(u) # ZF(u)] = Ap>¢- By
ucV

This is true for all h # & in the support of the rounding of #’. When h = z, we have A, = By, = 0. Therefore for
all A in the support of the rounding of z’, we have that A;, > v - By,. O

C.2 Final proof of Theorem 5.2:

We use the Lemmas B.4(upper bound for E[A}]), C.2(lower bound for Aj,), and C.1(bound for E[By]) to prove
Theorem 5.2. For all h in the support of rounding of z, A, > v - By. Also,

B[4 < (f(=) ~ f(@)), EBi] =€ 3 glla — 2l

ueV

Suppose that ||z — Z||;1 > 7 (f(x) — f(Z)). Then,

B4 f@)-f@ 2
E[Br] = Suey Heu—oult - 7

But since Ay > ¢ - By, for every h in the rounding of =, we get that

Setting 7 = =, we get a contradiction and thus we get,

%
1 _ 1 _ 1 -
gl =2l < 7 (@) = f(@)) = 7 - ({0, ) = {0, 7))
O

Corollary 5.3 (LP solution is good if there is a nearby stable instance). Let 2MAY and & be the MAP and local
LP solutions to an observed instance (G,é,w). Also, let T be the MAP solution for a latent (2,1,v)-expansion

stable instance (G, ¢, w). If 0 = (é,%) and 0 = (¢,w),
1. 2d4(0,0) 1,
Siey Py < 20D | Lygyar

b 2

Proof of Corollary 5.3. First, we note that for the nearby stable instance, the MAP and the local LP solutions
are the same due to Theorem 4.2. Therefore, for any feasible solution = € L(G), (0, x) > (0, ). In particular,
this implies that (0,2) > (0, z) and (9, 2MAP) > (0, z) since &, #M4F are also feasible solutions. Remember that
we defined d(0,0) = SUPge (@) |, ) — (0, x)|. Therefore,

(0,%) < (0,2) +d(0,0) < (0,) + d(0,0) < (0,%) + 2d(8,0).

The first and third inequalities hold due to the definition of d(é, ?) The second inequality follows from the fact
that Z is the minimizer for (0, x) among z € L(G). Thus, 0 < (0,%) — (0,z) < 2d(0, ). From Theorem 5.2, we

get L2y — 2yl < 2200 Thys,

209,
L. ~MAP L. = 1 . vap -
slgv =2yl < Sll2v —zvil + Sllav ™ —2vih
2 2 2

2d(0,0) 1. _
<= +§Ilw¥‘4p—xvlll~
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C.3 Dual-based proof

Here we provide an alternate proof of the curvature result using the dual of the local LP relaxation. First, we show
that the curvature bound is related to the dual margin of the instance. Then we show that (2,1, )-expansion
stability implies that the dual margin is at least 1. Throughout this section, we assume the local LP solution & is
unique and integral (as guaranteed, for example, by (2, 1)-expansion stability), so & = .

Relaxing the local LP’s marginalization constraints in both directions for each edge, we obtain the following
Lagrangian for the local LP:

=S[00+ 3 000 | a0+ 3D Ound) = B = o9 )

vEN (u)

where each x,, is constrained to be in the (k — 1)-dimensional simplex, and each z,, the k? — 1-dimensional
simplex (i.e., the normalization constraints remain). There are no constraints on the dual variables §. Observe
that for any ¢ and any primal-feasible x, L(0,x) = (0, z). This gives rise to the reparametrization view: for a
fixed &, define 05 (i) = 0,,(i) + 2 veN (w) (5uv( ), and 02, (i,7) = 0uu(i,J) — 6uw(i) — uu(4). Then L(5,z) = (6%, z).
This will allow us to define equivalent primal problems with simpler structure than the original. L(d, z) also gives
the dual function:

D(§) = min L(4, z) me Ou(i)+ D duli) | + Znilijn (O (i, §) — Sun (i) — Guu(4)) -

vEN (u)

A dual point ¢ is a dual solution if § € argmaxs, D(4"). Theorem 4.2 implies that the local LP has a unique,
integral solution when the instance is (2, 1,1)-expansion stable. Sontag et al. (2011, Theorem 1.3) show that this
implies the existence of a dual solution 6* that is locally decodable at all nodes u: for each u, argmin; 62" (4) is
unique, and moreover, the edge and node dual subproblems agree:

(argmin 0% (i), argmin 6 (])) € argmin 0% (i,7). (13)
i J ,J

In this case, the primal solution defined by “decoding” 6*, x(u) = argmin, 6" (i), is the MAP solution (Sontag
et al., 2011).

For locally decodable §*, we define the node margin 1,,(6*) at a node u as:

Yo (6%) = min 0° (i) — min 6% (j).
iFargming 657 (5) J
This is the difference between the optimal reparametrized node cost at u and the next-smallest cost. Local
decodability of § is the property that ), (d) > 0 for every u.

Together with (13), the following lemma implies that we need only consider locally decodable dual solutions
where the optimal primal solution pays zero edge cost.

Lemma C.3 (Dual edge “removal”). Given a locally decodable dual solution &, we can transform it to a locally
decodable dual solution &' that satisfies min; ; 02, (i,5) = 0 and has the same (additive) margin at every node.

Proof. Fix an edge (u,v), and consider any pair 7%, j* in argmin, ; 02,(i,5). Put 5, (i*, %) = 0, (i*,j*) + ¢ for
e € R. Now define 4!, (i) = 04, (i) — € for all ¢ (or, equivalently, 6!, (5) = 6,u(j) — € for all ). Because we changed
63 (i) by a constant for each i, local decodability is preserved and the additive margin of local decodability is not
changed. We incurred a change of +¢ in the dual objective of ¢ from the edge term min, ; 93;(1', j), and a —¢ in
the objective from the decrease in the node term min; 92/ (1), so 0’ is still optimal. We can repeat this process for
every edge (u,v). O

Lemma C.3 implies that when (x*, §*) is a pair of primal/dual optima and ¢* is locally decodable, we can assume
that L(z*,6%) =3, 02 (x%), where we overload notation to define x, to be the label for which z% (i) = 1. That
is, the primal optimum pays no edge cost in the problem reparametrized by the dual opt ¢*. Finally, Lemma
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C.3 implies that we can always assume that 62, (i,7) > 0 for all (u,v), (i,j). Therefore, if there is any locally
decodable dual solution, and the primal LP solution is integral and unique, we may assume there exists a locally
decodable dual solution ¢ such that Z(u) = argmin, 0°(3), (z(u), z(v)) € argmin, 05.(i,9), 03, (Z(u),z(v)) = 0,
and 02, (i,7) > 0.

Lemma C.4 (Dual margin implies curvature around ). For an instance with objective 8 and MAP solu-
tion Z, assume there exists a locally decodable dual solution & such that Z(u) = argmin; 0°(i), (Z(u),Z(v)) €
argmin, ; 05,(i,7), 05, (F(u),z(v)) = 0, and 0°,(i,5) > 0. Additionally, let 1)(5) = min, ¥, (5) be the smallest

i,7 7 uv

node margin. Note that ¥(8) > 0 because ¢ is locally decodable. Then for any x € L(G),
0,z — x)
¥(9)

Proof. Let A = (0, z — ). Since x and Z are both primal-feasible, we have L(z,d) = (0, z) and L(z,0) = (0, Z).
Therefore,

1 _
slley —zv|) <
2

L(z,8) = L(z,8) + A. (14)

Because 6°(Z(u),Z(v)) = 0 for all (u,v), we have
L(z,0) =) 05,(2(u)).

Additionally, because 2, (i,5) > 0,
L(w,8) =Y > Oa(Dza(d) + DD 00, (0, 0)zun(i ) = DY O (i)auli).
u G uv  ij u 1

Combining the above two inequalities with (14) gives:
DN 0 (za(i) <05 (T (w) + A (15)

Because 0 is locally decodable to Z, and the smallest node margin is equal to ¥(d), we have that for every u,
02 (z(u)) +1p(0) < 08 (i) for all i # Z(u). The margin condition implies:

Yo on@w)ra(@w) + Y Y (0n(@w) +9(6))aai) < Y Y Ou(i)za(i),
and simplifying using )", z, (i) = 1 gives:
Do0n@W) +Y(8) Y Y wali) <Y Y Oa(i)rali).

Plugging in to (15) gives:

The left-hand-side is precisely ||zy — Zv||1/2. O

Now we show that (2, 1,)-expansion stability implies that there exists a locally decodable dual solution § with
dual margin ¥(4) > 1.

Lemma C.5 ((2,1,1)-expansion stability gives a lower bound on dual margin). Let (G,c,w) be a (2,1,¢)-
expansion stable instance with 1 > 0. Then there exists a locally decodable dual solution & with dual margin

¥(0) = .

Proof. Define new costs ¢y, as

i) = {c(u,i) + T(uw) =i

c(u, i) otherwise.
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By definition, the instance (G, ¢y, w) is (2, 1)-expansion stable (see Definition 4.1). Theorem 4.2 implies the
pairwise LP solution is unique and integral on (G, ¢y, w). This implies there exists a dual solution &9 that is
locally decodable to Z. The only guarantee on the dual margin of 6V is that (%) > 0. But note that 6° is also
an optimal dual solution for (G, ¢, w), since its objective in that instance is the same as the objective of z. But in
that instance, the dual margin at every node is at least ¢, because ¢y (u, Z(u)) — c(u, Z(u)) = . So ¥(6) > . O

These two lemmas directly imply Theorem 5.2. This dual proof is slightly more general than the primal proof,
since the curvature result applies to any x € L(G).

D Details for Generative model

Definition D.1 (sub-Gaussians and (b, o)-truncated sub-Gaussians). Suppose b € R,0 € R;. A random variable
X with mean p is sub-Gaussian with parameter o if and only if E[eMX~#)] < exp(A\202/2) for all A € R. The
random variable X is (b, o)-truncated sub-Gaussian if and only if X is supported in (b, c0) and X is sub-Gaussian
with parameter o.

We remark that the above definition captures many well-studied families of bounded random variables e.g.,
Rademacher distributions, uniform distributions on an interval etc. We remark that a bounded random variable
supported on [—M, M] is also sub-Gaussian with parameter M. However in our setting, it needs to be truncated
only on negative side, and the bound M will be much larger than the variance parameter ¢; the bound is solely to
ensure non-negativity of edge costs. A canonical example to keep in mind is a truncated Gaussian distribution.We
use the following standard large deviations bound for sums of sub-Gaussian random variables (for details, refer to
Thm 2.6.2 from Vershynin (2018)). Given independent r.v.s X1, Xs, ..., X, with X; drawn from a sub-Gaussian

with parameter o; we have for p =i | E[X;] and 62 =" | 02,

2

B[S X -] 2 ] <20 (- 7). (16

202

Lemma 6.1 (d(é, 0) is small w.h.p. ). There exists a universal constant ¢ < 1 such that for any instance in the
above model, with probability at least 1 — o(1),

z€L*(G)

. _ 2
sup| (0, z) — (0, )| < cvnk ; Tuit T ;vﬁ,@

Proof. As discussed in section B, for any « € L*(G), the objective of the local LP can be written as

ueV i (u,v)EE

where d(u,v) = 2 37, |2, (i) — 2, ()| Let f(z) = (0,2), f(z) = (0, z). Then,

[0,2) — (B2 = |f(@) = F@)| = | 32 Y wdaa(@ + Y wlu,v)d(u,0)

u€V i€l (u,v)EE

For any feasible LP solution x, consider the following rounding algorithm R:
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Algorithm 2 R rounding
1: for each i € £ do

2:  Choose r; € (0,1) uniformly at random.
3:  for each u € V do

4: if x,,(i) > r; then

5: R(x)y(i) = 1.

6: else

7: R(x)y (i) =0

8: end if

9: end for

10: end for

Then, we have

E[f(R(x) = f(R(@))] = Y Y &(u,) E[L[R(z)u(i) = 1]] + Z {t0) ZE i) # R(x)o (0)]]

u€V i€L (u 'U)EE
= Z Z c(u, 3)P[xy, (3) > r;] + Z @ (u, v) ZIF’mm X (1), (7)) < r; < max (z4,(7), 2, (7))]
ueV i€l (u,v)EE
= Z Zé(u,i)xu(i) + Z u}(# Z |2 (1) — 4 (4)]
ueV i€l (u,v)EE i
= ZZc(u,z)xu(i)-F Z w(u,v)d(u,v) = f(x) - f(z)
u€eV i€l (u,v)EE

Therefore,

sup |f(@) = f(2)] = suwp |E[f(R(z)) = f(R@)]| < sup |f(dv) - f(av)]

z€L*(Q) zeL*(G) £y e{0,1}nk

Note that for all z € L*(@), f(z) and f(z) only depend on the portion of z restricted to the vertices i.e. zy.
This is why we only need to look at &, € {0,1}"* for the last inequality.

For any fixed £y € {0,1}"*, since w(u,v), &(u,i) are all mean 0 and sub-Gaussian with parameters 7, ,, 0, i, We
have for any ¢t > 0,
—¢2

2 (L0 02 + R/ 0 o)

P[If(@v) — F@)| > 1] < 2exp

Taking ¢ = cm\/zw ol + k2[4, 72, we get that for any fixed &y € {0,1}",
P [If(ﬁ) — f(@)] > t} < 2exp (—c*nk)

Taking a union bound over {0,1}"*, we get that

IP’[ sup |f(§c)f(£)|>t] < 2exp (nk (log2 — ¢?))
#vef0,1}nk

Here, ¢ needs to be greater than vIn2 ~ 0.83 to get a high probability guarantee.
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Corollary 6.3 (MAP solution recovery for regular graphs ). Suppose we have a d-regular graph G with 712“) =2
for all edges (u,v), and 0372- = 02 for all vertex-label pairs (u,i). Also, suppose only a fraction p of the vertices
and n of the edges are subject to the noise. With high probability over the random noise,

dk
12y — 2v| - 2cky/ po? 4 TgEA?

2n - P

Proof. From Theorem 6.2, we have that, with high probability over the random noise

1 2 k2
Liso = 2 ok 2 | 7 2
SlIEv —avih < s nk gi%,ﬂr 1 Euv Vaiv

In this setting, this leads to

ko? 4+ n———q2 =
prka? + 0= m

dk o
2 k2 2 K2nd ,  2emky\[po® + Ty
— . cVnk - E o2, +—) 2,=—-cVnk- 2
’(p u,t , 4 ; 7 w

since |V| =n,|L| =k, and |E| = %d_

E Algorithm for finding nearby stable instances details

Let Z be a MAP solution, and let £ be the set of expansions of Z. We prove that an instance is (2, 1, 1)-expansion
stable if and only if {044y, %) < (fadw, x) for all z € EZ. In other words, it is sufficient to check for stability in the
adversarial perturbation for x. This proves that we need not check every possible perturbation when finding a
(2,1, 1)-expansion stable instance.

Claim E.1. Let (G,c,w) be an instance of uniform metric labeling with MAP solution . Define:

Lvue Z(u)

wadn(t:0) = {w<u,v> #(u) £ 2(v)

i) = { QDT 0=
Let 0,4, be the objective vector in the instance (G, Codgn, Wady ). Then
(0',7) < (0',)
for all (2,1,)-perturbations 6 of 0 and all x € E* if and only if:
(Oadv, ) < (Oadv, T)

for all x € E*.

Proof. The proof is analogous to that of Claim B.1. If the instance is (2, 1, ¢)-expansion stable, then (¢, z) —
(0", 7) > 0 for all (2,1, )-perturbations 6" and all expansions x of Z. Because 6,4, is a valid (2, 1, ¢)-perturbation,
this gives one direction. For the other, note that if the instance is not (2, 1, ¢))-expansion stable, there exists a ¢’
and an x € 7 for which (¢, z) —(¢’,Z) < 0. A direct computation shows that (6, ) —(0', Z) > (Badv, ) — (Oudv, T)
for all (2, 1,v)-perturbations ¢’ of 6. Then we have (0440, ) — (Ougv, ) < 0. O

This claim justifies (5), which only enforces that Z is at least as good as all of its expansions in 6,4,. The following
claim implies that there is always a feasible point of (5) that makes modifications of bounded size to ¢ and w.
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Claim E.2. Consider an instance (G, c,w) with a unique MAP solution T. Let w' be defined as

W () — {w(w) #(u) # 2(v)

2w(u,v) Z(u) = z(v),

and let ¢’ be defined as
c(u,i) — v x(u) =1
c(u, 1) Z(u) # 1.
Then the instance (G, ,w") is (2,1, 9)-expansion stable with MAP solution .

Proof (sketch). The original MAP solution Z is also the MAP solution to (G, ¢, w’). Then the original instance
(G, c,w) is obtained from (G, ,w’) by performing the adversarial (2,1, )-perturbation for Z (see Claim E.1).
Because & was the unique MAP solution to this instance, it has better objective than all of its expansions.
Therefore, (G, ', w’) is (2,1, 1)-expansion stable, by Claim E.I. O

(G,d,w') is a “nearby” stable instance to (G, c,w), but it requires changes to quite a few edges—every edge
that is not cut by z—and changes the node costs of every vertex. Surprisingly, the stable instances we found in
Section 8 were much closer than (G, ¢, w’)—that is, only sparse changes were required to transform the observed
instance (G, ¢, w) to a (2,1, )-expansion stable instance.

F Experiment details

In this section, we give more details for the numerical examples for which we evaluate our curvature bound from
Theorem 5.2. We studied instances for stereo vision, where the input is two images taken from slightly offset
locations, and the desired output is the disparity of each pixel location between the two images (this disparity is
inversely proportional to the depth of that pixel). We used the models from Tappen & Freeman (2003) on three
images from the Middlebury stereo dataset (Scharstein & Szeliski, 2002). In this model, G is a grid graph with
one node corresponding to each pixel in one of the images (say, the one taken from the left), the costs c(u, i) are
set using the Birchfield-Tomasi matching costs (Birchfield & Tomasi, 1998), and the edge weights w(u, v) are set

as:
P I(u) =1 T
wuey = {5 1T~ 1) <
s otherwise.

Here I(u) is the intensity of one of the images (again, say the left image) at pixel location u, and we set
(P,T,s) =(2,50,4). This is a Potts model. The tsukuba, cones, and venus images were 120 x 150, 125 x 150,
and 383 x 434, respectively. These models had k =7, k = 5, and k = 5, respectively.

To generate Table 1, we ran the algorithm in (5) using Gurobi (Gurobi Optimization, 2020) for the L1 distance. For
each observed instance (G, ¢, W), this output a nearby (2, 1,)-stable instance (G, ¢, w). In all of our experiments,
we used ¢ = 1. Additionally, we always set the target MAP solution z! in (5) to be equal to the observed MAP
solution 2MAP | To evaluate our recovery bound, we compared the objective of the observed LP solution Z to the
#MAP in (G, é,w). That is, if 6 is the objective for (G, & w), we computed (8,z) — (0, #MAPY = (9, 2) — (0, z),
where the second equality is because we set the target solution z* to be equal to 2MAF | so #MAP = z. Because
1 = 1, the difference between these two objectives is precisely the value of our curvature bound. In particular,
Theorem 5.2 guarantees that

1 MAP Lz § ~AMAP
—l|zy — 2 <—-0,z)— (0, .
iy — A < S ((0,8) - (0,87147))
The right-hand-side is shown for these instances in the “Recovery error bound” column of Table 1, and the true
value of 5-||&y — 2/ 4%]|; (i.e., the true recovery error) is shown in the identically titled column of Table 1. On
these instances, % ((9,9@) — (9,£MAP)) is close to 0, so our curvature bound “explains” a large portion of &’s
recovery of #MAF . These instances are close to (2, 1,)-stable instances where & and £M4¥ have close objective,

and this implies by Theorem 5.2 that & approximately recovers #MA4F.

However, this result relies on a property of the LP solution &: that it has good objective in the stable instance
discovered by the procedure (5). Compare this to Corollary 5.3, which only depends on properties of the observed
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instance 0 and the stable instance 0 (in particular, some notion of “distance” between them). Given an observed
instance @ and stable instance 6, we can try to compute d(f, 9) from Corollary 5.3 to give a bound that does not
depend on #. Unfortunately, this distance can be large, leading to a bound that can be vacuous (i.e., normalized
Hamming recovery > 1). The following refinement of Corollary 5.3 gives much tighter bounds.

Corollary F.1 (LP solution is good if there is a nearby stable instance, refined). Let #MAF and & be the
MAP and local LP solutions to an observed instance (G,é, fg) Also, let x be the MAP solution for a latent
(2,1,4)-expansion stable instance (G,¢,w). If § = (¢,0) and § = (¢,w), define

d(é, é) = esLu*}()G)w, x) —{0,x) — (<é, )y — <9, z)).

Note that while we still use the name d(-,-), evoking a metric, d is not symmetric. Then

1, d@e,0) 1. _
Sy — a7 < W00 4 Lapar gy,
(]
Proof. Note:
1. . . _
Mty =2 APIL < Liey — vl + SIEEAT — 2,

By the definition of d, for any = € L*(G),
(0,2) = (0,7) < d(0,0) + ((0,x) — (0,)).
Now if we set & = 2, the LP solution to the observed instance, we have (8, 2) — (9, %)) <0, so
(0,2) — (0,z) < d(0,0).
Theorem 5.2 then implies |2y — Zv (|1 < d(6, 0) /1, which gives the claim. O

~MAP _ A]LIAP

Given an observed instance  and a (2, 1,1)-expansion stable instance 6 output by (5) with Z , we

can upper bound d(#, é) by computing

dup(@0,8) = sup {0,2) — (6,7) — (B,) — (0,2)),
z€L(G)

which is a linear program in x because we relaxed L*(G) to L(G). Corollary F.1 then implies that the recovery
error of & is at most d., (6, 0) /1, which we can compute. Table 2 shows the results of this procedure on two of
the same instances from Table 1 in the “Unconditional bound” column. While the values of this bound are much
larger than the “Curvature bound” of Theorem 5.2, they are much more theoretically appealing, since they only
depend on the difference between 6 and 0 rather than on a property of the LP solution Z to 6. For Table 2, we
did a grid search for ¢ over {1,...,10}; ¢ = 4 gave the optimal unconditional bound for both instances. The
difference in v explains the slight differences between the other columns of Tables 1 and 2.

Table 2: Results from the output of (5) on two stereo vision instances. Curvature bound shows the bound
obtained from Theorem 5.2, which depends on the observed LP solution Z. Unconditional bound shows the bound
from the refined version of Corollary 5.3, which depends only on the observed instance and the stable instance.
This “unconditional” bound explains a reasonably large fraction of the LP solution’s recovery for these instances:
because the instance is close to a stable instance, the LP solution approximate recovers the MAP solution.

Instance  Costs changed ~Weights changed ~Curvature bound Unconditional bound  ||2y — £MAP||;/2n

tsukuba 4.9% 2.8% 0.0173 0.4878 0.0027
cones 2.81% 2.31% 0.0137 0.2819 0.0022




	1 Introduction
	2 Related work
	3 Preliminaries
	4 Expansion Stability
	5 Curvature around MAP solution and near persistence of the LP solution
	6 Generative model for noisy stable instances
	7 Finding nearby stable instances
	8 Numerical results
	9 Conclusion
	A Preliminaries Details
	B Expansion Stability details
	B.1 -close rounding:
	B.2 Using the rounding guarantees
	B.3 Final proof of Theorem 4.2:

	C Stability and Curvature around MAP solution: details
	C.1 Primal-based proof
	C.2 Final proof of Theorem 5.2:
	C.3 Dual-based proof

	D Details for Generative model
	E Algorithm for finding nearby stable instances details 
	F Experiment details

