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Abstract

Separating a song into vocal and accompaniment components is an active research topic, and
recent years witnessed an increased performance from supervised training using deep learning
techniques. We propose to apply the visual information corresponding to the singers’ vocal ac-
tivities to further improve the quality of the separated vocal signals. The video frontend model
takes the input of mouth movement and fuses it into the feature embeddings of an audio-based
separation framework. To facilitate the network to learn audiovisual correlation of singing activ-
ities, we add extra vocal signals irrelevant to the mouth movement to the audio mixture during
training. We create two audiovisual singing performance datasets for training and evaluation,
respectively, one curated from audition recordings on the Internet, and the other recorded in
house. The proposed method outperforms audio-based methods in terms of separation quality
on most test recordings. This advantage is especially pronounced when there are backing vocals

in the accompaniment, which poses a great challenge for audio-only methods.
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1. Introduction

Vocal performance is an important art form of mu-
sic. The task of singing voice separation is to isolate
vocals from the audio mixture, which contains other
instrumental sounds that help to define the harmony,
rhythm, and genre. Singing voice separation is often
the first step towards many application-oriented vocal
processing tasks including pitch correction, voice beau-
tification, and style transfer, as implemented in some
mobile Apps such as WeSing and Smule. It is also often
a pre-processing step for other research tasks such as
singer identification (Berenzweig et al., 2002), lyrics
alignment (Fujihara et al., 2006), and tone analysis
(Fujihara and Goto, |[2007).

There are various scenarios when video recordings
are available for singing performances, such as operas,
music videos (MV), and self-recorded singing activities.
In pop music, creative visual performances give artists
a substantial competitive advantage. Moreover, due
to the rapid growth of Internet bandwidth and smart-
phone users, videos of singing activities are becoming
popular in a number of video sharing platforms such as
TikTok and Instagram.

Visual information, e.g., lip movement, has been
incorporated and shown its benefits in speech signal
processing, such as audiovisual speech separation (Lu
et al., 2019), enhancement (Afouras et al., 2018), and
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recognition (Petridis et al., |2018). Visual information
has also been incorporated in music analysis (Duan
et al.,2019), such as source association (Li et al.,|2019,
2017ajc), source separation (Zhao et al.,[2019), multi-
pitch analysis (Dinesh et al., [2017), playing technique
analysis (Li et al.,|2017b), cross-modal retrieval (Li and
Kumar, [2019) and generation (Chen et al., [2017; |Li
et al.,[2018). For singing performances, however, little
work has been done. It is reasonable to think that vi-
sual information would also help to analyze singing ac-
tivities, and in particular, separate singing voices from
background music. This is based on the fact that mouth
movements and facial expressions of the singer are
often correlated with the singing voice signal fluctu-
ations. The advantages of audiovisual analysis over
audio-only analysis can be best reflected on songs with
multiple vocal sources while only one source is consid-
ered as the separation target, e.g., songs with backing
vocals in the accompaniments. However, to what ex-
tent does the incorporation of visual information help
singing voice separation is still a question. Different
from speech signals, singing voices (except for rap mu-
sic) generally change slower (Mesaros and Virtanen,
2010), showing less frequent matching with mouth
movements (Cadalbert et al., {1994). Furthermore,
some musically important fluctuations of the singing
voice such as pitch modulations show little, if any, cor-
relation with mouth movements (Connell et al.,2013).

Therefore, it is our intention to answer the follow-



ing research question in this paper: Can visual informa-
tion about the singer improve singing voice separation,
and if yes, how much? It is noted that while traditional
singing voice separation tasks (e.g., SiSE(ﬂ MIREXE],
or AICrowd Music Demixing Challeng define all vo-
cal components in a song as the singing voice, in this
work we define it as separating the solo singing voice
from the accompaniments, where the accompaniments
may contain backing vocals. We argue that our defini-
tion is more rational to the nature of music as it sepa-
rates solo, typically presenting the main melody, from
accompaniment, typically presenting harmony. Sepa-
rating the solo voice enables many applications such as
solo vocal pitch correction (Grell et al., | 2009) or vocal
effects appliance for the soloist without affecting the
backing vocal sources. The solo singing voice separa-
tion problem is somewhat similar to speech enhance-
ment with babble noise (Vincent et al., [2018). How-
ever, music accompaniment is typically much louder
and richer in timbre than background noise in speech
enhancement settings. In addition, music accompani-
ment, especially backing vocal, shows very strong cor-
relations with the solo vocal signal. They make the
problem at hand very challenging.

To answer the above-mentioned research question,
we design an audiovisual neural network model to sep-
arate the solo singing voice from the accompaniments
that may contain backing vocals. This network model
takes both the audio mixture signal and the mouth
region of the singing video as input. The audio pro-
cessing sub-network is designed based on the MM-
DenseLSTM (Takahashi et al., |2018b), the champion
of SiSEC2018 and the best officially evaluated system
by the time of mid 2021. The visual processing sub-
network uses convolutional and LSTM layers to encode
mouth movements of the singer. The audio and vi-
sual encodings are fused before they are used to recon-
struct the solo singing magnitude spectrogram. The
training target of the proposed audiovisual network
is to minimize the Mean-Square-Error (MSE) loss of
the magnitude spectrogram reconstruction of the solo
singing voice. To facilitate the network to learn au-
diovisual correlation of singing activities, we add extra
vocal signals irrelevant to the solo singer to the audio
mixture during training. To investigate the benefits of
visual information, we compare the proposed audio-
visual model with several state-of-the-art audio-based
singing separation methods and an audiovisual speech
enhancement method. We further vary the architec-
ture and input of the visual processing sub-network to
compare their performances.

One challenge we encounter in this work is the

LA community-based signal separation evaluation campaign
https://sisec18.unmix.app/#/
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lack of audiovisual datasets of singing. For training,
this can be addressed by randomly mixing solo singing
videos downloaded from the Internet with irrelevant
accompaniment music. We download a cappella au-
dition vocal performance videos and randomly mix
their audio with accompaniment audio tracks from the
MUSDB18 dataset to generate mixtures. We name
this the Audition-RandMix dataset, and partition it into
training, validation and test subsets. For evaluation
on real songs, however, we need audiovisual record-
ings of singing with its relevant accompaniment music
in separate tracks. To our best knowledge, no such
dataset exists. Therefore, we record a new audiovisual
dataset named URSing, where singers are recruited to
sing along with prepared accompaniment tracks.

We conduct experiments on both the Audition-
RandMix test set and the URSing dataset. Results on
both sets show that the proposed audiovisual method
outperforms baseline methods in most test conditions,
no matter if the accompaniment tracks contain the
backing vocals or not. We further conduct subjective
evaluations on a cappella video performances in the
wild to prove the advantages of our proposed method.

The contributions of this paper include:

* The first work to incorporate visual information
to the state-of-the-art music source separation
framework to address the singing voice separa-
tion problem,

* A proposal of solo voice separation where back-
ing vocal components, if exist, are regarded as
accompaniment tracks, which better fits many
application scenarios, and

e The first audiovisual singing
dataset, URSing, free for download?|

performance

2. Related Work

2.1 Singing Voice Separation

Early methods for singing voice separation include
non-negative matrix factorization (Vembu and Bau-
mann, [2005), adaptive Bayesian modeling (Ozerov
et al., 2005, |2007), robust principal component analy-
sis (Huang et al., 2012; |Chan et al., |2015), and auto-
correlation (Rafii and Pardo, |2011). Some methods
address the singing separation problem using extra in-
formation such as vocal pitches (Hsu et al., 2012) or
voice activities (Chan et al., 2015). Recently, deep
learning based methods are proposed to model con-
volutional (Chandna et al.l |2017) or recurrent struc-
tures (Huang et al. |2014; [Uhlich et al., 2017) of
magnitude spectral representations of music signals.
Some works also learn to reconstruct spectral phases
in addition to magnitudes (Takahashi et al., |2018a;
Choi et al.,|2019), while others directly work on time-
domain waveforms with an end-to-end training strat-
egy (Lluis et al., 2019; |Stoller et al., |2018). Offi-
cial blind evaluations and comparisons of these meth-
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ods can be referred in the SiSEC2018 (Stoter et al.|
2018), where the best performing method MMDenseL-
STM (Takahashi et al., [2018b) uses a DenseNet struc-
ture with a recurrent structure to process magnitude
spectrograms. Later more systems are proposed and
open-sourced with comparable or better results, such
as Open-Unmix (Stoter et al., |2019), Spleeter (Hen-
nequin et al., |2019), D3Net (Takahashi and Mitsufuji,
2021), DEMUCS (Défossez et al.,[2019), LaSAFT (Choi
et al., [2021), where DEMUCS is ranked best (referring
to “Browse State-of-the-Art’] an unofficial platform
to collect and compare all music separation results).
More recently proposed music separation systems can
be referred in the AICrowd Music Demixing Challenge,
another official contest to conduct blind evaluations
following SiSEC2018.

2.2 Audiovisual Source Separation

Most audiovisual separation works are proposed for
speech signals. For speech separation, one challenge
is the permutation problem where the separated com-
ponents need to be assigned to the correct talkers. |Lu
et al. (2018) specifically address the problem by apply-
ing the visual information as a post-processing step to
adjust the separation mask. Later the same group pro-
poses to fuse the visual information to an audio-based
deep clustering framework to propose an audiovisual
deep clustering model for speech separation (Lu et al.,
2019). Another work is described in (Ephrat et al.,
2018), where the input is the mixture spectrogram and
the face embeddings of all the appeared speakers in the
audio sample. The training target is the complex mask
that can be applied to the original spectrogram to re-
cover the complex spectrogram of each speaker. It is
noted that speech separation algorithms typically as-
sume a noiseless or less noisy environment in which
speech signals are mixed. In addition, speech signals
to be separated are typically assumed to be from dif-
ferent speakers. Both assumptions are not true in solo
singing separation, as the background music is often
quite strong and the backing vocal often comes from
the same singer as the soloist (?).

Speech enhancement aims at separating speech
signal from background noise. It is more relevant
to singing voice separation from background music
considering the foreground-background relations of
sources. Hou et al.| (2018) address the speech enhance-
ment problem using a two-stream structure that takes
both noisy speech and frames of the cropped mouth
regions as inputs to compute their features. These fea-
tures are then concatenated by a fusion network which
also outputs corresponding clean speech and recon-
structed mouth regions. Another audiovisual speech
enhancement work proposed in (Afouras et al., 2018)
uses 1D convolutional layers to reconstruct the mag-

Shttps://paperswithcode.com/sota/music-source-separation-
on-musdb18
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Figure 1: The proposed model structure. Dashed ar-
rows denote the concatenation operation. Down-
sample/upsample are applied to both time and fre-
quency dimensions in the outer layers (marked by
*), while they are only applied to the frequency di-
mension in the inner layers.

nitude spectrogram of the clean speech and uses it to
further estimate its phase spectrogram. The input of
the visual branch is the feature embeddings on the lip
region that are pre-trained on lip reading tasks.

Less work has been proposed for audiovisual mu-
sic separation. Parekh et al. (2017) apply non-negative
matrix factorization (NMF) to separate string ensem-
bles, where the bowing motions are used to derive ad-
ditional constraints on the activation of audio dictio-
nary elements. This method, however, is only eval-
uated on randomly assembled video scenes of string
instruments where distinct bowing motions of each
player are clearly captured. |Zhao et al. (2018) propose
to learn static audiovisual correspondence with cross-
modal source localization; The correlation between
each pixel in a given video frame and the sound com-
ponent can be constructed. Followup works for sepa-
rating music sources include recognizing the audiovi-
sual correspondence from visual motions (Zhao et al.,
2019) and gestures (Gan et al., [2020) in music instru-
ment performances. Similar works have been proposed
in (Gao and Grauman,|[2019) and (Tzinis et al., 2021),
where correspondence between audio and video are
learned in unsupervised manner to guide source sep-
aration. This line of research achieves promising re-
sults in audiovisual music separation, but have not ad-
dressed singing voice separation.

3. Method

3.1 Network Architecture

The proposed model takes the input of the magnitude
spectrogram of the original audio mixture which con-
tains both the solo vocal and background music, and
the mouth region of the video frames corresponding to
the vocals. The output is the magnitude spectrogram
of the source audio of vocals. It builds upon a state-



of-the-art audio separation model named MMDenseL-
STM (Takahashi et al., |2018b)) with a video front-end
model. The MMDenseLSTM model consists of convo-
lutional layers stacked into dense blocks, which alter-
nates downsample/upsample layers to form a multi-
scale structure. It first embeds an input magnitude
spectrogram into an encoded feature space and de-
codes it to recover the separated magnitude spectro-
gram. Skip connections as U-Net structure are ap-
plied. This “encoder-decoder” structure with skip con-
nections is widely applied in several music separation
models (Jansson et al., 2017;|Stoller et al.,|2018;|Zhao
et al.,[2019; Liu and Yang, [2018). The video front-end
model extracts visual features from mouth movements,
which are fused with the encoded audio feature. The
network structure is illustrated in Figure |1, We explain
each part of the model in detail as follows.

3.1.1 Audio Separation Model
Following MMDenseLSTM, our audio separation model
consists of:

* Dense Block. It applies 2D convolutional lay-
ersﬁ and the output feature maps of all layers
are concatenated with each other along the chan-
nel dimension. This structure reuses the feature
maps from previous layers and greatly reduces
the model size.

* Compression layer. It is a convolutional layer
with 1x1 kernels applied after each dense block.
We use a compression ratio of 0.2, which means
that the number of feature maps (channels) is re-
duced by 80% after each compression layer. We
apply a compression layer right after each dense
block, which improves the model compactness.

* Downsample/Upsample. These layers are ap-
plied after compression layers to resize the fea-
ture maps without changing the the number of
channels. Downsample layers are average pool-
ing with 2x2 kernels after the first compres-
sion layer, and 1x2 kernels in the following lay-
ers. In other words, downsampling is performed
along both the time and freugncy dimensions
in the first layer, but only to the frequency di-
mension in other layers. Symmetrically, upsam-
ple layers apply transposed convolutional layers
with 2x2 kernels and strides at the last upsam-
ple layer but 1x2 for the other layers. Different
from (Takahashi et al., 2018b)) where downsam-
ple/upsample always addresses both time and
frequency dimensions in multiple scales, our pro-
posed strategy downsamples/upsamples the time
dimension only once, making the audio stream
have the same frame rate as the video stream.
The encoded audio spectrogram feature is de-
noted as S, € RM*T*F  with the channel (M),

5A  convolutional layer includes BatchNormaliza-
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downsampled time (T), and frequency (F) di-
mensions. Skip connections are added as con-
catenations on the corresponding layers with the
same feature map size, as the U-Net structure.

* Multi-Band. Following (Takahashi and Mitsu-
fuji, 2017), we also equally divide the spectro-
gram into a low-frequency band and a high-
frequency band and apply the above-mentioned
U-Net encoder-decoder structure on each sub-
band. The dense blocks of low-frequency band
have a higher channel number. Detailed parame-
ters can be referred to (Takahashi and Mitsufuji,
2017).

The audio separation model described in this sec-
tion is the same as the method proposed in (Taka-
hashi et al.,|2018b), except the downsample/upsample
parameters which are adjusted for audiovisual fusion
when visual inputs are applied.

Note that since SiSEC2018, new methods are pro-
posed to advance the state of the art of the music sep-
aration tasks. However, we still take MMDenseLSTM
as an important reference. The reasons are twofold.
First, after SISEC2018 there are no public music sep-
aration contest running a blind evaluation for direct
comparison of different methods. MMDenseLSTM is
the most reliable framework to refer as an audio sub-
network to build our audiovisual separation model, es-
pecially when we aim to prototype the first audiovisual
vocal separation work instead of yielding a high rank
in the traditional music separation task. Second, MM-
DenseLSTM has small model size, which is especially
beneficial for our audiovisual fusion and experiments
when the audiovisual singing performance dataset is
not in a large scale.

3.1.2 Video Front-End Model

We propose to apply a visual branch to parse the in-
put video stream and fuse it with the encoded audio
features. The video stream is a sequence of mouth
region RGB images in consecutive video frames. The
video front-end model has four convolutional layers,
followed by a fully connected layer, an LSTM layer,
then a final fully-connected layer, with the parameters
of Conv2D@16 (channel number is 16), Conv2D@16,
Conv2D@32, Conv2D@32, FC@256, LSTM@128, and
FC@N. N is the dimension of the encoded feature vec-
tor for each video frame. The input video stream with
T frames results in a feature map Sy € RV*7*!, There
is no pooling operation along the time dimension thus
the temporal information is preserved. Raw RGB val-
ues are normalized to zero mean and unit variance.

3.1.3 Audiovisual Fusion

The extracted visual feature map from the video
branch is fused with the encoded audio spectrogram
feature map S, € RM*T*F To do so, the visual fea-
ture map Sy € RV*T*! is broadcast along the third di-
mension and then concatenated with the audio feature



to obtain the audiovisual feature S4y € RE*T*F | where
L= M+N is the concatenated channel dimension. Note
that the temporal information from both the audio and
video branches is correlated during this fusion; This is
different from some works where audiovisual fusion is
performed on feature maps that aggregate information
along time.

In addition to minor structural changes, we also
drop the LSTM structure of the original MMDenseL-
STM model (Takahashi et al., 2018b) when we de-
sign the audio branch of our proposed model. This
follows the observation that the addition of the LSTM
structure does not achieve substantial improvement in
SiSEC2018 yet the number of parameters would be in-
creased significantly for audiovisual fusion.

3.2 Training

We train the model to predict the magnitude spectro-
gram of the source signal and use the original mixture’s
phase to recover the time-domain waveform. Many
spectral-domain source separation methods, especially
those for speech signals, use a spectrogram mask as the
training target; This mask is then multiplied element-
wise with the mixture signal’s magnitude spectrogram
to recover the source magnitude spectrogram. For mu-
sic separation, some recent works train networks to di-
rectly output the source magnitude spectrogram (Uh-
lich et al.,2017;|Takahashi et al.,2018b)) using a Mean-
Squared-Error (MSE) loss. We follow the same way to
take the source magnitude spectrogram as the train-
ing target. However, we have a mask operation as one
layer of the model that regularizes the feature maps
into the range of [0, 1] using a Sigmoid function and
multiplies the mask layer with the input spectrogram
to get the model output. We find that this regulariza-
tion step is beneficial for for our audiovisual separation
model. We have a comparative experiment in Section

Compared to the audio mixture input, the visual
input provides much less information about the source
signals, therefore, the training loss may not be propa-
gated back sufficiently into the visual branch, making
the audiovisual network difficult to train. One way to
address this is to explicitly learn audiovisual match-
ing, either through pre-training (Lu et al., 2018) or
early audiovisual fusion (Lu et al.,[2019). Another way
might be to add visual reconstruction as another train-
ing target, leading to a chimera-like network structure
(Hou et al., |12018).

In this work, we address this problem by adding
some extra vocal components to the original mixture,
which are not related to the mouth movements and
thus are not included in the target vocal spectrogram.
This is similar to adding an additional speaker in the
training data in the case of audio-visual speech sepa-
ration (Ephrat et al., 2018), which forces the model
to learn audiovisual correlations after the fusion and
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only separate the vocal components that are related
to the visual input. Note that in the training sam-
ples all of the vocal and accompaniment components
are randomly mixed, so neither the extra vocal com-
ponents or the solo vocal components have harmonic
relations with the accompaniment tracks. In the exper-
iments, we show that the strategy of training with ran-
domly generated vocal-accompaniment pairs performs
decently on real songs.

4. Dataset

Since there is no publicly available audiovisual singing
voice dataset containing isolated vocal tracks, we col-
lect our own data for training and evaluating the pro-
posed method.

4.1 A Cappella Audition Vocals (AAV)

We curated 491 YouTube videos of solo singing perfor-
mances by querying the YouTube search API with the
keyword “Academic Acappella Audition”. We only se-
lected video excerpts where the singer faces the camera
and sings without accompaniment. The total length
of these excerpts is about 8 hours. As it is diffi-
cult to find relevant and appropriate accompaniment
tracks, in our experiments we simply randomly chose
instrumental accompaniment tracks (from the “accom-
paniments” track in the MUSDB18 dataset) and mixed
them with the solo singing excerpts to create singing-
accompaniment mixtures. To prepare the extra vo-
cal components, we also download 2 hours of chorus
recordings from YouTube.

The randomly mixed samples are used for train-
ing, validation, and evaluation. Before the mix-
ing process, vocals in AAV are divided into train-
ing/validation/evaluation sets roughly as 8:1:1 (50
tracks for evaluation). Accompaniment tracks from
MUSDB18 (which contains a wide range of music gen-
res and instrument types) are also divided into the
three sets following the official way (also 50 tracks for
evaluation). Then mixing is applied on each split inde-
pendently to form the training/validation/evaluation
sets. Volume of each track is normalized using the root-
mean-square (RMS) value. For training and valida-
tion sets, each track is split into short samples (around
2.5 seconds) for random mixing, resulting in a mas-
sive amount of mixed samples. We do not balance the
volume of each individual sample so the mixing may
have different SNRs. During training, for half of the
training/validation samples we add extra vocal com-
ponents that are not related to the mouth movements
to encourage the model to learn audiovisual correla-
tions. Half of the extra vocal components are solo
vcoals from other irrelevant singers in the AAV dataset,
and the other half are samples from the chorus record-
ings. We apply a random gain between -6dB to 0dB
for the extra vocal components, considering that in
real singing performances, the solo vocal usually still
takes the lead position.  For evaluation, mixing is
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Figure 2: A sample photo and floor plan of the sound
booth for the recording process of the URSing
dataset.

performed on a random bijection between the 50 vo-
cals and 50 accompaniments. For each mixture, we
pick a 30-second excerpt (with both vocal and accom-
paniments present) for evaluation, following the same
strategy as the MUSDB18 dataset. This set is referred
to as “Audition-RandMix” in the following experiments.
For the same 50 mixtures, we randomly add extra vo-
cals following the same strategy as preparing the train-
ing set, which is referred as “Audition-RandMix (v+)”,
in order to explore the model performance in more
challenging cases.

Note that all the samples in this condition are arti-
ficial mixtures that cannot represent real songs, since
vocals and accompaniments are not correlated in har-
mony. However, training music separation model on
artificial mixtures can be still helpful to separate real
songs (Song et al.,[2021), and artificial mixtures have
been also used as evaluate data for music separation

tasks (Luo et al.L 2017).

4.2 URSing

To evaluate the proposed method in more realistic
singing performances, we create the XXX (hidden for
anonymous review) Multi-Modal Singing Performance
Dataset (URSing). In this paper, we only use the URS-
ing dataset for evaluation. A brief description of the
creation process is described below.

4.2.1 Singer Recruiting

Singers are students at the University of XXX (hidden
for anonymous review). Audition is performed to fil-
ter out unqualified singers who could not sing in tune.
Each participant receives $5 for recording each song,
and is allowed to record up to 5 songs. Each singer has
signed a consent form about ethical approval, which
authorizes the release of the dataset for research pur-
pose.

4.2.2 Piece Selection

To ensure high recording efficiency, the singers pick
their own songs and their favorite accompaniment
tracks to sing along. We do not put constraints on song
genres, but filter out songs of which the accompani-
ment tracks are of low sound quality.
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Figure 3: Examples of video frames of the URSing
dataset and cropped mouth region pictures as the
input to the video branch of the proposed method.

4.2.3 Recording

To ensure synchronization, the singers listen to the ac-
companiment track through earphones while record-
ing their singing voice. Their voices are recorded us-
ing an AT2020 condenser microphone hosted by Logic
Pro X, and their videos are recorded using iPhone 11.
The recording is conducted in a semi-anechoic sound
booth. A sample photo and the floor plan of the sound
booth are shown in Figure

4.2.4 Post-processing

For each solo vocal recording we use the following
plug-ins to simulate the typical audio production pro-
cedure in commercial recordings: a) static noise re-
duction (Klevgrand Brusfri and Waves X-noise), b) pitch
refinement (Melodyne), c¢) sound compression (Fabfil-
ter Pro-C 2), and d) reverberation (Fabfilter Pro-R). We
also adjust the vocal volume to balance it with the
accompaniment track. Beyond this, we do not per-
form any other editing on the audio recording (e.g.,
time warping or rhythmic refinement) to preserve the
synchronization with the visual performance. To syn-
chronize the audio recording captured by the AT2020
microphone with the video recording captured by the
smartphone, we use the audio recording captured
by the built-in microphone of the smartphone as the
bridge, through cross correlation.

4.2.5 Annotation
Since the mouth movements are mostly relevant to the
singing performance, we provide the annotations of
the mouth regions in the dataset. This is performed us-
ing the Dlib library 2009), an automatic tool for
facial landmark detection, followed by manual check.
The mouth region is represented as a square bounding
box with the side length equal to 1.2 times of the max-
imum horizontal distance for all mouth landmarks.
This results in 65 songs, totaling 4 hours of audiovi-
sual recordings of singing performance. For each song,
we provide:

* The audio recording of the solo singing voice (in
WAV, 44.1 KHz, 16 bits, mono).

e The corresponding accompaniment audio track
(in WAV, 44.1 KHz, 16 bits, mono or stereo).

* The video recording of the soloist’s upper body



(in MP4, 1080P portrait, 29.97 FPS).
* The annotations of mouth regions for each video
frame.

Note that when we prepare the accompaniment
tracks, we do not avoid the tracks containing backing
vocals, as they are the challenging and useful cases
to study in this paper. Example video frames and
the cropped mouth region pictures using the provided
mouth region annotations are provided in Figure

We also choose a set of 30-sec excerpts where both
solo vocal and accompaniment tracks are prominent to
form a benchmark evaluation set. Specifically, for each
of the 65 songs, we choose one 30-sec excerpt without
backing vocal and one with back vocal, if such excerpts
are available. We provide this information in the meta-
data. This results in 54 excerpts with accompaniment
tracks that only contain instrumental components (re-
ferred as “URSing” in the following experiments) and
26 excerpts with accompaniment tracks that also con-
tain backing vocals (referred as “URSing (v+)”. The
latter, presumably, are more challenging for solo vocal
separation and more useful for showing advantages of
audiovisual methods. In this paper, since we do not use
any songs from URSing for training, we only use these
30-sec excerpts for evaluation.

5. Experiments

5.1 Implementation Details

For audiovisual singing videos, audio is downsampled
to 32 KHz. We use a frame length of 1024 and a hop
size of 640 (20 ms) for spectrogram calculation. Mag-
nitude spectrogram has been converted to logarithm
scale followed by normalization along each frequency
axis, which better weighs the contribution of high fre-
quency bins. Video data is converted to 25 FPS (equiv-
alent to 40 ms frame hop size). For the origianl singing
performance videos, the mouth regions are cropped
as square bounding box using the DIib library (King,
2009) and then interpolated with the size of 64 x 64.
RGB videos have been converted to grayscale. Each
training sample is 2.56 seconds long, containing 128
audio frames and 64 video frames. The input/output
audio spectrogram has the shape of 2x128x513 (chan-
nels x frames x frequency bins), and each input video
stream has the shape of 64x64x64 (frames x width x
height). We use RMSProp optimization with a learning
rate of 0.01. The learning rate decays every 5 epochs
by multiplying with 0.8. We use batch size of 8 for
training on a TITAN X GPU with 11.9 GB graphic mem-
ory. It takes about 40 hours to train for 50 epochs. We
adopt early stopping when the validation loss does not
decrease for 10 consecutive epochs.

For evaluations, we calculate the signal-to-
distortion ratio (SDR) between the separated vocal
waveforms and the ground-truth ones using the BSS
Eval toolbox V4, same as the evaluation measure ap-
plied in SiSEC2018. Specifically, for each 30-sec eval-
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uation excerpts, we calculate the median SDR over all
1-sec audio segments.

5.2 Baselines

We first use the original mixture recording (referred as
“MIX” in the experiments) as the separated vocal for
evaluation on our dataset. This sets lower bounds of
separation results without any separation techniques.
Then we apply two oracle filtering techniques that uti-
lize ground-truth source signals: The ideal binary mask
(IBM) assigns each time-frequency bin to the predom-
inant source. The ideal ratio mask (IRM) distributes
the power of each time-frequency bin into different
sources according to the power ratio of the ground-
truth sources. The IBM and IRM set upper bounds
for time-frequency masking-based source separation
methods.

We then compare our proposed method with sev-
eral audio-based music separation methods as base-
lines.

* RX7. A commercial software developed by iZo-
top We apply batch processing of the “music
rebalance” function with the preset “isolate vo-
cals” on “medium” level. Training data for the
model inside this software is unknown to us.

* UMKX (Stoter et al.,2019). An open-sourced sepa-
ration tool known as “Open-unmix” . The model
employs the BLSTM structure and is trained on
the MUSDB18 dataset.

e Spleeter (Hennequin et al., |2019). An
open-sourced music separation method with a
CNN+Unet model trained on their in-house
dataset of 24,097 songs.

* Spleeter-train. Same model as “Spleeter” but
trained on our Audition-RandMix dataset using
the same conditions as those for our proposed
audiovisual method as a direct comparison.

* Demucs. An open-sourced music separation
method with U-Net and LSTM structure to pro-
cess the signal in waveform domain. It achieved
the best separation performance among all open-
sourced tools up to date.

e MMDenseLSTM (Takahashi et al., |2018b). The
method that achieved the best results in
SiSEC2018, even without training on extra data.
We implemented this method from scratch. Our
implementation has been validated by achieving
7.44dB of SDR of vocal separation results on the
MUSDBI18 test set. We then trained this model on
our Audition-RandMix dataset as a direct com-
parison.

We also implement an audiovisual speech enhance-
ment method named AVDCNN proposed in (Hou et al.,
2018). This method applies 2D CNNs to take noisy
speech and the mouth region visual recording as in-
puts, fuses encoded audio and visual features to output

7https ://www.izotope.com
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Method | UMX  Spleeter ~MMDenseLSTM  AVDCNN  Proposed

Parameter

(x10%) 8.5 19.7 1.22 11.3 2.05

Table 1: Comparison of model size of different meth-
ods.

the enhanced speech signal as well as reconstructed
video frames of mouth movements. After the fusion
layers, we used LSTM instead of fully-connected lay-
ers as used in (Hou et al.,2018), which shows higher
performance in our experiment scenarios.

We choose audiovisual speech enhancement in-
stead of audiovisual speech separation as the baseline,
because we believe that speech enhancement is more
relevant to singing voice separation from background
music in terms of foreground-background relations of
sources, as explained in Section In addition, au-
diovisual speech separation usually assumes the avail-
ability of all talkers, while in our setting, only the video
of the solo singing voice is used.

We present the model sizes of baseline models that
are open-source or implemented by us in Table 1, to-
gether with that of the proposed model.

5.3 Objective Evaluation on Synthetic Mixtures

We evaluate the comparison methods on the four
test sets described in Section [4f Audition-RandMix,
Audition-RandMix (v+), URSing, and URSing (v+).
“v+” means that the accompaniments contain vocal
components. Note that all these songs are synthetic
mixtures, e.g., Audition-RandMix is random mixed
samples and URSing is recorded in controlled environ-
ment. Boxplots of SDR results are shown in Figures [4]
where each data point in the boxplots is the median
SDR of the separated vocal of all 1-sec segments of a
30-sec excerpt. The horizontal line inside each box in-
dicates the median value across all excerpts. Several
interesting observations can be made from the results.

5.3.1 Benefits of Visual Information

The proposed method outperforms all audio-based sep-
aration baselines in most of the evaluation sets. This
shows the advantage of incorporating visual infor-
mation about the singer’s mouth movement for solo
singing voice separation. Among the audio-based base-
line methods, MMDenseLSTM is much stronger than
RX7, because MMDenseLSTM is our own implementa-
tion and is trained on our dataset while RX7 is not.
However, Spleeter slightly outperforms our proposed
system on the URSing set. We believe that this is be-
cause Spleeter is trained on a much larger in-house
dataset that contains 24,097 songs totalling 79 hours.
This is verified by the fact that, Spleeter-train, the same
model as Spleeter but trained on our dataset as a fair
comparison, does not outperform MMDenseLSTM nor
the proposed method. We suggest that this is because
our proposed model (and MMDenseL.STM) has a much
smaller model size than Spleeter, making it less prone
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to overfitting given a small training set.

Comparing songs with backing vocals (Audition-
RandMix (v+) and URSing (v+)) to songs without
backing vocals (Audition-RandMix and URSing), we
can see that the outperformance of the proposed
method is better pronounced on songs with backing
vocals. Wilconxon signed-rank tests show that the im-
provement of the proposed method over MMDenseL-
STM on Audition-RandMix (v+) and URSing (v+)
are both significant, with p values of 6.2 x 107 and
4.3 x 1072, respectively. We argue that this is because
audio-only methods tend to assign all the vocal com-
ponents to the separated singing voice, while the pro-
posed audiovisual method learns to only separate the
vocal signals that are correlated to the solo singer’s
mouth movements.

The reason that the improvement is more pro-
nounced on Audition-RandMix (v+) than on URSing
(v+), we argue, are twofold: 1) backing vocals in
URSing (v+) are not as strong as the intentionally
added backing vocals in Audition-RandMix (v+), and
2) backing vocals in URSing (v+) often overlap with
solo vocals and share the same lyrics, showing high
correlations with the mouth movements of the solo
singer, while the added backing vocals in Audition-
RandMix (v+) are irrelevant to the solo vocal.

Figure |5 shows one 10-sec sample as an extreme
case to compare the spectrograms of audio-based MM-
DenseLSTM method and the proposed audiovisual
method when backing vocal components are strong
(e.g., the middle part of the sample). We also show the
mouth movement in several frames throughout this ex-
cerpt. It can be seen that MMDenseLSTM recognizes
the backing vocal components in the middle frames
as the solo vocal, while the audiovisual method sup-
presses those components significantly.

On songs without backing vocals, the outperfor-
mance of the proposed method can still be observed.
Subjective listening by the authors suggests that the
visual information helps to reduce high-frequency per-
cussive sounds from the solo vocal, as the former do
not correlate with mouth movements well.

5.3.2 Superiority of Proposed Audiovisual Architecture

The proposed method outperforms the audiovisual
speech enhancement baseline significantly in all evalu-
ation sets. Note that the baseline is trained and eval-
uated on the same dataset as the proposed method.
This shows the superiority of the proposed network ar-
chitecture on the solo singing voice separation task. In
particular, we argue two main reasons. First, the pro-
posed model utilizes the commonly used U-net struc-
ture with skip connections, which generally achieves
good results in music separation (Jansson et al., 2017;
Stoller et al., 2018; Takahashi and Mitsufuji, 2017).
Second, in our audiovisual fusion scheme we preserve
the temporal correspondence, which prevents a sub-
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Figure 4: The SDR (dB) comparison on separated solo vocals with different methods on different evaluation sets.
(“v+” denotes for songs where accompaniments contain vocal components.)

Mix

Vocal

Figure 5: One 10-sec example comparing audio-based
separation (MMDenselL.STM) with audiovisual sep-
aration (proposed) on a song excerpt with strong
backing vocals. The four spectrograms from top
to bottom are original mixture, ground-truth vo-
cal, audio-based vocal separation result from
lhashi et al.,[2018b), and audiovisual vocal separa-
tion result from the proposed method. This sam-
ple result has 10-sec long, and one mouth frame of
each second is attached.)

stantial increase of the number of trainable parame-
ters in the fusion layer. This is important when the
DenseNet-based audio sub-network has a small model
size. The variations of different video sub-networks,
however, does not make much difference on the sepa-
ration performance, as we analyzed in Section [5.4}

5.3.3 Limitations and Room for Improvement

Compared with reported SDR values in SISEC2018, the
SDR values in Figure |4| are much higher. For exam-
ple, MMDenseL.STM reaches over 10 dB on URSing but
only less than 7 dB in SiSEC2018 (method “TAK1” in
(Stoter et al., [2018)). We argue that the songs used
in SiSEC2018 (i.e., the MUSDB18 dataset) are profes-
sionally recorded, mastered and mixed vocals. They
often contain complex components such as polyphonic
vocals, background humming, and strong reverbera-
tion. They are mastered and mixed by professional mu-
sic producers to intentionally make them better fused
into the background music. In contrast, the ground-
truth vocals in our datasets are solo vocals recorded
in controlled environments with limited vocal effects
added. It is reasonable to believe that the benefits of vi-
sual information can be further demonstrated on more
professionally produced songs. In addition, the perfor-
mance difference between the Audition-RandMix test
sets and the URSing test sets seems to be small for all
methods, including the oracle results. This shows that
randomly mixed songs, although lacking harmonic and
rhythmic coherence, are not easier to separate than the
more realistically mixed songs, suggesting that it may
be reasonable to use randomly mixed songs to train
the methods (Luo et al.L 2017). However, whether this
is still true for professionally produced songs is still a
question.

On the other hand, there is still some gap between
the proposed method and the oracle results on the SDR
metric in our evaluation sets. It is likely that this gap
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will be even bigger on professionally produced songs.
This suggests that much work can be done to im-
prove the separation performance. For example, time-
domain separation for the audio branch may further
improve the performance (Luo and Mesgarani, [2018).

5.4 Different Video Front-End Models

To investigate the key factors of the audiovisual sepa-
ration framework and the robustness, we replace the
proposed Conv2D+LSTM video front-end with sev-
eral other widely-used visual feature extraction frame-
works:

* No-mask. This experiment has the same video
branch, but without a mask layer after the audio-
visual fusion.

* Conv3D (Tran et al.,[2015). The Conv3D model
takes all the video frames from each sample as
a feature map and a 4-th dimension is added as
the channel dimension set as 64. We then ap-
ply 2 Conv2D layers (with the channel dimension
128 and 256) on each frame to share the chan-
nel dimension with Conv3D. Followed by pool
operation and fully-connected layers, we obtain
the video feature with the same dimension as
Veonvap € RV*T. Note that in this structure, the
temporal information is only parsed at the very
first Conv3D structure, since no recurrent net-
work is applied.

* Dense+LSTM (Huang et all [2017). Differ-
ent from the proposed model, we replace the
Conv2D layers with a dense block from the
DenseNet structure. Each dense block has 2 lay-
ers with growth rate of 12. Then a Conv2D layer
with 1x1 kernels is applied to compress the chan-
nel number to 32, resulting in the same feature
dimension as the proposed CNN+LSTM model
before feeding into the FC@256.

* Lip-reading. This variation uses a pre-trained
model proposed in (Petridis et al.,[2018) on the
lip reading task on the LRW dataset
[Zisserman, [2016). The original model structure
consists of Conv3D, ResNet-34, and GRU. We
only use the pre-trained model to extract the vi-
sual feature to integrate into our proposed audio-
visual source separation model.

A comparison of different video front-end models
is shown in Figure [6] It can be seen that the proposed
(Conv2D+LSTM) model achieves the highest SDR val-
ues for most cases, but some video front-end models
do not make much difference. Applying a mask layer
is critical, as otherwise audiovisual method even de-
grades from the audio-based method. Note that for
audio-based baseline method (MMDenseLSTM), we
have also experimented models with a mask layer or
not, but it does not make difference on the separa-
tion results. The Conv3D framework slightly degrades
the performance, but still outperforms the audio-based
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Figure 6: The SDR (dB) comparison on the separated
solo vocal from the audiovisual method using dif-
ferent video front-end models.

5]

Figure 7: One sample frame of an a cappella song for
subjective evaluation.

baseline method (MMDenseLSTM). One reason for this
performance drop may be that in this framework, there
is no recurrent structure, and the temporal evolution
of visual information is only processed by the Conv3D
structure. As the Conv3D structure takes the raw in-
put of mouth frames, it may be sensitive to mouth
position changes due to landmark detection errors.
The model pre-trained on lip reading ranks the worst
among the audiovisual models. This is because the lip
reading model was trained on the LRW dataset where
for each sample containing several words, only one
word around the center frames is annotated as the
training target. This makes the model only attend to
the middle frames of a video excerpt, leading to lim-
ited guidance for the singing voice separation and even
degradation from audio-based methods. We have also
conducted experiments using the pre-trained lip read-
ing model but finetuned on our separation task, but it
does not boost the separation performance from our
proposed video frontend model. It is possibly because
lip movements in speech and singing are different.

5.5 Subjective Evaluation on Professional A Cappella
Songs
In this section, We further evaluate the benefits of vi-
sual information incorporated in our proposed method
on real a cappella songs in the wild. We collect 35 au-
diovisual a cappella recordings from YouTube. These
collections represent the extreme cases where all the
accompaniment components are vocals (except for sev-
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Figure 9: The subjective ratings of the separation qual-
ity in response to the three questions. Each error
bar shows mean + standard deviation.

eral cases where additional percussive instruments are
also present), to study how much the proposed audio-
visual method is advantageous while the audio-based
method is very likely to fail. Here we use the MM-
DenseLSTM baseline as the audio-based method for
comparison, which yields the best separation results
among audio-based baselines. Most of these songs are
chorus performance with a solo singer accompanied by
harmonic vocals and/or vocal beatbox, while some are
performance with multiple solo singers. We only keep
the videos where the solo singer’s mouth is visible and
clear, without video shot transition for at least 10 sec-
onds. A sample frame of one song is shown in Figure
with the mouth region of the targeted solo singer high-
lighted.

As we do not have access to the source tracks,
we cannot evaluate the separation performance us-
ing common objective evaluation metrics. Instead, we
conduct a subjective evaluation on the source separa-
tion quality ((Cartwright et al., 2016) and (Cartwright
et al., |2018)) over 51 people. Some subjects are stu-
dents or faculty from the University of XXX (hidden for
anonymous review), others are subscribers from the In-
ternational Society for Music Information Retrieval (IS-
MIR) community. Statistics of the subjects’ music back-
ground is shown in Figure [8| Each survey asks a sub-
ject to rate 7 of the 35 songs, and each subject may
take more than one surveys. For ratings from the same
subject, we take the average to avoid bias. For each
song, the subjects first watch a 10-sec excerpt of the
original performance and then watch the same video
twice with the solo singing voice separated by two dif-
ferent singing voice separation methods in a random
order to rate the separation quality. Due to the varia-
tions across these songs, the original recording serves
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as a reference for a consistent scoring scheme. For each
video we also highlight the mouth region of the target
solo singer (see Figure|7) to help subjects focus on the
corresponding solo voice. The specific evaluation ques-
tions are:

* Question 1: What do you think about the overall
separation quality for the targeted singer?

* Question 2: What do you think about the sepa-
ration quality in terms of removing backing vocal
accompaniments in the separated solo voice?

* Question 3: What do you think about the sepa-
ration quality in terms of not introducing artifacts
into the separated solo voice?

The subjects need to answer each question using a
scale from 1 to 5, where “1” represents Very bad and “5”
represents Very good. The three questions are related
to the common definitions of the three objective source
separation evaluation metrics, SDR, SIR, and SAR, re-
spectively.

The results of the subjective evaluations are pre-
sented in Figure [0l According to the collected re-
sponses for Question 1, the proposed audiovisual
method is rated significant higher than the base-
line audio-based method (Wilconxon signed-rank test
shows a p value of 3.5 x 1073!); The average rating is
raised from 3.1 to 3.9. For Question 2, the difference
is even more significant, as the average rating is in-
creased from 2.6 to 3.8 (with a p value of 3.1 x 107%%),
showing that the proposed method is especially bene-
ficial for removing accompaniments from the mixture.
Regarding the artifacts introduced into the separated
solo vocals in Question 3, both methods achieve a rat-
ing between “neutral” and “good”, and the difference
is not statistically significant (with a p value of 0.46).

5.6 Ablation Studies on Non-informative Visual Input
To further study how the visual information helps with
the separation performance, we design several com-
plementary experiments as ablation studies. We first
modify the network structure by replacing the video
front-end model with other existing widely-applied vi-
sual feature extraction framework to explore the key
factor of the audiovisual separation framework and the
robustness. Then we feed the visual branch with non-
informative or even misleading inputs to observe how
the separation quality degrades.

5.6.1 Non-Informative Visual Input

To further investigate how the incorporation of visual
information affects the separation performance, in this
section, we substitute the visual input (i.e., mouth re-
gion of the solo singer) with some irrelevant content.

* Constant. We feed the visual branch with con-
stant zero values all the time.

* White-noise. We feed the visual branch with
white noise that is normalized to the same range
as the videos of mouth regions.

* White-noise*. The white noise is directly fused
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Figure 10: The SDR (dB) comparison on the separated
solo vocal of the proposed audiovisual method
with non-informative visual inputs.

with the audio embedding, replacing the whole
visual branch.

* Mismatch. The input of the visual branch is the
mouth region video of an irrelevant singer to pro-
vide misleading information about the singing
activity.

Figure[10 shows the separation results on different
experimental settings. The model performance always
degrades from the audio-based baseline MMDenseL-
STM when feeding with irrelevant or misleading infor-
mation. This suggests that a non-informative visual in-
put is harmful for separation. The performance degra-
dation by feeding white noise or a mismatched singer
is more noticeable than a constant input. This may be
because the model is more likely to overfit irrelevant
visual fluctuations in the training data, while for a con-
stant visual input the model is more likely to ignore it.
Nonetheless, in all of these circumstances, the separa-
tion performance still achieves a median SDR over 5dB
for most cases. This suggests that the audio branch
is dominant in the model inference. Comparing with
the “No-mask” results in Figure 9, this also confirms
our claim in Section that the mask layer helps to
improve the model robustness, even when the visual
input is less informative.

6. Discussion

Since we are the first work to address audiovisual sep-
aration for singing performance, there are still much
room to improve and many areas to explore. First,
we are not building our model upon the most state-
of-the-art audio separation methods due to the reasons
described in Section|3.1.1. Other techniques like atten-
tion or transformer-based models may further improve
the performance. Second, in this paper we crawled
the Audition-RandMix data for training and created the
URSing dataset for evaluation. While it is a challeng-
ing process to record the audiovisual singing perfor-
mance with ground-truth tracks, collecting randomly
mixed data for training is an easier process, since there
are many solo singing performance videos in the In-
ternet. Since using randomly mixed data has been
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proved beneficial for training music separation (Song
et al., 2021), one could potentially improve the au-
diovisual vocal separation results by collecting more
data. Third, it is worth investigating how other kinds
of visual performances could help with the analyses of
singing voice, such as facial expressions, body gestures,
and body movements, etc

7. Conclusion

In this paper, we proposed an audiovisual approach to
address the solo singing voice separation problem by
analyzing both the auditory signal and mouth move-
ment of the solo singer in the visual signal. To eval-
uate our proposed method, we created the URSing
dataset, the first publicly available dataset of audio-
visual singing performances recorded in isolation for
singing voice separation research. We also curated
a solo singing voice dataset from YouTube for train-
ing. Both objective evaluations on artificially mixed
singing music and subjective evaluation on profession-
ally produced a cappella songs showed that the pro-
posed method significantly outperforms state-of-the-
art audio-based methods. The advantages of the pro-
posed method is especially pronounced when the ac-
companiment track contains backing vocals, which
have been difficult to separate from solo vocals by
audio-based methods.
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