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ABSTRACT
Machine learning models have been widely used for fraud detection,
while developing and maintaining these models often suffers from
significant limitations in terms of training data scarcity and con-
strained resources. To address these issues, in this paper, we lever-
age the machine learning vulnerability to adversarial attacks, and
design a novel model AdvRFD that Adversarially Reprograms an
ImageNet classification neural network to perform FraudDetection
task. Specifically, AdvRFD first embeds transaction features into a
host image to construct new ImageNet data, and then learns a uni-
versal perturbation to be added to all inputs, such that the outputs
of the pretrained model can be accordingly mapped to the final de-
tection decisions for all source transactions. Extensive experiments
on two transaction datasets made over Ethereum and credit cards
have demonstrated that AdvRFD is effective to detect fraud using
limited data and resources.
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1 INTRODUCTION
In the e-commerce age, financial transactions have shot up mani-
folds, and so have cases of fraud. The Consumer Sentinel Network
maintained by Federal Trade Commission (FTC) received 3.2 mil-
lion reports of identity theft and online fraud in 2019, causing huge
economic losses and damages [25]. Given such a large amount of
fraud and sophistication of fraudsters adept at exploiting loopholes
in systems, machine learning has been increasingly applied over
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transactions to detect new fraud earlier than rule-based approaches
and thus alleviate the evolving threats it poses [4, 7, 12, 14, 20].
While many finance and security companies successfully deploy
machine learning models in their fraud detection services, devel-
oping and maintaining these models often suffers from significant
limitations in terms of training data scarcity for subtle feature learn-
ing, and constrained computing resources for deployment [5]. With
this in mind, a learning-effective yet cost-efficient machine learning
model may be in need to address these issues.

Due to the inherent machine learning vulnerability to adversar-
ial attacks [2, 8, 13, 17], adversarial reprogramming [6] has been
recently proposed to repurpose a machine learning model trained in
a source domain to perform a target-domain task through learning
a universal perturbation to the target-domain data without mod-
ifying the source-domain model parameters, where the domains
and tasks can be completely different. Different from traditional
adversarial attacks exploiting model’s linear approximations to
cause high misclassification rate, adversarial reprogramming relies
on the nonlinear interactions of the input and the perturbation,
which can be satisfied by a source-domain model of nonlinear deep
structure [18]. In other words, an additive offset to a deep neural
network’s input would be sufficient on its own to repurpose the
network to a new task without the need of model fine-tuning [6].
As such, adversarial reprogramming of pretrained neural networks
yields the prospective advantages for our fraud detection problem:
(1) it can leverage the powerful learning capabilities of deep neural
networks to extract expressive patterns from subtle transaction fea-
tures with much less effort than training from scratch or transfer
learning, and (2) make the source-domain model resources reusable
for shared compute from different fraud detection tasks and benefit
the application scenarios with limited resources.

In this paper, we explore a novel perspective of fraud detection,
and present a model AdvRFD to adversarially reprogram an Ima-
geNet classification neural network for fraud detection. On one
hand, ImageNet classification neural networks have been under-
going vibrant evolution in their nonlinear deep structures and
learning capabilities; on the other hand, a wide range of such
high-performance pretrained networks can be easily available for
straightforward leverages. Given a pretrained model of this kind
and a host image randomly selected from ImageNet, AdvRFD first
injects features extracted from transactions into the host image to
construct new image data, and then learns a universal perturbation
to be added to all inputs, such that the outputs of the pretrained
model can be accordingly mapped to the final detection decisions
(i.e., valid or fraudulent) for all source transactions. This naturally
leads to the following two goals for AdvRFD: (1) input transforma-
tion to embed transaction features and perturbation into the host
image for the adversarial task, and (2) output transformation to
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map ImageNet classes to fraud detection classes. Different from
recent works [6, 16, 26], we conceal the visibility of features and
perturbation for general applications, and investigate the impact of
different output mapping methods on detection performance.

2 BACKGROUND AND RELATED WORK
2.1 Machine Learning-based Fraud Detection
A fraud detectionmodel usingmachine learning attempts to identify
fraud through building a classification model based on the labeled
training transactions and feature representations, such as genera-
tive adversarial networks (GAN) [7], hybrid ensemble [12, 20], and
graph neural network (GNN) [14]. Without loss of generality, we
define transactions as D, and denote feature extraction with the
function 𝜙 : D → X, where X ⊆ R𝑘 is the feature space. The fraud
detection can be thus stated in the form of 𝐹 : X → Y, which
outputs confidence scores in the class space Y = {−1, +1} repre-
senting the valid and fraudulent classes respectively, such that the
predicted class of sample x ∈ X is derived from

𝑦∗ = argmax
𝑦∈Y

𝐹𝑦 (x) (1)

where 𝐹𝑦 (x) is the confidence score of 𝑦 ∈ Y class.

2.2 Adversarial Reprogramming
In general, adversarial attacks apply different perturbations to dif-
ferent inputs [8, 24], while recently, universal perturbation has been
explored to be added on different inputs to craft adversarial exam-
ples [1, 9, 15]. Similarly, adversarial reprogramming repurposes a
model for a new task by learning a universal perturbation to the
inputs [16]. Given a model performing a source-domain task, for
inputs x̃ it produces outputs 𝑆 (x̃). An attacker would like to per-
form a target-domain task, for inputs x it computes outputs 𝑇 (x).
Adversarial reprogramming proceeds by learning transformation
functions𝐻𝑠 (·;𝜽 ) and𝐻𝑡 (·) that map between the two tasks, where
𝐻𝑠 transforms target-domain inputs x into source-domain inputs
x̃ = 𝐻𝑠 (x;𝜽 ), while 𝐻𝑡 maps source-domain outputs 𝑆 (𝐻𝑠 (x;𝜽 ))
back to target-domain outputs 𝑇 (x), such that

𝑇 (x) = 𝐻𝑡 (𝑆 (𝐻𝑠 (x;𝜽 ))) (2)

where 𝜽 is the trainable universal perturbation. Unlike transfer
learning [3, 19], adversarial reprogramming keeps model parame-
ters unchanged and simply learns 𝜽 to perform adversarial task.

3 PROPOSED MODEL
3.1 Overview of AdvRFD
In our work, we consider that we have access to a self-deployed
ImageNet classification neural network, and leverage adversarial re-
programming of this model for fraud detection. As such, the source-
domain task is ImageNet classification, and the target-domain task
is fraud detection. Accordingly, we define x to be transaction fea-
tures,𝑇 (x) a fraud detection function, x̃ ImageNet images, and 𝑆 (x̃)
a pretrained ImageNet model. Based on these definitions, the input
transformation function 𝐻𝑠 (·;𝜽 ) then comprises embedding x to a
host ImageNet image to formulate new image data x̃, and learning
a universal perturbation 𝜽 to be added to x̃, while the output trans-
formation function 𝐻𝑡 (·) further maps ImageNet classes to fraud
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Figure 1: The overview of our proposed model AdvRFD.

detection classes. Given training transactions, AdvRFD proceeds
with input and output transformations, while the perturbation 𝜽 is
updated via evaluating the loss between the output and the input’s
ground truth. The overview of AdvRFD is illustrated in Fig. 1.

3.2 Input Transformation
Input transformation is to convert the transaction data to the input
space of ImageNet classification, which includes transaction feature
embedding and perturbation formulation. Since we consider that
we have access to the neural networks that would be reprogrammed,
the distribution of the features and the magnitude of this pertur-
bation need not be constrained for adversarial reprogramming to
work. However, the idea is more general here: AdvRFD could repur-
pose any self-deployed or public image classification services, while
those real-life machine learning services may be aware of the poten-
tial attacks to avoid computational resource abuse. As such, similar
to most previous adversarial attacks, we would like to construct
our adversarial reprogramming that is imperceptible, such that the
visibility of transaction features and adversarial perturbation is
concealed to the deployed models.

3.2.1 Transaction feature embedding. Generally, each transaction
x ∈ X is represented by a 𝑘-dimensional feature vector:

x =< 𝑥1, 𝑥2, 𝑥3, · · · , 𝑥𝑘 > (3)

where x ∈ R𝑘 and the value of 𝑥𝑖 depends on the possible features
derived from transactions, such as transaction number, value, time,
purchase data, account information, or customer behaviors. 𝑥𝑖 may
thus correspond to either 0/1 binary values indicating the absence
or presence of one feature, or numeric values specifying the size,
degree, or difference of feature variables. Considering that each
pixel value for images from ImageNet data is initially scaled to [0, 1]
before being further transformed, 𝑥𝑖 of numeric value needs to be
normalized in the range of [0, 1] to reasonably perform transaction
feature embedding over ImageNet Images.

Different from recent works [6, 26] that simply placed the target-
domain data in the center of the images padded by perturbation, we
scatter transaction features in a host image x̃ ∈ R𝑛×𝑛×3 to conceal
their visibility. More importantly, as high-frequency areas in images
like noises and edges rapidly change in space, we further extract
pixels in such areas to host features and enhance the invisibility of
feature embedding. Let C ∈ R𝑛×𝑛×3 mark the high-frequency areas
in the host image x̃ by zeroing out the pixels in the low-frequency
areas (e.g., using Discrete Wavelet Transform (DWT) [22]). 𝑘 pixels
are then randomly selected to store 𝑘 feature values from x, i.e.,
x̃𝑘C ⊕ x, where ⊕ implies feature embedding operation; a mask
M ∈ R𝑛×𝑛×3 is accordingly formulated with 0 for𝑘 feature locations
and 1 for others to avoid transaction features being perturbed in



x̃. Note that, once 𝑘 pixels are designated, pixel 𝑖 will be firmly
associated with the same feature 𝑥𝑖 for all data samples.

3.2.2 Perturbation formulation. The perturbation in adversarial
reprogramming is formulated not specific to a single image, but to
be added to all input images [6], which can be defined as:

𝜽 = 𝜖 · tanh(𝜽 ⊙ M) (4)

where 𝜽 ∈ R𝑛×𝑛×3 is the universal perturbation to be learned, M
is a mask as defined above, ⊙ denotes the element-wise product,
and tanh(·) bounds the perturbation to be in (−1, 1). Here we also
introduce a hyper-parameter 𝜖 to govern the magnitude of the
perturbation. The input transformation can thus be presented as:

x̃ = 𝐻𝑠 (x;𝜽 ) = clip(x̃𝑘C ⊕ x + 𝜖 · tanh(𝜽 ⊙ M)) (5)

where clip(x̃) function performs per-pixel clipping of the image x̃
to limit each pixel value to the range of [0, 1]. In our method, both
the parameter 𝜖 and clip function contribute to the invisibility of
the formulated perturbation.

3.3 Output Transformation
For the new input x̃, the ImageNet classification neural network
outputs 𝑦 = 𝑆 (x̃) with 𝑦 ∈ {0, 1, · · · , 999}, while for the source
transaction x, the fraud detection function outputs 𝑦 = 𝑇 (x) with
𝑦 ∈ {0, 1}. To transform the ImageNet classes to fraud detection
classes, we specify output transformation function 𝐻𝑡 (·) using
either hard coded mapping or soft coded mapping method to inves-
tigate their impacts on adversarial reprogramming effectiveness.
Specifically, hard coded mapping simply assigns two randomly-
selected class outputs of ImageNet to predict valid and fraudulent
classes respectively. Soft coded mapping, similar to multi-label map-
ping [26], forms two class sets of ImageNet with the same number
of non-repeated classes each, and averages the outputs for both
sets to report fraud detection decisions respectively.

3.4 Optimization
The optimization of AdvRFD can be formulated as

𝜽 ∗ = argmax
𝜽

(− log𝑝 (𝐻𝑡 (𝑦) |x̃) + 𝜆∥𝜽 ∥2𝐹 ) (6)

where 𝑝 (𝐻𝑡 (𝑦) |x̃) indicates the probability that an image input x̃
transformed from transaction x being classified as 𝑦, which can be
mapped to fraud; 𝜆 is the regularization parameter for a perturba-
tion norm penalty to reduce overfitting. Eq. (6) shows that 𝜽 is the
only parameter for our problem, which can be updated by optimiz-
ing this loss using Adam. As the host image and transaction features
are constants during reprogramming, feature embedding can be
pre-processed to decrease training cost. Based on the trained model,
we can easily perform the fraud detection that needs only input and
output transformations, while leaving the majority of computation
to the deployed ImageNet classification neural networks.

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental Setup
We test AdvRFD on two transaction datasets made over Ethereum1

(9,841 38-d transactions with 7,662 valid and 2,179 fraud) and credit
1https://www.kaggle.com/vagifa/ethereum-frauddetection-dataset

cards2 (1,012 30-d transactions with 520 valid and 492 fraud). We
randomly select 80% of the samples for training, while the remaining
is used for testing, and we report mean accuracy and F1-score of
5 runs for all experiments. The parameter setting is specified as
0.01 initial learning rate, and 5 × 10−4 L2 regularization on the
perturbation. We evaluate the impact of 𝜖 and host images on fraud
detection performance in Section 4.3.

We employ five pretrained ImageNet classification neural net-
works, including DenseNet-121 and DenseNet-161 [11], ResNet-50
and ResNet-101 [10], and Inception-V3 [23] for reprogramming.
For baselines, we compare AdvRFD with Ensemble [12], GAN [7],
GNN [14], and three ImageNet classification neural networks (using
transfer learning with binary outputs).

4.2 Ablation Study on Output Transformation
We first perform an ablation study to decide the mapping method
that better benefits AdvRFD. For hard coded mapping, we randomly
choose two ImageNet classes; for soft coded mapping, we randomly
divide 1,000 ImageNet classes into two sets. Based on this setting,
we evaluate AdvRFD on Ethereum using Inception-V3 with 𝜖 = 0.3.
From Fig. 2 we can see that hard coded mapping slightly outper-
forms soft coded mapping on test accuracy and F1-score. When we
look into training procedure, we find hard coded mapping reaches a
stable loss at epoch 12, while soft coded mapping needs 15 epochs to
achieve the comparable performance causing higher training time.
Thus, hard coded mapping leads to faster and better convergence
results, and we use it in AdvRFD for the following evaluation.

4.3 Evaluation of AdvRFD
4.3.1 Fraud detection effectiveness. In our experiments, we evalu-
ate AdvRFD on Ethereum under different perturbation magnitudes
𝜖 and host images x̃. In particular, we test the results of AdvRFD for
fraud detection with 𝜖 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} respectively, while
the host images x̃ being randomly selected from ImageNet data,
including dining table, rickshaw, spindle, tank and polecat. The ex-
perimental results are shown in Fig. 3. Though different parameter
settings contribute to different test results, which will be further dis-
cussed in the following subsections, AdvRFD successfully achieves
the goal of reprogramming five well-trained ImageNet classification
neural networks to perform fraud detection. Averagely, our model
obtains 95.96% test accuracy and 90.91% F1-score.

4.3.2 Impact of perturbation magnitudes. We investigate the sensi-
tivity of perturbation magnitude 𝜖 on the performance of AdvRFD,
which is illustrated in Fig. 3(a)-(b) (run on a host image of dining
table). Generally, when we enlarge 𝜖 , the test effectiveness increases.
We observe that the accuracy and F1-score rise to a high level at
𝜖 = 0.3 for all pretrained networks and then either slightly increase
or drop when 𝜖 changes from 0.3 to 0.5. Notably, the larger 𝜖 in-
creases the risk of perturbation being recognized by the pretrained
models. Thus, we use 𝜖 = 0.3 throughout the following evaluations
to keep a good trace-off between fraud detection effectiveness and
perturbation invisibility for adversarial reprogramming.

4.3.3 Impact of host images. It is also interesting to see if different
host images affect the performance of AdvRFD. Since Inception-V3
2https://www.kaggle.com/mlg-ulb/creditcardfraud
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Table 1: Comparisons of baselines (TR–training time)

Method Pretrained Ethereum Credit Cards

AC (%) F1 (%) TR (s) AC (%) F1 (%) TR (s)

Ensemble [12] - 88.31 65.11 - 92.37 91.17 -
GAN [7] - 91.63 86.88 - 93.41 92.50 -
GNN [14] - 93.82 87.83 - 93.46 92.72 -
DenseNet-161 [11] - 90.26 85.16 1,196 83.37 82.61 159
ResNet-101 [10] - 90.74 85.63 825 82.81 81.46 95
Inception-V3 [23] - 91.65 87.79 717 82.28 81.15 66

AdvRFD

DenseNet-121 96.38 91.92 259 93.64 92.87 22
DenseNet-161 95.90 90.83 404 94.09 93.13 34
ResNet-50 95.33 89.56 190 92.59 91.82 17
ResNet-101 95.43 89.70 292 92.98 92.09 25
Inception-V3 96.77 92.75 270 93.96 92.80 23

outperforms other pretrained models at 𝜖 = 0.3, we report the test
accuracy and F1-score of AdvRFD that repurposes Inception-V3
for fraud detection over five different host images selected from
ImageNet. As shown in Fig. 3(c), the evaluation results slightly
vary in different host images. However, the standard deviations
of accuracy and F1-score fall within [0.001, 0.003], which imply
that the performance difference is not statistically significant and
AdvRFD is loosely coupled with host images.

4.4 Comparisons with Baselines
We compare AdvRFDwith baselines, including Ensemble [12], GAN
[7], GNN [14], DenseNet-161 [11], ResNet-101 [10], and Inception-
V3 [23]. The comparative results are illustrated in Table 1. Com-
pared to ensemble, regular networks like GAN and GNN improve
the detection effectiveness; however, DenseNet-161, ResNet-101,
and Inception-V3 with much deeper structure significantly under-
perform due to limited data for fine-tuning. By contrast, AdvRFD
manages to leverage the powerful feature extraction capability
of ImageNet classifiers and the facilitation from perturbation to
achieve state-of-the-art accuracy and F1-score for fraud detection:
(1) most of pretrained models reprogrammed by AdvRFD outper-
form other baselines; (2) Inception-V3 and DenseNet-161 obtain
the best results on Ethereum and credit cards respectively. The
only trainable parameter for AdvRFD is perturbation tensor, while
transfer learning suffers from huge computations to fine-tune the
whole networks. AdvRFD thus takes less time (12 epochs), while
transfer learning requires at least 30 epochs for training.

4.5 Evaluation of Cost Efficiency
In addition to less training data requirement and less training effort
than transfer learning, here we further demonstrate the practicality

of AdvRFD for fraud detection with cost efficiency in computing
resources. We report computing time of AdvRFD on Ethereum in-
cluding/excluding the consumption of the deployed ImageNet net-
works, which is illustrated in Fig. 4. Different from other baselines,
when we extract the time cost consumed by the ImageNet models,
all the costs enjoy a drastic drop. This implies that a major part of
model training and test time are spent on shared computes. This is
especially beneficial for larger datasets. In other words, AdvRFD
enables reusable resources, significantly reduces computing cost
for individual tasks, and thus addresses the real-world challenge
for fraud detection with limited resources.

5 APPLICABILITY
AdvRFD provides a learning-effective yet cost-efficient solution
for fraud detection. Thus, AdvRFD holds the applicability of re-
programming high-performance neural networks to perform fraud
detection tasks in practice. Similar to the recent work in machine
learning that focused on building dynamically connected networks
with reusable components [21], wemay consider the source-domain
models as our reusable components to perform the shared com-
putes disentangled out of different tasks, while these components
can be self-deployed in local or cloud servers for complete and easy
access, or reached through pay-per-use online services. Though
we demonstrate adversarial reprogramming of image-domain neu-
ral networks on fraud detection, both source-domain models and
target-domain tasks can be in a wider range.

6 CONCLUSION
In this paper, we propose AdvRFD to adversarially reprogram pre-
trained classifiers to perform fraud detection task. We conduct
experimental studies on real-world transactions to evaluate the
performance of AdvRFD, which validate its fraud detection effec-
tiveness and cost efficiency. The adversarial reprogramming lever-
aged by AdvRFD falls into the category of white-box adversarial
attacks, which may not be feasible to repurpuse the access-limited
online services. We leave the investigation on black-box adversarial
reprogramming as our future work, yet it does not impact the great
value and validity of AdvRFD for fraud detection in practice.
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