
2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 1

A Framework for Enhancing Deep Neural
Networks Against Adversarial Malware

Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu

Abstract—Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is
that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge organized
by the MIT Lincoln Lab and associated with the AAAI-19 Workshop on Artificial Intelligence for Cyber Security (AICS’2019), we
propose six guiding principles to enhance the robustness of deep neural networks. Some of these principles have been scattered in the
literature, but the others are introduced in this paper for the first time. Under the guidance of these six principles, we propose a defense
framework to enhance the robustness of deep neural networks against adversarial malware evasion attacks. By conducting
experiments with the Drebin Android malware dataset, we show that the framework can achieve a 98.49% accuracy (on average)
against grey-box attacks, where the attacker knows some information about the defense and the defender knows some information
about the attack, and an 89.14% accuracy (on average) against the more capable white-box attacks, where the attacker knows
everything about the defense and the defender knows some information about the attack. The framework wins the AICS’2019
challenge by achieving a 76.02% accuracy, where neither the attacker (i.e., the challenge organizer) knows the framework or defense
nor we (the defender) know the attacks. This gap highlights the importance of knowing about the attack.

Index Terms—Adversarial Machine Learning, Deep Neural Networks, Malware Classification, Adversarial Malware Detection.

F

1 INTRODUCTION

MALWARE remains a big threat to cyber security de-
spite communities’ tremendous countermeasure ef-

forts. For example, Symantec [2] reports seeing 357,019,453
new malware variants in the year 2016, 669,974,865 in the
year 2017, and 246,002,762 in the year 2018. Worse yet,
there is an increasing number of malware variants that
attempt to undermine anti-virus tools and indeed evade
many malware detection systems [3].

In order to cope with the increasingly severe situation,
we have to resort to machine learning for automating the
detection of malware in the wild [4]. However, machine
learning based techniques are vulnerable to adversarial
evasion attacks, by which an adaptive attacker perturbs or
manipulates malware examples into adversarial examples
that would be detected as benign rather than malicious (see,
for example, [5], [6], [7], [8], [9], [10], [11]). The state-of-
the-art is that there are many attacks, but the problem of
effective defense is largely open. For example, adversarial
training is known to be able to harden classifiers against
adversarial examples, but requires knowing about the attack
in terms of (for example) its manipulation set [7]. This is

A preliminary version of the paper was presented at AICS’2019, which does
not publish any formal proceedings [1].

• D. Li is with School of Computer Science and Engineering, Nanjing
University of Science and Technology, China.

• Q. Li is with School of Computer Science and Engineering, Nanjing
University of Science and Technology and School of Intelligent Manu-
facturing, Wuyi University, China.

• Y. Ye is with Department of Computer and Data Sciences, Case Western
Reserve University, USA.

• S. Xu is with Department of Computer Science, University of Colorado
Colorado Springs. This work was done when he was at University of Texas
at San Antonio, USA. E-mail: sxu@uccs.edu

Manuscript received Apr. 15, 2020; revised Oct. 02, 2020; accepted Jan. 07,
2021. (Corresponding author: Shouhuai Xu.)

indeed the context in which the AICS’2019 Malware Clas-
sification Challenge is proposed. In a broader context, ad-
versarial malware examples are a particular kind of attacks
against adversarial machine learning. Although adversarial
machine learning has received much attention in application
domains such as image processing (see, e.g., [12], [13], [14]),
the problem of adversarial malware examples are much less
investigated [5], [7], [9], [15].

The AICS’2019 challenge mentioned above is essentially
about whether we can defend against adversarial examples in
the wild. The challenge is characterized as follows. First,
we (i.e., any team participating in the Challenge as the
defender) are given a training set in the form of anonymized
feature representation by the Challenge organizer (i.e., we
do not even know what the feature names are), as well as
the corresponding ground-truth labels. We are informed by
the Challenge organizer that the training data contains no
adversarial examples. Second, we are given a set of test data
(again, in anonymized feature representation) and are told
that the test data contains both adversarial examples and
non-adversarial examples. We do not know what attacks
are used by the Challenge organizers. We do not know
which examples in the test set are perturbed by adversaries.
This means that we neither know which are adversarial
examples, nor the attacks that are used to generate them, nor
the manipulation set. Third, our task is to accurately classify
the test data, including both adversarial and non-adversarial
examples. The setting of the Challenge is realistic because in
the real world defenders do not know attacker’s specifica-
tions such as attack methods, manipulation sets, and specific
adversarial examples. The importance of the problem in
defending against adversarial malware examples and the
realistic setting of the Challenge motivate the present study.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 2

1.1 Our Contributions

In this paper, we make the following contributions. First,
we propose, to the best of our knowledge, the first system-
atic defense framework to enhance the robustness of Deep
Neural Network (DNN)-based malware classifiers against
adversarial evasion attacks. The framework is designed
under the guidance of a set of principles, some of which
are known but scattered in the literature (e.g., using an
ensemble of classifiers and minmax adversarial training), but
others are introduced in this paper for the first time, such
as the following. We propose (i) using white-box attack,
where the attacker knows everything about the defense,
to bound the capability of grey-box attacks with respect
to the `p (p ≥ 1) norm, where the attacker knows some-
thing about the defense; (ii) using adversarial regularization
(i.e., adversarial training with small perturbations) when
the manipulation set is not available to the defender; (iii)
leveraging semantics-preserving representations (realized
by Denoising Auto-Encoder or DAE for shorthand).

Second, we empirically validate the effectiveness of the
framework against 11 grey-box attacks and 9 white-box
attacks (i.e., 20 attacks in total). The 11 grey-box attacks in-
clude the Random attack, two Mimicry attacks [16], the Fast
Gradient Sign Method (FGSM) attack [13], Grosse attack [5],
Bit Gradient Ascent (BGA) attack [7], Bit Gradient Ascent
(BCA) attack [7], and four variants of the Projected Gradient
Descent (PGD) attacks. The 9 white-box attacks leverage the
victim models directly and the attack algorithms are the
same as the latter 9 ones mentioned above. Among these
attacks, the four variants of the PGD attacks are used to be
investigated in other application settings and are adapted
to the adversarial malware detection domain for the first
time. The variant PGD attacks permit feature addition and
feature removal, incurring larger manipulation sets than the
Grosse, BGA, and BCA attacks. In these experiments, ad-
versarial malware examples are generated by manipulating
regular malware examples while preserving their malicious
functionalities. Our empirical findings include: (i) standard
DNNs without incorporating defense can be ruined by both
grey-box and white-box attacks; (ii) adversarial regulariza-
tion without considering attacks in the training phase has
limited success in terms of improving the robustness of
DNNs against adversarial examples; (iii) adversarial train-
ing with the Adam optimizer can significantly enhance the
robustness of DNNs against multiple grey-box evasion at-
tacks, but not the more capable white-box Grosse, BCA and
PGD-`1 attacks; (iv) DAE provides a degree of extra robust-
ness when used together with adversarial training, which is
ineffective in defending against the white-box Grosse, BCA
and PGD-`1 attacks; (v) adding ensembles further improves
the robustness of DNNs, at the price of sacrificing a degree
of the effectiveness of adversarial training against the white-
box PGD-`2, PGD-`∞ and PGD-Adam attacks.

Third, we apply the framework to the AICS’2019 adver-
sarial malware classification challenge organized by the MIT
Lincoln Lab. According to the Challenge organizers, there
were “over 300 participants attempted to download and
classify the malware data set” [17] and we win the Challenge
by achieving a 73.60% Harmonic mean score (which is the
metric the organizer chose to use before making the data

available); i.e., we achieve the highest score among all of the
participating teams.

Fourth, after announcing that we win the Challenge, the
organizer makes the ground-truth labels publicly available
at http://www-personal.umich.edu/∼arunesh/AICS2019/
challenge.html. In order to understand why we only achieve
a 73.60% Harmonic mean score, we leverage the ground-
truth labels to conduct a further study. We show that (i)
oversampling benefits adversarial regularization in defend-
ing against evasion attacks in term of the Macro-F1 score
and (ii) adversarial regularization tends to overfit the per-
turbed examples while this phenomenon does not occur to
the non-adversarial (i.e., original) data.

Fifth, we show that the framework is effective in resisting
grey-box attacks via the widely-used Drebin Android mal-
ware dataset (with a 98.49% accuracy on average), where
the attacker knows some information about the defense
and the defender knows some information about the attack.
When applied to the AICS’2019 challenge dataset but only
considering the adversarial examples (for the sake of fair
comparison with the experiment on the Drebin dataset), the
framework only achieves a 76.02% accuracy on average,
where it is still true that neither the attacker knows the
defense nor the defender knows the attacks. This highlights
that the defender should always strive to know as much
information as possible about the attacks. In order to avoid
any confusion, we reiterate that the aforementioned experi-
ment result (i.e., 73.60% in the Harmonic mean score) con-
siders both adversarial and non-adversarial examples (as
required by the challenge organizer); whereas the 76.02% ac-
curacy disregards of the non-adversarial examples (for fair
comparison with the experiment with the Drebin dataset).
Another difference is that in the new experiment achieving
a 76.02% accuracy we use an ensemble of 5 building-block
models, whereas in the experiment achieving 73.60% Har-
monic mean score we use 10 building-block models.

Last but not the least, we made our the code of our mod-
els publicly available at https://github.com/deqangss/
aics2019 challenge adv mal defense.

1.2 Related Work

Since the present paper focuses on defense against adver-
sarial malware examples, we review related prior studies
in four categories: ensemble learning, input prepossessing, ad-
versarial training/regularization, and DAE-based representation
learning.

Ensemble learning can reduce the generalization error
by diversifying the building-block models. Biggio et al. [18],
[19] show how the bagging and random subspace techniques
can enhance the robustness of linear models against eva-
sion attacks. Smutz and Stavrou [20] propose using the
confidence score produced by random forest classifiers to
detect adversarial malware. Stokes et al. [21] investigate the
resilience of ensemble DNNs against evasion attacks. In this
paper, we diversify the building-block models via randomly
initialized parameters and the random subspace algorithm.

Input prepossessing transforms the input to a different
representation, aiming to reduce the degree of perturbations
applied to the original input. For example, Random Feature
Nullification (RFN) randomly nullifies features both in the

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

http://www-personal.umich.edu/~arunesh/AICS2019/challenge.html
http://www-personal.umich.edu/~arunesh/AICS2019/challenge.html
https://github.com/deqangss/aics2019_challenge_adv_mal_defense
https://github.com/deqangss/aics2019_challenge_adv_mal_defense

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 3

training and test phases [22]; HashTran [23] reduces small
perturbations using a locality-sensitive hashing; DroidEye
[24] quantizes binary representation via count featurization.
In our framework, inspired by the idea of feature squeezing
[25], we use binarization to reduce the perturbations.

Adversarial training augments the training data with
adversarial examples. Various kinds of heuristic training
strategies have been proposed (see, e.g., [5], [12], [13], [26],
[27]. However, these strategies typically deal with specific
evasion methods and are not effective against others. Fur-
thermore, researchers propose considering adversarial train-
ing with the optimal attack, which in a sense corresponds to
the worst-case scenario and therefore could lead to classi-
fiers that are robust against the non-optimal attacks [7], [28].
In our framework, we seek the optimal attack via a gradient
descent method, while meeting the requirement of discrete
inputs via a nearest neighbor search.

Adversarial regularization is an adversarial training
method that aims to train a model with slightly perturbed ex-
amples, which may or may not be functionality-preserving.
Intuitively, small perturbations benefit the generalization of
DNN models [13], [27], [29], [30], [31]. This approach may
be useful because in the context of malware detection, the
defender may not know the manipulation set of the attacker.

DAE facilitates robust representation learning [32], [33].
Li et al. [23] propose detecting adversarial malware exam-
ples using DAE. In our framework, we use DAE to learn the
robust representation that is insensitive to perturbations.

1.3 Paper Outline
The rest of the paper is organized as follows. Section 2
presents the adversarial malware evasion attacks, including
four attacks that are adapted to the domain of adversarial
malware detection for the first time. Section 3 describes our
defense framework. Section 4 validates our defense frame-
work with a real-world dataset. Section 5 presents the re-
sults when applying the framework to the AICS’2019 Chal-
lenge without knowing anything about the attack. Section
6 presents our further study after winning the AICS’2019
Challenge and being given the ground-truth labels of the
test data. Section 7 concludes the present paper.

2 ADVERSARIAL MALWARE EVASION ATTACKS

2.1 Notations
Given a non-adversarial malware example z ∈ Z , its feature
representation x ∈ X can be obtained via some feature
extraction methods, where Z denotes the example space (i.e.,
the set of all possible software examples) and X denotes the
feature space (typically discrete). A classifier f : X → Y takes
x as input and outputs its label y ∈ Y , where Y is the label
space.

We focus on a classifier f that is learned as a neural
network model F : X → Ro, whose output (softmax)
is treated as the probability mass function over o = |Y|
classes [1], [5], [7], [34]. That is f = arg maxj∈Y F, where
arg max returns the index of the maximum element in a o-
dimension vector. Let L : Ro × Y → R be a loss function.
The parameters of F, denoted by θ, are optimized via

min
θ

E(x,y)∈X×Y [L(F(x), y)] . (1)

Specifically, the cross-entropy is leveraged L(F(x), y) =
−1>y log(F(x)), where 1y is the one-hot encoding vector for
the label y. For simplifying notations, we use F (rather than
Fθ) to denote a neural network. Table 1 summarizes the
main notations used in the paper.

TABLE 1: Main notations used in the paper

Notation Meaning
z ∈ Z z is a software example; Z is the example space
(x, y) ∈ X × Y x is feature representation of z; X is the feature

space; y is the label of x; Y is the label space
δx ∈Mx δx is a perturbation vector of x; Mx is the

manipulation set of x
x′ ∈ S(x,Mx) x′ is perturbed from x; S is the set of perturbed

representations derived from x andMx; S ⊆ X
o o is the number of classes
dim dim is the number of dimension of x
f : X → Y f is the classifier
F : X → Ro F denotes a neural network
θ θ denotes parameters of neural network F
L : Ro × Y → R L is cross-entropy loss function

2.2 Basic Idea

With regard to the feature spaceX , given the representation-
label pair (x, y), the adversarial evasion attack attempts to
perturb x into x′, such that

f(x′) 6= y s.t. x′ ∈ S(x,Mx) (2)

where S(x,Mx) is the set of perturbed representations
derived from the non-adversarial feature representation x
and a manipulation set Mx (i.e. the set of manipulations
that can preserve the malicious functionality of malware
examples). The perturbation vector is denoted by δx = x′ − x
with δx ∈ Mx. Since the manipulation is conducted in the
feature space, the attacker needs to map x′ back into the
example space Z in order to obtain an executable adver-
sarial malware example z′ ∈ Z . This is a requirement that
distinguishes adversarial malware detection from adversar-
ial machine learning in other application domains, which
induces the problem of generating adversarial examples in
the discrete space. It is worth mentioning that an attacker
tends to modify malware examples by exploiting one or
multiple feasible manipulations [5], [10], [16].

2.3 Threat Model

The threat model against malware classifiers and detectors
can be specified by what the attacker knows, what the attacker
can do, and how the attacker wages the attack.

2.3.1 What the attacker knows

There are three kinds of models from this perspective. A
black-box attacker knows nothing about classifier f except
what is implied by f ’s responses to the attacker’s queries.
A white-box attacker knows all kinds of information about
f , including its learning algorithms, model parameters, de-
fenses strategies, etc. A grey-box attacker knows an amount
of information about f that resides in between the preceding
two extremes. For example, the attacker may know the
feature set.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 4

2.3.2 What the attacker can do
In evasion attack, the attacker only can manipulate malware
examples in the test set using various kinds of manip-
ulations, while obeying some constraints. One constraint
is to preserve the malicious functionality of malware. A
simplifying assumption is to consider insertion only (e.g.,
flipping a feature value from ‘0’ to ‘1’ [5], [7], [9], [22], [35],
[36], [37], [38], while noting that attackers can manipulate a
malware example by inserting and deleting operations [39],
[40]. Since a larger manipulation set gives the attacker more
freedom, we permit the attacker to conduct both feature ad-
dition and feature removal. The other constraint is to maintain
the relation between features. Using the AICS’2019 malware
classification challenge as an example, we note that n-gram
(uni-gram, bi-gram, and tri-gram) features reflect sequences
of Windows system API calls. This means that when the
attacker inserts an API call into a malware example, several
features related to this API call will need to be changed
according to the definition of n-gram features.

2.3.3 How the attacker wages the attack
Researchers generate adversarial malware examples using
various machine learning-based techniques such as genetic
algorithms, reinforcement learning, and generative net-
works [26], [40], [41], [42]. In order to generate adversarial
malware examples effectively and efficiently, attackers often
exploit the gradient-based methods [13], [35], [36], [43], [44].
We here briefly describe multiple types of attacks, some of
which were introduced in the context of malware detection
but the others were introduced in the context of image
classification and then adapted to the context of malware
detection.

Random Attack. We introduce this method as a baseline
attack in the adversarial malware detection domain. In this
attack, the attacker randomly modifies a feature at each
iteration until a predefined step is reached or no more
features can be manipulated.

Mimicry Attack. This attack was introduced in [16], [35],
[36], [45] for studying adversarial malware detection. In
this attack, the attacker perturbs or manipulates a malware
example such that the resulting adversarial version mimics
a chosen benign example as much as possible. In order to
reduce the degree of perturbations, the attacker may select
the benign example to be close to the malware example that
is to be modified.

FGSM Attack. This attack was introduced in the context of
image classification [13] and then adapted to the malware
detection [7], [24]. FGSM perturbs a feature vector x in the
direction of the `∞ norm of the gradients of the loss function
with respect to the input, namely:

x′ = ProjS (x + ε · sign(OxL(F(x), y))) ,

where ε > 0 is a scalar known as step size, Ox indicates
the derivative of the loss function L(F(x), y) with respect
to x, and ProjS(·) projects an input into S that denotes the
shorthand of S(x,Mx).

Grosse Attack. This attack was introduced by Grosse et al.
[5] in the context of malware detection. The attack considers

sensitive features, namely the features have large positive
gradients as far as the softmax output is concerned. The
attack is to manipulate the absence of a feature (e.g., not
making a certain API call) into the presence of the feature
(i.e., making the API call), while preserving their malicious
functionalities. These sensitive features can be identified by
leveraging the gradients of the softmax output of a malware
example with respect to the input.

BGA Attack and BCA Attack. In the context of malware de-
tection, Al-Dujaili et al. [7] proposed two separate methods,
dubbed BGA and BCA, aiming to solve:

max
x′∈S(x,Mx)

L(F(x′), y). (3)

In addition, the authors considered malware examples in the
binary space and restricted Mx to API calls addition. Both
attack methods iterate multiple steps. In each iteration, BGA
increases the feature value from ‘0’ to ‘1’ if the correspond-
ing partial derivative of the loss function with respect to
the input is greater than or equal to the gradient’s `2 norm
divided by

√
dim, where dim is the input dimension. In

contrast, BCA flips ‘0’ to ‘1’ for a component at the iteration
corresponding to the maximum gradient of the loss function
with respect to the input.

PGD Attack. We adapt the PGD method to the context
of malware detection, by accommodating discrete input
spaces. In contrast to the Grosse, BGA, and BCA attacks,
the adapted PGD attacks permit both feature addition and
feature removal. Specifically, PGD finds perturbations via an
iterative procedure

δi+1
x = ProjM̂x

(
δix + α · OδxL(F(x + δix), y)

)
, (4)

where α > 0 is the step size, Oδx is the derivative of
the loss function L(F(x + δix), y) with respect to δx, and
ProjM̂x

projects perturbations into a predetermined space
M̂x. We set M̂x = [u,u] for u = minimum(Mx) and u =
maximum(Mx), where minimum returns the component-
wise minimum vector (i.e., each component of the vector
corresponding to the minimum of the corresponding com-
ponent values of the vectors inMx) and maximum returns
the component-wise maximum vector.

When solving Eq.(4), we encounter two issues that need
to be addressed: (i) small derivatives of g = OδxL and (ii)
mapping perturbations into discrete spaceMx. To see issue
(i), we note that by writing F as F(x) = softmax(Z(x)),
we have ∂L/∂δx = (F − 1y) · ∂Z/∂δx, meaning that the
derivatives approach zero when F predicts x as y with high
confidence. To cope with this, researchers [28], [46] have
proposed to “normalize” the derivatives using `p-norm and
leveraging the steepest direction as follows:

• For p = 1, the direction is sign(gi)1i, where i is the
index corresponding to the maximum absolute value
of g = (g1, . . . , gdim) with dim being the number of
input dimension, 1i has the same dimension as g and
has value 1 at the ith component and value 0 at the
other components, and sign returns 1 when the input
> 0, −1 when the input < 0, and 0 when the input
= 0.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 5

• For p = 2, the direction is g/ ‖ g ‖2.
• For p = ∞, the direction is sign of gradients, i.e.,

sign(g).

We call these variant PGD attacks PGD-`1, PGD-`2 and
PGD-`∞, respectively. Note that PGD-`1 degrades to the
BCA attack when only feature addition is permitted. In
addition to these `p-norm based attacks, we observe that
the attacker can use the Adam optimizer to accelerate the
process of gradient descent (the “normalized” gradients are
approximate to ±1) [47], leading to a new variant of the
PGD attack, which we call PGD-Adam.

Algorithm 1: PGD attack in the feature space.

Input: The feature representation-label pair (x, y),
manipulation setMx, number of iterations T ,
step size α

Output: Perturbed example x′

1 Initialize perturbation vector δ0x = 0;
2 Derive the continuous space M̂x and the perturbed

representation set S ;
3 for i = 0 to T − 1 do
4 Obtain the derivatives OδxL and normalize them

using `p-norm where p = 1, 2,∞ or the Adam
method;

5 Calculate δi+1
x via the Eq.(4);

6 end
7 Obtain x′ by mapping x̃′ = x + δTx via Eq.(5);
8 return x′.

To address the issue (ii), we introduce a mapping method
to consider two settings as follows. In order to follow the
direction of “normalized” gradients, let the perturbation δx
be continuous during the optimization process. We map
the perturbed representation obtained at the last iteration,
denoted by x̃′ = (x̃′1, . . . , x̃

′
dim), into S by selecting its

closest neighbor x′ = (x′1, . . . , x
′
dim) such that

x′ = arg min
x′∈S

‖ x′ − x̃′ ‖1= arg min
x′∈S

dim∑
i=1

|x′i − x̃′i|. (5)

Geometrically speaking, Eq.(5) says that for the ith dimen-
sion, x′i is the feasible scalar closest to x̃′i. Algorithm 1
summarizes the PGD attacks in the feature space.

3 ADVERSARIAL MALWARE DEFENSE

3.1 Guiding Principles
These principles are geared to neural network classifiers,
which are chosen as our focus because deep learning tech-
niques are increasingly employed in the domain of malware
detection/classification, but their vulnerability to adversar-
ial evasion attack has yet to be tackled [48].

3.1.1 Principle 1: Knowing the enemy
This principle says that the defender should strive to extract
useful information about the attacks as much as possible as
the information will offer insights on designing countermea-
sures. Threat models are a standard approach to modeling
attacks. Moreover, it is possible to design some indicators of
adversarial examples. On the other hand, the attack method

and manipulation set may not be known to the defender.
This means that whenever possible, the defender has to
simulate them.

3.1.2 Principle 2: Bridging grey-box vs. white-box gap

In grey-box attacks, the attacker knows some information
about the feature set and therefore can train a surrogate clas-
sifier f̂ : X → Y from a training set (where the realization of
f̂ is a neural network F̂), leveraging the transferability from
f̂ to f to generate adversarial examples. Consider an input x
for which a grey-box attacker generates perturbations using

δ̂x = arg max
||δx||≤η ∧ δx∈Mx

L(F̂(x + δx), y),

where η is an upper bound and possibly large. Based on
the degree of perturbations, we consider two cases: (i) η is
small and (ii) η is large. We further assume that the optimal
perturbation vector δx of F exists.

In case (i) or when η is small, the change to the loss of f
incurred by δ̂x is

|∆L| =
∣∣∣L(F(x + δ̂x), y)− L(F(x), y)

∣∣∣
≈
∣∣∣OL(F(x), y)>δ̂x

∣∣∣ ≤ max
||δ||≤η

∣∣∣OL(F(x), y)>δ
∣∣∣

= η||OL||∗,

where the approximation is derived using the first-order
Taylor expansion at point x, O is the operator for computing
partial derivatives of the loss function with respect to the
input of neural network F, and “|| · ||∗” is the dual norm of
|| · ||.

In case (ii) or when η is large, we derive

|∆L| =
∣∣∣L(F(x + δ̂x), y)− L(F(x), y)

∣∣∣
=

∣∣∣∣∣
∫ δ̂x

0
OL(F(x + δ), y)dδ

∣∣∣∣∣
=

∣∣∣∣∫ 1

0
OL(F(x + tδ̂x), y)>δ̂xdt

∣∣∣∣
≤ η sup

||δ||≤η
‖OL(F(x + δ), y)‖∗ .

The preceding observation shows that corresponding to the
same perturbation upper bound η, the loss incurred by grey-
box attacks is upper bounded by the loss incurred by white-
box attacks. This suggests us to focus on the robustness of
classifier f against the optimal white-box attack.

3.1.3 Principle 3: Not putting all eggs in one basket

This is suggested by the observation that no single classifier
may be effective against all kinds of attacks. An ensemble
can be built by many methods (e.g., bagging, boosting, or
stacking) [49]. For example, random subspace [50] is seem-
ingly particularly suitable for formulating malware classifier
ensembles owing to the high dimensional feature vector of
malware, which indicates a high vulnerability of classifiers
to adversarial malware examples [16], [51].

Formally, an ensemble fen : X → Y contains a set
of neural networks {Fi}li=1, namely {Fi : X → Ro} for
1 ≤ i ≤ l. Given a test example x, we treat the base model

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 6

equally, as suggested by the study [18], [52], and the voting
method is

Fen(x) =
1

l

l∑
i=1

Fi(x).

We obtain the predicted label by fen = arg maxj∈Y Fen.

3.1.4 Principle 4: Using transformation against perturbation
In typical applications, the defender does not know what
kinds of evasion attacks are waged by the attacker. These
attacks can produce a spectrum of perturbations, from
manipulating a few features (e.g., the PGD-`1 attack) to
manipulating a large number of features (e.g., the FGSM
attack). Moreover, we may give higher weights to the
transformation techniques that can simultaneously reduce
the degrees of multiply types of perturbations such as `∞
norm, `1 norm, or `2 norm. This suggests us to use the
binarization technique [25], [53]: When the feature value of
the ith feature, denoted by xi, is smaller than a threshold
Θi, we binarize xi to 0; otherwise, we binarize xi to 1.

3.1.5 Principle 5: Using vaccine
We harden a model incorporating the known minmax adver-
sarial training:

min
θ

E(x,y)∈X×Y

[
L(F(x), y) + max

x′∈S
L(F(x′), y)

]
. (6)

Al-Dujaili et al. [7] instantiate this method by using attacks
with feature addition solely (e.g., BGA). In order to accom-
modate more manipulations, we solve the problem of inner
maximization using the Adam optimizer (see Section 2.3.3).
Given the issue of local minima, we run the inner maximizer
several times, each with a random initial point near the
training data, and then select the point that maximizes the
loss function of L.

It is worth mentioning that in the AICS’2019 Chal-
lenge, the defender does not know the manipulation set
Mx and thus cannot derive S . In this case, we propose
training malware classifiers by applying small perturbations
to the feature representations of malware examples (with-
out necessarily preserving their malicious functionalities).
This would benefit model generalization [13], [29]. Let a
norm || · || measure the perturbation δx with η bounded.
We have max||δx||≤η L(F(x + δx), y) ≈ L(F(x), y) +
η||OL(F(x), y)||∗, leading to |L(F(x′), y) − L(F(x), y)| ≤
η||OL(F(x), y)||∗. Therefore, adversarial regularization as-
sures that small perturbations do not change the prediction
significantly.

3.1.6 Principle 6: Preserving semantics
This suggests us to strive to learn neural network models
that are sensitive to malware semantics, but not the per-
turbations because adversarial examples must retain the
malicious functionality of original malware. Specifically, we
propose using denoising auto-encoder to learn semantics-
preserving representations, rendering neural network less
sensitive to perturbations. A DAE ae = d ◦ e unifies two
components: an encoder e : X → H that maps an input
M(x) to a latent representation r ∈ H and a decoder
d : H → X that reconstructs x from r, where the H
is the latent representation space and M refers to some

operations applied to x (e.g., adding Gaussian noises to
x). Vincent et al. [32] showed that the lower bound of the
mutual information between x and r is maximized when the
reconstruction error is minimized. In the case of Gaussian
noise ε ∼ N (0, σ2) and reconstruction loss

Eε∼N (0,σ2) ‖ae(x + ε)− x)‖22 , (7)

Alain and Bengio [54] showed that the optimal ae∗(x) is

ae∗(x) =
Eε [p(x− ε)(x− ε)]

Eε [p(x− ε)]
, (8)

where p(·) is the probability density function. Eq.(8) says
that representations of a well-trained DAE are insensitive to
x because of the weighted average from the neighborhood
of x, which is reminiscent of the attention mechanism [55].
This means that DAE can handle certain types of small
perturbations. To learn a DAE model, we leverage two
kinds of noise: (i) Salt-and-pepper noise ε: A small fraction
of elements of original example x are randomly selected,
and then set their values as their respective minimum or
maximum. (ii) Adversarial perturbation δx: A perturbation
δx is added to x such that classifier f or base classifier fi
misclassifies x′ = x + δx. Given a training example x over
the feature space X , the risk of a denoising auto-encoder is

min
θ̃,ξ

Ex∈X [Lae(x, ae(x + ε)) + Lae(x, ae(x
′))] , (9)

where Lae : X × X 7→ R calculates the mean-square error,
the learnable parameters θ̃ and ξ respectively belongs to the
encoder and decoder.

3.2 Turning Principles into A Framework

The principles discussed above guide us to propose a frame-
work for adversarial malware classification and detection,
which is highlighted in Figure 1 and elaborated below.
Specifically, we first examine whether the attacks have some
useful information that could to be incorporated via a
proper preprocessing (according to Principle 1). We propose
using an ensemble fen of classifiers {fi}li=1 (according to
Principle 3), which are trained from random subspace of the
original feature space. Each classifier fi is hardened by three
countermeasures: input transformation via binarization (ac-
cording to Principle 4); adversarial training/regularization
models on the attacks using Adam optimizer (dot arrows
in Figure 1, according to Principle 2 and 5); semantics-
preservation is achieved via an encoder and a decoder
(according to Principle 6). In order to attain adversarial
training and at the same time semantics-preservation, we
learn classifier fi via block coordinate descent to optimize
different components of the model.

Algorithm 2 integrates all pieces for training individual
classifiers. The training procedure consists of the following
steps. (i) Given a training set (X,Y), we randomly select a
ratio Λ of sub-features to the feature set, and then transform
X into X via the binarization discussed above. (ii) We
sample a mini-batch {xi, yi}Ni=1 from (X,Y), and calculate
adversarial examples x′i for xi ∈ {xi}Ni=1 according to Lines
5-9 in Algorithm 2. (iii) We pass the {x′i}Ni=1 through the
denoising auto-encoder to compute the reconstruction loss
with respect to the target {xi}Ni=1 via Eq.(9), and update

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 7

Voting
!

Sample

Classifier "1

C
la

ss
if

ie
r
" 1

Target labels

C
la

ss
if

ie
r
" #

Ensemble "$%

"# Classifier

Training

Testing

Forward

Gradient

Training data

loss function
Transformation

Transformed

data
Encoder

Semantics-preservation

Decoder

loss function
Transformation

Transformed

data
Encoder

Semantics-preservation

Decoder

p
re

p
ro

ce
ss

in
g

Fig. 1: Overview of the adversarial malware defense frame-
work. In the training phase, an ensemble of l neural
network classifiers are trained, with each classifier hard-
ened by three countermeasures (i.e., input transformation,
semantics-preserving, and adversarial training on the trans-
formed data).

Algorithm 2: Training classifier fi
Input: The training set (X,Y), number of repeat times

K , epoch Nepoch and mini-batch size N .
1 Select a ratio Λ of sub-features from the feature set;
2 Transform input X to X via binarization;
3 for epoch = 1 to Nepoch do
4 Sample a mini-batch {xi, yi}Ni=1 from the (X,Y);

5 for k = 1 to K do
6 Apply slight salt-and-pepper noises to {xi}Ni=1;
7 Derive the perturbed representation {x′ki }Ni=1

via Algorithm 1 using Adam method;
8 end
9 Select x′i from {x′ki }Kk=1 for xi (i = 1, · · · , N) to

maximize the cross-entropy loss;

10 Calculate the reconstruction loss via Eq.(9);
11 Backpropagate the loss and update the denoising

autoencoder parameters;

12 Calculate the adversarial training loss via Eq.(6);
13 Backpropagate the loss and update classifier

parameters;
14 end

the parameters of the denoising auto-encoder. (iv) We pass
both the {xi + δxi}Ni=1 and {xi}Ni=1 through the neural
networks to compute the classification error with respect
to the ground-truth label {yi}Ni=1 via Eq.(6), and update the
parameters of the classifier via backpropagation. Note that
Steps (ii)-(iv) are performed in a loop. The output of the
training algorithm is a neural network classifier.

4 VALIDATING FRAMEWORK VIA DREBIN DATASET

We validate the effectiveness of the framework using the
Drebin dataset of Android malware [56], while considering
11 grey-box attacks and 9 white-box attacks. This dataset
also applied by former studies in the domain of adversarial
malware detection [5], [16], [23], [57].

4.1 Data Pre-Processing

Dataset. The Drebin dataset [56] contains 5,615 malicious
Android packages (APKs), and also provides features of
123,453 benign examples, together with their SHA256 values
but not the examples themselves. All samples were labeled
using the VirusTotal service [58] before the year 2015. An
example was treated as malicious if there are at least two
scanners say it is malicious, and is treated as benign if no
scanners detect it [56]. Because the VirusTotal may update
the detection result along with the time [59], we consider
relabeling the APKs. We download benign applications
corresponding to the given SHA256 values from the APK
markets (e.g., Google Play, AppChina, etc.), and collect
54,829 APKs in total. We send all of these examples (i.e.,
malicious and benign alike) to the VirusTotal service again.
Surprisingly, 12,496 benign APKs are detected as malicious
(rather than benign) by at least one scanners, and most of
them are detected as Adware or Trojan; this suggests that
the original Drebin training set has been contaminated by
the poisoning attack. This may be caused by some of the fol-
lowing reasons: (i) Virustotal updates the scanners over the
time; (ii) Virustotal updates the report of a file when a user
requires to rescan the file; (iii) after an update, the previous
report cannot be obtained anymore. We thus remove these
12,496 benign examples from the original benign dataset,
leaving 42,333 benign APKs. The resulting dataset contains
5,615 malicious APKs and 42,333 benign APKs, namely
47,948 examples in total. We randomly split the dataset into
three disjoint sets for training (60%), validation (20%), and
test (20%), respectively.

Feature Extraction. APK is an archive file containing An-
droidManifest.xml, classes.dex, and others (e.g., res, assets).
The manifest file describes an APK’s information, such as
the name, version, announcement, library files used by the
application. The source code is compiled to build the .dex
file which is understandable by the Java Virtual Machine.
The Drebin dataset has eight subsets of features, including
four subsets of features extracted from AndroidManifest.xml
(denoted by S1, S2, S3, S4, respectively) and four subsets
of features extracted from the disassembled dexcode (de-
noted by S5, S6, S7, S8, respectively). More specifically, (i)
S1 contains features corresponding to the access of an APK
to the hardware of a smartphone (e.g., camera, touchscreen,
or GPS module); (ii) S2 contains features corresponding to
the permissions requested by the APK in question; (iii) S3

contains features corresponding to the application compo-
nents (e.g., activities, service, receivers, etc.); (iv) S4 contains
features corresponding to the APK’s communications with
the operating system; (v) S5 contains features corresponding
to the critical system API calls, which cannot run without
appropriate permissions or the root privilege; (vi) S6 con-
tains features corresponding to the used permissions; (vii)
S7 contains features corresponding to the API calls that can
access sensitive data or resources on a smartphone; (viii) S8

contains features corresponding to IP addresses, hostnames
and URLs found in the disassembled code.

In order to extract applications’ features, we use An-
drogurad 3.3.5, a reverse engineering toolkit for APK anal-
ysis [60]. Note that 141 APKs cannot be analyzed. More-
over, a feature selection is conducted to remove those low-

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 8

frequency features for the sake of computational efficiency.
As a result, we keep 10,000 features with high frequencies.
The APK is mapped on the feature space as a binary feature
vector, where ‘1’ (‘0’) represents the presence (absence) of a
feature in the APK.

4.2 Training Classifiers

Classifiers. In order to validate the defense framework, we
use and compare five classifiers: (i) the basic DNN with
no effort made to defend adversarial examples; (ii) hard-
ened DNN incorporating adversarial training with known
manipulation set (dubbed Adversarial Training), which
manifests Principle 2 (grey-box attacks can be bounded
by the worst-case white-box attack) and Principle 5 (min-
max adversarial training); (iii) hardened DNN incorporat-
ing adversarial regularization because the defender may
know nothing about the manipulation set, which is true
in the case of AICS’2019 Challenge (dubbed Adversarial
Regularization); (iv) Denoising Auto-Encoder (DAE) based-
classifier, which manifests Principle 6 (semantics-preserving
representations); (v) classifier hardened by both Adversarial
Training and DAE (dubbed AT+DAE); (vi) ensemble of
AT+DAE classifiers in the random subspace (manifesting
Principle 3, dubbed Ensemble AT+DAE). For Principle 1
(i.e., knowing your enemy), we will simulate attacks in
the next subsection. Since we use binary feature vector,
Principle 2 (binarization) is not applicable.
Hyper-parameters Setting. We use DNNs with two fully-
connected hidden layers (each layer having 160 neurons)
with ReLU activation function. All classifiers are optimized
by using Adam with epochs 150, mini-batch size 128, and
learning rate 0.001. For Adversarial Training, the inner
maximization is optimized by using Adam with learning
rate 0.02 and iteration steps T = 100 to search adversarial
examples as many as possible. For Adversarial Regulariza-
tion, we set the learning rate as 0.01 for Adam and conduct
preliminary experiments to tune a proper iteration step T .
Finally, we set T = 60. We use an ensemble of 5 base
classifiers. Our preliminary experiments suggest us to learn
base classifiers from the entire training set and the entire
feature set. Unless with special mentioning, all classifiers
that require to solve the inner maximization are trained
without random starting points so as to ease the analysis
(i.e., K = 0).

4.3 Attack Experiments and Classification Results

We present threat models specified by whether the attacker
wages grey-box or white-box attacks, and constraints on the
attacker’s manipulation set.
Grey-box vs. White-box Attacks. We consider two attack
scenarios. (i) Grey-box attacks: In this setting, we simulate
the attack scenario of the AICS’2019 Challenge organizers.
That is, the attacker knows the dataset, feature set, but
not the defender’s learning algorithm. The attacker gener-
ates adversarial examples from a surrogate classifier. We
consider a surrogate model of two fully-connected hidden
layers (200 neurons each layer) and learn the model on the
training set. (ii) White-box attacks: In this setting, the attacker
knows everything about the malware detector. Therefore,

the adversarial examples are directly generated from the
corresponding malware detector.
Manipulations Constraints. Given an APK, we consider
both incremental and decremental manipulations. The incre-
mental manipulation allows the attacker to insert some
objects (e.g., activity) into an APK example to avoid detec-
tion. The decremental manipulation allows the attacker to
hide some objects (e.g., activity) to avoid detection. In any
case, the adversarial example should preserve the malicious
functionality of the malware from which the adversarial
example is generated.

When the attacker uses incremental manipulations, the
attacker can insert some manifest features (e.g., request
extra permissions and hardware, state additional services,
Intent-filter, etc.). However, some elements are hard to insert,
such as content-provider, because the absence of URI will
corrupt an APK example. With respect to the .dex file, a
dead function or class (which is never called) containing
specified system APIs can be injected without destroying
the APK example. The similar means can be performed for
the string injection (e.g., IP address), as well.

public void hideAPI() throws Exception{
// hide ’println’
String e_str = "ExMLXEZUDw";
// get ’println’
String p_str = decryptStr(e_str);
Class c = java.lang.System.class;
Field f = c.getField("out");
Method m = f.getType().
getMethod(p_str,String.class);
m.invoke(f.get(null), "hello world!");
return void
}

Listing 1: Java code to hide the API “println”.

When the attacker uses decremental manipulations, the
APK’s information in the xml files can be changed (e.g.,
package name). However, it is impossible to remove activity
entirely because an activity may represent a class imple-
mented in the .dex code. Nevertheless, we can rename an
activity and change its relevant information (e.g., activity
label), while noting that the related components in the .dex
should be modified accordingly. The other components (e.g.,
service, provider and receiver) also can be modified in the
similar fashion, and the resource files (e.g., images, icons)
can be manipulated as well. In terms of dexcode, the method
names and class names that are defined by developers
could be modified, too. Note that the corresponding state-
ment, instantiation, reference, and announcements should
be changed accordingly. Moreover, user-specified strings can
be obfuscated using encryption and the cipher-text will
be decrypted at running time. Further, the attacker can
hide public and static system APIs using Java reflection and
encryption together. This is shown by the example in List 1.
All of the modifications mentioned above only obfuscate an
APK without changing its functionalities.

One challenge is that the attacker needs to perform fine-
grained manipulations on compiled files automatically at
scale, while preserving the functionalities of malware exam-
ples. This important because a small change in a malware
example can render the file unexecutable. Since Android
APIs have upgraded multiple times in the past 5 years,

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 9

the attacker has to inject compatible APIs into an APK
when manipulating a malware example. The preservation
of malicious functionalities may be estimated by using a
dynamic malware analysis tool, (e.g., Sandbox).
Mapping Manipulations to Feature Space. The aforemen-
tioned manipulations modify static Android features, such
as API calls and components in the manifest file. Two kinds
of perturbations can be applied to the Drebin feature space.
(i) Feature addition. The attacker can increase the feature
values (e.g., flipping ‘0’ to ‘1’) of appropriate objects, such as
components (e.g., activity), system APIs, and IP address. (ii)
Feature removal. The attacker can flip ‘1’ to ‘0’ by removing
or hiding objects (e.g., activity, APIs.) Table 2 summarizes
our manipulations in the Drebin feature space. We observe
that neither feature addition nor feature removal can be
applied to S6 because these features depend on S2 and S5,
meaning that modifications on S2 or S5 may cause changes
to features in S6.

TABLE 2: Overview of manipulations on feature space,
where X(7) indicates that the feature addition or removal
operation can (cannot) be performed on features in the
corresponding subset.

Feature sets Addition Removal

manifest

S1 Hardware X 7
S2 Requested permissions X 7
S3 Application components X X
S4 Intents X 7

dexcode

S5 Restricted API calls X X
S6 Used permission 7 7
S7 Suspicious API calls X X
S8 Network addresses X X

Evasion Attacks Setting. We randomly select 800 malware
examples from the test set to wage evasion attacks by using
the attack algorithms described in Section 2.3. In the settings
of Random, Grosse, BGA, BCA, and `1-PGD attacks, we
iterate these algorithms until reaching a predefined maxi-
mum number of steps, while noting that Grosse, BGA, and
BGA attacks leverage feature addition only. For waging the
Mimicry attack, in order to increase its effectiveness, we use
Nb benign examples to guide the perturbation of a single
malware example, leading to Nb perturbed examples; then,
we select a resulting example such that it causes the mis-
classification with the smallest perturbation. Therefore, we
denote this attack as Mimicry×Nb. For other attacks, we set
ε = 1.0 for the FGSM attack. In `∞ norm and Adam based
PGD attacks, the step size is α = 0.01 with iterative times
100. The `2 norm PGD attack is performed for 100 iterations
with step size 1.0.
Experimental Validation of Functionality. In order to test
whether or not perturbations in the feature space render to
executable files in the example space, we use Cuckoodroid
[61] to install and run APKs in an Android emulator. Owing
to efficiency considerations, we randomly select 10 malware
APKs and generate their perturbed APKs using the PGD-
Adam attack against the Basic DNN model. Among the 10
original (i.e., unperturbed) APKs, all of them can be loaded
but 2 cannot run in the Android emulator. Among the 10
perturbed examples, all of them can be loaded but 5 of them
cannot run (and 2 of these 5 correspond to the 2 original

APKs that cannot run). This means that more research is
needed in order to systematically assure that perturbation
can indeed preserve the functionalities of malware exam-
ples, which is unique to adversarial malware detection [9],
[11].

4.4 Experimental Results

TABLE 3: Effectiveness of the defense framework when
there are no adversarial attacks.

Defense FNR (%) FPR (%) Accuracy (%)

Basic DNN 3.684 0.320 99.28
Adversarial Training 3.246 1.777 98.05
Adversarial Regularization 4.737 0.190 99.27
DAE 3.246 0.450 99.22
AT+DAE 3.246 1.694 98.12
Ensemble AT+DAE 2.456 2.464 97.54

The Case of No Adversarial Attacks. Table 3 sum-
marizes the classification results on the test set, which
are measured with the standard metrics of False Negative
Rate (FNR), False Positive Rate (FPR), and classification
Accuracy (i.e., the percentage of the test examples that are
classified correctly) [62]. We observe that when compared
with the Basic DNN, Adversarial Training achieves a lower
FNR (0.438% lower) but a higher FPR (1.457% higher).
A similar tendency is exhibited by DAE, AT+DAE and
Ensemble AT+DAE. This can be explained as follows: by
injecting adversarial malware examples into the training set,
the learning process makes the model search for malware
examples in a bigger space, explaining the drop in FNR and
increase in FPR and therefore a slightly drop (≤ 1.74%)
in the classification accuracy. Adversarial Regularization
achieves a comparable classification accuracy as Basic DNN,
but the highest FNR among the classifiers we considered.
This is caused by the fact that DNN is regularized using
small perturbations applied to both benign and malicious
samples. In summary, we draw:

Insight 1. In the absence of adversarial attacks, Adversarial
Training and DAE can detect more malware examples than the
Basic DNN (because of their smaller FNR), at the price of a small
side-effect in the FPR and therefore the classification accuracy;
Adversarial regularization achieves comparable accuracy as the
Baisc DNN while increasing the FNR.

The Case of Grey-box Attacks. Table 4 reports the clas-
sification results of the defense framework against grey-
box attacks. We make the following observations. First,
Basic DNN cannot defend against evasion attacks and is
completely ruined by attacks that include Mimicry, FGSM,
Grosse, BGA, BCA, PGD-`1, and PGD-`∞. Second, Ad-
versarial Training significantly enhances the robustness of
DNN, achieving the accuracy of 86.13% and 85.63% against
the Mimicry×1 and Mimicry×10 attack respectively and
a 100% accuracy against the other 6 attacks (i.e., BGA,
BCA and 4 variants of PGD). Third, Adversarial Regulariza-
tion, without seeing any adversarial examples, can defend
against FGSM, PGD-`∞, PGD-`2 and PGD-Adam attacks,
but are not effective against attacks such as Grosse, BCA,
and PGD-`1. A similar phenomenon is observed for DAE.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 4: Effectiveness of the defense framework against grey-box adversarial malware evasion attacks.

Attack Accuracy (%)

Basic DNN Adversarial Training (AT) Adversarial Regularization DAE AT+DAE Ensemble AT+DAE

No Attack 96.63 97.00 95.63 96.88 96.50 97.75
Random Attack 100.0 100.0 100.0 100.0 100.0 100.0
Mimicry×1 53.88 86.13 52.75 56.88 91.50 96.13
Mimicry×10 35.25 85.63 34.88 52.63 85.13 89.88
FGSM [13] 4.00 97.50 95.88 96.88 96.75 98.00
Grosse [5] 1.13 97.00 11.75 65.13 97.63 99.38
BGA [7] 0.25 100.0 71.13 100.0 100.0 100.0
BCA [7] 0.25 100.0 49.50 58.00 100.0 100.0
PGD-`1 0.25 100.0 43.88 53.88 100.0 100.0
PGD-`2 58.63 100.0 99.75 100.0 100.0 100.0
PGD-`∞ 0.25 100.0 100.0 100.0 100.0 100.0
PGD-Adam 52.50 100.0 100.0 100.0 100.0 100.0

TABLE 5: Effectiveness of the defense framework against white-box adversarial malware evasion attacks.

Attack Accuracy (%)

Basic DNN Adversarial Training (AT) Adversarial Regularization DAE AT+DAE Ensemble AT+DAE

Mimicry×10 11.63 68.25 14.88 40.88 69.13 79.75
FGSM [13] 0.00 97.00 95.00 96.88 96.50 97.75
Grosse [5] 0.00 60.75 16.63 35.50 81.13 91.75
BGA [7] 0.00 97.00 91.50 74.00 96.50 97.50
BCA [7] 0.00 61.13 16.63 35.38 81.50 91.75
PGD-`1 0.00 69.50 21.88 51.00 81.25 88.50
PGD-`2 3.00 93.63 82.13 89.75 91.13 91.63
PGD-`∞ 0.00 90.38 89.75 35.38 85.50 73.63
PGD-Adam 1.13 95.13 89.63 88.25 92.88 90.00

Nevertheless, when using Adversarial Training and DAE
together, namely AT+DAE, the defense achieves the highest
robustness against evasion attacks than using Adversarial
Training and DAE individually, except for the Mimicry×10
attack and FGSM attack (encountering a ∼1% decrease).
Fourth, the Ensemble AT+DAE consists of five AT+DAE
classifiers and achieves the highest robustness among the
considered defenses against the attacks investigated. In
summary, we draw:

Insight 2. Under grey-box attack scenario, Adversarial Training
is an effective defense against evasion attacks; DAE offers some
defense capability that may not be offered by Adversarial Training;
using an ensemble of five AT+DAE classifiers is more effective
than using a single AT+DAE classifier against evasion attacks;
Without knowing the attacker’s manipulation set, Adversarial
Regularization enhances the robustness of Basic DNN but cannot
defend attacks such as Grosse.

The Case of White-box Attacks. Table 5 presents the clas-
sification results against white-box attacks. We make the
following observations. (i) All attacks can almost completely
evade Basic DNN, but the Mimicry attack is, relatively
speaking, less effective because this attack leverages less
information about the classifiers than what the other attacks
do. (ii) Adversarial Training is effective against the FGSM
attack, BGA attack and PGD-Adam attack, but not effective
against the Grosse attack, BCA attack, and PGD-`1 attack
because these attacks manipulate a few features when gen-
erating adversarial examples and these manipulations are
unlikely perceived by Adversarial Training (owing to the
fact that Adversarial Training penalizes adversarial spaces
searched by Adam optimizer). (iii) As expected, Adversar-

ial Regularization is less effective than Adversarial Train-
ing. Adversarial Regularization achieves a 91.50% accuracy
against the white-box BGA attack, in contrast to the 71.13%
accuracy against the grey-box BGA attack. This is counter-
intuitive but can be attributed to the fact that Adversarial
Regularization may render some gradient-based methods,
such as BGA, useless, which is a phenomenon known as
gradient-masking [63], [64], [65]. (iv) AT+DAE achieves con-
siderable robustness against those attacks, with at least an
81.13% accuracy except for the Mimicry×10 attack, which
defeats the AT+DAE defense because Mimicry can make
adversarial malware examples similar to benign ones [16].
(v) The ensemble of AT+DAE defense achieves the highest
accuracy against the Mimicry×10, the Grosse attack and the
BCA attack than the other defenses, with about 10% higher
accuracy when compared with the AT+DAE defense. How-
ever, the ensemble of AT+DAE achieves lower accuracy than
AT+DAE against the PGD-`2 attack, the PGD-`∞ attack, and
the PGD-Adam attack. This may be caused by the fact that
the base model AT+DAE cannot effectively mitigate these
attacks. In summary, we draw:

Insight 3. Adversarial Training cannot effectively defend against
white-box attacks that were not considered in the training phase;
DAE can be useful when adversarial training is not effective;
employing ensembles can further improve the robustness against
certain white-box attacks. That is, no defenses can defeat all white-
box attacks effectively.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

~

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 11

5 APPLICATION TO AICS’2019 CHALLENGE
WHEN KNOWING NOTHING ABOUT ATTACKS

The challenge is in the context of adversarial malware
classification, namely devising evasion-resistant, machine
learning based malware classifiers. The dataset, including
both the training set and the test set, consists of feature
vectors extracted from Windows malware examples, each
of which belongs to one of the following five classes: Virus,
Worm, Trojan, Packed malware, and AdWare. For each exam-
ple, the features are collected by the challenge organizer
via dynamic analysis, including the Windows API calls and
further processed unigram, bigram, and trigram API calls.
The feature names (e.g., API calls) and the class labels are
“obfuscated” by the challenge organizer as integers, while
noting the obfuscation preserves the mapping between the
features and the integers representation of them. For exam-
ple, three API calls are represented by three unique integers,
say 101, 102, and 103; then, a trigram API call “101;102;103”
means a sequence of API calls 101, 102, and 103. In total
there are 106,428 features.

The test set consists of adversarial examples and non-
adversarial examples (i.e., unperturbed malware examples).
Adversarial examples are generated by a variety of pertur-
bation methods, which are not known to the participating
teams. However, the ground-truth labels of the test exam-
ples are not given to the participating teams. This means
that the participating teams cannot calculate the accuracy of
their detectors by themselves. Instead, they need to submit
their classification results (i.e., labels on the examples in the
test set) to the challenge organizer, who will calculate the
classification score of each participating team. The Chal-
lenge organizer decided to use the Macro F1 score as the
classification accuracy metric. The Macro F1 score is the
unweighted mean of the F1 score [66] for each class of
objects in question (i.e., type of malware in this case). The
final score is the Harmonic mean upon the two Macro F1
scores, namely the one for the adversarial examples in the
test data and the other for the non-adversarial examples in
the test data. Given these two numbers, say a1 and a2, their
harmonic mean 2a1a2

a1+a2
.

5.1 Basic Analysis of the AICS’2019 Challenge

Is the Training Set Imbalanced? The training set consists of
12,536 instances, and the test set consists of 3,133 instances.
The training set contains 8,678 instances in class ‘0’, 1,883
instances in class ‘1’, 771 instances in class ‘2’, 692 instances
in class ‘3’, and 512 instances in class ‘4’. We can calculate
the maximum ratio between the number of instances in
different classes is 16.95, indicating that the training set is
highly imbalanced. In order to cope with the imbalance in
the training set, we use the Oversampling method to replicate
randomly selected feature vectors from a class with a small
number of feature vectors. The replication process ends until
the number of feature vectors is comparable to that of the
largest class (i.e., the class with the largest number of feature
vectors), where “comparable” is measured by a predefined
ratio. In order to see the effect of this ratio, we use a 5-fold
cross validation on the training set to investigate the impact
of this ratio. The classifier consists of neural networks with
two fully-connected layers (each layer having 160 neurons

with the ReLU activation function), which are optimized
via Adam with epochs 50, mini-batch size 128, learning
rate 0.001. The model is selected when achieving the best
Macro F1 score on the validation set. Table 6 shows that
the Macro F1 score decreases as the oversampling ratio of
minority classes increases. In order to make each mini-batch
of training data contain examples from all classes, which
would be critical in multiclass classification, our experience
suggests us to select the 30% ratio.

TABLE 6: Accuracy (%) and Macro F1 score (%) are reported
with a 95% confidence interval with respect to the ratio
parameter (%), where ‘—’ means learning a classifier using
the original training set.

Ratio (%) Accuracy (%) Macro F1 (%)

— 93.20±1.04 85.52±1.12
30 92.86±0.75 85.47±1.04
40 92.38±1.00 84.87±1.07
50 92.21±0.60 84.87±1.00
60 92.48±1.12 84.62±1.01

Are There Simple Indicators of Adversarial Examples?
In the first test set published by the challenge organizer,
we see negative values for some features. These negative
values would indicate that they are adversarial examples.
In the revised test set provided by the challenge organizer,
there are no negative feature values, meaning that there are
no simple ways to tell whether an example is adversarial
or not. In spite of this, we can speculate on the count of
perturbed features by comparing the number of nonzero
entries corresponding to feature vectors in the training set
and feature vectors in the test set. Figure 2 shows the
normalized frequency of the number of nonzero entries of
feature vectors in the training set vs. test set. We observe that
their normalized frequencies are similar except that some
test examples have more nonzero entries. Their mean values
are close and are much smaller than the input dimension
(106, 428), suggesting that the average degree of perturbed
features may be small.

0 300 600 900 1200 1500
Number of nonzero entry

0.000

0.001

0.002

0.003

0.004

0.005

No
rm

al
ize

d
fre

qu
en

cy

Mean: 503.92
Training set

0 300 600 900 1200 1500
Number of nonzero entry

Mean: 556.72
Testing set

Fig. 2: Histogram of the normalized frequency of the num-
ber of nonzero entries of feature vectors in the training set
vs. test set. The dashed line represents the mean value.

5.2 Classification Results: Challenge Winner
We train 10 deep neural network classifiers to formulate an
ensemble model, including 4 classifiers using the binariza-
tion, adversarial regularization, and semantics-preservation
techniques discussed in the framework, and the other 6 clas-
sifiers using the binarization and adversarial regularization

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 12

techniques because examples are perturbed without pre-
serving their malicious functionality in the training. Since
we do not have access to the malware examples, we cannot
tell whether a feature perturbation preserves the malware
functionality or not. The inner maximization performed by
using gradient descent with respect to the transformed input
iterates T = 55 times via the Adam optimizer [47] with
learning rate 0.01. We leverage the random start points
and K = 5. The ratio for ensemble of random subspace
method is set as Λ = 0.5. Each base classifier has two
fully-connected hidden layers (each layer having neurons
160), uses the ELU activation function, and is optimized by
Adam. The ensemble achieves a Macro F1 score of 88.30%
upon non-attack dataset, a 63.0% Macro F1 score under
attacks, and a Harmonic mean on both Macro F1 scores of
73.60%. This is the highest Harmonic Mean score among the
participating teams. Although this score is not ideal, this
may be inherent to the fact that we as the defender do not
know any information about the attack. This leads to:

Insight 4. The information “barrier” that the defender does not
know the attacker’s manipulation set is a fundamental one because
the attacker may use adversarial malware examples that are far
away from what the defender would use to train its defense model.

6 APPLICATION TO AICS’2019 CHALLENGE AF-
TER KNOWING GROUND TRUTH

After the Challenge organizer announced that we won the
Challenge, the ground-truth labels of the test set are released
so that we can conduct further study. We stress that we still
do not know the attacks that were used by the Challenge
organizer.

6.1 Training Classifiers

Classifier. We consider and compare five classifiers: (i) Ba-
sic DNN without incorporating any defense; (ii) hardened
DNN incorporating the binarization technique [25] (dubbed
Binarization); (iii) hardened DNN incorporating adversar-
ial regularization (dubbed Adversarial Regularization); (iv)
hardened DNN incorporating Binarization and Adversarial
Regularization (dubbed Binarization+AR); (v) an ensemble
of Binarization+AR classifiers (dubbed Ensemble Binariza-
tion+AR).
Hyper-parameter Settings. All of the DNNs we use have
two fully-connected hidden layers (each layer having 160
neurons), use the ReLU activation function, and are op-
timized by Adam with epochs 30, mini-batch size 128,
and learning rate 0.001. For Adversarial Regularization, we
perform the inner maximization via Adam (with learning
rate 0.01). Our preliminary experiments suggest us to set
iterations T = 60. The starting point is chosen from K = 5
initialized points with salt-and-pepper noises, which have
a noise ratio εr chose uniformly at random from 0 to
εrmax = 10%. This means at most 10% of the features can be
changed by salt-and-pepper noises in each training round.
For the ensemble, we train 5 Binarization+AR classifiers,
each of which is learned from an 80% data randomly
selected from the training set, with a Λ = 0.5 fraction
of features. We augment the training set for the last three
classifiers as described in Section 5.1.

6.2 Classification Results
Table 7 presents the results with and without adversarial
attacks. We make three observations. (i) Adversarial Regu-
larization significantly improves the Macro F1 score against
the attacks when compared with the Basic DNN (a 23.93%
higher Macro F1 score). The Macro F1 score of Adversarial
Regularization in the absence of adversarial attacks drops
slightly when compared with the Basic DNN (≈ 1%). (ii)
By comparing Binarization (row 2) and the Basic DNN,
Binarization can improve the robustness of DNN against
adversarial attacks a little bit (a 0.47% increase in the Macro
F1 score). (iii) Ensemble Binarization+AR achieves a higher
classification accuracy than Binarization+AR, in the pres-
ence or absence of adversarial attacks.
Hyper-parameters Sensitivity. In Adversarial Regulariza-
tion, εrmax is crucial and is set manually. Intuitively, a greater
εrmax lets the defense perceive a larger space, but inhibiting
the convergence of training. In addition, we want to know
whether the oversampling is useful or not for Adversarial
Regularization. We thus conduct a group of experiments to
justify these settings. Table 8 shows the experimental results.
We observe that the Macro F1 score in the presence of adver-
sarial evasion attacks increase with the increase of εrmax from
0% to 10%. Meanwhile, Accuracy and Macro F1 score do not
decrease in the absence of adversarial evasion attacks, and
actually slightly increase at εrmax = 1%. Furthermore, when
the oversampling technique is leveraged at εrmax = 10% (the
last row), both Accuracy and Macro F1 score in the absence
of adversarial evasion attacks decrease slightly (< 1%). Nev-
ertheless, the Macro F1 score in the presence of adversarial
evasion attacks increases from 56.22% to 58.93%. This leads
us to draw:

Insight 5. Oversampling is not necessary when there are no
adversarial evasion attacks, but improves the effectiveness of
Adversarial Regularization against adversarial evasion attacks in
terms of macro F1 score.

6.3 Retrospective Analysis of the AICS’2019 Challenge

100 101 102
Number of Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Cr
os
s E

nt
ro
py

Training
Test w/ no attacks
Test w/ attacks

Fig. 3: Cross entropy loss of the classifier hardened by
Adversarial Regularization over the training set, the test set
with no adversarial evasion attacks, and the test set with
adversarial evasion attacks.

Figure 3 demonstrates that adversarial regularization
over-fits the perturbations searched by the inner maxi-
mizer unexpectedly. We observe that the cross-entropy loss
induced by the perturbations increases significantly after
about 10 epochs. Meanwhile, the cross-entropy loss on the

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 7: Classifiers Accuracy (%) and Macro F1 score (%) with no attacks vs. using grey-box adversarial evasion attacks
respectively, and the Harmonic mean (%) of the two Macro F1 scores.

Classifiers No attacks (%) Attacks (%) Harmonic mean (%)
Accuracy Macro F1 Accuracy Macro F1

Basic DNN 96.24 88.91 63.46 35.00 50.23
Binarization 95.80 87.99 63.79 35.47 50.56
Adversarial Regularization (AR) 95.66 87.98 72.02 58.93 70.58
Binarization+AR 95.62 87.87 75.22 59.87 71.22
Ensemble Binarization+AR 95.93 88.58 76.02 62.95 73.60

TABLE 8: Accuracy (%) and Macro F1 score (%) of Adversar-
ial Regularization in the absence vs. presence of adversarial
evasion attacks, with respect to the maximum salt-and-
pepper noise ratio εrmax, where ∗ means that a classifier is
learned using oversampling.

Noise Ratio (%) No attacks (%) Attacks (%)

Accuracy Macro F1 Accuracy Macro F1

εrmax = 0 96.11 88.43 69.68 49.87
εrmax = 0.1 95.93 88.10 74.00 50.52
εrmax = 1 96.24 89.14 73.11 55.98
εrmax = 10 96.19 88.46 77.11 56.22
εrmax = 20 96.06 88.14 75.11 51.23
εrmax = 10∗ 95.66 87.98 72.02 58.93

test set with no adversarial evasion attacks changes slightly,
until the number of epochs approaches 100. This means that
the DNN will memorize the perturbations produced in the
training phase, leading to poor generalization. Therefore,
new defense strategies are needed in order to achieve a
much higher accuracy against the Challenge instances. This
suggests:

Insight 6. Adversarial regularization triggers the over-fitting
issue; Without knowing the manipulation set, unsupervised learn-
ing may play an important role because unsupervised defenses
are devised without using label information about the perturbed
examples.

7 CONCLUSION

We have presented six principles for enhancing the ro-
bustness of neural network classifiers against adversarial
evasion attacks in the setting of malware classification.
These principles guided us to design a framework, which
is validated via a real-world dataset and the AICS’2019
Challenge. We drew a number of insights that are useful
for real-world defenders.

We hope this paper will inspire more research into this
important problem. Future research problems are abundant,
such as the following. First, the adversarial training in our
study is applied to feature representations satisfying box-
constraints (in a discrete space). How should we accommo-
date other kinds of feature extractions such as graph-based
or sequential-like ones [67], [68], [69], [70]? One possible
approach is to instantiate the minmax adversarial training
using a generic method, which does not need to know
the special knowledge of the hardened model. Second, it
is imperative to generate adversarial malware examples in
an end-to-end fashion, assuring that a perturbed malware

example indeed preserves the functionality of the original,
unperturbed malware example. Third, it is an open prob-
lem to adapt the provable or certified defense [71] into
the context of adversarial malware detection because it is
not clear how one should define convex manipulation sets
for perturbing malware examples. Unlike the image data
where `p-norm may quantify visual semantics, `p-norm
cannot characterize the functionalities of malware examples.
Fourth, what are the other principles that can be leveraged
to defend against adversarial malware examples?

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments that guided us in improving the paper. D. Li
was supported in part by the China Scholarship Council
under Grant 201706840123. Q. Li was supported in part
by the National Key R&D Program of China under Grants
2020YFB1804604, 2020YFB1804600 and 2020YFB1805503,
the 2020 Industrial Internet Innovation and Development
Project from Ministry of Industry and Information Technol-
ogy of China, the 2018 Jiangsu Province Major Technical
Research Project Information Security Simulation System,
the Fundamental Research Fund for the Central Universities
under Grants 30918012204 and 30920041112, the 2019 In-
dustrial Internet Innovation and Development Project from
Ministry of Industry and Information Technology of China.
Y. Ye and S. Xu were supported in part by NSF Grant
#1814825. The opinions expressed in the paper are those of
the authors’ and do not reflect the funding agencies’ policies
in any sense.

REFERENCES

[1] D. Li, Q. Li, Y. Ye, and S. Xu, “Enhancing robustness of deep
neural networks against adversarial malware samples: Principles,
framework, and aics’2019 challenge,” CoRR, vol. abs/1812.08108,
2018. [Online]. Available: http://arxiv.org/abs/1812.08108

[2] Symantec. (2018) Symantec @ONLINE. [Online]. Available:
https://www.symantec.com/security-center/threat-report

[3] CISCO. (2018) Cisio @ONLINE. [Online]. Available: https:
//www.cisco.com

[4] Y. Ye, T. Li, D. A. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Comput. Surv.,
vol. 50, no. 3, pp. 41:1–41:40, 2017.

[5] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial examples for malware detection,” in Euro-
pean Symposium on Research in Computer Security. Springer, 2017,
pp. 62–79.

[6] L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning
in malware detection: Arms race between evasion attack and
defense,” in EISIC’2017, 2017, pp. 99–106.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1812.08108
https://www.symantec.com/security-center/threat-report
https://www.cisco.com
https://www.cisco.com

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 14

[7] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. OReilly, “Ad-
versarial deep learning for robust detection of binary encoded
malware,” in 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 2018, pp. 76–82.

[8] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Make evasion
harder: An intelligent android malware detection system,” in
Proceedings of the Twenty-Seventh IJCAI, 2018, pp. 5279–5283.

[9] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intrigu-
ing properties of adversarial ml attacks in the problem space,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
1332–1349.

[10] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886–3900, 2020.

[11] Y. Kucuk and G. Yan, “Deceiving portable executable malware
classifiers into targeted misclassification with practical adversarial
examples,” in Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy, 2020, pp. 341–352.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples (2014),” arXiv preprint
arXiv:1412.6572.

[14] A. C. Serban and E. Poll, “Adversarial examples-a complete char-
acterisation of the phenomenon,” arXiv preprint arXiv:1810.01185,
2018.

[15] D. Li, Q. Li, Y. Ye, and S. Xu, “Sok: Arms race in adversarial
malware detection,” arXiv preprint arXiv:2005.11671, 2020.

[16] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be
more secure! a case study on android malware detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 4, pp.
711–724, July 2019.

[17] M. Nazir. (2019) Utsa wins global cyber security challenge
@ONLINE. [Online]. Available: https://www.eurekalert.org/
pub releases/2019-01/uota-uwg011819.php

[18] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for
robust classifier design in adversarial environments,” International
Journal of Machine Learning and Cybernetics, vol. 1, no. 1-4, pp. 27–
41, 2010.

[19] ——, “Multiple classifier systems under attack,” in International
Workshop on Multiple Classifier Systems. Springer, 2010, pp. 74–83.

[20] C. Smutz and A. Stavrou, “When a tree falls: Using diversity in
ensemble classifiers to identify evasion in malware detectors.” in
NDSS, 2016.

[21] J. W. Stokes, D. Wang, M. Marinescu, M. Marino, and B. Bus-
sone, “Attack and defense of dynamic analysis-based, adversarial
neural malware detection models,” in MILCOM 2018 - 2018 IEEE
Military Communications Conference (MILCOM), 2018, pp. 1–8.

[22] Q. Wang, W. Guo, K. Zhang, and et al., “Adversary resistant deep
neural networks with an application to malware detection,” in
Proceedings of the 23rd KDD. ACM, 2017, pp. 1145–1153.

[23] D. Li, R. Baral, T. Li, H. Wang, Q. Li, and S. Xu, “Hashtran-
dnn: A framework for enhancing robustness of deep neural
networks against adversarial malware samples,” arXiv preprint
arXiv:1809.06498, 2018.

[24] L. Chen, S. Hou, Y. Ye, and S. Xu, “Droideye: Fortifying security
of learning-based classifier against adversarial android malware
attacks,” in FOSINT-SI’2018, 2018, pp. 253–262.

[25] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detect-
ing adversarial examples in deep neural networks,” arXiv
preprint:1704.01155, 2017.

[26] L. Xu, Z. Zhan, S. Xu, and K. Ye, “An evasion and counter-
evasion study in malicious websites detection,” in CNS, 2014 IEEE
Conference on. IEEE, 2014, pp. 265–273.

[27] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[28] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[29] H. Drucker and Y. Le Cun, “Improving generalization perfor-
mance using double backpropagation,” IEEE Transactions on Neu-
ral Networks, vol. 3, no. 6, pp. 991–997, 1992.

[30] C. Lyu, K. Huang, and H.-N. Liang, “A unified gradient
regularization family for adversarial examples,” in Proceedings of
the 2015 IEEE International Conference on Data Mining (ICDM),

ser. ICDM ’15. Washington, DC, USA: IEEE Computer Society,
2015, pp. 301–309. [Online]. Available: http://dx.doi.org/10.
1109/ICDM.2015.84

[31] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training
methods for semi-supervised text classification,” arXiv preprint
arXiv:1605.07725, 2016.

[32] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” Journal of
machine learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[33] D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” pp. 135–147, 2017.

[34] M. Nazir. (2019) Aics 2019 workshop challenge problem. [On-
line]. Available: http://www-personal.umich.edu/∼arunesh/
AICS2019/challenge.html

[35] I. C. B. Biggio and D. M. et al., “Evasion attacks against machine
learning at test time,” in Machine Learning and Knowledge Discovery
in Databases: European Conference. Springer, 01 2013, pp. 387–402.

[36] P. L. Nedim rndic, “Practical evasion of a learning-based classifier:
A case study,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 197–211.

[37] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against rnns and other calls based malware
classifiers,” arXiv preprint, 2017.

[38] L. Chen, S. Hou, and Y. Ye, “Securedroid: Enhancing security
of machine learning-based detection against adversarial android
malware attacks,” in ACSAC. USA: ACM, 2017, pp. 362–372.

[39] H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by
morphing in the dark,” in CCS. ACM, 2017, pp. 119–133.

[40] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading
machine learning malware detection,” Black Hat, 2017.

[41] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A
case study on pdf malware classifiers,” in NDSS, January 2016.

[42] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on gan,” 02 2017.

[43] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 38th IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 39–57.

[44] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016, pp. 372–387.

[45] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras, “When
does machine learning FAIL? generalized transferability for eva-
sion and poisoning attacks,” in 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association, Aug.
2018, pp. 1299–1316.

[46] F. Tramèr and D. Boneh, “Adversarial training and robustness
for multiple perturbations,” CoRR, vol. abs/1904.13000, 2019.
[Online]. Available: http://arxiv.org/abs/1904.13000

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[48] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv
preprint arXiv:1710.09435, 2017.

[49] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[50] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on PAMI, vol. 20, no. 8, pp. 832–844,
1998.

[51] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in
28th {USENIX} Security Symposium ({USENIX} Security 19), 2019,
pp. 321–338.

[52] E. Grefenstette, R. Stanforth, B. O’Donoghue, J. Uesato,
G. Swirszcz, and P. Kohli, “Strength in numbers: Trading-off
robustness and computation via adversarially-trained ensembles,”
CoRR, vol. abs/1811.09300, 2018. [Online]. Available: http:
//arxiv.org/abs/1811.09300

[53] L. Schott, J. Rauber, M. Bethge, and W. Brendel, “Towards the
first adversarially robust neural network model on mnist,” arXiv
preprint arXiv:1805.09190, 2018.

[54] G. Alain and Y. Bengio, “What regularized auto-encoders learn
from the data-generating distribution,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3563–3593, 2014.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

https://www.eurekalert.org/pub_releases/2019-01/uota-uwg011819.php
https://www.eurekalert.org/pub_releases/2019-01/uota-uwg011819.php
http://dx.doi.org/10.1109/ICDM.2015.84
http://dx.doi.org/10.1109/ICDM.2015.84
http://www-personal.umich.edu/~arunesh/AICS2019/challenge.html
http://www-personal.umich.edu/~arunesh/AICS2019/challenge.html
http://arxiv.org/abs/1904.13000
http://arxiv.org/abs/1811.09300
http://arxiv.org/abs/1811.09300

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3051354, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 15

[55] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[56] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–
26.

[57] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in
28th USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 321–338.

[58] (2018, May) Virustotal. [Online]. Available: https://www.
virustotal.com

[59] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass:
A tool for massive malware labeling,” in Research in Attacks,
Intrusions, and Defenses. Cham: Springer International Publishing,
2016, pp. 230–253.

[60] A. Desnos. (2019) Androguard @ONLINE. [Online]. Available:
https://github.com/androguard/androguard

[61] I. Revivo and O. Caspi, “Cuckoodroid,” in Black Hat USA, Las
Vegas, NV, Jul. 2017.

[62] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey
on systems security metrics,” ACM Comput. Surv., vol. 49, no. 4,
pp. 1–35, Dec. 2016.

[63] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to adversar-
ial examples,” CoRR, vol. abs/1802.00420, 2018.

[64] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” arXiv preprint arXiv:1705.07204, 2017.

[65] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against deep learning
systems using adversarial examples,” arXiv preprint, 2016.

[66] Y. Sasaki et al., “The truth of the f-measure,” Teach Tutor mater,
vol. 1, no. 5, pp. 1–5, 2007.

[67] S. Cui, B. Xia, T. Li, M. Wu, D. Li, Q. Li, and H. Zhang,
“Simwalk: Learning network latent representations with social
relation similarity,” vol. 2018-January, 2017, pp. 1 – 6. [Online].
Available: http://dx.doi.org/10.1109/ISKE.2017.8258804

[68] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha -
sly malware!: Scorpion A metagraph2vec based malware detection
system,” in Proceedings of KDD’2018, 2018, pp. 253–262.

[69] S. Cui, T. Li, S.-C. Chen, M.-L. Shyu, Q. Li, and H. Zhang, “Disl:
Deep isomorphic substructure learning for network representa-
tions,” Knowledge-Based Systems, vol. 189, p. 105086, 2020.

[70] S. Cui, Q. Li, and S.-C. Chen, “An adversarial learning approach
for discovering social relations in human-centered information
networks,” EURASIP Journal on Wireless Communications and Net-
working, vol. 2020, no. 1, pp. 1–19, 2020.

[71] M. Balunovic and M. Vechev, “Adversarial training and provable
defenses: Bridging the gap,” in International Conference on Learning
Representations, 2020.

Deqiang Li received his M.E. degree in software
engineering from Nanjing University of Science
and Technology, Jiangsu, China. He is currently
working toward the Ph.D. degree in computer
science and technology, Nanjing University of
Science and Technology. His research interests
include adversarial malware detection, adversar-
ial machine learning, and applied data mining in
malware detection.

Qianmu Li received the B.E. and Ph.D. de-
gree in computer application technology from
Nanjing University of Science and Technology,
Jiangsu, China, in 2001 and 2005, respectively.
He worked as a postdoctoral researcher at Nan-
jing University from 2005 to 2007. He is currently
a full professor at Nanjing University of Science
and Technology. His research interests include
big data analysis, cyberspace security, and soft-
ware systems. He has published more than 110
scientific papers and received many research

grants from China’s national and provincial programs.

Yanfang (Fanny) Ye is the T. and D. Schroeder
Associate Professor in the Department of Com-
puter and Data Sciences at Case Western Re-
serve University (CWRU). Her research mainly
focuses on cybersecurity, data mining, machine
learning, and health intelligence. Her proposed
techniques by advancing AI and data-driven in-
novations for malware detection have been in-
corporated into popular commercial cybersecu-
rity products that protect millions of users world-
wide. She has expanded her research on health

intelligence with focus on combating opioid epidemic and COVID-19
crisis. Dr. Ye has received the CSE Research Award (2019-2020) at
CWRU, the NSF Career Award (2019), the MetroLab Innovation of the
Month (May 2020), the IJCAI 2019 Early Career Spotlight, the AICS
2019 Challenge Problem Winner, the SIGKDD 2017 Best Paper Award
and Best Student Paper Award (Applied Data Science Track), the IEEE
EISIC 2017 Best Paper Award, and the New Researcher of the Year
Award (2016-2017) at WVU.

Shouhuai Xu (M’14–SM’20) is the Gallogly
Chair Professor in the Department of Com-
puter Science, University of Colorado Colorado
Springs (UCCS). Prior to joining UCCS, he has
been with University of Texas at San Antonio.
He pioneered the Cybersecurity Dynamics ap-
proach as foundation for the emerging science of
cybersecurity, with three pillars: first-principle cy-
bersecurity modeling and analysis (the x-axis);
cybersecurity data analytics (the y-axis, to which
the present paper belongs); and cybersecurity

metrics (the z-axis). He co-initiated the International Conference on
Science of Cyber Security and is serving as its Steering Committee
Chair. He is/was an Associate Editor of IEEE Transactions on De-
pendable and Secure Computing (IEEE TDSC), IEEE Transactions on
Information Forensics and Security (IEEE T-IFS), and IEEE Transactions
on Network Science and Engineering (IEEE TNSE). He received his
PhD in Computer Science from Fudan University.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on March 02,2021 at 02:57:30 UTC from IEEE Xplore. Restrictions apply.

https://www.virustotal.com
https://www.virustotal.com
https://github.com/androguard/androguard
http://dx.doi.org/10.1109/ISKE.2017.8258804

