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Abstract. While OWL and RDF are by far the most popular logic-
based languages for Semantic Web Ontologies, some well-designed on-
tologies are only available in languages with a much richer expressivity,
such as first-order logic (FOL) or the ISO standard Common Logic. This
inhibits reuse of these ontologies by the wider Semantic Web Commu-
nity. While converting OWL ontologies to FOL is straightforward, the
reverse problem of finding the closest OWL approximation of an FOL
ontology is undecidable. However, for most practical purposes, a “good
enough” OWL approximation need not be perfect to enable wider reuse
by the Semantic Web Community.
This paper outlines such a conversion approach by first normalizing FOL
sentences into a function-free prenex conjunctive normal (FF-PCNF)
that strips away minor syntactic differences and then applying a pattern-
based approach to identify common OWL axioms. It is tested on the over
2,000 FOL ontologies from the Common Logic Ontology Repository.

Keywords: ontology translation · Common Logic · first-order logic ·

Web Ontology Language (OWL) · prenex normal form (PNF)

1 Introduction

Ontologies make knowledge about our world explicit, with uses in a variety
of settings, ranging from conceptual modeling and knowledge management, to
the dissemination of the semantics of data on the web, and to automated rea-
soning that supports knowledge querying, discovery, and integration. Ontologies
amendable to automated reasoning must be specified in a language with machine-
interpretable formal semantics, such as various description logics including the
Web Ontology Language, OWL2 [12,17], first-order logic or Common Logic [13],
or rule languages like SWRL (https://www.w3.org/Submission/SWRL/). The
specific choice of ontology language depends on a number of factors, including
the complexity of the domain that is modeled, the amount of detail that needs to
be expressed (including what kind of relations need to be modeled), the kind and
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complexity of the reasoning that needs to be supported (e.g., verification of the
ontology’s internal consistency or its consistency with large data sets, querying
of data, or only classification tasks), and the required reasoning efficiency. In the
choice of language we make a trade-off between expressivity and tractability [4].
Description logics (see, e.g., [1]) sacrifice some expressivity for decidability or
even tractability while first-order logic and more expressive languages sacrifice
decidability for increased expressivity.

The OWL and OWL2 families of ontology languages [12,17] have become de-
facto standards for representing semantic knowledge to be used for lightweight
reasoning such as classification tasks and consistency checking of a taxonomy.
However, more expressive language, such as full first-order logic (FOL), are ben-
eficial in settings when greater expressivity or flexibility in how knowledge is cap-
tured are paramount. For example, FOL permits use of functions and relations
of arbitrary arity, which are critical for modeling spatio-temporal phenomena
(which often add a temporal parameter to relations), and supports axiomatizing
the interaction between relations in more detail. FOL has found a variety of uses,
including for the specification of foundational ontologies such as DOLCE, BFO
or GFO, for mid-level/generic ontologies (e.g., about spatial and/or temporal
aspects or processes), and for domain reference ontologies such as the Hydro
Foundational Ontology [11]. In many cases, the developed first-order ontologies
primarily serve as reference representations (reference ontologies in the sense
of [11, 14]) that guide integration of ontologies across domains or help extract
lightweight versions for specific purposes (e.g. DOLCE-Lite). But currently, these
lightweight versions must be crafted by hand (see, e.g., [2]) which is not only
costly but is further inhibited by many Semantic Web or domain experts being
less familiar or less confident in working with FOL. Another issue with manually
crafted OWL versions of FOL ontologies is the overhead of having to simulta-
neously maintain an OWL and a FOL version of an ontology and any potential
discrepancies that may result. This motivates the work presented here: we want
to develop an approach to automatically produce OWL versions from existing
FOL ontologies. This will help leverage the significant resources that have al-
ready been invested in developing rigorous, densely axiomatized first-order logic
ontologies and will make them accessible to a broader community of domain
scientists who are more familiar with the OWL notation. It also would make
the knowledge encoded in the FOL ontologies amendable to automated reason-
ing tasks that need to scale by magnitudes beyond what first-order reasoners
currently can accomplish [20].

Because of the undecidability of FOL, computing a maximal OWL approxi-
mation of an FOL ontology is an intractable task that would require reasoning
over its possibly infinite set of theorems. That is why instead of aiming for the
elusive maximal approximation, we more pragmatically aim to efficiently pro-
duce “good enough” approximations. A “good enough” OWL2 ontology only
needs to contain the kind of knowledge that an average OWL2 developer would
have included in a hand-crafted, “native” OWL ontology, i.e. one that has been
originally developed in OWL, for the same domain and scope.
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Fig. 1. Overview of our approach: Sentences are read from a FOL ontology and then
converted to FF-PCNF (1). Once converted, metrics are computed (2) to filter the
FF-PCNF for candidate templates (3) based on pre-computed template metrics. The
sentences are then tested for exact matches against the templates’ FF-PCNF (4). The
matching ones produce OWL axioms (5).

2 Approach

Approximating a first order logic (FOL) ontology into a set of web ontology lan-
guage (OWL) expressions presents multiple issues. The fact that the complexity
of some FOL statements exceeds OWL’s expressivity is not addressed here as
it may require significant ontology re-engineering efforts. But a related issue is
which OWL constructs to actually look for. This is addressed in Sec.

2.1 Common OWL constructs as FOL sentences

FOL provides a very small and generic set of logical connectives, but does not
prescribe or constrain how to logically capture the semantic relationships be-
tween a set of non-logical symbols (i.e., the vocabulary of the domain) [11]. In
contrast, OWL provides a large set of constructs, which are by design closely
aligned with the kind of knowledge that people most commonly want to capture
and which guide how to semantically relate a domain vocabulary. Consider as
example the definition of the class Father from the OWL Primer [12]:

Father SubClassOf IntersectionOf(Man Parent)

In FOL, this could be expressed in multiple ways, for example1:

∀x[Father(x) → Man(x) ∧ Parent(x)]

⇔∀x[¬Man(x) ∨ ¬Parent(x) → ¬Father(x)]

⇔∀x[¬Father(x) ∨ (Man(x) ∧ Parent(x))]

⇔∀x[(¬Father(x) ∨Man(x)) ∧ (¬Father(x) ∨ Parent(x))]

⇔¬∃x[Father(x) ∧ (¬Man(x) ∨ ¬Parent(x))]

⇐∀x[Father(x) ↔ Man(x) ∧ Parent(x)]

In comparison, OWL ontologies are less syntactically variable and heavily rely
on simple cases of the available constructs. We mostly find taxonomic knowl-
edge about classes and relations, domain and range restrictions on relations

1 The last sentence is not logically equivalent but still contains the same subclass
relationship as one direction of the biconditional.
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and classes, and simple properties of relations (reflexivity, symmetry, etc.) while
more complex, nested class and property expressions are used sparingly even
when permitted. A study of 518 OWL ontologies [7] has found that over 90% of
class axioms are simple, meaning that they contain at most three class or prop-
erty names. This observation informs our approach. It suggests starting with the
OWL constructs and translating them to FOL rather than building an inventory
of all the possible ways one could encode an OWL construct in FOL.

As summarized in Table
These templates still cover 97.4% of the simple class axioms from [7] and

many additional role and complex class axioms not further broken down in [7].
Moreover, our restrictions are of no consequence for those OWL2 profiles that
impose more stringent limits in the use of propositional connectives and inverses.

2.2 FF-PCNF for dealing with syntactic variations in FOL

A specific challenge we have to overcome is that FOL is much less syntactically
restricted than OWL as demonstrated by the Father construct. In order to iden-
tify certain OWL constructs, we have to manage this syntactic flexibility. We will
do so using a normal form. Normal forms constrain the structure of an expression
to enable more streamlined sentence processing for automated reasoning tasks.
A normal form for easily comparing FOL expressions to the OWL constructs in
Table

Conjunctive normal form (CNF) is probably the most widely used normal
form in knowledge representation. It represents a FOL sentence as a universally
quantified sentence comprised of a single conjunction over several disjunctive
terms. Such conjunctions over disjunctive terms are attractive for our purposes
because the FOL versions of our OWL templates, with the exceptions of 14 and
17, only contain disjunctions. Thus by breaking a sentence into one big univer-
sally quantified conjunction over a set of disjunctions (the latter are commonly
called “clauses”) we can check each disjunction individually against the OWL
templates. However, conversion to CNF (see, e.g., [4]) removes existential quan-
tifiers during the Skolemization step and renders standard CNF unsuitable for
our purposes. Prenex normal forms (PNF), on the other hand, maintain existen-
tial quantification by pulling out all quantifiers to the very front of the sentence,
called the prenex (e.g. the ∀x∃y portion in Fig.

Function Substitution Within the matrix, all n-ary functions are substituted by
new (n+1)-ary predicates. Any occurrence of the function symbol in an atom
is replaced by a conjunction over two terms: (1) the old atom with the func-
tional term substituted by a new universally quantified variable and (2) the new
(n+1)-ary predicate over the function’s nested terms and the newly introduced
variable. To maintain satisfiability two new sentences need to be added to en-
sure that the new (n+1)-ary predicates are indeed functional in their behaviour:
(a) ∀−→x ∃yPf (

−→x , y) (there is some result for every combination of inputs of the
function) and (b) ∀−→x , y, z[Pf (

−→x , y) ∧ Pf (
−→x , z) → y = z] (there is at most one

result for any combination of inputs of the function). Note that these sentences
do not need to be explicitly added to our FF-PCNF sentences; instead we can
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∀x[A(x) → ∃y[¬(B(x, y) ∨ ¬D(y))]] (1a)

≡ ∀x[¬A(x) ∨ ∃y[¬(B(x, y) ∨ ¬D(y))]] (1b)

≡ ∀x[¬A(x) ∨ ∃y[B(x, y) ∧D(y)]] (1c)

≡ ∀x∃y[¬A(x) ∨ (B(x, y) ∧D(y))] (1d)

≡ ∀x∃y[(¬A(x) ∨B(x, y)) ∧ (¬A(x) ∨D(y))] (1e: FF-PCNF)

≡ ∀x∃y[¬A(x) ∨ (B(x, y) ∧D(y)))] (PNF; same as 1d)

≈ ∀x[(¬A(x) ∨B(x, f(x)) ∧ (¬A(x) ∨D(y))] (CNF)

Fig. 2. Conversion of an example FOL sentence into FF-PCNF. The PNF and CNF
conversions are included for comparison as the last two lines. Sentence (d) is where
the prenex is formed and (e) is the result of distributing disjunctions over conjunctive
terms. The final sentence (e) matches the FF-PCNF template 14.

immediately add a FunctionalObjectProperty axiom on the newly introduced
predicate Pf . Note further that function removal only yields OWL axioms for
unary functions, because all other result in predicates of arity three or greater
that are currently not converted to OWL.

Quantifier coalescing During prenex creation, there is an opportunity to shorten
the final prenexes. Depending on variable placement in the sentence, like quan-
tifiers and their variabes can be merged (“coalesced”) into a single quantified
variable, which will increase the chances that a sentence matches one of the FF-
PCNF templates later on. Quantifier coalescing applies standard logical rules:

∀x[A(x)] ∧ ∀y[B(y)] ⇐⇒ ∀z[A(z) ∧B(z)]

∃x[A(x)] ∨ ∃y[B(y)] ⇐⇒ ∃z[A(z) ∨B(z)]

To leverage this potential without sacrificing efficiency we apply a greedy
heuristic with a single look-ahead when deciding which quantifier to coalesce
when there are multiple choices. If the parent term is a conjunction then universal
quantifiers are coalesced, otherwise existential quantifiers are coalesced. In the
case where the parent is a quantifier itself, it absorbs children with like quantifiers
before applying the look-ahead for the merged quantifier again.

2.3 Filtering FF-PCNF sentences by templates

To utilize FF-PCNF as a normal form to identify the presence of OWL axioms
within FOL axioms, we have converted the “representative” FOL translation of
each OWL axiom templates from Table

As a final filtering step, the number of atoms (i.e. the number of predicate
instances) and the number of distinct predicates are used to further reduce the
number of clauses that must be inspected closer for a match against some of
the object property templates. Reflexive, irreflexive, symmetric, asymmetric, or
transitive axioms can only be present if exactly one distinct predicate name is
used. The number of atoms is also fixed: 1 for a reflexive or irreflexive property,
2 for a symmetric or asymmetric one, and 3 for a transitive one. Likewise, a
functional or inverse functional axiom requires exactly two distinct predicate
names, one of which must be the equals predicate.
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metric

1. quantifiers

2. variables

3. unary
predicates

4. binary
predicates

templates

◦

∀

1

±

0

1

+

−

19

−

0

2

+

18

0

+

7

−

8

2

±

+

17

−

16

+

−

5,6

0

±

3,9

−

4,10

3

0

±

11,12,13

∀∃

2

±

+

14

−

15

2.4 Matching FF-PCNF sentences against candidate templates

The filtering drastically reduces the number of candidate FF-PCNF sentences
– eliminating many altogether – that must be compared more closely against
one or multiple candidate templates (step 4 in our approach). This compari-
son – the most expensive step of the conversion algorithm – then tests whether
a FF-PCNF sentence precisely matches a candidate template. It typically in-
volves checking variable use and placement across atoms within the clause.
For example, the ObjectPropertyDomain(R C) and ObjectPropertyRange(R

C) templates (5 and 6) only differ in where the variable in the unary predicate
appears in the binary predicate. As another example, consider the sentences
∀xy[¬R(x, y) ∨ S(x, y)] and ∀xy[¬R(x, y) ∨ S(y, x)]. By the filter metrics both
match the templates for SubObjectProperty(R S): they have two universally
quantified variables and no unary predicates and a mix of positive and negated
binary predicates. Thus filtering leaves templates 3 and 9 as candidates, but 9 is
later ruled out because it is restricted to a single named predicate. Subsequently,
the first sentence can be matched to the template. The second sentence, however,
would not yet be a precise match because the variables in the predicate S are in-
verted. To create a precise match, the InverseOf needs to be added to the pred-
icate S, resulting in the OWL axiom SubObjectProperty(R InverseOf(S)).
When no match is established the FF-PCNF sentence is discarded.

2.5 Ensuring adherence to OWL2 global restrictions

To guarantee decidability, OWL2 makes some global restrictions on the use of
properties. Two restrictions on object properties are relevant to our transla-
tions. (1) The simple role restriction disallows use of complex object properties
(roles) in constructs such as FunctionalObjectProperty or DisjointObject-
Properties. To enforce it, we track all properties that are used in such con-
structs. At the end, we discard all axioms that would make these properties non-
simply, namely transitive declarations (template 11) and axioms that use them
within an ObjectPropertyChain construct. (2) Violations of the property hier-
archy restriction only occur in the presence of multiple ObjectPropertyChains
involving the same property. But these are quite rare in our translations: Only
seven ontologies in our test set contain two or more ObjectPropertyChains
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and only one2 actually violates the restriction. Thus, we defer to the OWL API

profile checker tool3 to identify such violations after producing OWL2 files
and leave it up to human experts to resolve non-compliance.

Finally, we also allow choosing a target OWL2 profile [21]: Full (default),
DL, EL, QL, or RL. To achieve this, disallowed object property axioms (e.g.
FunctionalObjectProperty in EL and QL) and axioms wherein certain complex
expressions are disallowed (e.g. InverseOf in EL; or UnionOf inside domain or
range restriction axioms in EL, QL or RL) are discarded at the end.

3 Implementation

The approach is implemented in Python 3 as part of the open-source project
macleod4. The implementation utilizes an internal object structure to encode
a FOL ontology, a parser to construct the internal object structure from CLIF
files, methods for each type of object that support conversion into FF-PCNF,
and methods for writing OWL axioms.

The internal object structure (see src/macleod/logical/) represents an on-
tology as a tree, each node encoding a logical or non-logical entity from a FOL
ontology. Logical objects are: Ontology, sentences (Axiom), quantified formula
(Quantifier with specializations Existential and Universal), connective for-
mulas (Connective with specializations Disjunction and Conjunction), and
negated formula (Negation). Atoms are represented as Predicates and may
contain functional terms, denoted as Functions. The various object types pro-
vide methods that support conversion to FF-PCNF. E.g., a Negation supports
pushing negation inwards, a Function supports rewriting as a Predicate, and
a Conjunctive supports distribution of disjunctions over conjunctions.

The parser (src/macleod/parsing/parser.py) utilizes a Backus-Naur gram-
mar of a portion of the CLIF notation of Common Logic [13]. A lexer (an
advanced tokenizer) and parser are built using Python’s PLY library5 to im-
plement the grammar, to tokenize the CLIF files, and to finally parse them.
Parsing substitutes implications and biconditionals by CNF sentences. It results
in representing each CLIF file as an Ontology object, which contains the axioms
and keeps track of all imported CLIF files, which are recursively parsed into
separate Ontology objects. During parsing, additional information, such as lists
of all predicate and function symbols and their arities, and variables names are
saved for each Ontology and each Axiom for later use.

Python’s ElementTree XML API6 is used to write the axioms in OWL/XML
format. For completeness, declaration axioms for all encountered predicates of
arity two or less, i.e. all classes and object properties, are automatically included
regardless of whether they appear in any resulting OWL axiom.
2 colore.oor.net/bipartite_incidence/owl/interval_incidence.all.owl
3 https://github.com/stain/profilechecker
4 https://github.com/thahmann/macleod
5 PLY is a Python port of the standard Unix tools Lex and Yacc.
6 https://docs.python.org/3/library/xml.etree.elementtree.html; the Owl-
ready2 module was another option but writing axioms was not as straightforward.

colore.oor.net/bipartite_incidence/owl/interval_incidence.all.owl
https://github.com/stain/profilechecker
https://github.com/thahmann/macleod
https://docs.python.org/3/library/xml.etree.elementtree.html
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4 Experimental Results

4.1 Materials

We have tested the approach on ontologies from the Common Logic Ontology
Repository (COLORE: http://colore.oor.net), which currently contains over
2,700 files with sentences in the CLIF syntax of the Common Logic standard [13].
Some do not specify ontologies per se, but rather theorems, mappings between
ontologies, partial models, or serve archival purposes. Of the 2,283 files that do
represent ontologies or modules thereof (like individual definitions), 2,102 (92%
) were successfully parsed; others either contain syntax errors or make use of
unsupported Common Logic constructs that go beyond standard FOL. Our first
evaluation uses all FOL sentences from the 2,102 successfully parsed files. Our
second evaluation uses entire ontologies – i.e. CLIF files recursively closed under
the cl:imports construct – rather than individual files. For 1,965 ontologies
all imported modules can be parsed correctly. Of those, we select the 302 that
contain a minimum of 15 predicates (unary or binary ones) and 15 axioms. Many
smaller ontologies do not meet the predicate threshold; they primarily serve as
modules of larger ontologies or are theories of common mathematical structures
used as tools for verifying other ontologies. The 302 utilized ontologies range
from 15 to 128 unary and binary predicates (median of 24) and 18 to 246 axioms
(median of 69). While these may still be small compared to OWL ontologies, they
are quite sizable for FOL ontologies.

To avoid distorting our results by many fairly similar ontologies, we group
them by hierarchy. A hierarchy shares a signature and often a substantial set of
imports (and, thus, axioms) [10]. The utilized ontologies span 33 hierarchies, 11
of which reside in a hierarchy of their own (listed first in Fig.

4.2 Results

All tests are conducted using Python 3.7 on a Windows 10 laptop (i5-8350, 4
cores at 1.7GHz base frequency, 8GB RAM). The reported times are wall times
that include parsing the CLIF file and its import closure.

The first experiment translates all 2,102 parseable CLIF files individually7.
Altogether, they contain 4,257 FOL sentences, but only 3,387 (78%) of them
use only predicates of arity one or two and can reasonably be expected to yield
translations. They yielded 7,941 FF-PCNF sentences8. Filtering identified 5,957
FF-PCNF sentence-template pairs (on average 0.75 per FF-PCNF sentence and
1.76 per FOL sentence). 2,241 of these candidates produced OWL axioms, which
amounts on average to 0.66 OWL axioms per FOL sentence. The whole exper-
iment (including parsing, filtering and matching) finished in 151s apart from
one ontology, namely periods/periods over rationals.clif, that increased
exponentially in length and whose conversion and filtering/matching took 265s
alone but did not yield any OWL axioms. Table

7 Full results are available from https://github.com/thahmann/macleod/blob/

master/research/ISWC2021-experimental-data.xlsx and the OWL2 outputs are
provided in colore.oor.net/ in the owl subfolder of each ontology hierarchy.

8 Recall that universally quantified conjunctions are split into separate sentences.

http://colore.oor.net
https://github.com/thahmann/macleod/blob/master/research/ISWC2021-experimental-data.xlsx
https://github.com/thahmann/macleod/blob/master/research/ISWC2021-experimental-data.xlsx
colore.oor.net/
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FOL axioms FF-PCNF candidate # OWL2 Prop. Class Inverses Property
total arity≤ 2 sentences templates Axioms Operations Chains

4,257 3,387 7,941 5,957 2,241 236 158 30

total # Class Axioms: 53% ObjectProperty Axioms: 47%
OWL2 SubClass SomeValuesFrom/ Disjoint Sub Disjoint Domain/ Other
Axioms AllValuesFrom Classes Properties Property Range R.

2,241 635 310 194 249 61 414 336
28.3% 13.8% 8.7% 11.1% 2.7% 18.5% 15.0%

Table 2. Summary of the OWL axioms obtained from all parseable CLIF modules.

The results from our second experiment on 302 ontologies with at least 15
axioms and 15 predicates of arity ≤ 2 are summarized in Fig.

One measure of efficacy is the number of OWL axioms produced per FOL
sentence: It ranges from 0.4 to 1.33 across hierarchies (with a max. of 2.42 for
individual ontologies), though most fall within 0.73±0.23 OWL axioms (median
+ standard deviation). However, this is a purely statistical measure and does
not capture how much of the semantics are preserved: It neither measures how
many FOL axioms are fully translated nor does it normalize by the length, den-
sity or complexity of the source FOL axioms. A better way to judge the quality
of the produced ontologies is by comparing them to “native” OWL2 ontologies.
One established criteria for comparing the quality of ontologies is their semantic
richness (or “axiom density”) [8, 19] that captures how tightly classes are con-
strained. It is typically measured in terms of the axiom-class ratio, for which
we obtain a median of 4.00 across hierarchies. But the FOL ontologies in our
experiments contain more properties (a median of 14.3) than classes (median of
11.0) which is not typical for OWL ontologies9. Thus, an axiom-concept ratio
that divides the number of axioms by the total number of classes and properties
is a more appropriate metric. We obtain a mean of 1.62 across the hierarchies,
though with a fairly wide spread (0.40 to 2.21). Nevertheless, all but 3 hierar-
chies (location varzi, vision cardworld, financial) have an average ratio
of one or more axioms per concepts.

5 Discussion

The results demonstrate that our approach is able to quickly extract OWL2
versions even from sizable FOL ontologies. It is expected to scale well because
the sentence by sentence conversion makes the time needed mainly dependent
upon the number of candidates that need to be matched after filtering, which is
linearly related to the number of FOL sentences.

The most critical evaluation aspect is the correctness of the resulting OWL2
ontologies. We have checked all 302 ontologies for syntactic correctness and
conformance with OWL2-Full using the OWL API profile checker, while spot-
checking adherence to more restricted OWL2 profiles when selected. The pro-
duced ontologies can also be successfully loaded in the Protege ontology de-

9 The 514 ontologies in [7] contain 618,260 classes but only 22,046 properties.
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velopment environment and be used for reasoning, such as classification, with
off-the-shelf OWL2 reasoners such as Hermit.

To evaluate the quality of the produced ontologies, we primarily rely on the
axiom-concept ratio as an indicator for their semantic richness in comparison to
“native” OWL ontologies, which were originally developed in OWL. While our
average axiom-concept ratio of 1.62 (over hierarchies) is lower than the average
of 2.05 over the 518 native OWL ontologies (with over 1.7M axioms) from [7],
our median of 1.71 is actually higher than theirs (1.62). That means more than
half of our ontologies – which are essentially produced for free now – are already
semantically richer than half of the existing OWL ontologies. The much lower
variance (indicated by the standard deviation of 0.45) compared to that of 2.25
in [7] is evidence that we can consistently deliver OWL ontologies of high quality
across domains – likely because of the higher quality of the FOL ontologies.
With a few exceptions, such as /location varzi/region location.clif and
the /financial/ hierarchy, this can be taken as evidence that our OWL2 outputs
are already “good enough” to be usable for many practical purposes.

The generated axioms also exhibit more diversity than the native OWL on-
tologies. The analyzed OWL ontologies in [7] consist of 55% simple subclass
axioms (varying between 41 and 62% for different benchmark sets) and 24%
subclass axioms with existential quantification (someValuesFrom), while prop-
erty axioms make up only 5.2% (2.4% being domain and range restrictions). Not
a single disjointness axiom was found among the native OWL ontologies. These
numbers confirm the perception that native OWL ontologies often leave proper-
ties underdeveloped. The stark differences in use of property axioms (over 47%
of all axioms in our results) underline that translating FOL ontologies can yield
OWL ontologies that may often be richer – especially in the axiomatization of
properties – than native OWL ontologies.

An initially unanticipated side benefit is the increase in intelligibility of FOL
ontologies via translations. It provides developers of FOL ontologies access to
a wealth of OWL development tools. Protege’s (albeit) simple taxonomic and
graphical visualizations of the resulting (inferred) class and property hierarchies,
especially in combination with the integrated reasoners (e.g. Hermit), allowed us
to spot axiomatization errors in FOL ontologies. Identifying these issues directly
from the CLIF source was non-trivial because they were the result of axioms
being combined across multiple CLIF files. With the help of the OWL reasoners’
justifications and the log of the OWL axioms FOL sources, we could trace the
errors to the originating FOL files and specific axioms.

Limitations As initially discussed, an ontology’s theory can be axiomatized in
dramatically different ways, up to entirely disjoint sets of axioms [10]. This means
that some knowledge that would be relevant to an OWL version may not be ex-
plicitly represented, but only inferred. Our template-based approach currently
does not aim to infer such knowledge. It would require a semantic translation
approach that can add to the OWL ontology by strategically or systematically
guessing additional axioms (e.g. predicted subclass relationships or disjointness
of sibling classes) that can be added after successful proving by an FOL theorem
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prover. Because of the intractability of FOL reasoning, such an approach will
be limited in practice. But the potential benefits can be glimpsed at through one
specific example:/multidim mereotopology codi/codi with theorems.clif is
logically equivalent to /multidim mereotopology codi/codi.clif but explic-
itly adds (successfully proved) theorems that, for example, establish disjointness
of properties. The difference in the outcome is striking: the number of OWL ax-
ioms increases from 32 to 52, raising the axiom-to-concept ratio from a mediocre
1.42 to 2.42, the highest among all translated ontologies and landing within the
top quartile of native OWL2 ontologies.

6 Related Work

The idea of translating knowledge between different knowledge representation
formalisms has been studied previously, for example in the Ontolingua [9], On-
toMorph [5], and OntoMerge [6] systems and the distributed ontology language
(DOL) [15], all of who aim to combine knowledge from ontologies represented
in different languages. Ontolingua employs an intermediary language for which
syntactic translations are defined to each knowledge representation language.
OntoMorph employs direct syntactic translations between pairs of languages
while also sketching the idea of semantic translations. OntoMerge also employs
an internal language that is the result of syntactic translations of a source lan-
guage, but then performs reasoning on the internal language before syntactically
translating inferences. The DOL [15] provides a meta-language for specifying re-
lationships between ontologies that are specified in different logical languages.
However, reasoning with such heterogeneous sets of ontologies is expensive and
intractable as it involves meta-reasoning over multiple logics. Moreover, as is
the case with CLIF, reasoning support is limited. Currently, the heterogeneous
toolset (HETS) [16] is the only tool that supports the DOL language and many
available off-the-shelf reasoners for FOL and OWL cannot be reused. In con-
trast, our work on translation from FOL to OWL is more narrowly concerned
with overcoming syntactic, semantic, and pragmatic differences between these
two specific languages in order to make existing FOL more widely accessible and
leverage the wider tool availability for OWL ontologies.

The theoretical basis of description logics [1] serve as foundations for bridging
different ontologies languages, specifically propositional, description and first-
order logic. Borgida [3] in particular provides formal translations to FOL for
the syntactic constructs found in DL, the formal underpinning of OWL. These
translations are leveraged here to express OWL axioms as semantically equiva-
lent FOL sentences that serve as extraction templates.

The tool ROWLTab [18], also uses a PNF to translate from the rule-base
language SWRL to OWL. But it differs in its overall goal, aiming to support
domain experts in developing new OWL ontologies. We focus instead on creating
OWL versions of existing FOL ontologies to increase accessibility and reuse. An
example is the work by [2], who painstakingly translated a single ontology. We
aim instead for less detailed but fast, cheap and fully automated translations.



14 T. Hahmann and R. Powell

7 Summary

Unrestricted usage of FOL results in an undecidable ontology [4] that effectively
curbs the ontology’s utilization where tractable reasoning is required. At the
same time, the expressive capabilities of FOL, its flexibility, and its established
formal underpinnings, still speak in favor of FOL as a representation language
for reference ontologies. But existing FOL ontologies – which are the result of
countless hours of ontology development and verification – are largely inacces-
sible to many knowledge engineers who are unfamiliar or uncomfortable with
FOL. Moreover, there is a dearth of tools available to support the development,
extension, or adoption of FOL ontologies. To widen the accessibility and usabil-
ity of those FOL ontology, we have proposed a pragmatic ontology engineering
approach to automatically extract OWL2 approximations from FOL ontologies
that conform to specific desired OWL2 profiles. This essentially produces high-
quality OWL2 ontologies for free now. These OWL ontologies can be inspected,
extended, and used as the foundation for future development and can benefit
from all available OWL tooling, such as for ontology visualization and evaluation.
This helps to verify, evolve, and reuse the source FOL ontologies. More impor-
tantly, it avoids redundant ontology engineering efforts or maintaining copies of
the ontologies in two languages with different expressivity (FOL and OWL).

We proposed FF-PCNF as an intermediate representation to more easily
identify OWL patterns from FOL sentences despite FOL’s syntactic flexibility.
We demonstrated the practical usability and scalability of the approach by gen-
erating 2,241 OWL axioms from 3,387 FOL sentences in 150 seconds using a
single core of a modern CPU and a negligible amount of memory. While the re-
sulting ontologies make heaviest use of five OWL constructs (subclasses, domain
and range restrictions, disjoint classes, subproperties), all 19 axiom templates
are used to some extent.

Future Work needs to apply a broader set of ontology metrics (see e.g. [8,19]) to
evaluate the produced ontologies and to identify better measures of the amount of
semantics that are preserved by the translation. We further hope that our results
can serve as baseline for continuous improvement of FOL-to-OWL translations.
Potential avenues for improvement include tackling predicates of higher arities
or inferring additional OWL axioms using FOL theorem proving.
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senting a reference foundational ontology of events in SROIQ. Applied Ontology
14(3), 293–334 (2019). doi.org/10.3233/AO-190214

3. Borgida, A.: On the relative expressiveness of description logics and predicate logics.
Artif. Intell. 82(1-2), 353–367 (1996). doi.org/10.1016/0004-3702(96)00004-5

doi.org/10.3233/AO-190214
doi.org/10.1016/0004-3702(96)00004-5


Automatically Extracting OWL Versions of FOL Ontologies 15

4. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier
(2004)

5. Chalupsky, H.: OntoMorph: A Translation System for Symbolic Knowledge. In:
KR’2000. pp. 471–482. Morgan Kaufmann (2000)

6. Dou, D., McDermott, D., Qi, P.: Ontology translation on the Semantic Web. In:
Journal on Data Semantics II, pp. 35–57. LNCS 3360, Springer (2005). doi.org/
10.1007/978-3-540-39964-3_60

7. Eberhart, A., Shimizu, C., Chowdhury, S., Sarker, M.K., Hitzler, P.: Expressibility
of OWL Axioms with Patterns. In: Europ. Semantic Web Conf. (ESWC 2021), pp.
230-245. LNCS 12731, Springer (2021).
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