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Abstract—We extend network tomography to traffic flows that
are not necessarily Poisson random processes. This assumption
has governed the field since its inception in 1996 by Y. Vardi. We
allow the distribution of the packet count of each traffic flow in a
given time interval to be a mixture of Poisson random variables.
Both discrete as well as continuous mixtures are studied. For
the latter case, we focus on mixed Poisson distributions with
Gamma mixing distribution. As is well known, this mixed
Poisson distribution is the negative binomial distribution. Other
mixing distributions, such as Wald or the inverse Gaussian
distribution can be used. Mixture distributions are overdispersed
with variance larger than the mean. Thus, they are more suitable
for Internet traffic than the Poisson model. We develop a second-
order moment matching approach for estimating the mean traffic
rate for each source-destination pair using least squares and
the minimum I-divergence iterative procedure. We demonstrate
the performance of the proposed approach by several numerical
examples. The results show that the averaged normalized mean
squared error in rate estimation is of the same order as in
the classic Poisson based network tomography. Furthermore, no
degradation in performance was observed when traffic rates are
Poisson but Poisson mixtures are assumed.

Index Terms—Network traffic, network tomography, inverse
problem, mixed Poisson distribution.

I. INTRODUCTION

In network tomography the rates of traffic flows on source-
destination pairs are estimated from traffic flows over links of
the networks. Traffic flow rates are measured, for example, by
the number of packets or messages per second. Traffic flows
are commonly assumed to be independent Poisson random
processes. This network tomography problem was first formu-
lated by Vardi [1]. A related formulation in which the rates
of independent Poisson link traffic flows are estimated from
input/output traffic flows was studied earlier by Vanderbei and
Iannone [2]. The two formulations lead to the same set of
underdetermined linear equations for the two inverse problems.

We focus here on Vardi’s formulation as applied to networks
operating under a deterministic routing regime and where link
measurements are passive and require no probes. Under this
regime, a fixed path is assigned to a traffic flow associated
with each source-destination pair. The traffic flow over a link
is the superposition of all source-destination traffic flows that
share that link. Thus, link traffic flows are also Poisson but

This work was supported in part by the U.S. National Science Foundation
under Grant CCF-1717033.

are not independent. The dependence of link traffic flows ren-
ders maximum likelihood estimation of the rates impractical.
Instead, moment matching rate estimation has dominated the
field. A thorough Bayesian approach to Vardi’s problem was
developed by Tebaldi and West [3]. Other closely related work
to Vardi’s approach appeared in [4], [5], [6] where maximum
likelihood estimation of the source-destination rates from link
data was implemented under a Gaussian rather than a Poisson
traffic model.

The Poisson assumption simplifies the network tomography
problem but it is considered unrealistic since, for example,
it does not account for bursty traffic. In this paper we take
a first step in relaxing this assumption and assume that
the distribution of each source-destination traffic flow count
is a mixture of Poisson distributions. Mixture distributions
are overdispersed with variance larger than their mean. For
Poisson traffic flows, the mean equals the variance. In this
paper, both continuous and discrete mixtures are studied.
For the continuous mixture we assume a Gamma mixing
distribution. Thus, the distribution of the source-destination
traffic flow count becomes negative binomial, see, e.g., [7]. A
negative binomial road traffic flow model was advocated in [8]
irrespective of any mixture model. A Bayesian approach for
characterization of transportation origin-destination matrices
using Poisson mixtures was developed in [9]. The goal of
network tomography under mixed Poisson traffic flows is to es-
timate the mean source-destination traffic rate. We use second-
order moment matching to estimate the mean traffic rate for
each source-destination pair of interest. The least squares
solution and the minimum I-divergence iterative solution of
the moment matching equations are studied in this work [10],
[11], [12], [1].

The plan for this paper is as follows. In Section II we
present network tomography under the continuous mixed Pois-
son traffic flow count distribution. In Section III we discuss
network tomography for discrete Poisson mixture traffic flows.
We present our numerical results in Section IV. Concluding
remarks are given in Section V.

II. CONTINUOUS MIXTURE OF POISSON DISTRIBUTIONS

In this section we present our moment matching approach
when source-destination traffic flow counts are assumed to be
characterized according to a continuous mixture of Poisson
distributions.



Let K be a scalar random variable with conditional Poisson
probability mass function (pmf) given its mean E{K} = λ.
Suppose that λ is a realization of a Gamma-distributed random
variable Λ with shape parameter α and scale parameter 1/ρ.
That is, the conditional pmf of K is given by

pK|Λ(k | λ) =
e−λλk

k!
, k = 0, 1, 2, . . . , (1)

and the Gamma probability density function (pdf) is given by

fΛ(λ) =
ρe−ρλ(ρλ)α−1

Γ(α)
(2)

where

Γ(α) =

∫ ∞
0

e−λλα−1dλ, (3)

and it satisfies Γ(α) = αΓ(α− 1), α ≥ 1, Γ(0) = 1. We also
have

E{Λ} =
α

ρ
and var(Λ) =

α

ρ2
. (4)

We denote Λ̄ = E{Λ}. It is well known that the unconditional
pmf of K is negative binomial with parameter (β, r) where

β =
ρ

1 + ρ
and r = α. (5)

The negative binomial pmf is given by

P(K = k) =

(
k + r − 1

r − 1

)
βr(1− β)k. (6)

From (4) and (5),

Λ̄ = r
1− β
β

. (7)

This is the quantity of interest in network tomography. It
represents the average rate of a source-destination traffic under
mixed Poisson regime with Gamma prior.

Define a scalar random variable U = K+ r. The pmf of U
is

P(U = n) =

(
n− 1

r − 1

)
βr(1− β)n−r, n = r, r + 1, . . . . (8)

The random variable U represents the time of occurrence of
the rth success in a sequence of independent Bernoulli trials
with probability of success β. For this random variable,

ξu := E{U} =
r

β

ηu := var(U) =
r

β

1− β
β

. (9)

Note that ηu > ξu when β < .5. For this reason, the mixed
Poisson model is refereed to as “overdispersed.” In the Poisson
model ηu = ξu. From (9) and (7),

β =
ξu

ξu + ηu
(10)

and

Λ̄ =
ξuηu
ξu + ηu

. (11)

This expression allows us to estimate Λ̄ from estimates of ξu
and ηu.

Returning to the network tomography problem, consider
a network with L source-destination pairs, M links, and a
routing matrix A = {aij} where aij ∈ {0, 1}, i = 1, . . . ,M ,
and j = 1, . . . , L. Let Xj denote traffic flow over source-
destination pair j, and assume that {X1, . . . , XL} are sta-
tistically independent mixed Poisson random variables with
independent Gamma priors given by {fΛ1

(·), . . . , fΛL(·)},
respectively. Thus, {X1, . . . , XL} are statistically independent
negative binomial random variables. The parameter of Xj is
defined similarly to the parameter of U and is denoted by
(βj , rj). The mean rate of traffic flow on the jth source-
destination pair is denoted by Λ̄j = E{Λj}. Let {Y1, . . . , YM}
denote traffic flows over the M links. We collectively describe
source-destination traffic flows as an L× 1 vector X and the
link traffic flows as an M × 1 vector Y . We have Y = AX .

Let ξ = E{X} denote the mean of X . Let vec[·] denote
vectorization by rows of a matrix. Let

η = vec
[
E{(X − ξ)(X − ξ)

′
}
]

= E{(X − ξ)⊗ (X − ξ)} (12)

denote the vectorized covariance of X where ′ denotes vector
transpose and ⊗ denotes the Kronecker product. For the
second line of (12) we have used the identity vec[uv′] =
v ⊗ u, which holds for any two column vectors u and v. Let
µ1(Y ) and µ2(Y ) denote, respectively, the empirical mean
and the vectorized empirical covariance of the centralized
vector Y . These statistics are estimated from N realizations
{y(1), . . . , y(N)} of the vector Y as follows:

µ1(Y ) =
1

N

N∑
n=1

y(n)

µ2(Y ) =
1

N

N∑
n=1

(y(n)− µ1(Y ))⊗ (y(n)− µ1(Y )). (13)

Following the moment matching approach in [1], [13], we seek
{ξ, η} that satisfies the following moment matching equation:(

µ1(Y )

µ2(Y )

)
=

[
A 0
0 A�A

](
ξ

η

)
(14)

where � denotes a Khatri-Rao product and 0 denotes a null
matrix of suitable dimensions. The RHS of (14) equals the
concatenated mean and vectorized covariance of Y . Let A =
[a1, . . . , aL] where {aj} denote the columns of A. The Khatri-
Rao product is defined by

A�A := [a1 ⊗ a1, a2 ⊗ a2, . . . , aL ⊗ aL]. (15)

Let ξ̂ and η̂ denote, respectively, estimates of ξ and η as
obtained from (14). Using (11), we can estimate the mean
rate for source-destination j from ξ̂ and η̂ as follows:

ˆ̄Λj =
ξ̂j η̂j

ξ̂j + η̂j
, j = 1, . . . , L. (16)



Following [13], implementation of (14) requires removal of
null and duplicate rows in A�A. Such rows may exist due to
the symmetry of the covariance matrix and since A is a zero-
one matrix. Also, rows with negative empirical covariance
estimates in (13) ought to be removed. We denote the resulting
row-reduced matrix in (14) by A2, and the row-reduced vector
on the LHS of (14) by ψ̂(Y ). Letting ζ = col{ξ, η}, the
moment matching matrix equation (14) becomes

ψ̂2(Y ) = A2ζ. (17)

We consider two approaches to estimate (ξ, η) from (17).
These are the least squares approach and the minimum I-
divergence iterative approach [11], [12], [1], [10]. Least
squares estimation of ζ is accomplished here by applying
Tikhonov’s regularized least squares solution to the linear
equation (17). The unique Tikhonov regularized least squares
solution for the possibly inconsistent set of equations (14),
when the matrix containing A2 is not necessarily full column
rank is given by [14, p. 51]

ζ̂ = (A∗2A2 + γI)−1A∗2 ψ̂2(Y ) (18)

for some γ > 0. Note that the regularized estimator applies to
a skinny as well as a fat matrix A2.

The least squares estimates of the components of col{ξ, η}
are not guaranteed to be non-negative. Hence negative rate
estimates are possible with the least squares estimator. Non-
negative estimates can be obtained by using non-negative least
squares optimization [15]. This approach did not lead to good
results in our earlier work [13]. Instead, we have substituted
negative estimates in our numeric examples with the value of
0.001. This approach resulted in [13] in substantially lower
MSE compared to using the constrained optimization algo-
rithm of [15, p. 161]. The performance of the algorithm should
not be affected by this substitution since usually negative
estimates are rare at our working point.

An alternative approach is to use the minimum I-divergence
estimator of ζ, which guarantees non-negative estimates of the
mean rate. Suppose that there are Ma equations in (17). Let
ζold
j denote a current estimate of the jth component of ζ, and

let ζnew
j denote the new estimate of that component at the

conclusion of the iteration. Let A2 = {bij , i = 1, . . . ,Ma; j =
1, . . . , 2L}. Let (A2ζ

old)i denote the ith component of A2ζ
old.

Similarly, let ψ̂i(Y ) denote the ith component of ψ̂(Y ). The
iteration is given by

ζnew
j = ζold

j

Ma∑
i=1

b̄ij
ψ̂i(Y )

(A2ζold)i
where b̄ij :=

bij∑Ma

t=1 btj
, (19)

for j = 1, . . . , L. This iteration was shown to converge
monotonically to the minimizer of Csiszár’s I-divergence [10]
between the two sides of (17) [12].

The computational effort in the moment matching approach
consists of the effort to construct and solve the set of equations
(17). The number of equations in this set is denoted by n2(M)
and it satisfies n2(M)�M +M2. Construction of the right
hand side of (17) requires M2L operations. Construction of

the left hand side of (17) requires M2N operations where
N is the number of vectors used to estimate the empirical
moments. Solving the equations requires effort that depends
only on n2(M) and L. The combined effort is dominated by
M2N since N must be large to produce meaningful empirical
moment estimates. Thus the computational effort of the mean
rate estimation approach is approximately linear in N when
N is large, which is always the case.

III. DISCRETE MIXTURES OF POISSON DISTRIBUTIONS

Let Xj be a scalar random variable with a discrete Poisson
mixture pmf on the set of non-negative integers. Let Zj
denote the random index of the mixture component which
takes values in {1, 2, . . . , κ} with probabilities {βj1, . . . , βjκ},
respectively. Thus, Xj | Zj = i is a Poisson random variable
with mean λji. The pmf of Xj is given by

pXj (k) =
κ∑
i=1

βji pXj |Zj (k | i) =
κ∑
i=1

βjie
−λji λ

k
ji

k!
. (20)

The mean of Xj is given by

ξj := E{Xj} =

κ∑
i=1

βjiλji (21)

and the variance follows from the total variance theorem and
is given by

ηj := var(E{Xj | Zj}) + E{var(Xj | Zj)}

=

κ∑
i=1

βjiλ
2
ji − ξ2

j + ξj . (22)

Letting

υj =
κ∑
i=1

βjiλ
2
ji − ξ2

j , (23)

we can rewrite (22) as

ηj = υj + ξj . (24)

Proceeding as in the continuous mixture case, we define a
column vector X of source-destination traffic flows whose jth
component Xj is defined as above. The mean rate vector is
ξ = E{X}. We also define the vector Y of link traffic flows
and invoke the relation Y = AX . Finally, we define a vector
υ whose jth component is given by υj . Then, the moment
matching equation becomes(

µ1(Y )

µ2(Y )

)
=

[
A 0

A�A A�A

](
ξ

υ

)
. (25)

The parameter of interest in this case is the mean rate vector
ξ.

The moment matching equation (25) reduces to the moment
matching equation in [13] when traffic flows are Poisson rather
than mixtures of Poisson distributions. In [13] the rate vector
ξ satisfies (

µ1(Y )

µ2(Y )

)
=

(
A

A�A

)
ξ. (26)



Eq. (25) coincides with this equation when υ = 0. We will
elaborate further on this important point in the next section.
Equations (25) and (26) undergo row reduction as in Section II.

IV. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the mean
rate estimators for negative binomial sources and for discrete
Poisson mixture sources. The proposed approach was applied
to the NSFnet [16] whose topology is shown in Fig. 1. The
network consists of 14 nodes and 21 bidirectional links. Hence,
it contains L = 14 · 13/2 = 91 source-destination pairs.
A network of this size may represent a private network, a
transportation network or a subnetwork of interest of a large-
scale network. The link weights in Fig. 1 may be used to
determine k ≥ 1 shortest paths for each source-destination pair
[17]. Otherwise, they play no role in the traffic rate estimation
problem. We use here k = 1 and hence the number of source-
destination paths equals the number of source-destination
pairs.

For the continuous Poisson mixture traffic flows we have
estimated the mean source-destination rates {Λ̄1, . . . , Λ̄L} in
T = 500 independent runs. In each run we have generated
a sequence of L real random numbers uniformly distributed
on [0, 4]. This sequence constitutes the L source-destination
mean rates. We also generated a sequence of L random
integers {rj , j = 1, . . . , L} uniformly distributed on [2, 6]
where each represents the time of the rth success in a source-
destination pair. Using these sequences, we obtained from (7)
the parameter βj of the negative binomial pmf (8) for the jth
source-destination pair as follows:

βj =
rj

rj + Λ̄j
. (27)

Now using L pairs {(rj , βj), j = 1, . . . , L} of the parameters
of the negative binomial traffic flows we generated N statis-
tically independent identically distributed vectors {X} which
were subsequently transformed into the vectors {Y = AX}
using the assumed known routing matrix A. These N statis-
tically independent identically distributed link traffic vectors
were used in (13) to generate the empirical moments. We
experimented with N = 5000, N = 10000 and N = 20000
vectors. The empirical moments were used in (18) for least
squares estimation, and in (19) for minimum I-divergence rate
estimation. The estimates, say, {ξ̂, η̂} were subsequently used
in (16) and yielded mean rate estimates { ˆ̄Λj} for the L source-
destination pairs. The regularization parameter in (18) was
set to γ = .0005 in this work. The iteration was initialized
uniformly with all rates set to .1. It was terminated after 300
iterations.

The mean rate estimate ˆ̄Λj was contrasted with the true
mean rate Λ̄j as follows. We denote by Λ̄j(t) and ˆ̄Λj(t),
respectively, the mean rate of the jth source-destination pair
and its estimate at the tth run where j = 1, . . . , L and

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2: 0.0841 0.0750 0.0703
Percent Neg. Est.: 4.3648 3.2066 2.3868

TABLE I
CONTINUOUS MIXED POISSON TRAFFIC FLOWS WITH MEAN RATE

{Λ̄j} ESTIMATED BY THE LEAST SQUARES ESTIMATOR (18) AND (16).

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2: 0.0362 0.0263 0.0214
Percent Neg. Est.: 0 0 0

TABLE II
CONTINUOUS MIXED POISSON TRAFFIC FLOWS WITH MEAN RATE

{Λ̄j} ESTIMATED ITERATIVELY USING (19) AND (16).

t = 1, . . . , T . For each estimate we evaluated the normalized
MSE defined by

ν2
j =

1
T

∑T
t=1(Λ̄j(t)− ˆ̄Λj(t))

2

1
T

∑T
t=1(Λ̄j(t))2

(28)

and the averaged normalized MSE defined by

ν2 =
1

L

L∑
j=1

ν2
j . (29)

The MSE in estimating Λ̄j given by the numerator of (28) is
approximately

ν2
j

1

T

T∑
t=1

(Λ̄j(t))
2 ≈ ν2

j · E{Λ̄2
j} (30)

when T is sufficiently large. A normalized MSE is appropriate
here since new mean rates are used in each run.

A similar evaluation procedure was applied to the discrete
Poisson mixture traffic flow. The least squares estimator (18)
and the minimum I-divergence (19) were applied to the row-
reduced version of (25) where now the mean rate estimates
are given by the components of ξ̂ = {ξ̂1, . . . , ξ̂L} and ξ̂
constitutes the first L components of ζ̂. We demonstrate
the results for a mixture of four Poisson distributions with
mixing probabilities drawn randomly from [0, 1] and rates
drawn randomly from [0, 4] in each of the 500 runs. We also
examined a mismatched scenario in which the mean rate of
a Poisson source-destination traffic flow is estimated by the
approach outlined in this paper under the false assumption
that it actually is a discrete Poisson mixture traffic flow.
This is an important case since we do not want to sacrifice
performance when the actual distribution of the traffic flow is
indeed Poisson.

We next present our numerical results. Table I provides
the averaged normalized MSE ν2 for the continuous mixed
Poisson as a function of N for the least squares estimator
(18) in conjunction with (16). The table also shows the per-
centage of negative least squares mean rate estimates. Table II
provides similar results for the minimum I-divergence iterative
approach. Tables III and IV present the results for the discrete
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Fig. 1. NSFnet topology with link weights as in [16, Fig. 4].

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2: 0.0917 0.0828 0.0782
Percent Neg. Est.: 10.6484 9.3648 8.7451

TABLE III
DISCRETE (4) MIXED POISSON TRAFFIC FLOWS WITH MEAN RATE

{Λ̄j} ESTIMATED BY THE LEAST SQUARES ESTIMATOR (18).

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2: 0.1051 0.0903 0.0826
Percent Neg. Est.: 0 0 0

TABLE IV
DISCRETE (4) MIXED POISSON TRAFFIC FLOWS WITH MEAN RATE

{Λ̄j} ESTIMATED ITERATIVELY USING (19).

Poisson mixture traffic flows in the same format as in Tables
I and II, respectively.

The numerical results in Tables I and II for the continuous
mixed traffic flows show that the iterative approach outper-
forms the least squares approach with its significantly lower
averaged normalized MSE. Furthermore, the rate estimates in
the iterative approach are always non-negative. The results in
Tables III and IV show for the discrete Poisson mixtures
that the two estimation approaches provide similar averaged
normalized MSE while the iterative approach is guaranteed to
provide non-negative rate estimates. In all cases, the perfor-
mance improves as N increases. This improves the accuracy
of the empirical estimates and results in lower averaged
normalized MSE and less frequent negative estimates by the
least squares estimator.

The next two tables examine the performance of the pro-
posed approach when applied to Poisson traffic flows. The
studies of network tomography to date have exclusively fo-
cused on Poisson traffic flows following the seminal work
of Vardi [1]. This case corresponds to a single component
Poisson mixture. The moment matching equation for a single
component Poisson mixture is given by (26) while the moment
matching equation for the Poisson mixture is given in (25).
Here we compare the rate estimates of the Poisson traffic flows
as obtained from each of the two equations. This comparison
will show if there is a degradation in performance when the

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2 (25): 0.0819 0.0771 0.0750
Ave. Nor. MSE ν2 (26): 0.0380 0.0211 0.0109
Percent Neg. Est. in (25): 44.7956 44.4681 44.0945
Percent Neg. Est. in (26): 3.0813 2.1868 1.5868

TABLE V
AVERAGED NORMALIZED MSE ν2 AND PERCENT OF NEGATIVE

ESTIMATES RESULTING FROM LEAST SQUARES ESTIMATION AS APPLIED
TO (25) AND (26) FOR POISSON TRAFFIC FLOWS.

N = 5000 N = 10000 N = 20000

Ave. Nor. MSE ν2 (25): 0.0331 0.0202 0.0138
Ave. Nor. MSE ν2 (26): 0.0363 0.0208 0.0111
Percent Neg. Est. in (25): 0 0 0
Percent Neg. Est. in (26): 0 0 0

TABLE VI
AVERAGED NORMALIZED MSE ν2 AND PERCENT OF NEGATIVE

ESTIMATES RESULTING FROM APPLICATION OF THE ITERATION (19) TO
(25) AND (26) FOR POISSON TRAFFIC FLOWS.

data correspond to Poisson traffic flows but the estimator is
geared towards mixed Poisson traffic flows. In Table V the
rate estimation is based on least squares while in Table VI the
iterative rate estimation from (19) is used. From Tables V and
VI it is evident that the iterative approach of (19) is superior
to the least squares approach in this mismatched estimation
problem. It provides significantly lower averaged normalized
MSE and all rate estimates are non-negative. Furthermore, the
performance of the iterative approach is close to that of the
matched approach when the linear equations (26) that are
suitable for the input Poisson traffic flow counts are used.
Thus, in summary, we conclude from Tables I-VI that the
iterative estimator (19) performs better than the least squares
estimator.

V. CONCLUDING REMARKS

We have extended network tomography to include non-
Poissonian traffic flows in the forms of continuous and dis-
crete mixtures of Poisson distributions. To date, all work on
network tomography has assumed Poisson traffic flows. We
have developed a second-order moment matching approach



for estimating the mean rate of each source-destination traffic
flow. The specific continuous mixture we studied was the
mixed Poisson with Gamma mixing distribution. This model
yields negative binomial traffic flows. The discrete Poisson
mixture comprises a mixture of several Poisson distributions.
We have employed two approaches to estimate the mean
rate from the moment matching equations. We used a least
squares approach and the well known minimum I-divergence
iteration [11], [1], [12], [10]. The approaches were numerically
studied and compared. We have demonstrated the superiority
of the minimum I-divergence iteration over the least squares
approach. We have also examined network tomography under
a mismatched condition where the traffic flows in the networks
were Poisson but network tomography for mixtures of Poisson
distributions was applied. We have demonstrated that there
is essentially no loss in performance in this mismatch and
hence network tomography can only become more accurate
if indeed traffic flows do not obey the Poisson law. While
we have focused on networks with deterministic routing, the
approach is applicable to networks with random routing using
the “super-network” approach of Tebaldi and West [3].

The key property that makes the mixed Poisson distribution
useful is its overdispersion, meaning that its variance is larger
than its mean. This property may be enhanced by using mixing
distributions other than the Gamma. A commonly used mixing
distribution is the inverse Gaussian or the Wald distribution
given by

fΛ(λ) =
1

(2πσ2λ3)1/2
e−

(λ−1)2

2σ2λ , λ > 0, (31)

where σ2 = var(Λ). The mixed Poisson pmf in this case is
given by

pX1
(k) =

∫ ∞
0

e−λµ
(λµ)k

k!
fΛ(λ)dλ (32)

where the conditional mean of the Poisson distribution is λµ.
It follows that [18]

E{X1} = µ and var(X1) = µ+ σ2µ2. (33)

Furthermore, µ and σ2 can be made functions of a regression
parameter. This model provides heavier tails than the negative
binomial mixed Poisson. It was found particularly useful in
characterization of transportation origin-destination matrices
in [9]. Maximum likelihood estimation of the mixed Poisson
inverse Gaussian regression parameters was developed in [18]
where {X} is observable. This is not the case here since we
only observe Y = AX . Hence application of this model would
require moment matching as was done in this paper for the
negative binomial mixed Poisson model. Other examples of
mixed Poisson distributions may be found in [19].
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