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Abstract

We study probabilistic prediction games when
the underlying model is misspecified, investi-
gating the consequences of predicting using an
incorrect parametric model. We show that for
a broad class of loss functions and parametric
families of distributions, the regret of playing
a “proper” predictor—one from the putative
model class—relative to the best predictor in
the same model class has lower bound scaling
at least as p�n, where � is a measure of the
model misspecification to the true distribution
in terms of total variation distance. In con-
trast, using an aggregation-based (improper)
learner, one can obtain regret d log n for any
underlying generating distribution, where d
is the dimension of the parameter; we exhibit
instances in which this is unimprovable even
over the family of all learners that may play
distributions in the convex hull of the paramet-
ric family. These results suggest that simple
strategies for aggregating multiple learners
together should be more robust, and several
experiments conform to this hypothesis.

1 Introduction

Suppose we would like to find a probability distribution
that models outcomes y given data x. Typically one
chooses a parametric family of probability distributions
and aims to find the "best" member of this family ac-
cording to a given loss. It is rarely realistic to assume
that the parametric family is well-specified—that it
includes the true distribution of the outcomes y and
data x— and thus it is important to understand the
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consequences of misspecification and how to circumvent
these downsides. To address these challenges, in this
paper we derive a new measure of a problem’s robust-
ness to misspecification that relies on the curvature of
the loss at hand and putative parametric family, prov-
ing that this measure lower bounds convergence rates
for prediction error and certifies the failure of a para-
metric family and loss to be robust (or achieve optimal
convergence rates for prediction). To complement this
new family of lower bounds for probabilistic prediction
problems, we build out of earlier work on improper
learning (Vovk, 1998; Foster et al., 2018)—when we
may choose predictions p(y | x) outside the given model
family—to show how it is possible to be robust to such
misspecification, and moreover, we give new optimality
guarantees for such improper procedures.

Formalizing our setting, we consider the following prob-
abilistic game: a player receives a covariate vector
x 2 X , plays a distribution p(· | x) on a target set Y,
then receives y 2 Y and suffers loss

L(p(· | x), y).

We study both a sequential and a stochastic variant of
this problem. In the former, for a sequence of examples
{(xi, yi)}ni=1, a player chooses a distribution pk depend-
ing on the past examples {(xi, yi)}k�1

i=1 , and then for a
fixed conditional distribution p on Y | X, suffers regret

Regn(p) :=
nX

i=1

L(pi(· | xi), yi)�
nX

i=1

L(p(· | xi), yi).

In the stochastic variant, the examples (xi, yi) are i.i.d.
from an unknown distribution P , and we consider the
risk of the conditional p.m.f. p,

RiskP (p) := E[L(p(Y | X))],

where the expectation is taken over (X,Y ) ⇠ P . The
goal is to play pi or p above to make the regret and
risk as small as possible.

This regret and risk minimization framework is familiar
from the universal prediction and probabilistic forecast-
ing literature (Merhav and Feder, 1998; Grünwald, 2007;
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Gneiting and Raftery, 2007; Cover and Thomas, 2006;
Cesa-Bianchi and Lugosi, 2006), which considers best
possible estimators and online learners for the regret
Regn over various losses L and families P of possible
predictive distributions. In this paper, we study these
regret and risk minimization formulations over para-
metric families of distributions {p✓(· | x)}✓2⇥, where
⇥ ⇢ Rd is a convex set. We shall either consider the
regret

Reg⇥n := sup
✓?2⇥

Regn(p✓?) (1a)

or—in the stochastic version of the problem—the excess
risk relative to this family,

Risk⇥P (p) := RiskP (p)� inf
✓?2⇥

RiskP (p✓?). (1b)

When the conditional distribution of Y | X belongs to
the parametric family {p✓}✓2⇥ where ⇥ ⇢ Rd, maxi-
mum likelihood estimators enjoy rates of convergence
of O(d/n) for the excess risk (1b) as n grows (van der
Vaart, 1998). In typical practice, however, the data
generating distribution is misspecified, so it is impor-
tant to understand how this misspecification impacts
possible convergence rates and optimal estimators.

We thus consider three intertwined objects: the para-
metric family {p✓}✓2⇥ against which we compare the
performance of our prediction p, a family � of distri-
butions on Y given X that we may return (i.e. predict
from), and the family P of data generating distribu-
tions that nature may choose. We study the interaction
between these three and the impact of allowing the fam-
ily P to differ from the parametric model {p✓}✓2⇥. The
traditional approach considers the minimax excess risk
over the family ⇥,

inf
bpn

sup
✓2⇥

EPn
✓

h
Risk⇥P (bpn)

i
, (2)

where the infimum is over all estimators bpn that
use the n points {(Xi, Yi)}ni=1 to output a distribu-
tion p(Y | X), and the expectation is taken over
{(Xi, Yi)}ni=1

iid⇠ P✓, where we have abused notation to
use P✓ to denote the joint over (X,Y ) when Y | X = x
follows p✓(· | x). We elaborate this setting slightly.
First, we restrict the estimator bpn to take values in
a set � of distributions (for example, we might take
� = {p✓}✓2⇥, the parametric family, or its convex hull),
which we write as bpn 2 �. Second, we expand the supre-
mum (2) to also include distributions P near the model
P✓: recalling the definition of the total-variation dis-
tance kP �Qk

TV
:= supA |P (A)�Q(A)|, we consider

distributions P for which there is some ✓ 2 ⇥ such
that kP � P✓kTV

 �. This gives us our misspecified
minimax risk.
Definition 1.1. Let ⇥ ⇢ Rd, � � 0, and � be a set of
allowable distributions p(Y | X). The minimax risk at

variation distance � is

Mn(⇥,�, �) := inf
bpn2�

sup
✓2⇥

P :kP�P✓kTV
�

EPn [Risk⇥P (bpn)].

(3)

The quantity (3) is somewhat complex. The idea is to
quantify—via the parameter �—the impact of allowing
the data generating distribution P to depart slightly
from the parametric family {p✓}✓2⇥ while constraining
ourselves to play a prediction from the family �.

The typical setting in online convex optimization and
learning (Cesa-Bianchi and Lugosi, 2006) is to take the
family of “playable” distributions to be the parametric
family � = {p✓}✓2⇥. In this case, standard minimax
risk bounds show that in the well-specified setting that
the data comes from the parametric family (i.e. � = 0
in Def. 1.1) and the loss L is smooth, then we expect
the risk to scale as d/n (cf. van der Vaart (1998); Wain-
wright (2019); Bach (2014)). Yet as we show in the
first part of this work, such results need not be stable
to perturbations away from the parametric model. We
show that the curvature of the loss relative to predic-
tions and the parameter space ⇥ essentially governs
convergence rates: when losses are appropriately “flat,”
there is little information and rates are necessarilty
slow and misspecification carries a potentially heavy
penalty; conversely, when there is substantial curvature,
rates exhibit less antagonistic behavior. Accordingly,
we introduce what we term the linearity constant Lin
of the loss L, family {p✓}✓2⇥, and misspecification �,
showing a lower bound of roughly min{1/

p
n,Lin/n}

on the minimax risk (3). In some cases we delineate,
Lin may be exponentially large in problem parameters,
so convergence rates slow to the worst-case rates for
general online convex optimization (Zinkevich, 2003;
Shalev-Shwartz et al., 2009; Agarwal et al., 2012), and
we consider the family sensitive to misspecification.

To complement these negative results, we highlight
a solution to this instability by considering the con-
vex hull of the parameteric family, that is the set of
mixtures, aggregations, or ensembles Conv{p✓}✓2⇥ :=
{
R
✓2⇥ p✓dµ(✓) s.t.

R
✓2⇥ dµ(✓) = 1 and dµ � 0}.

The idea to combine probabilistic forecasts is clas-
sical (Granger and Ramanathan, 1984; Genest and
Zidek, 1986; Jacobs, 1995; Clemen and Winkler, 1999;
Hall and Mitchell, 2007). When the loss function is
mixable (which we define later), Vovk’s Aggregating
Algorithm and its variants, e.g. exponential weights,
Exp3, and Bayesian universal prediction (Vovk, 1990,
1992, 1998; Grünwald, 2007; Cesa-Bianchi and Lugosi,
2006; Auer et al., 2002), provide stability and achieve
minimax regret O(d log n) for any � in Definition 1.1.
By a standard online-to-batch conversion (Jensen’s in-
equality) (Cesa-Bianchi et al., 2002), this guarantees a
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minimax excess risk (3) of at most O(d log n/n). We
also show that for generalized linear models, Vovk’s Ag-
gregating Algorithm is optimal up to log-factors with
respect to the misspecification parameter �. That is,
there is no better algorithm to use if you are guaranteed
certain values of �.

It is perhaps unfair to consider the entire convex hull
of {p✓}✓2⇥ for the class �, as this could potentially
yield much smaller risk than the parametric family in
the risk (1b). Indeed, we give an example in which
the best parameteric predictor has no predictive power,
while returning a mixture of two parameterized distri-
butions achieves zero loss (though we also give examples
in parametric families where considering the convex
hull provides no benefit). To justify the aggregation
strategy we give a Bernstein von-Mises theorem under
misspecification, which shows that the strategy con-
verges to a Gaussian centered at the risk-minimizing
parameter estimate b✓n with covariance shrinking at rate
O(1/n); a corollary of this is that Vovk’s Aggregating
Algorithm returns a distribution which converges in
total variation distance to pb✓n 2 {p✓}✓2⇥. Thus, aggre-
gation (or exponential weights) stabilizes predictions
while asymptotically enjoying identical convergence to
standard risk-minimization procedures.

1.1 Related Work

Our results broadly fall under probabilistic universal
prediction in which the data (xt, yt) can be any ar-
bitrary sequence (Rissanen, 1984; Merhav and Feder,
1998; Cesa-Bianchi and Lugosi, 1999, 2006; Grünwald,
2007; Cover, 1991). That Vovk’s Aggregating Algo-
rithm provides minimax rate stability is known Foster
et al. (2018), and this is similar to the minimax guaran-
tees of Bayesian models in universal prediction (Grün-
wald, 2007); a long line of work gives the same logarith-
mic minimax rates (Merhav and Feder, 1998; DeSantis
et al., 1988; Haussler and Barron, 1992; Yamanishi,
1995). Early work in these prediction problems fo-
cuses on the logarithmic loss Llog(p(·), y) = � log p(y),
while more recent work extends these bounds to exp-
concave and so-called “mixable” losses (Hazan et al.,
2007; Cesa-Bianchi and Lugosi, 2006). Our results
on minimax lower bounds, distinguishing carefully be-
tween well-specified and misspecified models and proper
and improper predictions, are novel.

While our results are general, applying to exponential
families and beyond, related results are available for
logistic regression. In this case, for B,R > 0 we con-
sider ⇥ = {✓ : k✓k  B}, X ⇢ {x : kxk  R}, and
let {p✓}✓2⇥ be the family of binary logistic distribu-
tions, p✓(y | x) = (1 + e�y✓T x)�1, with log loss. Hazan
et al. (2014) show that any algorithm returning some

p✓ suffers minimax risk (recall (3)) ⌦(
p
B/n) in the

regime where n = O(exp cB) for some positive con-
stant c > 0, R = 1, and the allowable perturbation
� = 1. Foster et al. (2018) show that Vovk’s Aggregat-
ing Algorithm (Vovk, 1998) guarantees minimax risk
O(d log(Bn)/n), allowing one to sidestep this lower
bound via improper learning, which we also leverage.
In the special case of logistic regression—see Example 2
to come in Section 2.2—a simplification of our results
gives lower bound ⌦(1)

p
�BR/n if n  exp(RB/2)

and ⌦(1) exp(2BR/5)/n otherwise. We thus show that
even when the perturbations away from the parametric
family are small, the minimax risk when the set of
playable distributions is � = {p✓}✓2⇥ may grow sub-
stantially; this generalizes Hazan et al. (2014), where
R = 1 and � = 1, and gives somewhat sharper con-
stants.

2 Parametric Model Instability

Our first step towards understanding sensitivity to
misspecification is to provide optimality guarantees for
the minimax risk in Definition 1.1 when the player can
play only elements of the parametric family of interest,
that is, when � = {p✓}✓2⇥. We focus on losses that
depend specifically on ✓Tx, where we have

L(p✓(· | x), y) = `(✓Tx, y) (4)

for some twice differentiable and convex ` : R⇥Y ! R+.
A broad range of models and losses take this form,
including all generalized linear models (Hastie et al.,
2009).

2.1 Main lower bound

Our key contribution is to lower bound the minimax
risk via a quantity we term the linearity constant of
the induced loss `, which measures the sensitivity of
` around various points in its domain. The first com-
ponent is (roughly) a measure of the signal contained
in ` for different targets y, where for t 2 R, y 2 Y,
and `0(t0, y0) as shorthand for @

@t`(t, y)|(t,y)=(t0,y0) we
define

q?` (t, y) := sup
ỹ2Y,↵2[�1,1]
(ỹ,↵)2Cy(`,t)

⇢
↵`0(↵t, ỹ)

↵`0(↵t, ỹ)� `0(t, y)

�
, (5)

where Cy(`, t) := {(ỹ,↵) | sign(↵`0(↵t, ỹ)) 6=
sign(`0(t, y))}.
We always have q?` (t, y) 2 [0, 1]. For many cases, this
quantity is a positive numerical constant (e.g. for the
squared error `(t, y) = 1

2 (t� y)2 with Y = R, we have
q?` (t, y) = 1). For a given misspecification size � 2 [0, 1],
sample size n, radii R and B, we define our measure
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of sensitivity to misspecification,

Lin(`,Y, R,B, n, �) := sup
y2Y

sup
t2+�2R2B2

2

8
><

>:
|`0(t, y)|

⇥min

8
><

>:
�
q
�q?` (t, y),

|`0(t, y)|
sup

|�|�
`00(t+�, y)

q?` (t, y)p
2n

9
>=

>;

9
>=

>;
.

(6)

This linearity constant roughly measures the extent
to which the loss grows quickly without substantial
curvature, that is, `0(t, y) is large while `00(t, y) is small.
A heuristic simplification may help with intuition: by
ignoring the q?` term and perturbation by � in `00, we
roughly have

Lin ⇡ O(1) sup
y2Y

|t|RB

|`0(t, y)|min

⇢
RB
p
�,

|`0(t, y)|
`00(t, y)

1p
n

�
,

(7)

which makes clearer the various relationships. When
the ratio of `0(t, y) to `00(t, y) is large, estimation and
optimization are intuitively hard: there is little curva-
ture to help identify optimal parameters, while small
changes in the parameter induce large changes in the
loss (as `0(t, y) is large relative to `00). The allowable
misspecification of the model—via the parameter �—
means that in the lower bound, an adversary may essen-
tially put positive mass on those points for which the
ratio `0/`00 is large, so that one must pay this worst-case
cost.

We then have the following theorem, whose proof we
provide in Appendix A.
Theorem 1. Let the loss L and family {p✓} satisfy
Eq. (4), where X = {x : kxk  R}. Consider � =
{p✓}✓2⇥, where ⇥ = {✓ : k✓k  B}. Then

Mn(⇥,�, �) � 1

4
p
n
Lin(`,Y, R,B, n, �).

Using the heuristic display (7) above can provide some
intuition. When |`0(t, y)|/`00(t, y) & pn, so that the
problem has little curvature, the (heuristic) linearity
constant (7) scales as supt,y |`0(t, y)|RB, which gives
the lower bound supt,y

|`0(t,y)|RBp
n

; this is the familiar
worst-case minimax bound for stochastic convex op-
timization with Lipschitz objective on a compact do-
main (Agarwal et al., 2012). As the worst-case construc-
tions look very little like standard prediction problems,
one might hope (at least in the absence of misspeci-
fication) to achieve better rates; Theorem 1 helps to
delineate problems where this may be impossible.

2.2 Examples with the logarithmic loss

Here we consider a few examples to build intuition for
Theorem 1 beyond the heuristic (7). As we shall see, its
generality allows exploration of many losses, including
various scoring rules (Gneiting and Raftery, 2007); for
this section, we focus on the common logarithmic loss
for three well-known exponential family models. We
will use the following notation: For a set ⌦ such that
f, g : ⌦ ! R we write f & g if there exists a finite
numerical constant C such that for any ! 2 ⌦, f(!) �
Cg(!) and we write f ⇣ g if f & g & f .
Example 1 (Linear regression): For linear regression

we consider the model y | x ⇠ N(✓Tx, 1) with log loss,
so that the loss becomes Llog(p✓(· | x), y) = 1

2 (✓
Tx�y)2

and `(t, y) = 1
2 (t�y)

2. In this case, we may take q?` & 1
in Eq. (5). Letting d(Y) be shorthand for diam(Y), the
linearity constant (6) becomes
Lin(`,Y, R,B, n, �)

⇣ sup
y2Y

sup
t2+�2R2B2

2

⇢
(t� y)min

⇢
�
p
�,

t� yp
n

��

⇣ min

⇢
RBmax{RB, d(Y)}p�, max{(RB)2, d(Y)2}p

n

�
,

yielding minimax lower bound,

Mn(⇥,�, �) � cmin

⇢
RBmax{RB, d(Y)}p�

p
n

,

max{(RB)2, d(Y)2}
n

�
.

This is sharp: the stochastic gradient method achieves
the bound (Hazan and Kale, 2011), as ` is strongly
convex and has Lipschitz constant max{BR, diam(Y)}.

With that said, this behavior—which depends on
diam(Y)—is worse than what one achieves in well-
specified or stochastic settings, where the stochasticity
means that rates of 1/n are achievable. ⌃
Example 2 (Logistic regression): For our sec-

ond example, we consider logistic regression, show-
ing that if we must play proper predictions p✓, para-
metric 1/n rates are impossible until n is very large
or if the radii R and B are small. For logistic re-
gression with logarithmic loss, we have Y = {�1, 1},
p✓(y | x) = 1

1+exp(�y✓T x) , and `(t, y) = log(1 + e�ty).
Appendix B.1 works through the derivation of q?` (t, y)
and Lin(`,Y, R,B, n, �) which results in minimax risk
lower bound,

Mn(⇥,�, �) � cmin

⇢p
�RBp
n

,
exp(2RB/5)

n

�
, (8)

when RB � 1. Notice that the expression allows for
the regime where RB � 1—for example, in the natural
case that the data and parameter radii scale with the
dimension of the problem. We may contrast this lower
bound with previous results. In the regime where � = 1,
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Hazan et al. (2014) show that for R = 1 and numerical
constants c0, c1 > 0, any algorithm playing parametric
predictors p✓ necessarily suffers minimax risk ⌦(

p
B/n)

whenever n  c0 exp(c1B). The result (16) recovers
this lower bound while applying whenever � > 0. ⌃
Example 3 (Geometric distributions): We say

Y ⇠ Geo(�) for some � 2 (0, 1) if Y has support
{0, 1, 2, . . . , } and P (Y = y) = �(1 � �)y. We model
this via Y | x ⇠ Geo(e✓

T x/(1 + e✓
T x)), giving losses

Llog(p✓(· | x), y) = (y+1) log(1+exp(✓Tx))� ✓Tx and
`(t, y) = (y + 1) log(1 + et) � t. In Appendix B.2 we
obtain the analogue of inequality (16), that is,

Mn(⇥,�, �) � c0diam(Y)min

⇢p
�RBp
n

,
ec1RB

n

�
.

Again, we see that until n & exp(cRB), any method
playing the models p✓ for points ✓ 2 ⇥ necessarily
cannot converge faster than diam(Y)/

p
n. ⌃

2.3 Scoring rules and general losses

In probabilistic prediction and forecasting, one more
generally may consider scoring rules (Gneiting and
Raftery, 2007), which are losses designed to engen-
der various behaviors: honesty in eliciting predictions,
calibration of forecasts, robustness, or other reasons.
Typically, these induced losses are exp-concave (as
we discuss in the next section, which will allow us to
describe an efficient algorithm for them). For exam-
ple, to achieve robustness (Mei et al., 2018; Huber
and Ronchetti, 2009) (there are no unbounded losses)
one might consider the squared error or Hellinger-type
losses

Lsq(p(· | x), y) :=
1

2
(p(y | x)� 1)2 (9)

and
Lhel(p(· | x), y) = (

p
p(y | x)� 1)2, (10)

neither of which is proper (so that the true distribution
may not minimize the loss). Alternatively, proper scor-
ing rules (Gneiting and Raftery, 2007) are minimized
by the true predictive distribution, and include the
logarithmic loss and the quadratic scoring rule with
loss

Lquad(p(· | x), y) :=
1

2

X

k2Y
(p(k | x)� 1 {k = y})2.

(11)

As these scoring rules are differentiable and at least C2

on p 2 (0, 1), an argument by the delta method (van der
Vaart, 1998) shows that in well-specified cases, one ex-
pects to achieve convergence at rate 1/n. Moreover, as
we will see in the next section, aggregating algorithms
can achieve regret scaling as log n for each of these loss
measures.

Yet the minimax bound in Theorem 1 shows that this

is unachievable with misspecification. Here, because of
the complexity of the losses and resulting calculations,
we take a completely asymptotic perspective, saying
that we have an asymptotic rate r(n) minimax lower
bound if r(n)! 0 as n!1, while

lim inf
n!1

Mn(⇥,�, �)

r(n)
> 0

for all � > 0. As usual we consider losses taking
the form L(p✓(· | x), y) = `(✓Tx, y) for some scalar
induced loss ` : R⇥ Y ! R. We restrict our focus to
losses for which no universally perfect prediction exists,
meaning that if t 2 R and y 2 Y satisfy `0(t, y) 6= 0,
there exists y0 2 Y such that `0(t, y)`0(t, y0) < 0. We
have the following result, whose proof we provide in
Appendix A.4.
Proposition 2. Assume that the scalar loss allows no
universally perfect prediction. If there exists |t|  RB/2
and y 2 Y such that `0(t, y) 6= 0 while `00(t, y) = 0 and
`(·, y) is C3 near t, then the prediction family � =
{p✓}✓2⇥ has asymptotic rate r(n) = n�3/4 minimax
lower bound.

Roughly, the result in the proposition is simple: if the
induced scalar loss ` is not convex in t, then proper
predictions cannot be rate-optimal (as rates scaling as
1/n are achievable here).

While it is possible in some cases to achieve a non-
asymptotic result, in general it is somewhat tedious.
Nonetheless, we have the following result, whose te-
diousness in verification precludes our including a for-
mal proof, but essentially we need simply note that the
induced losses `(t, y) for each problem are non-convex
in t but are smooth.
Corollary 3. Let � = {P✓} be any of the logistic-,
geometric-, poisson-, or linear-regression families of
predictive densities. Then for any of the squared Lsq,
Hellinger Lhel, or quadratic Lquad losses (Eqs. (9) and
(11)), Mn(⇥,�, �) has asymptotic rate lower bound
r(n) = 1

n3/4 for any � > 0.

Theorem 1 and its consequences via Proposition 2 assert
that any algorithm returning elements of the paramet-
ric family {p✓}✓2⇥ must suffer when misspecification is
possible. These results are information-theoretic, and
as such, we see that in situations where misspecification
is possible, to perform better it is essential that the
family � of allowable distributions be improper.

3 Robustness via Improper Learning

While proper algorithms evidently must suffer losses
when they are misspecified, we now show that simply by
considering � = Conv{p✓}✓2⇥ we can sidestep the lower
bound of Theorem 1. Specifically, we consider Vovk’s
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Aggregating Algorithm and show that this provides
stability to misspecification. We present the algorithm
in an online setting, though standard online-to-batch
conversion techniques Cesa-Bianchi and Lugosi (2006)
extend the result to the stochastic optimization setting
in which we have proved each of our lower bounds.

Algorithm 1 Vovk’s Aggregating Algorithm (Online
Setting)
Let � = Conv{p✓}✓2⇥ and ⌘ > 0 be some fixed value.
For t = 0, . . . , n

Nature reveals xt.
Define dbµVovk

t,⌘ (✓) / e�⌘
Pt�1

s=0 L(P✓(ys|xs)).
Decision Maker plays

bPVovk
t,⌘ :=

R
✓2⇥ P✓(· | xt)dbµVovk

t,⌘ (✓).
Nature reveals yt and Decision Maker suffers

loss L( bPVovk
t,⌘ (yt | xt)).

Llog Lsq Lhel Lquad
Mixability Constant ⌘ 1 1 3 1/2

Table 1. Mixability constants for common losses in

Eqs. (11) and Eqs. (9), where Llog(p, y) = � log p(y),
Lsq(p, y) = 1

2 (p(y) � 1)2, Lhel(p, y) = (
p

p(y) �
1)2, and Lquad(p, y) = 1

2 kp(·)� eyk22. See Ap-

pendix B.3.

To give a regret bound, we continue our usual focus
by considering losses L and families {p✓}✓2⇥ for which
we can write L(p✓(· | x), y) = `(✓Tx, y). We restrict
ourselves to considering mixable losses, where for some
⌘ > 0, the function p 7! exp(�⌘L(p, y)) is concave over
the collection P(Y) of distributions on Y. This con-
stant ⌘ guaranteeing the exp-concavity of L bounds the
mixability constant, which allows one to obtain “fast
rates” via exponentially-weighted averaging in many
online learning problems Vovk (1998); Cesa-Bianchi
and Lugosi (2006); Van Erven et al. (2015). In Table 1,
we record the mixability constants for several example
losses—each of which we touch on in Sec. 2.3—showing
that Vovk’s aggregating algorithm achieves logarith-
mic regret for any of them once we apply the coming
convergence result.
Corollary 4 (Foster et al. (2018), Theorem 1). Let
bPVovk
t,⌘ be as defined above. Let Lip`(T ) be the Lipschitz

constant of ` restricted to [�T, T ]⇥ Y. Then for any
sequence (xi, yi)ni=1 and ✓? 2 ⇥,

Regn( bPVovk
n,⌘ , p✓?)  5

d

⌘
log

✓
Lip`(RB)n

d
+ e

◆
.

Using Corollary 4 and Theorem 1, we see that the
aggregating algorithm typically provides a stronger
convergence guarantee than algorithms constrained to
{p✓}✓2⇥ can attain. In each of Examples 1–2, the
lower bounds necessarily suffer exponential dependence

exp(⌦(1)RB) as n!1, and so as long as the Lipschitz
constant Lip`(RB) is not super-exponential in RB,
Corollary 4 guarantees better convergence. Even more,
in some cases—for example, when using the general
(potentially non-convex in ✓) losses as in Sec. 2.3—even
for fixed radii R,B we have

p
nLin(`,Y, R,B, n, �)!

1 as n!1. In this case, Corollary 4 even guarantees
a better asymptotic rate in n.

3.1 Lower bounds for arbitrary improper

algorithms

An important question is whether the Aggregating
Algorithm 1 achieves optimal rates when the misspecifi-
cation parameter � changes. As the coming Theorem 5
shows, Corollary 4 is tight to within logarithmic fac-
tors, as we can show an (asymptotic) lower bound
of d/n even for well-specified families of generalized
linear models. The theorem also shows that while
playing in the convex hull of a parameterized family
{p✓}✓2⇥ allows more powerful mechanisms, in natu-
ral (well-specified) scenarios, this extra power is no
panacea: the upper bound on the risk of the Aggregat-
ing Algorithm 1 is tight to a logarithmic factor over
all algorithms that may play arbitrary elements in the
convex hull (or even algorithms playing any probability
distribution). Indeed, let �all be the collection of all
probability distributions on Y | X, so that an algo-
rithm may play an arbitrary distribution (which is of
course larger than Conv{p✓}✓2⇥). We then take the
risk to be the expected logarithmic loss, where for a
conditional distribution p(y | x) we define

RiskP (p) = �EP [log p(Y | X)],

and we let Risk?P = infp RiskP (p) be the smallest risk
across all predictive distributions p(y | x). When the
models p✓ are not misspecified, i.e., � = 0, we have
Risk?P✓

= RiskP✓(p✓), and we have the following lower
bound.

Theorem 5. Let {p✓}✓2⇥ be a generalized linear model
of the form

dP✓(y | x) = exp(y✓Tx�A(✓Tx))d⌫(y),

where ⌫ is a base measure and X ⇠ Uni({�1, 1}d), 0
is in the interior of domA, and let ⇥ contain 0 in
its interior. Then for the log loss Llog, there exists a
numerical constant c > 0 such that for all large enough
n

Mn(⇥,�all, 0) = inf
bpn

sup
✓2⇥

En
P✓

⇥
RiskP✓ (bpn)� Risk?P✓

⇤

� c
d

n
.

See Appendix B.4 for the proof of Theorem 5. As we
essentially only care about the conditional distribution
p✓(y | x), here we chose the marginal over X to be
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uniform for convenience; other choices suffice as well.

Comparing the lower bound Theorem 5 provided with
the regret bound in Corollary 4, we see that holding
RB constant (and Lip`(RB) constant) then for risk
functional RiskP (p) := EP [Llog(p(· | X), Y )], a stan-
dard online-to-batch conversion (or Jensen’s inequality)
implies

E

RiskP (bpVovkn )� inf

✓?2⇥
RiskP (p

?
✓)

�
 (5 + o(1))

d log n

n

as n ! 1, where o(1) ! 0 hides problem-dependent
constants. To within a factor O(1) log n, then, Vovk’s
aggregating algorithm is generally unimprovable.

3.2 Asymptotically aggregating to point

predictions

While in general the ability to play elements in
Conv{p✓}✓2⇥ could (in principle) yield much better
performance than any individual element p✓ for ✓ 2 ⇥,
in a sense, the aggregating algorithm is only performing
a small amount of averaging to substantially increase
its robustness. Indeed, when the risk minimization
problem at hand is classical—the loss has continuous
derivatives and the population risk RiskP is strongly
convex in a neighborhood of its minimizer ✓?—then
we can show that Vovk’s aggregating algorithm asymp-
totically plays points very close to {p✓}✓2⇥. That
is, in “nice” cases, the aggregating algorithm more or
less behaves as the empirical risk minimizer, which is
asymptotically optimal (Duchi and Ruan, 2020). In
these cases, stochastic gradient methods (which are
necessarily proper, as they optimizer over ✓) similarly
achieve optimal asymptotic rates (Duchi and Ruan,
2020), and sometimes similarly strong finite sample
rates (Bach, 2014).

We make this more formal via a generalized Bernstein
von-Mises Theorem, which shows that when a unique
minimizer exists, the density dbµVovk

n,⌘ in Alg. 1 converges
to a normal density centered at the empirical minimizer
b✓n 2 ⇥ with covariance operator shrinking at the rate
1/n. Such posterior limiting normality results are rel-
atively well-known: (see van der Vaart (1998); Kleijn
and Van der Vaart (2012)). In our setting, rather than
considering just the posterior distribution, we consider
distributions over ⇥ of the form of bµVovk

n,⌘ ; when L is the
log-loss, this is the usual posterior. We first define the
class of families and losses for which Theorem 6 holds.
Definition 3.1. The family and loss pair ({p✓}✓2⇥, L)
is Bernstein von-Mises generalizable if there exist
✏1, ✏2 > 0 such that the risk RiskP (✓) := EP [L(P✓(Y |
X))] satisfies the following conditions:

(i) The minimizer ✓? = argmin✓2⇥ RiskP (✓)
is unique and has positive definite Hessian

r2RiskP (✓?) � 0.

(ii) On the ✏1-ball around ✓?, ✓? + ✏1Bd
2, the loss

✓ 7! L(P✓(· | x), y) is MLip,0(x, y) Lipschitz
and has MLip,2(x, y)-Lipschitz Hessian, where
E[MLip,0(X,Y )2] < 1 and E[MLip,2(X,Y )] <
1.

(iii) For all ✓ 2 ⇥ \ {✓? + ✏1Bd
2}, we have RiskP (✓) �

RiskP (✓?) + ✏2.

When ✓ 7! L(P✓(· | x), y) is convex, condition (iii) is
redundant given the others, and the other conditions of
Definition 3.1 hold for generalized linear models. Under
the conditions Definition 3.1 specifies, we then obtain
the following convergence guarantee, whose proof we
provide in Appendix B.5.
Theorem 6 (Generalized Bernstein von-Mises). Let
the pair ({p✓}✓2⇥, L) be Bernstein von-Mises gener-
alizable (Definition 3.1), and for (Xi, Yi)

iid⇠ P define
Riskn(✓) = 1

n

Pn
i=1 L(P✓(· | Xi), Yi). Assume ⇥ is

compact and ✓? 2 int⇥. Let b✓n := argmin✓2⇥ Riskn(✓)
and bµVovk

n,⌘ be as defined in Vovk’s Aggregating Algorithm.
Then����bµ

Vovk
n,⌘ � N

✓
b✓n,

1

n
r2Riskn(b✓n)�1

◆����
TV

a.s.�!
P

0.

Using the theorem and its proof, we can also (under
a minor continuity condition) establish a convergence
guarantee showing roughly that the aggregating al-
gorithm asymptotically plays essentially the empirical
point estimator. We consider the following assumption.
Assumption 1. There exists a neighborhood B
of ✓? such that the log-likelihood ✓ 7! log p✓(y |
x) is Lipp(x, y)-Lipschitz on B, and Lipp(x) :=
sup✓2B

R
Y Lipp(x, y)dP✓(y | x) <1 for each x.

We then have the following corollary, whose proof we
provide in Appendix B.6.
Corollary 7. In addition to the conditions of Theo-
rem 6, let Assumption 1 hold. Then for each x 2 X ,

��� bPVovk
n,⌘ (· | x)� Pb✓n(· | x)

���
TV

a.s.! 0.

Roughly, Theorem 6 and Corollary 7 show that the ag-
gregating algorithm 1 is asymptotically constrained
to making predictions in {p✓}✓2⇥, at least in non-
adversarial cases. In a sense, then, the aggregating algo-
rithm 1 is not taking full advantage of its improperness:
while it can return any distribution in Conv{p✓}✓2⇥,
it (eventually) is nearly playing elements of {p✓}✓2⇥.
While this is optimal in some cases (Theorem 5), the
question of how to efficiently and optimally return pre-
dictions in Conv{p✓}✓2⇥ remains open and a natural
direction for future work.
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4 Experiments and Implementation
Details

Before discussing our experiments, we make a few re-
marks on the computability of Vovk’s Aggregating
Algorithm. Whenever L(P✓(· | x), y) is convex in ✓ and
�-smooth, there exists an algorithm Foster et al. (2018)
approximating bPVovk

n,⌘ that achieves the regret bound in
Corollary 4 to within an additive factor 1/n, and the
algorithm is polynomial in (RB, d,Lip`(RB), n). Yet
these algorithms are still computationally intensive; as-
suming our theoretical results are predictive of actual
performance, one might expect that aggregating-type
strategies could still yield improvements over standard
empirical risk minimization. Indeed, Jézéquel et al.
(2020) take the computational difficulty of the approx-
imating algorithms in the paper Foster et al. (2018)
as motivation to develop an efficient improper learn-
ing algorithm for the special case of logistic regression,
which (roughly) hedges its predictions by pretending to
receive both positive and negative examples in future
time steps, constructing a loss that depends explic-
itly on the new data xt; Jézéquel et al. show that it
achieves a regret bound with a multiplicative RB factor
of the logarithmic regret in Corollary 4. It is unclear
how to extend this approach to situations in which
the cardinality |Y| of Y is much larger than 1, though
this is an interesting question for future work. In our
experiments, we take a heuristic approach, focusing on
the risk minimization setting, and perform aggregation
of subsampled maximum likelihood estimators; this
approach is reminiscent of the subsampled and boot-
strapped estimators Zhang et al. (2013); Kleiner et al.
(2012), but we use aggregation as in Alg. 1 to weight
predictions. We call the procedure AHA (A Heuristic
Aggregation) for short.

Algorithm 2 AHA (A Heuristic Aggregation)
Input: {(xi, yi)}ni=1 and parameter radius B
Output: Pmix

n,B
For k = 1, · · · ,K

Sk  random subset of the data of size
|Sk| = 2n/3

b✓kn  argmink✓kB

P
(x,y)2Sk

L(p✓(y | x))
µk
n  exp(

Pn
i=1�L(pb✓k

n
(yi | xi)))

Pmix
n,B  

�PK
k=1 µ

k
npb✓k

n

�
/
�PK

k=1 µ
k
n

�

Our results suggest that when performing a probabilis-
tic forecasting task with parameterized model {p✓}✓2⇥,
returning the mixture distribution from Vovk’s Aggre-
gating Algorithm should be more robust to misspeci-
fication than an algorithm which returns Pb✓; we thus
expect Algorithm 2 should exhibit more robustness
as well. To that end, we consider two experiments:

the first a synthetic experiment with linear regression,
where we may explicitly control the degree of misspeci-
fication, and the second a logistic regression problem
on real digit recognition data, where we mix two popu-
lations and we expect (roughly) that a model should
do well on one, but may be missing important aspects
of the other.

Improper Linear Regression For the synthetic
data, we let X 2 Rd be an observed covariate and
H 2 R a hidden variable, and for ⌧ 2 R+ we let y have
density

p⌧ (y | X = x,H = h) =
1p
2⇡

e�
1
2 (y�(xT ✓?+⌧h)2 .

We fix the dimension d = 10 and let ✓? 2 Rd

be uniform on Sd�1; we generate data by drawing
(X,H) ⇠ N(0, Id)⇥ N(0, 1). We then use the paramet-
ric model {p✓}✓2⇥ to model Y | X = x ⇠ N(✓Tx, 1),
which is misspecified when ⌧ > 0. As ⌧ grows larger—
increasing misspecification—we expect greater differ-
ences between the M.L.E. b✓n and the AHA Algorithm 2.

Logistic Regression We consider the MNIST hand-
written digits LeCun et al. (1995), where we mix
in typed digits; as our base featurization, we use a
standard 7-layer convolutional neural network trained
on the MNIST data, so that the typewritten digits
(roughly) represent a misspecified sub-population, and
as the proportion ⌧ of typewritten digits increases, we
expect increasing misspecification. We consider a sim-
plified binary version of this problem, where we seek
to distinguish digits 3 and 8, and we use a logistic
regression model p✓(y | x) = (1 + e�yxT ✓)�1 with log
loss.

Experiment For both linear regression and logistic
regression, we conduct the following experiment: For
a training sample size n and parameter radius B, we
compute the constrained MLE

b✓n := argmin
k✓kB

nX

i=1

L(P✓(· | xi), yi)

and return Pb✓n , and also compute Pmix
n,B as the out-

put of Alg. 2 with resampling size K = 20 for the
improper linear regression experiment and K = 10 for
the MNIST experiment. We use a held-out test set
of size N = 5000 to approximate the risk Risk(p) of
the returned conditional probability p. We plot how
this approximated risk decays as we increase training
sample size n up to 1000 for improper linear regression
and up to 200 for logistic regression.

Within each experiment, we implement several reg-
ularization schedules. We test B = c, B = c log n,
B = c

p
n, and B = cn for c 2 {0.1, 0.2, 1}. In Figures
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(a) ⌧ = 0 (b) ⌧ = 2.5 (c) ⌧ = 5

Figure 1. Linear Regression, Synthetic Data. As misspecification ⌧ increases, the improper learning algorithm

AHA (Alg. 2) outperforms the best constrained MLE.

(a) ⌧ = 0% (b) ⌧ = 5% (c) ⌧ = 20%

Figure 2. Logistic Regression, MNIST Data mixed with typed data. As misspecification ⌧ increases, the improper

learning algorithm AHA’s performance remains stable, while the best regularized MLE’s performance worsens.

1 and 2 we only show the results for the best choice
of B according to the performance of the Maximum
Likelihood Estimator. We repeat the experiment 100
times on the synthetic data and 10 times on the real
dataset and average the results. We run the exper-
iment for ⌧ = 0, 2.5, 5 on the synthetic dataset and
⌧ = 0%, 5%, 20% for the real dataset.

The results of Figure 1 and Figure 2 are consistent
with our expectations: as the magnitude of misspeci-
fication (as measured by ⌧ � 0) increases, the gap in
performance between the maximum likelihood estima-
tor and the aggregated solution increases. Even more,
if we may be so bold, the results suggest that using a
subsampling and aggregation strategy as in Alg. 2 may
be a useful primitive for other learning problems; we
leave this as a possibility for future work.

5 Discussion

This work takes steps toward addressing the funda-
mental and practically important challenge of the cost
of inaccurate modeling. While modeling assumptions
are ubiquitous throughout statistics, machine learning,
and data science—allowing analyses that demonstrate
fast convergence rates, efficient algorithms, and in-
terpretable conclusions—most such assumptions are
(at least) slightly flawed. This misspecification can

have downsides: in addition to perhaps faulty con-
clusions from a faulty model, even convergence rates
of estimators may degrade. This adds a wrinkle to
data-modeling tasks: not only must we choose a model
that closely fits the data, but we must be mindful of
the cost of model misspecification, as this cost is not
uniform across models. Our development of the lin-
earity constant Lin(`,Y, R,B, n, �) in Eq. (6) of the
model family gives a reasonably concise description of
potential sensitivity to misspecification for many model
families.

Yet as we additionally consider, for probabilistic predic-
tion problems aggregation strategies can at least ame-
liorate these challenges. While aggregation approaches
are familiar throughout statistical learning Tsybakov
(2004); Dalalyan and Tsybakov (2008); Van Erven et al.
(2015), we believe their potential for improvement be-
yond “optimal” point estimators remains unexplored;
our results provide one lens for viewing this problem.
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