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Abstract

We consider distributed non-convex optimization

where a network of agents aims at minimizing a

global function over the Stiefel manifold. The

global function is represented as a finite sum of

smooth local functions, where each local function

is associated with one agent and agents commu-

nicate with each other over an undirected con-

nected graph. The problem is non-convex as local

functions are possibly non-convex (but smooth)

and the Steifel manifold is a non-convex set. We

present a decentralized Riemannian stochastic gra-

dient method (DRSGD) with the convergence rate

of O(1/
√
K) to a stationary point. To have exact

convergence with constant stepsize, we also pro-

pose a decentralized Riemannian gradient track-

ing algorithm (DRGTA) with the convergence

rate of O(1/K) to a stationary point. We use

multi-step consensus to preserve the iteration in

the local consensus region. DRGTA is the first

decentralized algorithm with exact convergence

for distributed optimization on Stiefel manifold.

1. Introduction

Distributed optimization has received significant attention

in the past few years in machine learning, control and sig-

nal processing. There are mainly two scenarios where dis-

tributed algorithms are necessary: (i). the data is geographi-

cally distributed over networks and/or (ii). the computation

on a single (centralized) server is too expensive (large-scale

data setting). In this paper, we consider the following multi-
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agent optimization problem

min
1

n

n
∑

i=1

fi(xi)

s.t. x1 = x2 = . . . = xn,

xi ∈ M, ∀i = 1, . . . , n,

(1.1)

where fi has L−Lipschitz continuous gradient in Euclidean

space and M := St(d, r) = {x ∈ R
d×r : x>x = Ir} is the

Stiefel manifold. Unlike the Euclidean distributed setting,

problem (1.1) is defined on the Stiefel manifold, which is a

non-convex set. Many important applications can be writ-

ten in the form (1.1), e.g., decentralized spectral analysis

(Kempe & McSherry, 2008; Gang & Bajwa, 2021), dictio-

nary learning (Raja & Bajwa, 2015), eigenvalue estimation

of the covariance matrix (Penna & Stańczak, 2014) in wire-

less sensor networks, and deep neural networks with or-

thogonal constraint (Arjovsky et al., 2016; Vorontsov et al.,

2017; Huang et al., 2018).

Problem (1.1) can generally represent a risk minimization.

One approach to solving (1.1) is collecting all variables to

a central server and running a centralized algorithm. In

this work, however, we consider the decentralized setting.

Our motivations are two-fold: (i). In some applications,

the datasets are collected, stored and manipulated in a dis-

tributed manner. Due to privacy concerns and/or inability to

gather all data in a central node, centralized methods cannot

be implemented. In a decentralized implementation, local

parameter vectors (and not data) can be shared amongst

neighboring nodes. In this setting, prior to our work, it was

not clear how to design a converging decentralized algorithm

for problem (1.1), nor was it clear how such an algorithm

scales w.r.t the connectivity of the network. (ii). The other

popular reason to study decentralized setting is to accelerate

the computation for stochastic algorithms in modern com-

putational architectures. (Lian et al., 2017) proved that the

decentralized SGD (D-PSGD) algorithm can achieve a lin-

ear speedup w.r.t n if the iteration number is large enough,

and the convergence rate is the same as centralized SGD

(C-PSGD). Due to the communication efficiency, D-PSGD

is more efficient than C-PSGD.
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1.1. Our Contributions

In this paper, we focus on designing efficient decentralized

algorithms to solve (1.1) over any connected undirected

network. Since Stiefel manifold is nonconvex, the existing

decentralized algorithms for Euclidean problems all fail for

problem (1.1) (see Section 1.2). We may directly use man-

ifold optimization tools, but the standard techniques from

Riemannian optimization use the vector transport for algo-

rithm design, which is unsatisfactory for our problem. We

use the fact that Stiefel manifold is embedded in Euclidean

space. As such, we combine the strategies of Euclidean

algorithms with some Riemannian optimization techniques.

Based on the above observations, one key innovation is to

project every update direction onto the tangent space, so that

we can leverage the retraction property in Lemma 2.3. This

step distinguishes our algorithm from Euclidean algorithms.

Our contributions are as follows:

1. We show the linear speedup of the decentralized

stochastic Riemannian gradient method (Algorithm 1)

w.r.t n for solving (1.1). Specifically, the iteration

complexity of obtaining an ε−stationary point (see

Definition 2.2) is O(1/ε2) in expectation 1.

2. To achieve exact convergence with constant stepsize,

we propose a gradient tracking algorithm (DRGTA)

(Algorithm 2) for solving (1.1). For DRGTA, the itera-

tion complexity of obtaining an ε−stationary point is

O(1/ε) 1.

3. We develop new Lipschitz inequalities for the Rieman-

nian gradient in Lemma 2.4, which will be of indepen-

dent interest. The benefit of Lemma 2.4 is to provide

us with simple analysis.

Importantly, both of the proposed algorithms are retraction-

based and DRGTA is vector transport-free. These two

features make the algorithms computationally cheap and

conceptually simple. DRGTA is the first decentralized algo-

rithm with exact convergence for distributed optimization

on the Stiefel manifold.

1.2. Related works

Decentralized optimization has been well-studied in Eu-

clidean space. The decentralized (sub)-gradient methods

were studied in (Tsitsiklis et al., 1986; Nedic et al., 2010;

Yuan et al., 2016; Chen et al., 2021b) and a distributed dual

averaging subgradient method was proposed in (Duchi et al.,

2011). However, with a constant stepsize β > 0, these

methods can only converge to a O( β
1−σ2

)−neighborhood

of a stationary point, where σ2 is a network parameter (see

Assumption 1). To achieve exact convergence with a fixed

1 We have omitted the dependence on network parameters here.

stepsize, gradient tracking algorithms were proposed in (Shi

et al., 2015; Xu et al., 2015; Di Lorenzo & Scutari, 2016;

Qu & Li, 2017; Nedic et al., 2017; Yuan et al., 2018), to

name a few. The convergence analysis can be unified via a

primal-dual framework (Alghunaim et al., 2020). Another

way to use the constant stepsize is decentralized ADMM

and its variants (Mota et al., 2013; Chang et al., 2014; Shi

et al., 2014; Aybat et al., 2017). Also, decentralized stochas-

tic gradient method for non-convex smooth problems were

well-studied in (Lian et al., 2017; Assran et al., 2019; Sun

et al., 2020; Xin et al., 2020), etc. We refer to the survey

paper (Nedić et al., 2018) for a complete review on the

state-of-the-art algorithms and the role of network topology.

The problem (1.1) can be thought as a constrained decen-

tralized problem in Euclidean space, but since the Stiefel

manifold constraint is non-convex, none of the above works

can solve the problem. On the other hand, we can also

treat (1.1) as a smooth problem over the Stiefel manifold.

However, the constraint x1 = x2 = . . . = xn is difficult

to handle due to the lack of linearity on M. Since the

Stiefel manifold is an embedded submanifold in Euclidean

space, our viewpoint is to treat the problem in Euclidean

space and develop new tools based on Riemannian mani-

fold optimization (Edelman et al., 1998; Absil et al., 2009;

Boumal et al., 2019). For the optimization problem (1.1), a

decentralized Riemannian gradient tracking algorithm was

presented in (Shah, 2017). The vector transport operation

should be used in (Shah, 2017), which yields expensive com-

putation as well as analysis difficulty. Moreover, they need

to use asymptotically infinite number of communication

steps. A Riemannian gossip algorithm was also proposed

for subspace learning on Grassmann manifold (Mishra et al.,

2019), but no convergence rate was obtained. Other dis-

tributed algorithms were specifically designed either for the

PCA problem (Penna & Stańczak, 2014; Raja & Bajwa,

2015; Gang & Bajwa, 2021) or in centralized topology (Fan

et al., 2019; Huang & Pan, 2020; Wang et al., 2020). For

aforementioned decentralized algorithms, diminishing step-

size or asymptotically infinite number of communication

steps should be utilized to get the exact solution. Different

from all these works, DRGTA requires a finite number of

communications using a constant step-size in each iteration.

After submitting our manuscript, we found that the paper

(Ye & Zhang, 2021) proposed a linearly convergent method

called Decentralized Exact PCA which can also use finite-

step consensus. But it is only designed for the decentralized

PCA problem.

As a special case of problem (1.1), the Riemannian con-

sensus problem is well-studied; see (Sarlette & Sepulchre,

2009; Tron et al., 2012; Markdahl et al., 2020; Chen et al.,

2021a). Recently, it was shown in (Chen et al., 2021a)

that the multi-step consensus algorithm (DRCS) converges

linearly to the global consensus in a local region.
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Definition 1.1 (Consensus). Consensus is the configuration

where xi = xj ∈ M for all i, j ∈ [n]. We define the

consensus set as follows

X ∗ := {x ∈ Mn : x1 = x2 = . . . = xn}. (1.2)

Specifically, DRCS iterates {xk} have the following conver-

gence property in a neighborhood of X ∗

dist(xk+1,X ∗) ≤ ϑ · dist(xk,X ∗), ϑ ∈ (0, 1), (1.3)

where dist2(x,X ∗) := miny∈M
1
n

∑n
i=1 ‖y − xi‖2F and

x> = (x>
1 x>

2 . . . x>
n ). The linear rate of DRCS sheds

some lights on designing the decentralized Riemannain gra-

dient method on Stiefel manifold. More details will be

provided in Section 3.

2. Preliminaries

Notation: The undirected connected graph G = (V, E) is

composed of |V| = n nodes representing agents. We use x

to denote the collection of all local variables xi by stacking

them, i.e., x> = (x>
1 x>

2 . . . x>
n ). The n−fold Cartesian

product of M with itself is denoted as Mn = M×. . .×M.

We use [n] := {1, 2, . . . , n}. For x ∈ Mn, we denote the

i−th block by [x]i = xi. We denote the tangent space of

M at point x as TxM and the normal space as NxM. The

inner product on TxM is induced by the Euclidean inner

product 〈x, y〉 = Tr(x>y). Denote ‖ · ‖F as the Frobenius

norm and ‖·‖2 as the operator norm. The Euclidean gradient

of function g(x) is ∇g(x) and the Riemannian gradient is

gradg(x). Let Ir and 0r be the r×r identity matrix and zero

matrix, respectively. And let 1n denote the n dimensional

vector of all ones.

The network structure is modeled using a matrix, denoted

by W , which satisfies the following assumption.

Assumption 1. We assume that the undirected graph G is

connected and W is doubly stochastic, i.e., (i) W = W>;

(ii) Wij ≥ 0 and 1 > Wii > 0 for all i, j; (iii) Eigenvalues

of W lie in (−1, 1]. The second largest singular value σ2 of

W lies in σ2 ∈ [0, 1).

We now introduce some preliminaries of Riemannian mani-

fold and fundamental lemmas.

2.1. Induced Arithmetic Mean

Denote the Euclidean average point of x1, . . . , xn by

x̂ :=
1

n

n
∑

i=1

xi. (2.1)

To measure the degree of consensus, the error
∑n

i=1 ‖xi −
x̂‖2F is typically used in the Euclidean decentralized algo-

rithms. Instead, here we use the induced arithmetic mean

(IAM) (Sarlette & Sepulchre, 2009) on St(d, r), defined as

follows

x̄ := argmin
y∈St(d,r)

n
∑

i=1

‖y − xi‖2F = PSt(x̂), (IAM)

where PSt(·) is the orthogonal projection onto St(d, r). De-

fine

x̄ = 1n ⊗ x̄. (2.2)

Then the distance between x and X ∗ is given by

dist2(x,X ∗) = min
y∈St(d,r)

1

n

n
∑

i=1

‖y − xi‖2F =
1

n
‖x− x̄‖2F.

Furthermore, we define the lF,∞ distance between x and x̄

as

‖x− x̄‖F,∞ = max
i∈[n]

‖xi − x̄‖F. (lF,∞)

We will develop the analysis of decentralized Riemannian

gradient descent by studying the error distance ‖x − x̄‖F

and ‖x− x̄‖F,∞.

2.2. Optimality Condition

Next, we introduce the optimality condition on manifold M.
Consider the following centralized optimization problem

over a matrix manifold M

minh(x) s.t. x ∈ M. (2.3)

Since we use the metric on tangent space TxM induced

from the Euclidean inner product 〈·, ·〉, the Riemannian

gradient gradh(x) on St(d, r) is given by gradh(x) =
PTxM

∇h(x), where PTxM
is the orthogonal projection

onto TxM. More specifically, we have

PTxM
y = y − 1

2
x(x>y + y>x),

for any y ∈ R
d×r; see (Edelman et al., 1998; Absil et al.,

2009). The necessary first-order optimality condition of

problem (2.3) is given as follows.

Proposition 2.1. (Yang et al., 2014; Boumal et al., 2019)

Let x ∈ M be a local optimum for (2.3). If h is differen-

tiable at x, then gradh(x) = 0.

Therefore, x is a first-order critical point (or critical point)

if gradh(x) = 0. Let x̄ be the IAM of x. We define the ε−
stationary point of problem (1.1) as follows.

Definition 2.2 (ε-Stationarity). We say that x> =
(x>

1 x>
2 . . . x>

n ) is an ε− stationary point of problem (1.1)

if the following holds:

1

n

n
∑

i=1

‖xi − x̄‖2F ≤ ε ∀i, j ∈ [n]
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and

‖gradf(x̄)‖2F ≤ ε,

where we use the notation f(x̄) := 1
n

∑n
i=1 fi(x̄).

2.3. Basic Lemmas

Our goal is to develop the decentralized version of cen-

tralized Riemannian gradient descent on St(d, r). The cen-

tralized Riemannian gradient descent (Absil et al., 2009;

Boumal et al., 2019) iterates as

xk+1 = Rxk
(−αgradh(xk)),

i.e., updating along a negative Riemannian gradient direc-

tion on the tangent space, and then performing an operation

called retraction Rxk
to ensure feasibility. We use the def-

inition of retraction in (Boumal et al., 2019, Definition 1).

The retraction is the relaxation of exponential mapping, and

more importantly, it is computationally cheaper. We also as-

sume the second-order boundedness of retraction. It means

that

Rx(ξ) = x+ ξ +O(‖ξ‖2F).

That is, Rx(ξ) is locally a good approximation of x + ξ.

Such approximation is well enough to take the place of

exponential map for the first-order algorithms.

Lemma 2.3. (Boumal et al., 2019; Liu et al., 2019) Let R
be a second-order retraction over St(d, r). We then have

‖Rx(ξ)− (x+ ξ)‖F ≤ M‖ξ‖2F,
∀x ∈ St(d, r), ∀ξ ∈ TxM.

(P1)

Moreover, if the retraction is the polar decomposition, for

all x ∈ St(d, r) and ξ ∈ TxM, the following inequality

holds for any y ∈ St(d, r) (Li et al., 2019, Lemma 1):

‖Rx(ξ)− y‖F ≤ ‖x+ ξ − y‖F. (2.4)

In the sequel, retraction refers to the polar retraction to

present a simple analysis, unless otherwise noted. More

details on the polar retraction is provided in appendix A.

Throughout the paper, we assume that every fi(x) is Lips-

chitz smooth.

Assumption 2. Each fi(x) has L−Lipschitz continuous

gradient, and let D := maxx∈St(d,r) ‖∇fi(x)‖F. There-

fore, ∇f(x) is also L-Lipschitz continuous and D ≥
maxx∈St(d,r) ‖∇f(x)‖F.

We have two similar Lipschitz continuous inequalities on

Stiefel manifold as the Euclidean-type ones (Nesterov,

2013). We provide the proof in Appendix.

Lemma 2.4 (Lipschitz-type inequalities). For any x, y ∈
St(n, d) and ξ ∈ TxM, if f(x) is L−Lipschitz smooth in

Euclidean space, then there exists a constant Lg = L+ Ln

such that

|f(y)− [f(x) + 〈gradf(x), y − x〉]| ≤ Lg

2
‖y − x‖2F,

(2.5)

where Ln = maxx∈St(d,r) ‖∇f(x)‖2. Moreover, define

LG := L+ 2Ln. Then, one has

‖gradf(x)− gradf(y)‖F ≤ LG‖y − x‖F. (2.6)

The difference between two Riemannian gradients is not

well-defined on general manifold. However, since the Stiefel

manifold is embedded in Euclidean space, we are free to

do so. Another similar inequality as (2.5) is the restricted

Lipschitz-type gradient presented in (Boumal et al., 2019,

Lemma 4). But they do not provide an inequality as (2.6).

One could also consider the following Lipschitz inequality

(see (Zhang & Sra, 2016; Absil et al., 2009))

‖Px→ygradf(x)− gradf(y)‖F ≤ L′
gdg(x, y),

where Px→y : TxM → TyM is the vector transport and

dg(x, y) is the geodesic distance. Since involving vector

transport and geodesic distance brings computational and

conceptual difficulties, we choose to use the form of (2.6) for

simplicity. In fact, Lg , L̃g and L′
g are the same up to a con-

stant. A detailed comparison is provided in appendix C.1.

We will use Lemma 2.3 and Lemma 2.4 to present a parallel

analysis to the decentralized Euclidean gradient methods

(Nedic et al., 2010; 2017; Lian et al., 2017).

3. Review of consensus on Stiefel manifold

Decentralized gradient-based algorithms (Tsitsiklis et al.,

1986; Nedic et al., 2010; Yuan et al., 2016; Shi et al., 2015;

Nedic et al., 2017; Lian et al., 2017) rely on the linear

convergence of consensus iteration in Euclidean space.

The consensus problem over St(d, r) is to minimize the

quadratic loss function on Stiefel manifold

minϕt(x) :=
1

4

n
∑

i=1

n
∑

j=1

W t
ij‖xi − xj‖2F

s.t. xi ∈ M, ∀i ∈ [n],

(3.1)

where the superscript t ≥ 1 is an integer used to denote the

t-th power of the doubly stochastic matrix W . Note that t
is introduced to provide flexibility for algorithm design and

analysis, and computing W t
ij corresponds to performing t

steps of communication on the tangent space. For consensus

on the Steifel manifold, the Riemannian gradient method

DRCS was proposed in (Chen et al., 2021a), where for any

i ∈ [n],

xi,k+1 = Rxi,k
(αPTxi

M(

n
∑

j=1

W t
ijxj,k)). (3.2)
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DRCS converges almost surely to consensus when r ≤
2
3d− 1 with random initialization (Markdahl et al., 2020).

However, to study decentralized optimization problem (1.1),

the local Q-linear convergence of DRCS is more important.

Due to the nonconvexity of M, the Q-linear rate of DRCS

holds in a local region defined as follows

N : = N1 ∩N2, (3.3)

N1 : = {x : ‖x− x̄‖2F ≤ nδ21}, (3.4)

N2 : = {x : ‖x− x̄‖F,∞ ≤ δ2}, (3.5)

where δ1, δ2 satisfy

δ1 ≤ 1

5
√
r
δ2 and δ2 ≤ 1

6
. (3.6)

The following convergence result of DRCS can be found in

(Chen et al., 2021a, Theorem 2). The formal statement is

provided in Fact B.1 in Appendix.

Fact 3.1. (Informal) Under Assumption 1, for some ᾱ ∈
(0, 1], if α ≤ ᾱ and t ≥ dlogσ2

( 1
2
√
n
)e, the sequence {xk}

in (3.2) achieves consensus linearly if the initialization satis-

fies x0 ∈ N defined in (3.3). That is, there exists ρt ∈ (0, 1)
such that xk ∈ N for all k ≥ 0 and

‖xk+1 − x̄k+1‖F ≤ ρt‖xk − x̄k‖F. (3.7)

4. Decentralized Riemannian gradient descent

Using the results of consensus problem on Stiefel mani-

fold, we can combine the ideas of decentralized gradient

method in Euclidean space with the Stiefel manifold opti-

mization. In this section, we propose a distributed Rieman-

nian stochastic gradient method for solving problem (1.1),

which is described in Algorithm 1.

Algorithm 1 Decentralized Riemannian Stochastic Gradi-

ent Descent (DRSGD) for Solving (1.1)

1: Input: initial point x0 ∈ N , an integer t ≥
logσ2

( 1
2
√
n
), 0 < α ≤ ᾱ, where ᾱ is given in Fact 3.1.

2: for k = 0, . . .{for each node i ∈ [n], in parallel} do

3: Choose diminishing stepsize βk = O(1/
√
k)

4: Compute stochastic Riemannian gradient vi,k satis-

fying Evi,k = gradfi(xi,k)
5: Update

xi,k+1 = Rxi,k
(αPTxi,k

M(
∑n

j=1
W t

ijxj,k)− βkvi,k)

6: end for

Since we need all the local variables to be equal according

to the constraint in (1.1), the initial point x0 should be

in the consensus region N . One can simply initialize all

agents from the same point. The line 5 in Algorithm 1

first performs a consensus step and then updates the local

variable using Riemannian stochastic gradient direction vi,k.

The consensus step and computation of Riemannian gradient

can be done in parallel2. The consensus stepsize α satisfies

α ≤ ᾱ, which is the same as the consensus algorithm. The

constant ᾱ is given in Fact B.1 in Appendix. Moreover,

α = 1 works in practice for any W satisfying Assumption 1.

If x1 = . . . = xn = z, we denote

f(z) :=
1

n

n
∑

i=1

fi(z).

Moreover, we need the following assumptions on the

stochastic Riemannian gradient vi,k and the stepsize βk.

Assumption 3. 1. The stochastic gradient vi,k is unbi-

ased, i.e., Evi,k = gradfi(xi,k) for all i ∈ [n], k and

vi,k is independent of vj,k for any i 6= j. Moreover, the

variance is bounded: E‖vi,k − gradfi(xi,k)‖2F ≤ Ξ2

for some Ξ > 0.

2. We assume a uniform upper bound on ‖vi,k‖F exists,

and maxx∈St(d,r) ‖vi,k‖F ≤ D for each i ∈ [n] and k.

The Lipschitz smoothness of fi(x) in Assumption 2 and

unbiased gradients are quite standard in the literature. And

Lemma 2.4 suggests that gradfi is LG-Lipschitz continu-

ous. Also, the boundedness of ‖vi,k‖F is a weak assumption

given that Stiefel manifold is compact. One common exam-

ple is the finite-sum form: fi =
1
mi

∑mi

j=1 fij , where fij is

smooth and mi is the number of functions fij at local agent

i. Then the stochastic gradient vi,k is uniformly sampled

from gradfij(xi,k), j ∈ [mi]. We emphasize that the uni-

form boundedness of gradient is not needed for problems

in Euclidean space, but Lipschitz continuity is necessary

(Hong et al., 2020).

The step 5 can be seen as applying Riemannian gradient

method to solve the following problem

min
x∈Mn

βkf(x) + αϕt(x).

Similar to the analysis of DGD in Euclidean space, we need

to ensure that ‖xk − x̄k‖F → 0. Hence, the effect of f
should be diminishing. The following assumption on the

stepsize is also needed to get an ε− solution.

Assumption 4 (Diminishing stepsize). The stepsize βk > 0

2One could also exchange the order of gradient step and com-
munication step, i.e., xi,k+ 1

2
= Rxi,k

(−βkvi,k), xi,k+1 =

Rx
i,k+1

2

(αPTx
i,k+1

2

M(
∑n

j=1
W t

ijxj,k+ 1
2
)). Our analysis can

also apply to this kind of update if x0 ∈ ρtN , where ρtN denotes
region N with the shrunken radius ρtδ1, ρtδ2. For the Euclidean
algorithms, when the graph is complete with W = 1n1>

n /n, the
above updates are the same as centralized gradient step. However,
they are different on Stiefel manifold.
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is non-increasing and

∞
∑

k=0

βk = ∞, lim
k→∞

βk = 0, lim
k→∞

βk+1

βk
= 1.

The assumption limk→∞
βk+1

βk
= 1 is required to show the

bound 1
n‖xk − x̄k‖2F = O(

β2
kD

2

(1−ρt)2
), see Lemma D.3 in

Appendix.

To proceed, we first need to guarantee that xk ∈ N , where

N is the consensus contraction region defined in (3.3).

Therefore, uniform bound D and the multi-step consen-

sus requirement t ≥ dlogσ2
( 1
2
√
n
)e are necessary in our

convergence analysis. With appropriate stepsizes α and βk,

we get the following lemma using the consensus results in

Fact 3.1. We provide the proof in Appendix.

Lemma 4.1. Under Assumptions 1 to 4, let the step-

size α satisfy 0 < α ≤ ᾱ, βk satisfy 0 ≤ βk ≤
min{ 1−ρt

D δ1,
αδ1
5D }, ∀k ≥ 0, and t ≥ dlogσ2

( 1
2
√
n
)e. If

x0 ∈ N , it follows that xk ∈ N for all k ≥ 0 generated by

Algorithm 1 and

‖xk+1 − x̄k+1‖F ≤ ρk+1
t ‖x0 − x̄0‖F +

√
nD

k
∑

l=0

ρk−l
t βl.

We have βk = O( 1−ρt

D ) when α = O(1). Note that t ≥
dlogσ2

( 1
2
√
n
)e implies ρt = O(1); see appendix B. When

βk = β is constant, Lemma 4.1 suggests that xk converges

linearly to an O(β)-neighborhood of x̄k.

We present the convergence of Algorithm 1. The proof is

based on the new Lipschitz inequalities for the Riemannian

gradient in Lemma 2.4 and the properties of retraction in

Lemma 2.3. We provide it in Appendix.

Theorem 4.2. Under Assumptions 1 to 4, suppose x0 ∈ N ,

t ≥ dlogσ2
( 1
2
√
n
)e, 0 < α ≤ ᾱ. If

βk =
1√
k + 1

·min{ 1

5Lg

,
αδ1
5D

,
1− ρt
D

δ1}, (4.1)

it follows that

min
k≤K

E‖gradf(x̄k)‖2F ≤ 4(f(x̄0)− f∗) +
6LgΞ

2

n

∑K

k=0
β2
k

∑K

k=0
βk

(4.2)

+
(2CD2L2

G + 4T1D
4)

∑K

k=0
β3
k + 4T2LgD

4
∑K

k=0
β4
k

∑K

k=0
βk

,

where C = O( 1
(1−ρt)2

) is given in Lemma D.3 in Appendix.

And T1 = 2(4
√
r + 6α)2C2 + 8M2 and T2 = 201α2C2 +

9M2. Therefore, with stepsize βk = O(1/
√
k), we have

min
k≤K

E‖gradf(x̄k)‖2F = O
(

f(x̄0)− f∗

β̃
√
K + 1

+
Ξ2 ln(K + 1)

n
√
K + 1

)

+O
(

max{D2, L2
G} · (C + T1 + T2)√
K + 1

)

,

where β̃ = min{1/Lg, (1− ρt)/D}.

Theorem 4.2 together with Lemma D.3 implies that the iter-

ation complexity of obtaining an ε−stationary point defined

in Definition 2.2 is O(1/ε2) in expectation. The commu-

nication round per iteration is t ≥ dlogσ2
( 1
2
√
n
)e since we

need to ensure xk ∈ N . For sparse networks, t can be

O(n2 log n) (Chen et al., 2021a).

Note that in Assumption 3, the uniform bound D is required

for every vi,k. This is used in the proof of Lemma 4.1. We

can prove a weaker version of Theorem 4.2 without assum-

ing bounded variance Ξ in Assumption 3. However, we

hope to provide a parallel analysis as the D-PSGD (Lian

et al., 2017) to show the linear speedup of DRSGD can be

achieved w.r.t the network size n. With the bounded vari-

ance assumption, we have an O(Ξ
2

n ) term in (4.2). This

reveals the role of the batch size n in DRSGD. Follow-

ing (Lian et al., 2017), if we use the constant stepsize

βk = 1

2LG+
√

(K+1)/n
where K is sufficiently large, we

can obtain the following result

min
k=0,...,K

E‖gradf(x̄k)‖2F

≤ 8LG(f(x̄0)− f∗)

K + 1
+

8(f(x̄0)− f∗ + 3LG

2 )Ξ
√

n(K + 1)
.

More details are provided in Corollary D.5 in Appendix.

Therefore, if K is sufficiently large, the convergence rate is

O(1/
√
nK). To obtain an ε−stationary point, the computa-

tional complexity of single node is O( 1
nε2 ). Moreover, K

should be proportional to O(1/Ξ) in Corollary D.5. This

also means that in deterministic setting (Ξ = 0), the linear

speedup cannot be obtained.

One remaining issue is that the communication round t ≥
dlogσ2

( 1
2
√
n
)e is too large. In practice, we find that t = 1

performs well as shown in the experiments in Section 6. We

conjecture that when the stepsize is small enough, DRSGD

will not deviate from the consensus algorithm DRCS too

much. We will theoretically study this in the future.

5. Gradient tracking on Stiefel manifold

In this section, we study the decentralized gradient tracking

method, which is based on the DIGing algorithm (Qu & Li,

2017; Nedic et al., 2017) for solving Euclidean problems.

With an auxiliary gradient tracking sequence to estimate the

full gradient, the constant stepsize can be used and faster

convergence rate can be shown for the Euclidean algorithms

(Nedic et al., 2017; Shi et al., 2015). Our method, termed

Decentralized Riemannian Gradient Tracking Algorithm

(DRGTA), is described in Algorithm 2.

In Algorithm 2, the step 4 is to project the direction yi,k
onto the tangent space Txi,k

M, which follows a retrac-

tion update. The sequence {yi,k} is to approximate the
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Algorithm 2 Decentralized Riemannian Gradient Tracking

over Stiefel manifold (DRGTA) for Solving (1.1)

1: Input: initial point x0 ∈ N , an integer t ≥ logσ2
( 1
2
√
n
),

0 < α ≤ ᾱ and stepsize β according to (5.2).

2: Let yi,0 = gradfi(xi,0) on each node i ∈ [n].
3: for k = 0, . . .{for each node i ∈ [n], in parallel} do

4: Projection onto tangent space: vi,k = PTxi,k
Myi,k.

5: Update

xi,k+1 = Rxi,k
(αPTxi,k

M(
∑n

j=1
W t

ijxj,k)− βvi,k).

6: Riemannian gradient tracking:

yi,k+1 =

n
∑

j=1

W t
ijyj,k +gradfi(xi,k+1)− gradfi(xi,k).

7: end for

Riemannian gradient gradfi(xi,k). More specifically, the

sequence {yk} tracks the average Riemannian gradient
1
n

∑n
i=1 gradfi(xi,k). Although it is not mathematically

sound to perform addition operation between tangent spaces

in differential geometry, we can view gradfi(xi,k) as the

projected Euclidean gradient. Note that yi,k is not necessar-

ily on the tangent space Txi,k
M. Therefore, it is important

to define vi,k = PTxi,k
Myi,k so that we can use the prop-

erties of retraction in Lemma 2.3. Such a projection onto

tangent space, followed by the retraction operation, distin-

guishes the algorithm from the Euclidean space gradient

tracking algorithms. Multi-step consensus of gradient is

also required in step 5 and step 6. The consensus stepsize α
satisfies the same condition as that of Algorithm 1.

5.1. Convergence of Riemannian gradient tracking

We first briefly revisit the idea of gradient tracking (GT)

algorithm DIGing in Euclidean space. Note that if we con-

sider the decentralized optimization problem (1.1) without

the Stiefel manifold constraint, then Algorithm 2 is exactly

the same as the DIGing. Since the Riemannian gradient

gradfi becomes simply the Euclidean gradient ∇fi and

projection onto the tangent space and retraction are not

needed. The main advantage of Euclidean gradient tracking

algorithm is that one can use constant stepsize β > 0, which

is due to following observation: for all k ≥ 0, it follows that

1

n

n
∑

i=1

yi,k =
1

n

n
∑

i=1

∇fi(xi,k).

That is, the average of sequence yi,k is the same as that

of ∇fi(xi,k). It can be shown that the following inexact

gradient sequence converges to a stationary point (Nedic

et al., 2017)

xi,k+1 =

n
∑

i=1

Wijxj,k − β
1

n

n
∑

i=1

∇fi(xi,k).

However, the average of gradient information is unavail-

able in the decentralized setting. Therefore, GT uses
1
n

∑n
i=1 yi,k to approximate 1

n

∑n
i=1 ∇fi(xi,k). Inspired

by this, yi,k is used to approximate the Riemannian gradi-

ent, i.e., if

yi,k+1 =

n
∑

j=1

W t
ijyj,k + gradfi(xi,k+1)− gradfi(xi,k),

then it follows that

1

n

n
∑

i=1

yi,k =
1

n

n
∑

i=1

gradfi(xi,k) i.e. ŷk = ĝk.

Therefore, {yk} tracks the average of Riemannian gradient,

and if ‖ĝk‖F → 0 and the sequence {xk} achieves con-

sensus, then xk also converges to a critical point. This is

because

‖gradf(x̄k)‖2F ≤ 2‖ĝk‖2F + 2‖gradf(x̄k)− ĝk‖2F
(2.6)

≤ 2‖ĝk‖2F +
2L2

G

n
‖xk − x̄k‖2F.

The above observations will play important roles in the

convergence analysis. To achieve consensus, we still need

multi-step consensus in DRGTA. The multi-step consensus

also helps us to show the uniform boundedness of yi,k and

vi,k, i ∈ [n] for all k ≥ 0, which is important to guarantee

xk ∈ N . We get that the sequence stays in consensus

region N in Lemma 5.1. We provide the proof in Appendix.

Lemma 5.1 (Uniform bound of yi and stay in N ). Un-

der Assumptions 1 and 2, let x0 ∈ N , t ≥ logσ2
( 1
2
√
n
),

α satisfy 0 < α ≤ ᾱ, β satisfy 0 ≤ β ≤ β̄ :=
min{ 1−ρt

LG+2D δ1,
αδ1

5(LG+2D)}, then ‖yi,k‖F ≤ LG + 2D for

all i ∈ [n] and xk ∈ N for all k ≥ 0. Moreover, we have

1

n
‖xk − x̄k‖2F ≤ C1(LG + 2D)2β2, (5.1)

for some C1 = O( 1
(1−ρt)2

), and C1 is independent of LG

and D.

We present the O(1/ε) iteration complexity to obtain the

ε−stationary point of (1.1) as follows. The proof of DIGing

can be unified by the primal-dual framework (Alghunaim

et al., 2020). However, DRGTA cannot be rewritten in the

primal-dual form. The proof is mainly established with the

help of Lemma 2.4 and the properties of IAM. We provide

it in Appendix.

Theorem 5.2. Under Assumptions 1 and 2, let x0 ∈ N ,

t ≥ dlogσ2
( 1
2
√
n
)e, 0 < α ≤ ᾱ, and

0 < β ≤ min{β̄, 1

8LG
,

1

4LG(2G3 + (8C̃0 +
1
2 C̃2)αδ1)

},

(5.2)
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where β̄ is given in Lemma 5.1. Then it follows that for the

sequences generated by Algorithm 2

min
k=0,...,K

1

n
‖yk‖2F ≤ 8(f(x̄0)− f∗ + C̃4 + G4LG)

β ·K ,

(5.3)

min
k≤K

1

n
‖xk − x̄k‖2F

≤ 8β(f(x̄0)− f∗ + C̃4 + G4LG)C̃0 + C̃1

K
,

(5.4)

min
k≤K

‖gradf(x̄k)‖2F

≤ (16 + α2δ21C̃0)(f(x̄0)− f∗ + C̃4 + G4LG) + C̃1LG

β ·K ,

(5.5)

where the constants above are given by

G3 = G1C̃0 + G0C̃0 + G2,

G4 =
G0C̃0δ

2
1α

2

25
+ C̃1(G1 + 4rC1),

C̃0 =
2

(1− ρt)2
, C̃1 =

2

1− ρ2t
· 1
n
‖x0 − x̄0‖2F,

C̃2 =
2

(1− σt
2)

2
, C̃3 =

2

1− σ2t
2

· 1
n
‖y0 − Ĝ0‖2F,

C̃4 = (8α2C̃1C̃2L
2
G + C̃3) ·

β

2
= O(

LG

(1− σt
2)

2
).

The constants G0 = O(r2C1) , G1 = O(r2C1) and G2 =
O(M) are given in Lemma E.2 in the appendix. We have

G3 = O( r2C1

(1−ρt)2
+M) and G4 = O(

r2C1δ
2
1

1−ρ2
t

). Recall that

β ≤ β̄ is required to guarantee that the sequence {xk}
always stays in the consensus region N . And note that ρt
is the linear rate of Riemannian consensus, which is greater

than σt
2. The stepsize β follows

β = O(min{ 1− ρt
LG + 2D

,
(1− ρt)

2

LG
· 1

r2C1 +M(1− ρt)2
}).

This matches the bound of DIGing (Qu & Li, 2017; Nedic

et al., 2017). Then Theorem 5.2 suggests that the consensus

error rate is O( 1
(r2C1+M)LG

· f(x̄0)−f∗

K +
‖x0−x̄0‖2

F

n(1−ρ2
t )K

) and

the convergence rate of min
k=0,...,K

‖gradf(x̄k)‖2F is given by

O( (r
2C1+M)(LG+2D)(f(x̄0)−f∗))

K(1−ρt)2
+

‖x0−x̄0‖2
F

n(1−ρt)4T
+

r2C1δ
2
1LG

K(1−ρt)6
).

Moreover, if the initial points satisfy x1,0 = x2,0 = . . . =

xn,0, we have C̃1 = C̃3 = C̃4 = 0.

6. Numerical experiment

We consider the following decentralized eigenvector prob-

lem:

min
x∈Mn

− 1

2n

n
∑

i=1

x>
i A

>
i Aixi, s.t. x1 = . . . = xn,

(6.1)

where Ai ∈ R
mi×d, i ∈ [n] is the local data matrix for agent

i and mi is the sample size. Denote the global data matrix

by A := [A>
1 A>

2 . . . A>
n ]

>. It is known that the global

minimizer of (6.1) is given by the first r leading eigenvec-

tors of A>A =
∑n

i=1 A
>
i Ai, denoted by x∗. DRSGD and

DRGTA are proved to only converge to the critical points,

but we find that they always converge to x∗ in our experi-

ments. Denote the column space of a matrix x by [x]. To

measure the quality of the solution, the distance between

column space [x] and [y] can be defined via the canonical

correlations between x ∈ R
d×r and y ∈ R

d×r(Golub &

Zha, 1995). One can define it by

ds(x, y) := min
Q∈O(r)

‖uQ− v‖F,

where O(r) is the orthogonal group, u and v are the

orthogonal basis of [x] and [y], respectively. In the sequel,

we fix α = 1 and generate the initial points uniformly

randomly satisfying x1,0 = . . . = xn,0 ∈ M. If full

batch gradient is used in Algorithm 1, we call it DRDGD,

otherwise one stochastic gradient is uniformly sampled

without replacement in DRSGD. In DRSGD, one epoach

represents the number of complete passes through the

dataset, while one iteration is used in the deterministic

algorithms. For DRSGD, we set the maximum epoch to

200 and early stop it if ds(x̄k, x
∗) ≤ 10−5. For DRGTA

and DRDGD, we set the maximum iteration number to

104 and the termination condition is ds(x̄k, x
∗) ≤ 10−8

or ‖gradf(x̄k)‖F ≤ 10−8. We set βk = β̂
1
n

∑
n
i=1

mi
for

DRGTA and DRDGD where β̂ will be specified later. For

DRSGD, we set β = β̂√
200

. Due to the space limit, we

show the results on the ring graph, and select the weight

matrix W to be the Metroplis constant weight (Shi et al.,

2015). More comparisons on different networks and dataset

are provided in Appendix. For reproducibility of results,

our code is made available at https://github.com/

chenshixiang/Decentralized_Riemannian_

gradient_descent_on_Stiefel_manifold.

6.1. Synthetic data

We report the convergence results of DRSGD, DRDGD

and DRGTA with different t and β̂ on synthetic data. We

fix m1 = . . . = mn = 1000, d = 100 and r = 5 and

generate m1 × n i.i.d samples following standard multi-

variate Gaussian distribution to obtain A. Let A = USV >
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Penna, F. and Stańczak, S. Decentralized eigenvalue al-

gorithms for distributed signal detection in wireless net-

works. IEEE Transactions on Signal Processing, 63(2):

427–440, 2014.

Qu, G. and Li, N. Harnessing smoothness to accelerate

distributed optimization. IEEE Transactions on Control

of Network Systems, 5(3):1245–1260, 2017.

Raja, H. and Bajwa, W. U. Cloud k-svd: A collaborative

dictionary learning algorithm for big, distributed data.

IEEE Transactions on Signal Processing, 64(1):173–188,

2015.

Sarlette, A. and Sepulchre, R. Consensus optimization on

manifolds. SIAM Journal on Control and Optimization,

48(1):56–76, 2009.

Shah, S. M. Distributed optimization on riemannian

manifolds for multi-agent networks. arXiv preprint

arXiv:1711.11196, 2017.

Shi, W., Ling, Q., Yuan, K., Wu, G., and Yin, W. On the lin-

ear convergence of the admm in decentralized consensus

optimization. IEEE Transactions on Signal Processing,

62(7):1750–1761, 2014.

Shi, W., Ling, Q., Wu, G., and Yin, W. Extra: An exact first-

order algorithm for decentralized consensus optimization.

SIAM Journal on Optimization, 25(2):944–966, 2015.

Sun, H., Lu, S., and Hong, M. Improving the sample and

communication complexity for decentralized non-convex

optimization: Joint gradient estimation and tracking. In

International Conference on Machine Learning, pp. 9217–

9228. PMLR, 2020.

Tron, R., Afsari, B., and Vidal, R. Riemannian consensus for

manifolds with bounded curvature. IEEE Transactions

on Automatic Control, 58(4):921–934, 2012.

Tsitsiklis, J., Bertsekas, D., and Athans, M. Distributed

asynchronous deterministic and stochastic gradient op-

timization algorithms. IEEE transactions on automatic

control, 31(9):803–812, 1986.

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. On

orthogonality and learning recurrent networks with long

term dependencies. In International Conference on Ma-

chine Learning, pp. 3570–3578. PMLR, 2017.

Wang, L., Liu, X., and Zhang, Y. A distributed and secure al-

gorithm for computing dominant svd based on projection

splitting. arXiv preprint arXiv:2012.03461, 2020.

Xin, R., Khan, U. A., and Kar, S. A near-optimal stochastic

gradient method for decentralized non-convex finite-sum

optimization. arXiv preprint arXiv:2008.07428, 2020.

Xu, J., Zhu, S., Soh, Y. C., and Xie, L. Augmented dis-

tributed gradient methods for multi-agent optimization

under uncoordinated constant stepsizes. In 2015 54th

IEEE Conference on Decision and Control (CDC), pp.

2055–2060. IEEE, 2015.

Yang, W. H., Zhang, L.-H., and Song, R. Optimality condi-

tions for the nonlinear programming problems on Rieman-

nian manifolds. Pacific J. Optimization, 10(2):415–434,

2014.

Ye, H. and Zhang, T. Deepca: Decentralized exact pca with

linear convergence rate. arXiv preprint arXiv:2102.03990,

2021.

Yuan, K., Ling, Q., and Yin, W. On the convergence of

decentralized gradient descent. SIAM Journal on Opti-

mization, 26(3):1835–1854, 2016.

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. Exact

diffusion for distributed optimization and learning—part



Decentralized Riemannian Gradient Descent on the Stiefel Manifold

i: Algorithm development. IEEE Transactions on Signal

Processing, 67(3):708–723, 2018.

Zhang, H. and Sra, S. First-order methods for geodesically

convex optimization. In Conference on Learning Theory,

pp. 1617–1638, 2016.


