
Graph Convolution with Low-rank Learnable Local Filters

Xiuyuan Cheng1, Zichen Miao2, and Qiang Qiu∗2

1Department of Mathematics, Duke University
2School of Electrical and Computer Engineering, Purdue University

Abstract

Geometric variations like rotation, scaling, and viewpoint changes pose a significant challenge to
visual understanding. One common solution is to directly model certain intrinsic structures, e.g., using
landmarks. However, it then becomes non-trivial to build effective deep models, especially when the
underlying non-Euclidean grid is irregular and coarse. Recent deep models using graph convolutions
provide an appropriate framework to handle such non-Euclidean data, but many of them, particularly
those based on global graph Laplacians, lack expressiveness to capture local features required for
representation of signals lying on the non-Euclidean grid. The current paper introduces a new type of
graph convolution with learnable low-rank local filters, which is provably more expressive than previous
spectral graph convolution methods. The model also provides a unified framework for both spectral and
spatial graph convolutions. To improve model robustness, regularization by local graph Laplacians is
introduced. The representation stability against input graph data perturbation is theoretically proved,
making use of the graph filter locality and the local graph regularization. Experiments on spherical
mesh data, real-world facial expression recognition/skeleton-based action recognition data, and data
with simulated graph noise show the empirical advantage of the proposed model.

1 Introduction

Deep methods have achieved great success in visual cognition, yet they still lack capability to tackle severe
geometric transformations such as rotation, scaling and viewpoint changes. This problem is often handled
by conducting data augmentations with these geometric variations included, e.g. by randomly rotating
images, so as to make the trained model robust to these variations. However, this would remarkably
increase the cost of training time and model parameters. Another way is to make use of certain underlying
structures of objects, e.g. facial landmarks [8] and human skeleton landmarks [55], c.f. Fig. 1 (right).
Nevertheless, these methods then adopt hand-crafted features based on landmarks, which greatly con-
strains their ability to obtain rich features for downstream tasks. One of the main obstacles for feature
extraction is the non-Euclidean property of underlying structures, and particularly, it prohibits the direct
usage of prevalent convolutional neural network (CNN) architectures [23, 24]. Whereas there are recent
CNN models designed for non-Euclidean grids, e.g., for spherical mesh [11, 12, 27] and manifold mesh in
computer graphics [4, 17], they mainly rely on partial differential operators which only can be calculated
precisely on fine and regular mesh, and may not be applicable to the landmarks which are irregular and
course. Recent works have also applied Graph Neural Network (GNN) approaches to coarse non-Euclidean
data, yet methods using GCN [32] may fall short of model capacity, and other methods adopting GAT [54]
are mostly heuristic and lacking theoretical analysis. A detailed review is provided in Sec. 1.1.

In this paper, we propose a graph convolution model, called L3Net, originating from low-rank graph
filter decomposition, c.f. Fig. 1 (left). The model provides a unified framework for graph convolutions,

∗Email: qqiu@purdue.edu

1

ar
X

iv
:2

00
8.

01
81

8v
2

 [s
ta

t.M
L]

 1
1

O
ct

 2
02

0

Figure 1: (Left) K-rank graph local filters. M is the tensor in the GNN linear mapping (1) (2), decomposed into
learnable local basis Bk combined by learnable coefficients ak, illustrated for the ring-graph on the right. (Right)
The first two figures shows the good property of landmarks for being invariant to pose and camera viewpoint
changes. The third figure illustrates the graph we built on facial landmarks.

including ChebNet [14], GAT, EdgeNet [25] and CNN/geometrical CNN with low-rank filter as special
cases. In addition, we theoretically prove that L3Net is strictly more expressive to represent graph signals
than spectral graph convolutions based on global adjacency/graph Laplacian matrices, which is then
empirically validated, c.f. Sec. 3.1. We also prove a Lipschitz-type representation stability of the new
graph convolution layer using perturbation analysis.

Because our model allows neighborhood specialized local graph filters, regularization may be needed
to prevent over-fitting, so as to handle changing underlying graph topology and other graph noise, e.g.,
inaccurately detected landmarks or missing landmark points due to occlusions. Therefore, we also intro-
duce a regularization scheme based on local graph Laplacians, motivated by the eigen property of the
latter. This further improves the representation stability aforementioned. The improved performance of
L3Net compared to other GNN benchmarks is demonstrated in a series of experiments, and with the the
proposed graph regularization, our model shows robustness to a variety of graph data noise.

In summary, the contributions of the work are the following:

• We propose a new graph convolution model by a low-rank decomposition of graph filters over train-
able local basis, which unifies several previous models of both spectral and spatial graph convolutions.

• Regularization by local graph Laplacians is introduced to improve the robustness against graph noise.

• We provide theoretical proof of the enlarged expressiveness for representing graph signals and the
Lipschitz-type input-perturbation stability of the new graph convolution model.

• We demonstrate with applications to object recognition of spherical data and facial expression/skeleton-
based action recognitions using landmarks. Model robustness against graph data noise is validated
on both real-world and simulated datasets.

1.1 Related Works

Modeling on face/body landmark data. Many applications in computer vision, such as facial ex-
pression recognition (FER) and skeleton-based action recognition, need to extract high-level features from
landmarked data which are sampled at irregular grid points on human face or at body joints. While CNN
methods [15,21,42] prevail in FER task, landmark methods have the potential advantage in lighter model
size as well as more robustness to previously mentioned geometric transformations like pose variation.
Earlier methods based on facial landmarks used hand-crafted features [26,44] rather than deep networks.
Skeleton-based methods in action recognition have been developed intensively recently [50], including non-
deep methods [56, 57] and deep methods [29, 31, 36, 60]. Facial and skeleton landmarks only give a coarse
and irregular grid, and then mesh-based geometrical CNN’s are hardly applicable, while previous GNN
models on such tasks may lack sufficient expressive power.

2

Graph convolutional network. A systematic review can be found in several places, e.g. [58].
Spectral graph convolution was proposed using full eigen decomposition of the graph Laplacian in [5],
Chebyshev polynomial in Chenbet [14], by Cayley polynomials in [33]. GCN [32], the mostly-used GNN,
is a variant of ChebNet using degree-1 polynomial. [35] accelerated the spectral computation by Lanczos
algorithm. Spatial graph convolution has been performed by summing up neighbor nodes’ transformed
features in NN4G [51], by graph diffusion process in DCNN [1], where the graph propagation across nodes
is by the adjacency matrix. Graph convolution with trainable filter has also been proposed in several
settings: MPNN [19] enhanced model expressiveness by message passing and sub-network; GraphSage [22]
used trainable differential local aggregator functions in the form of LSTM or mean/max-pooling; GAT [54]
and variants [34,37,61] introduced attention mechanism to achieve adaptive graph affinity, which remains
non-negative valued; EdgeNet [25] developed adaptive filters by taking products of trainable local filters.
Our model learns local filters which can take negative values and contains GAT and EdgeNet as special
cases. Theoretically, expressive power of GNN has been studied in [30, 39, 40, 45, 59], mainly focusing on
distinguishing graph topologies, while our primary concern is to distinguish signals lying on a graph.

CNN and geometrical CNN. Standard CNN applies local filters translated and shared across lo-
cations on an Euclidean domain. To extend CNN to non-Euclidean domains, convolution on a regular
spherical mesh using geometrical information has been studied in S2CNN [11], SphereNet [12], Spheri-
calCNN [16], and UGSCNN [27], and applied to 3D object recognition, for which other deep methods
include 3D convolutional [47] and non-convolutional architectures [46, 48]. CNN’s on manifolds construct
weight-sharing across local atlas making use of a mesh, e.g., by patch operator in [41], anisotropic con-
volution in ACNN [3], mixture model parametrization in MoNet [43], spline functions in SplineCNN [17],
and manifold parallel transport in [52]. These geometric CNN models use information of non-Euclidean
meshes which usually need sufficiently fine resolution.

2 Method

2.1 Decomposed local filters

Consider an undirected graph G = (V,E), |V | = n. A graph convolution layer maps from input node
features X(u′, c′) to output Y (u, c), where u, u′ ∈ V , c′ ∈ [C ′] (c ∈ [C]) is the input (output) channel
index, the notation [m] means {1, · · · ,m}, and

Y (u, c) = σ(
∑

u′∈V,c′∈[C]

M(u′, u; c′, c)X(u′, c′) + bias(c)), u ∈ V, c ∈ [C]. (1)

The spatial and spectral graph convolutions correspond to different ways of specifying M , c.f. Sec. 2.3.
The proposed graph convolution is defined as

M(u′, u; c′, c) =
K∑
k=1

ak(c′, c)Bk(u′, u), ak(c′, c) ∈ R, (2)

where Bk(u′, u) is non-zero only when u′ ∈ N (dk)
u , N

(d)
u denoting the d-th order neighborhood of u (i.e.,

the set of d-neighbors of u), and K is a fixed number. In other words, Bk’s are K basis of local filters
around each u, and the order dk can differ with 1 ≤ k ≤ K. Both ak and Bk are trainable, so the number

of parameters are K · CC ′ +
∑K
k=1

∑
u∈V |N

(dk)
u | ∼ K · CC ′ +Knp, where p stands for the average local

patch size. In our experiments we use K up to 5, and dk up to 3. The construction (2) can be used as
a layer type in larger GNN architectures. Pooling of graphs can be added between layers, and the choice
of K and neighborhood orders (d1, · · · , dK) can be adjusted accordingly. The model may be extended in
several ways to be discussed in the last section.

3

Model #params
ChebNet / GCN LCC′ / CC′

GAT R(CC′ + 2C)

EdgeNet L(CC′ + np(1))
Low-rank CNN K(CC′ + p)

Locally-connected CC′ · np
L3Net K(CC′ + np)

Figure 2: (Plots) Local graph Laplacian Lu := D − A on a neighborhood around node u. The first Dirichlet
eigenvector does not change sign on Nu and is envelope-like. (Table) Model complexity measured by number of
parameters, C and C′ being the number of input and output channels, p (p(1)) the average patch size of local
neighborhoods (local 1-neighborhoods), see more in Sec. 2.3.

2.2 Regularization by local graph Laplacian

The proposed L3Net layer enlarges the model capacity by allowing K basis filters at each location, and a
natural way to regularize the trainable filters is by the graph geometry, where, by construction, only the
local graph patch is concerned. We introduce the following regularization penalty of the basis filters Bk’s
as

R({Bk}k) =
K∑
k=1

∑
u∈V

(b(k)u)TL(k)
u b(k)u , b(k)u (v) := Bk(v, u), b(k)u : N (dk)

u → R, (3)

where L
(k)
u , equaling (D − A) restricted to the subgraph on N

(dk)
u , is the Dirichlet local graph Laplacian

on N
(dk)
u [9] (Fig. 2). The training objective is

L({ak, Bk}k) + λR({Bk}k), λ ≥ 0, (4)

where L is the classification loss. As L encourages the diversity of Bk’s, the K-rankness usually remains
a tight constraint in training, unless λ is very large, see also Proposition 3.

2.3 A unified framework for graph convolutions

Graph convolutions basically fall into two categories, the spatial and spectral constructions [58]. The
proposed L3Net belongs to spatial construction, and here we show that the model (2) is a unified framework
for various graph convolutoins, both spatial and spectral. Details and proofs are given in Appendix A.
• ChebNet [14], GAT [54], EdgeNet [25]: In ChebNet, M per (c′, c) equals a degree-(L-1) polynomial

of the graph Laplacian matrix, where the polynomial coefficients are trainable. GCN [32] can be viewed
as ChebNet with polynomial degree-1 and tied coefficients. The attention mechanism in GAT enhances
the model expressiveness by incorporating adaptive kernel-based non-negative affinities. In EdgeNet, the
graph convolution operator is the product of trainable local filters supported on order-1 neighborhoods.
We have the following proposition:

Proposition 1. L3Net (2) includes the following models as special cases:

(1) ChebNet (GCN) when K ≥ L (K ≥ 2), L being the polynomial degree.

(2) GAT when K ≥ R, R being the number of attention branches.

(3) EdgeNet when K ≥ L, L being the order of graph convolutions.

4

• CNN: When nodes lie on a geometrical domain that allows translation (u′ − u), in (2) setting
Bk(u′, u) = bk(u′ − u) for some bk(·) enforces spatial convolutional. The convolutional kernel can be
decomposed as

∑
k ak(c′, c)bk(·) [49]. Extension to CNN on manifold mesh is also possible as in [17, 41].

We have the following:

Proposition 2. Mesh-based geometrical CNN’s defined by linear patch operators, including standard CNN
on Rd, and with low-rank decomposed filters are special cases of L3Net (2).

We also note that L3Net reduces from locally connected GNN [5,10], the largest class of spatial GNN,
only by the low-rankness imposed by a small number of K in (2). Locally connected GNN can be viewed
as (1) with the requirement that for each (c, c′), M(u′, u; c′, c) is nonzero only when u′ is locally connected
in u. The complexities of the various models are summarized in Fig. 2 (Table), where L3Net reduces
from the np · CC ′ complexity of locally-connected net to be the additive (np+ CC ′) times K. When the
number of channels C, C ′ are large, e.g. in deep layers they ∼ 102, and the graph size is not large, e.g., in
landmark data applications np� CC ′, the complexity is dominated by KCC ′ which is comparable with
ChebNet (GAT) if K ≈ L (R). The computational cost is also comparable, as shown in experiments in
Sec. 4. Furthermore, we have:

Proposition 3. Suppose the subgraphs on N
(dk)
u are all connected, given αu,k > 0 for all u, k, the minimum

of (3) with constraint ‖b(k)u ‖2 ≥ αu,k is achieved when b
(k)
u equals the first Dirichlet eigenvector on N

(dk)
u ,

which does not change sign on N
(dk)
u .

The proposition shows that in the strong regularization limit of λ → ∞ in (4), L3Net reduces to be
ChebNet-like. The constraint with constants αu,k is included because otherwise the minimizer will be
Bk all zero. The first Dirichlet eigenvector is envelope-like (Fig. 2), and then Bk(·, u) will be averaging
operators on the local patch. Thus the regularization parameter λ can be viewed as trading-off between
the more expressiveness in the learnable Bk, and the more stability of the averaging local filters, similar
to ChebNet and GCN.

3 Analysis

We analyze the representation expressiveness and stability (defined in below) of the proposed L3Net model.
All proofs in Appendix A, and experimental details in Appendix B.

3.1 Representation expressiveness of graph signals

The theoretical question of graph signal representation expressiveness concerns the ability for GNN deep
features to distinguish graph signals. While related, the problem differs from the graph isomorphism test
problem which has been intensively studied in the GNN expressiveness literature. Here we prove that
L3Net is strictly more expressive than certain spectral GNNs, and support the theoretical prediction by
experiments.

We have shown that the L3Net model contains ChebNet (Proposition 1), and the following proposition
proves the strictly more expressiveness for graph signal classification. We call B a graph local filter if
B(u, v) is non-zero only when v is in the neighborhood of u. In a spectral GNN, the graph convolution
takes the form as x 7→ f(A)x where f is a function on R, and A is the (possibly normalized) adjacency
matrix.

Proposition 4. There is a graph and 1) A local filter B on it such that B cannot be expressed by any
spectral graph convolution, but can be expressed by L3Net with K = 1. 2) Two data distributions on the
graph (two classes) such that, with a group invariant operator in the last layer, the deep feature of any
spectral GNN cannot distinguish the two classes, but that of L3Net with 1 layer and K = 1 can.

5

Model order #params ring graph Acc chain graph Acc

ChebNet

L=3 6.5k 51.71± 0.24 51.05± 0.33
L=5 10.7k 51.62± 0.24 51.07± 0.37
L=30 62.7k 51.32± 0.38 51.01± 0.41

GAT (R=1) 1 1.3k 51.62± 0.14 51.46± 0.94
GAT (R=8) 1 10.4k 57.82± 8.06 58.04± 9.13

WLN 1 4.5k 50.99± 0.36 50.8± 0.08
MPNN 1 9.4k 51.06± 0.32 50.94± 0.09

L3Net
1 2.7k 99.82± 0.05 99.69± 0.09

0;1;2 7.4k 99.93± 0.03 99.85± 0.04
1∗ 2.3k 99.96± 0.01 99.94± 0.01

Figure 3: Up/down-wind classification. (Plots) Left: example data from two classes. Right: learned shared basis
on the graph neighborhood of 3, corresponding to the last row in the table. (Table) Test accuracy by MPNN [19],
WLN [45], ChebNet up to L=30 and L3Net K=1 and 3, as well as GAT with different heads. Last row order 1
with star: L3Net with shared basis B(·, u) across all locations u.

The fundamental argument is that spectral GNN is permutation equivariant (see e.g. [18], reproduced
as Lemma A.1), and the local filters in L3Net break such symmetry to obtain more discriminative power.
The constructive example used in the proof is on a ring graph (Fig. A.1, A and the basis B), and the two
data distributions shown in Fig. 3. Proposition 4 gives that, on the ring graph and using GNN with a
global pooling in the last layer, an L3Net layer with K = 1 can have classification power while a ChebNet
with any order cannot. On a chain graph (removing the connection between two end points in a ring
graph), which not exactly follows the theory assumption, since the two graphs only differ at one edge,
we expect that it will remain a difficult case for the ChebNet but not for L3Net. To verify the theory,
we conduct experiments using a two-layer GNN and the results are in Fig. 3 (table). In the last row,
we further impose shared basis across nodes which reduces L3Net to a 1D convolutional layer, and the
learned basis shows a “difference” shape (right plot) which explains its classification power. Results are
similar using a 1-layer GNN (Tab. A.1). The argument in Proposition 4 extends to other graphs and
network types. Generally, when a GNN based on global graph adjacency or Laplacian matrix applies
linear combinations of local averaging filters, then certain graph filters may be difficult to express. We
experimentally examine GAT, WLN and MPNN, which underperform on the binary classification task, as
shown in Fig. 3 (table).

3.2 Representation stability

We derive perturbation bounds of GNN feature representation, which is important for robustness against
data noise. The analysis implies a trade-off between de-noising and keeping high-frequency information,
which is consistent with experimental observation in Sec. 4.

Consider the change in the GNN layer output Y defined in (1)(2) when the input X changes. For
simplicity, let C = C ′ = 1, and the argument extends. For any graph signal x : V → R and V ′ ⊂ V , define
‖x‖2,V ′ := (

∑
u∈V ′ x(u)2)1/2 and 〈x, y〉V ′ =

∑
u∈V ′ x(u)y(u). The following perturbation bound holds for

the L3Net layer with/without regularization.

Theorem 1. Suppose that X = {X(u)}u∈V is perturbed to be X̃ = X + ∆X, the activation function

σ : R → R is non-expansive, and supu∈V
∑K
k=1 |N

(dk)
u | ≤ Kp, then the change in the output {Y (u)}u∈V

in 2-norm is bounded by

‖∆Y ‖2,V ≤ β(1) · ‖a‖2
√
Kp‖∆X‖2,V , β(1) := sup

k,u
‖Bk(·, u)‖

2,N
(dk)
u

.

Note that p indicates the averaged size of the dk-order local neighborhoods. The proposition implies
that when K is O(1), and the local basis Bk’s have O(1) 2-norms on all local parches uniformly bounded
by β(1), then the Lipschitz constant of the GNN layer mapping is O(1), i.e., the product of ‖a‖2, β(1) and

6

level 2 level 1

Model
4;3;2
Acc

3;2;1
Acc

3;2;0
Acc

3;1;0
Acc

2;2;1
Acc

2;1;0
Acc

3;0;0
Acc

2;0;0
Acc

UGSCNN 99.2 98.81 97.52 97.96 98.22 97.77 75.75 86.61

GCN 95.8 90.46 75.62 84.31 94.01 83.24 27.92 37.07
ChebNet 99.3 98.50 98.07 97.07 97.12 95.51 73.1 90.73

L3Net (1;1;2;3) 99.1 98.81 98.89 98.60 97.76 97.97 93.14 97.26

Figure 4: (Plot) Icosahedral spherical meshes at level 2 and 1. (Table) Testing accuracies of sphere MNIST
under different mesh settings, (l1; l2; l3) stands for the mesh level used in each GNN layer. L3Net uses K=4, and
neighborhood order (1;1;2;3). S2CNN [11] on mesh (4;3;2) has accuracy 96.0.

√
Kp, which does not scale with n. This resembles the generalizes the 2-norm of a convolutional operator

which only involves the norm of the convolutional kernel, which is possible due to the local receptive fields
in the spatial construction of L3Net.

The local graph regularization introduced in Sec. 2.2 improves the stability of Y w.r.t. ∆X by sup-
pressing the response to local high-frequency perturbations in ∆X . Specifically, the local graph Laplacian

L
(k)
u on the subgraph on N

(dk)
u is positive definite whenever the subgraph is connected and not isolated

from the whole graph. We then define the weighted 2-norm on local patch ‖x‖
L

(k)
u

:= 〈x, L(k)
u x〉

N
(dk)
u

, and

similarly ‖x‖
(L

(k)
u)−1 .

Theorem 2. Notation and setting as in Theorem 1, if furtherly, all the subgraphs on N
(dk)
u are connected

within itself and to the rest of the graph, and there is ρ ≥ 0 s.t.

‖∆X‖
(L

(k)
u)−1 ≤ ρ‖∆X‖2,N(dk)

u
, ∀u, k,

then
‖∆Y ‖2,V ≤ ρβ(2) · ‖a‖2

√
Kp‖∆X‖2,V , β(2) := sup

k,u
‖Bk(·, u)‖

L
(k)
u
.

The bound improves from Theorem 1 when ρβ(2) < β(1), and regularizing by R =
∑
u,k ‖Bk(·, u)‖2

L
(k)
u

leads to smaller β(2). Meanwhile, on each N
(dk)
u the Dirichlet eigenvalues increases 0 < λ1 ≤ λ2 · · · ≤ λpu,k

,

pu,k := |N (dk)
u |, thus weighting by λ−1l in ‖ · ‖

(L
(k)
u)−1 decreases the contribution from high-frequency

eigenvectors. As a result, ρ will be small if ∆X contains a significant high-frequency component on the
local patch, e.g., additive Gaussian noise or missing values. Note that in the weighted 2-norm of ∆X by

(L
(k)
u)−1, only the relative amount of high-frequency component in ∆X matters (because any constant

normalization of L
(k)
u cancels in the product of ρ and β(2)). The benefits of local graph regularization in

presence of noise in graph data will be shown in experiments.

4 Experiment

We test the proposed L3Net model on several datasets.1

4.1 Object recognition of data on spherical mesh

We first classify data on a spherical mesh: sphere MNIST and sphere ModelNet-40, following the settings
in literature. Though regular mesh on sphere is not the primary application scenario that motivates our
model, we include the experiments to compare with benchmarks and test the efficiency of L3Net on such
regular meshes. Following UGSCNN [27], we implement different mesh resolution on a sphere, indicated
by “mesh level” (Fig. 4), where number of nodes in different levels can vary from 2562 (level 4) to 12 (level

1Code link: https://github.com/ZichenMiao/L3Net

7

https://github.com/ZichenMiao/L3Net

Table 1: Results on CK+ and FER13, with comparison to CNN† [15], CNN‡ [21], landmark method using
handcrafted features [44], and various GNN methods. Specifically, we compare to GAT [54] with different #heads
(h) and #features (f). The mean testing time on CK+: ChebNet (L=4) 12.56ms, L3Net (order 1,1,2,3) 13.02ms.
GAT (h=f=8) 39.67ms, (h=f=16) 41.02ms.

CK+ FER13

Model
Bases
Order

#params
(w/o FC)

Acc
#params
(w/o FC)

Acc

CNN† - 7M 98.60 - -

CNN‡. - - - 2.6M 71.33
Landmarks-handcraft - - 91.00± 0.03 - -

GAT (h=8, f=8) 1 34.6k 91.62± 1.16 46.9k 49.50
GAT (h=16, f=16) 1 142.3k 90.87± 0.78 151.1k 48.93

GCN 1 34.5k 91.78± 0.38 42.6k 55.54
GraphConv 1 169.6k 81.62± 0.48 215.4k 55.63

ChebNet
L=3 102.3k 92.93± 0.59 136.4k 59.68
L=4 136.3k 93.22± 0.37 181.6k 60.26
L=5 170.2k 93.03± 0.62 227.3k 60.29

EdgeNet
L=3 103.4k 92.41± 0.81 137.2k 58.73
L=4 137.1k 92.57± 0.84 182.5k 60.05

L3Net

2;2;2 102.8k 95.32± 0.31 139.7k 60.46
0;1;2;3 136.8k 95.03± 0.30 182.8k 60.65
1;1;2

102.7k
94.68± 0.56

139.4k
59.68

+reg0.005 94.52± 0.61 61.13
1;1;2;3

136.9k
95.37± 0.60

183.0k
60.71

+reg0.5 95.11± 0.44 61.64

0). All the networks consist of three convolutional layers, see more details in Appendix C.1. Using the
original mesh level (4;3;2), the finest resolution as in UGSCNN, L3Net gives among the best accuracies for
sphere MNIST. On Modelnet-40, L3Net achieves a testing accuracy of 90.24, outperforming ChebNet and
GCN and and is comparable to UGSCNN which uses spherical mesh information (Tab. A.2). When the
mesh becomes coarser, as shown in Fig. 4 (Table), L3Net improves over GCN and ChebNet (L=4) and
is comparable with UGSCNN under nearly all mesh settings. We observe that in some settings ChebNet
can benefit from larger L, but the overall accuracy is still inferior to L3Net. The most right two columns
give two cases of coarse meshes where L3Net shows the most significant advantage.

4.2 Facial expression recognition (FER)

We test on two FER datasets, Extended CohnKanade (CK+) [38] and FER13 [20]. We use 15 facial
landmarks, see Fig. 1, and pixel values on a patch around each landmark point as node features. Details
about dataset and model setup are in Appendix C.2. Unlike spherical mesh, facial and body landmarks
(next section) are coarse irregular grids where no clear pre-defined mesh operation is applicable. We
benchmark L3Net with other GNN approaches, as shown in Table 1. The local graph regularization
strategy is applied on FER13, due to the severe outlier data of landmark detection caused by occlusion. On
CK+, L3Net leads all non-CNN models by a large margin, and the best model (1,1,2,3) uses comparable
number of parameters with the best ChebNet (L=4). On FER13, L3Net has lower performance than
ChebNet and EdgeNet [25], but outperforms after adding regularization. The running times of best
ChebNet and L3Net models are comparable, and are much less than GAT’s.

4.3 Action recognition

We test on two skeleton-based action recognition datasets, NTU-RGB+D [53] and Kinetics-Motion [28].
The irregular mesh is the 18/25-point body landmarks, with graph edges defined by body joints, shown
in Fig. 1 and Fig. A.2. We adopt ST-GCN [60] as the base architecture, and substitute the GCN layer
with new L3Net layer, called ST-L3Net. On Kinetics-Motion, we adopt the regularization mechanism
to overcome the severe data missing caused by camera out-of-view. See more experimental details in

8

Appendix C.3. We benchmark performance with ST-GCN [60], ST-GCN (our implementation without
using geometric information) and ST-ChebNet (replacing GCN with ChebNet layer), shown in Table
2. L3Net shows significant advantages on two NTU tasks, cross-view and cross-subject settings. On
Kinetics-Motion, L3Net regains superiority over other models after applying regularization. The results in
both Table 1 and 2 indicate that stronger regularization sacrifices expressiveness for clean data and gains
stability for noisy data, which is consistent with the theory in Sec. 3.2.

Table 2: Results on NTU-RGB+D and Kinetics-Motion

NTU-RGB+D Kinetics-Motion

Model
Bases
order

#params
(w/o FC)

x-view Acc x-sub Acc
#params
(w/o FC)

Acc

ST-GCN [60] 1 - 88.30 81.50 - 72.4
ST-GCN 1 2.6M 82.59 74.33 1.4M 72.85

ST-ChebNet
L=3 3.1M 86.40 78.24 1.8M 77.91
L=4 3.3M 86.45 80.20 2.1M 78.24
L=5 3.5M 76.70 71.42 2.3M 77.57

ST-L3Net

1;1;2
3.1M

90.78 83.64
1.8M

75.20
+reg0.01 88.38 81.54 78.49
1;1;2;3

3.3M
91.52 82.46

2.1M
75.07

+reg0.01 89.87 80.97 76.68

4.4 Robustness to graph noise

To examine the robustness to graph noise, we experiment on down-sampled MNIST data on 2D regular
grid with 4-nearest-neighbor graph. With no noise, on 28×28 data (Tab. A.3), 14×14 data (Tab. A.4),
and 7×7 data (Tab. 3 “original” column), the performance of L3Net is comparable to ChebNet [14] and
EdgeNet [25] and better than other GNN methods. We consider three types of noise, Gaussian noise
added to the pixel value, missing nodes or equivalently missing value in image input, and permutation
of the node indices, details in Appendix C.4. The results of adding different levels of gaussian noise and
permutation noise are shown in Tab. 3, while results of adding missing value noise is provided in Appendix
C.4. The results show that our regularization scheme improves the robustness to all three types of graph
noise, supporting the theory in Sec. 3.2. Specifically, L3Net without regularization may underperform
than ChebNet, but catches up after adding regularization, which is consistent with Proposition 3.

Table 3: Results on MNSIT with grid size 7 × 7 with different levels of Gaussian noise and Permutation noise.

Model
bases
order

#params
(w/o FC)

Acc(original)
Acc (gaussian)
(psnr 24.9)

Acc (gaussian)
(psnr 19.1)

Acc (gaussian)
(psnr 15.7)

Acc
(permutation)

GCN 1 2.4k 90.02± 0.24 89.27± 0.09 85.70± 0.13 81.32± 0.18 83.00± 0.18

ChebNet
L=3 6.5k 92.85± 0.09 91.13± 0.15 87.64± 0.23 82.70± 0.33 86.94± 0.06
L=5 10.7k 93.2± 0.07 91.92± 0.11 88.22± 0.10 83.04± 0.12 87.27± 0.23
L=7 14.8k 93.45± 0.06 91.80± 0.10 87.84± 0.15 83.75± 0.14 87.53± 0.19

GAT (h=8,f=16) 1 17.5k 79.50± 1.24 68.68± 0.45 64.8± 1.69 65.38± 1.03 62.21± 0.56
MPNN 1 18.8k 86.94± 0.37 85.36± 0.51 82.23± 0.35 77.59± 0.34 77.55± 0.26
WLN 1 17.1k 87.61± 0.04 86.01± 0.20 83.60± 0.09 79.47± 0.11 80.51± 0.05

EdgeNet
L=3 7.5k 93.26± 0.16 91.81± 0.14 88.42± 0.36 84.56± 0.40 87.15± 0.30
L=4 10.1k 93.44± 0.17 92.27± 0.16 88.60± 0.17 84.15± 0.59 87.44± 0.28

L3Net

0;1;2 8.1k 93.45± 0.10 - - - -
1;1;2

8.4k
93.56± 0.08 92.10± 0.08 88.20± 0.13 83.00± 0.33 87.58± 0.19

+reg0.5 93.85± 0.13 92.31± 0.07 89.23± 0.10 84.59± 0.23 88.08± 0.18
1;1;2;3

12.2k
93.67± 0.15 92.25± 0.15 88.28± 0.16 82.80± 0.37 87.66± 0.12

+reg0.5 93.85± 0.15 92.56± 0.12 89.15± 0.24 84.61± 0.25 88.21± 0.15

9

5 Conclusion and Discussion

The paper proposes a new graph convolution model using learnable local filters decomposed over a small
number of basis. Strengths: Provable enhancement of model expressiveness with significantly reduced
model complexity from locally connected GNN. Improved stability and robustness via local graph regu-
larization, supported by theory. Plug-and-play layer type, suitable for GNN graph signal classification
problems on relatively unchanging small underlying graphs, like face/body landmark data in FER and
action recognition applications.

Limitations and extensions: (1) Scalability to larger graph. When |V | = n is large, the complexity
increase in the npK term would be significant. The issue in practice can be remedied by mixing use
of layer types, e.g., only adopting L3Net layers in upper levels of mesh which are of reduced size. (2)
Dynamically changing underlying graph across samples. For more severe changes of the underlying graph,
we can benefit from solutions such as node registration or other preprocessing techniques, possibly by
another neural network. (3) Incorporation of edge features. Edge features can be transformed into extra
channels of node features by an additional layer in the bottom, and the low-rank graph operation can be
similarly employed there.

Acknowledgement

The work is supported by NSF DMS-1820827. XC is also partially supported by NIH and the Alfred P.
Sloan Foundation.

References

[1] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural
information processing systems, pages 1993–2001, 2016.

[2] John R Baumgardner and Paul O Frederickson. Icosahedral discretization of the two-sphere. SIAM
Journal on Numerical Analysis, 22(6):1107–1115, 1985.

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learning shape corre-
spondence with anisotropic convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 3189–3197, 2016.

[4] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[6] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment
problem? (and a dataset of 230,000 3d facial landmarks). In International Conference on Computer
Vision, 2017.

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation
using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7291–7299, 2017.

[8] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional
feature and its efficient compression for face verification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3025–3032, 2013.

10

[9] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

[10] Adam Coates and Andrew Y Ng. Selecting receptive fields in deep networks. In Advances in neural
information processing systems, pages 2528–2536, 2011.

[11] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

[12] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. Spherenet: Learning spheri-
cal representations for detection and classification in omnidirectional images. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 518–533, 2018.

[13] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appearance models. IEEE
Transactions on pattern analysis and machine intelligence, 23(6):681–685, 2001.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pages 3844–3852, 2016.

[15] Hui Ding, Shaohua Kevin Zhou, and Rama Chellappa. Facenet2expnet: Regularizing a deep face
recognition net for expression recognition. In 2017 12th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2017), pages 118–126. IEEE, 2017.

[16] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so
(3) equivariant representations with spherical cnns. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 52–68, 2018.

[17] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 869–877, 2018.

[18] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
arXiv preprint arXiv:1905.04497, 2019.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[20] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation
learning: A report on three machine learning contests. In International Conference on Neural Infor-
mation Processing, pages 117–124. Springer, 2013.

[21] Yanan Guo, Dapeng Tao, Jun Yu, Hao Xiong, Yaotang Li, and Dacheng Tao. Deep neural networks
with relativity learning for facial expression recognition. In 2016 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2016.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pages 1024–1034, 2017.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

11

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 4700–4708, 2017.

[25] Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets: Edge varying graph neural networks.
arXiv preprint arXiv:2001.07620, 2020.

[26] Mira Jeong and Byoung Chul Ko. Driver’s facial expression recognition in real-time for safe driving.
Sensors, 18(12):4270, 2018.

[27] Chiyu Jiang, Jingwei Huang, Karthik Kashinath, Philip Marcus, Matthias Niessner, et al. Spherical
cnns on unstructured grids. arXiv preprint arXiv:1901.02039, 2019.

[28] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

[29] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Sohel, and Farid Boussaid. A new repre-
sentation of skeleton sequences for 3d action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3288–3297, 2017.

[30] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems, pages 7090–7099, 2019.

[31] Tae Soo Kim and Austin Reiter. Interpretable 3d human action analysis with temporal convolutional
networks. In 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW),
pages 1623–1631. IEEE, 2017.

[32] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[33] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph convolu-
tional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing,
67(1):97–109, 2018.

[34] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In Thirty-second AAAI conference on artificial intelligence, 2018.

[35] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard Zemel. Lanczosnet: Multi-scale deep graph
convolutional networks. ICLR, 2019.

[36] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-temporal lstm with trust gates for 3d
human action recognition. In European conference on computer vision, pages 816–833. Springer, 2016.

[37] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4424–4431, 2019.

[38] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and Iain Matthews.
The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified
expression. In 2010 ieee computer society conference on computer vision and pattern recognition-
workshops, pages 94–101. IEEE, 2010.

[39] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pages 2153–2164, 2019.

12

[40] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. 2019.

[41] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolu-
tional neural networks on riemannian manifolds. In Proceedings of the IEEE international conference
on computer vision workshops, pages 37–45, 2015.

[42] Zibo Meng, Ping Liu, Jie Cai, Shizhong Han, and Yan Tong. Identity-aware convolutional neural
network for facial expression recognition. In 2017 12th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2017), pages 558–565. IEEE, 2017.

[43] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[44] E Morales-Vargas, CA Reyes-Garćıa, and Hayde Peregrina-Barreto. On the use of action units and
fuzzy explanatory models for facial expression recognition. PloS one, 14(10), 2019.

[45] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[46] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660, 2017.

[47] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J Guibas.
Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5648–5656, 2016.

[48] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pages
5099–5108, 2017.

[49] Q Qiu, X Cheng, R Calderbank, and G Sapiro. Dcfnet: Deep neural network with decomposed
convolutional filters. In International Conference Machine Learning, 2018.

[50] Bin Ren, Mengyuan Liu, Runwei Ding, and Hong Liu. A survey on 3d skeleton-based action recog-
nition using learning method. arXiv preprint arXiv:2002.05907, 2020.

[51] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[52] Stefan C Schonsheck, Bin Dong, and Rongjie Lai. Parallel transport convolution: A new tool for
convolutional neural networks on manifolds. arXiv preprint arXiv:1805.07857, 2018.

[53] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset for
3d human activity analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1010–1019, 2016.

[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[55] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by representing
3d skeletons as points in a lie group. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 588–595, 2014.

13

[56] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by representing
3d skeletons as points in a lie group. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 588–595, 2014.

[57] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet ensemble for action recog-
nition with depth cameras. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1290–1297. IEEE, 2012.

[58] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
ICLR, 2019.

[60] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for skeleton-
based action recognition. In Thirty-second AAAI conference on artificial intelligence, 2018.

[61] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294,
2018.

Appendix

A Proofs

A.1 Details and proofs in Sec. 2.3

A.1.1 Locally connected GNN

Specifically, the construction in [5,10] assumes that u and u′ belongs to the graph of different scales, u′ is
on the fine graph, and u is on a coarse-grained layer produced by clustering of indices of the graph of the
input layer. If one generalize the construction to allow over-lapping of the receptive fields, and assume no
pooling or coarse-graining of the graph, then the non-zero parameters are of the number∑

u∈V
|Nu| · CC ′ = np · CC ′,

where n = |V |, p is the average patch size |Nu|, and C and C ′ are the number of input and output feature
channels.

A.1.2 ChebNet/GCN, GAT and Edgenet

• Chebet/GCN
In view of (1), ChebNet [14] makes use of the graph adjacency matrix to construct M . Specifically,

Asym := D−1/2AD−1/2 is the symmetrized graph adjacency matrix (possibly including self-edge, then
A equals original A plus I), and Lsym := I − Asym has spectral decomposition Lsym = ΨΛΨT . Let

L̃ = α1I +α2Lsym be the rescaled and re-centered graph Laplacian such that the eigenvalues are between
[−1, 1], α1, α2 fixed constants. Then, written in n-by-n matrix form,

Mc′,c =
L−1∑
l=0

θl(c
′, c)Tl(L̃), θl(c

′, c) ∈ R, (5)

14

where Tl(·) is Chebshev polynomial of degree l. As Asym and then L̃ are given by the graph, only θl’s are
trainable, thus the number of parameters are

L · CC ′.

GCN [32] is a special case of ChebNet. Take L = 2 in (5), and tie the choice of θ0 and θ1,

Mc′,c = θ(c′, c)(α′1I + α′2Asym) =: θ(c′, c)Ã, α′1, α
′
2 fixed constants,

where θ(c′, c) is trainable. This factorized form leads to the linear part of the layer-wise mapping as
Y = ÃXΘ written in matrix form, where Ã is n-by-n matrix defined as above, X (Y) is n-by-C ′ (-C)
array, Θ is C ′-by-C matrix. The model complexity is CC ′ which are the parameters in Θ.
• GAT
In GAT [54], R being the number of attention heads, the graph convolution operator in one GNN layer

can be written as (omitting bias and non-linear mapping)

Y =
R∑
r=1

A(r)XΘr, A(r)
u,v =

ec
(r)
uv∑

v′∈N(1)
u
ec

(r)

uv′
, c(r)uv = σ((a(r))T [W (r)Xu,W

(r)Xv]), (6)

where {W (r), a(r)} are the trainable parametrization of attention graph affinity mechanism A(r), which
constructs non-negative affinities between graph nodes u and v adaptively from the input graph node
feature X. In particular, A(r) shares sparsity pattern as the graph topology, that is, A(r)(u, u′) 6= 0 only

when u′ ∈ N (1)
u .

In the original GAT, Θr = W (r)C(r), where C(r)’s are fixed matrices such that the output from r-th
head is concatenated into the output Y across r = 1, · · · , R. Variants of GAT adopt channel mixing across
heads, e.g. a generalization of GAT in [25] uses extra trainable Θr in (6) independent from W (k). [25] also
proposed higher-order GAT by considering powers of the affinity matrix A(r) as well as the edge-varying
version (c.f. Eqn. (36)(39) in [25]). As this higher-order GAT and the edge-varying counterpart are special
cases of the edgy-varying GNN, we cover this case in Proposition 1 3).

The model complexity of GAT: In the original GAT where Θr is tied with W (r), the number of
parameters in one layer is R(C0C

′ + 2C0), where R is the number of attention heads, C = C0R, and
W (r) : RC′ → RC0 . When Θr are free from {W (r), a(r)} in (6), the number of parameters is R(CC ′ +
C0C

′ + 2C0) ≤ R(2CC ′ + 2C), where W (r) maps to dimension C0 and Θr maps to dimension C.
• EdgeNet (Edge-varying GCN)
Per Eqn. (1)(8) in [25], the edge-varying GNN layer mapping can be written as

Y =
L−1∑
r=0

(
r∏

k=0

Φk

)
XΘr, (7)

where Φ0 is an n-by-n diagonal matrix, and Φk, k = 1, · · · , r, are supported on N
(1)
u of each node u.

The trainable parameters are {Φk}Rk=0 and {Θr}Rr=0, Θr : RC′ → RC . Edge-varying GAT implements
polynomials of averaging filters, and general edge-varying GNN takes product of arbitrary 1-order filters.
The proof shows that EdgeNet layer is a special case of L3Net layer, while restricting Bk to be of the

product form (9) rather than freely supported on N
(dk)
u for user-specified order (d1, · · · , dK) is a non-trivial

restriction.
The trainable parameters: Θr has LCC ′ many, Φ0 has n, and Φk, k = 1, · · · , L − 1 each has np(1)

many, p(1) being the average size o 1-neighborhood of nodes. Thus the total number of parameters is

LCC ′ + n+ (L− 1)np(1) ∼ L(CC ′ + np(1)).

15

Proof of Proposition 1. Part (1): Since GCN is a special case of ChebNet, it suffices to prove that (5) can
be expressed in the form of L3Net (2) for some K. By definition of L̃, mathematically equivalently,

Mc′,c =
L−1∑
l=0

θl(c
′, c)Tl(α1I + α2L) =

L−1∑
l=0

θl(c
′, c)Tl(α1I + α2(I −Asym)) =

L−1∑
l=0

βl(c
′, c)Alsym, (8)

where the coefficients βl’s are determined by θl’s, per (c′, c). Since Alsym propagates to the l-th order

neighborhood of any node, setting Bk(u′, u) = Ak−1sym(u′, u), Bk(u′, u) is non-zero when u′ ∈ N
(k−1)
u ,

1 ≤ k ≤ K := L, and then setting ak(c′, c) = βk−1(c′, c) gives (5) in the form of (2).
Part (2): We consider (6) as the GAT model. Recall that Θr : RC′ → RC , then (6) can be re-written

in the form of (1) by letting

M(u′, u; c′, c) =
R∑
r=1

A(r)(u′, u)Θr(c
′, c),

which is a special case of (2) where R = K, A(k) = Bk and Θk = ak. Since A(r)(u, u′) as a function of

u′ is supported on u′ ∈ N (1)
u , (6) belongs to the L3Net model (2) where d1 = · · · = dK = 1, in addition

to that Bk must be of the attention affinity form, i.e. built from the attention coefficients c
(r)
uv computed

from input X via parameters {W (r), a(r)}.
Part (3): Comparing with (1)(2), we have that (7) is a special case of L3Net (2) by letting K = L,

Bk =
k−1∏
k′=0

Φk′ , (9)

ak = Θk−1, and dk = k − 1 for k = 1, · · · ,K.

A.1.3 Standard and geometrical CNN’s

Standard CNN on Rd, e.g. d = 1 for audio signal and d = 2 for image data, applies a discretized convolution
to the input data in each convolutional layer, which can be written as (omitting bias which is added per
c, and the non-linear activation)

y(u, c) =
∑

c′∈[C′]

∑
u′∈U

wc′,c(u
′ − u)x(u′, c′), (10)

where U is a grid on Rd. We write in the way of “anti-convolution”, which has “u′−u” rather than “u−u′”,
but the definition is equivalent. For audio and image data, U is usually a regular mesh with evenly sampled
grid points, and proper boundary conditions are applied when computing y(u, c) at a boundary grid point
u. E.g., boundary can be handled by standard padding as in CNN. As the convolutional filters wc′,c are
compactly supported, the summation of u′ is on a neighborhood of u.

More generally, CNN’s on non-Euclidean domains are constructed when spatial points are sampled on
an irregular mesh in Rd, e.g., a 2D surface in R3. The generalization of (10) is by defining the “patch
operator” [41] which pushes a template filter w on a regular mesh on Rd, d being the intrinsic dimensionality
of the sampling domain, to the irregular mesh in the ambient space that have coordinates on local charts.
Specifically, for a mesh of 2D surface in 3D, d = 2, and w is a template convolutional filter on R2. For
any local cluster of 3D mesh points Nu around a point u, the patch operator Pu provides (Puw)(u′) for
u′ ∈ Nu by certain interpolation scheme on the local chart. The operator Pu is linear in w, and possibly
trainable. As a result, in mesh-based geometrical CNN,

y(u, c) =
∑

c′∈[C′]

∑
u′

(Puwc′,c)(u′)x(u′, c′), (11)

16

and one can see that in Euclidean space taking (Puw)(u′) = w(u′ − u) reduces (11) to the standard CNN
as in (10).

In both (10) and (11), spatial low-rank decomposition of the filters wc′,c can be imposed [49]. This
introduces a set of bases {bk}k over space that linearly span the filters wc′,c. For standard CNN in Rd,
bk are basis filters on Rd, and for geometrical CNN, they are defined on the reference domain in Rd same
as wc′,c, where d is the intrinsic dimension. Suppose wc′,c =

∑K
k=1 βk,(c′,c)bk for coefficients βk,(c′,c), by

linearity, (11) becomes

y(u, c) =
∑

c′∈[C′]

∑
u′

K∑
k=1

βk,(c′,c)(Pubk)(u′)x(u′, c′), (12)

and similarly for (10). The trainable parameters in (12) are βk,(c′,c) and the basis filters bk’s, the former

has KCC ′ parameters, and the latter has
∑
k pk, where pk is the size of the support of bk in Rd. Suppose

the average size is p, then the number of parameters is Kp. This gives the total number of parameters as

KCC ′ +Kp.

Proof of Proposition 2. Since standard CNN is a special case of geometrical CNN 11, we only consider
the latter. Assuming low-rank filter decomposition, the convolutional mapping is (12). Comparing to the
GNN layer mapping defined in (1), one sees that

M(u′, u; c′, c) =
K∑
k=1

βk,(c′,c)(Pubk)(u′),

which equals (2) if setting Bk(u′, u) = (Pubk)(u′) and ak(c′, c) = βk,(c′,c).

A.1.4 Strong regularization limit

Proof of Proposition 3. The constrained minimization of R defined in (3) separates for each u, k, and the

minimization of b
(k)
u is given by

min
w:N

(dk)
u →R

wTL(k)
u w, s.t. ‖w‖2 ≥ αu,k > 0. (13)

For each u, k, the local Dirichlet graph Laplacian L
(k)
u has eigen-decomposition L

(k)
u = Ψ

(k)
u Λ

(k)
u (Ψ

(k)
u)T ,

where (Ψ
(k)
u)TΨ

(k)
u = I, and the diagonal entries of Λ

(k)
u are eigenvalues of L

(k)
u , which are all ≥ 0 and

sorted in increasing order. By the variational property of eigenvalues, the minimizer of w in (13) is achieved

when w = Ψ
(k)
u (·, 1), i.e., the eigenvector associated with the smallest eigenvalue of L

(k)
u . By that the local

subgraph is connected, this smallest eigenvalue has single multiplicity, and the eigenvector is the Perron-
Frobenius vector which does not change sign. The claim holds for arbitrary αu,k > 0 since eigenvector is
defined up to a constant multiplication.

A.2 Proofs in Sec. 3.1

Proof of Proposition 4. Part 1): Let the graph be the ring graph with n nodes, and each node has 2
neighbors, n=8 as shown in Fig. 1 (right). We index the nodes as u = 0, . . . , n − 1 and allows addi-
tion/subtraction of u− v (mod n). Let B be the “difference” filter B(u′, u) = 1 when u′ = u and −1 when
u′ = u+ 1. We show that B 6= f(A) for any f , and in contrast, setting this B as the basis in (2) expresses
the filter with K = 1.

To prove that B 6= f(A) for any f , let πu be the permutation of the n nodes such that πu(u+v) = (u−v)
for all v, i.e., mirror flip the ring around the node u. By construction, the graph topology of the ring

17

Figure A.1: A ring graph with 8 nodes. Polynomials of graph adjacency matrix A (or Laplacian matrix) preserve
symmetry of mirroring around any node, e.g., node 3, and can cannot express a local filter B

graph is preserved under πu, that is, Aπu
:= πuAπ

T
u = A, whether A is the 0/1 value adjacency matrix or

the symmetrically normalized one Asym = D−1/2AD−1/2 (D is constant on diagonal) or other normalized
version as long as the relation Aπu = A holds. By Lemma A.1 1), for any f : R→ R,

f(A)πu = f(Aπu)πu = πuf(A),

this means that if B = f(A) for some f , then Bπu = πuB, which contradicts with the construction of B.
Part 2): Consider the two distributions of graph signals on the ring graph in 1), which we call “up-

wind/downwind” signals: Xup consists of finite superpositions of functions on the ring graph which are
periodic, smoothly increasing from 0 to 1 and then dropping to zero. Signals in Xup are under certain
distribution, and Xdown consists of the signals that can be produced by mirror-flipping the upwind signals.
That is, denoting xup (xdown) an upwind (downwind) signal, πu the permutation as in 1) around any node
u, then

πuxup
dist.
= xdown,

where
dist.
= means equaling in distribution. Example signals of the two classes as illustrated in Fig. 3.

Same as in 1), by construction Aπu
= A. Let F (L) be the mapping to the L-th layer spectral GNN

feature, for xup an upwind signal, Lemma A.1 2) gives that

F (L)[A]πuxup = F (L)[Aπu
]πuxup = πuF

(L)[A]xup.

The last layer applies group invariant operator U , then

UF (L)[A]πuxup = UπuF
(L)[A]xup = UF (L)[A]xup,

this gives that

UF (L)[A]xdown
dist.
= UF (L)[A]πuxup = UF (L)[A]xup,

which means that the final output deep feature via UF (L)[A] are statistically the same for the input signals
from the two classes. ’

Meanwhile, the difference local filter B in the proof of 1) can extract feature to differentiate the two
classes, and then L3Net with 1 layer and 1 basis suffices to distinguish the Xup and Xdown signals.

Lemma A.1 (Permutation equivariance, Proposition 1 in [18]). Let A be the (possibly normalized) graph
adjacency matrix, for any input signal x : V → R, and π ∈ Sn a permutation of graph nodes,

1) The spectral graph convolution mapping f(A) satisfies that

f(Aπ)π = πf(A), Aπ := πAπT .

2) Let F (l)[A] be the mapping to the l-th layer spectral GNN feature with graph adjacency A, then

F (l)[Aπ]πx = πF (l)[A]x.

18

Proof of Lemma A.1. Proved in [18] and we reproduce with our notation for completeness.
Part 1): Denote the n-by-n permutation matrix also by π, then by definition, f(A) = Uf(Λ)UT where

A = UΛUT is the diagonalization and U is orthogonal matrix, thus

f(Aπ) = f(πUΛUTπT) = πUf(Λ)UTπT = πf(A)πT ,

and this proves 1).
Part 2): Each spectral GNN layer mapping adds the bias and the node-wise non-linear activation map-

ping to the graph convolution linear operator, which preserves the permutation equivariance. Recursively
applying to L layers proves 2).

A.3 Proofs in Sec. 3.2

Proof of Theorem 1. By definition,

Y (u) = σ(
K∑
k=1

ak〈Bk(·, u), X(·)〉
N

(dk)
u

+ bias),

then since σ is non-expansive, ∀u ∈ V ,

|∆Y (u)| ≤ |
K∑
k=1

ak〈Bk(·, u),∆X(·)〉
N

(dk)
u
| ≤ ‖a‖2

(
K∑
k=1

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
|2
)1/2

. (14)

By that
|〈Bk(·, u),∆X(·)〉

N
(dk)
u
| ≤ ‖Bk(·, u)‖

2,N
(dk)
u
· ‖∆X(·)‖

2,N
(dk)
u

, (15)

we have that

∑
u∈V
|∆Y (u)|2 ≤ ‖a‖22

∑
u

K∑
k=1

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
|2

≤ ‖a‖22
∑
u

K∑
k=1

‖Bk(·, u)‖2
2,N

(dk)
u

· ‖∆X(·)‖2
2,N

(dk)
u

≤ (‖a‖2β(1))2
∑
u,k

‖∆X(·)‖2
2,N

(dk)
u

, (16)

and observe that

∑
u,k

‖∆X(·)‖2
2,N

(dk)
u

=
K∑
k=1

∑
u∈V

∑
v∈N(dk)

u

|∆X(v)|2 =
K∑
k=1

∑
u,v∈V

1{v∈N(dk)
u }|∆X(v)|2

=
K∑
k=1

∑
u,v∈V

1{u∈N(dk)
v }|∆X(v)|2 =

K∑
k=1

∑
v∈V
|N (dk)

v | · |∆X(v)|2 ≤ Kp
∑
v∈V
|∆X(v)|2,

where we used the assumption on Kp to obtain the last ≤. Then (16) continues as

≤ (‖a‖2β(1))2Kp‖∆X‖22,V ,

which proves that ‖∆Y ‖2,V ≤ (‖a‖2β(1))
√
Kp‖∆X‖2,V as claimed.

19

Proof of Theorem 2. Same as in the proof of Theorem 1, we have (14). The eigen-decomposition L
(k)
u =

Ψ
(k)
u Λ

(k)
u (Ψ

(k)
u)T has that (Ψ

(k)
u)TΨ

(k)
u = I, and, under the connectivity condition of the subgraph, the

diagonal entries of Λ
(k)
u all > 0. Thus

〈u, v〉
N

(dk)
u

= 〈(Λ(k)
u)1/2Ψ(k)

u u, (Λ(k)
u)−1/2Ψ(k)

u v〉
N

(dk)
u

,

which gives the Cauchy-Schwarz with weighted 2-norm as

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
| ≤ ‖Bk(·, u)‖

L
(k)
u
· ‖∆X(·)‖

(L
(k)
u)−1 . (17)

Then similarly as in (16), using the definition of β(2) and the the condition with ρ, we obtain that∑
u∈V
|∆Y (u)|2 ≤ (‖a‖2β(2))2

∑
u,k

ρ2‖∆X(·)‖2
2,N

(dk)
u

, (18)

and the rest of the proof is the same, which gives that∑
u∈V
|∆Y (u)|2 ≤ (‖a‖2β(2))2ρ2Kp‖∆X‖22,V ,

which proves the claim.

B Up/down-wind Classification Experiment

B.1 Dataset Setup

We generate the Up/Down wind dataset on both ring graph and chain graph with 64 nodes. Every
node is assigned to a probability drawn from (0, 1) uniform distribution. Node with probability less than
threshold = 0.1 will be assigned with a gaussian distribution with std = 1.5. Each gaussian distribution
added is masked half side. Distribution masked left half is the ’Down Wind’ class, distribution masked
right half is the ’Up Wind’ class, as shown in left plot in Fig. 3. We then sum up all half distributions
from different locations in each sample. We generate 5000 training samples and 5000 testing samples.

B.2 Model architecture and training details

Network architectures.
• 2-gcn-layer model:

GraphConv(1,32)-ReLU-MaxPool1d(2)-GraphConv(32,64)-ReLU-AvgPool(32)-FC(2),
• 1-gcn-layer model:

GraphConv(1,32)-ReLU-AvgPool(64)-FC(2),
where GraphConv can be ChebNet or L3Net.
Traning details.
We choose the Adam Optimizer, batch size of 100, set initial learning rate of 1 × 10−3, make it decay

by 0.1 at 80 epoch and train for 100 epoches.

B.3 Additional results

We report additional results using 1-gcn layer architecture in Tab. A.1. Our L3Net again shows stronger
classification performance than ChebNet.

20

Table A.1: results of 1-gcn layer models

Gnn model order #params ring graph Acc chain graph Acc

ChebNet

L=3 0.2k 50.80± 0.24 50.66± 0.21
L=5 0.3k 51.14± 0.21 51.07± 0.35
L=9 0.4k 51.68± 0.38 50.96± 0.29
L=30 1.1k 51.37± 0.14 50.70± 0.16

L3Net
1 0.3k 99.96± 0.08 99.67± 0.12

0;1;2 0.8k 99.96± 0.01 99.92± 0.01

C Experimental Details

C.1 Classification of sphere mesh data

Spherical mesh We conduct this experiment on icosahedral spherical mesh [2]. Like S2CNN [11], we
project digit image onto surface of unit sphere, and follow [27] by moving projected digit to equator,
avoiding coordinate singularity at poles.

Here, we details the subdivision scheme of the icosahedral spherical mesh we used. Start with an
unit icosahedron, this sphere discretization progressively subdivide each face into four equal triangles,
which makes this discretization uniform and accurate. Plus, this scheme provides a natural downsampling
strategy for networks, as it denotes the path for aggregating information from higher-level neighbor nodes
to lower-level center node. We adopt the following naming convention for different mesh resolution: start
with level-0(L0) mesh(i.e., unit icosahedron), each level above is associated with a subdivision. For level-
i(Li), properties of sperical mesh are:

Ne = 30 · 4 ∗ i,Nf = 20 · 4 ∗ i,Nv = Ne −Nf + 2 (19)

in which Nf , Ne, Nv denote number of edges, faces, and vertices.
To give a direct illustration of how many nodes each level of mesh has, we list them below,

• L0 12 nodes

• L1 42 nodes

• L2 162 nodes

• L3 642 nodes

• L4 2562 nodes

• L5 10242 nodes

Network architectures We use a three-stage GNN model for this sphereMNIST, with each stage
conduct convolution on spherical mesh of a specific level. Detailed architecture (suppose mesh levels used
are Li, Lj, Lk):

Conv(1,16)Li-BN-ReLU-DownSamp-ResBlock(16,16,64)Lj-DownSamp-ResBlock(64,64,256)Lk-AvgPool-
FC(10),

We use the 4-stage model architecture for SphereModelNet-40, where 4 mesh levels are: L5, L4, L3, L2.
Detailed architecture are:

Conv(6,32)L5-BN-ReLU-DownSamp-ResBlock(32,32,128)L4-DownSamp
-ResBlock(128,128,512)L3-DownSamp-ResBlock(512,512,2048)L4-DownSamp-AvgPool-FC(40),

where the GraphConv(feat in, feat out) in above model architectures can be either Mesh Convolution
layer or Graph Convolution layer, and “ResBlock” is a bottleneck module with two 1×1 convolution layers
and one GraphConv layer.

21

Training Details For SphereMNIST experiments, we use batch size of 64, Adam optimizer, initial
learning rate of 0.01 which decays by 0.5 every 10 epoches. We totally train model for 100 epoches.

For SphereModelNet-40 experiment, we batch size of 16, Adam optimizer, initial learning rate of 0.005
which decay by 0.7 every 25 epoches. We totally train 300 epoches.

Results on fine mesh
Tab. A.2 show the results of SphereMNIST and Sphere-ModelNet40 on fine meshes on the sphere.

Specifically, the mesh used for SphereMNIST here is of levels L4, L3, L2, and the SphereModelNet-40
mesh of levels L5, L4, L3, L2, same as in [27].

Table A.2: Results on SphereMNIST and SphereModelNet-40 following setup in [27]

Model
SphereMNIST

Acc
SphereModelNet-40

Acc
S2CNN [11] 96.0 85.0

UGSCNN [27] 99.2 90.50
GCN 95.8 87.07

ChebNet(L=4) 99.3 88.05
ChebNet(L=5) - 88.90
ChebNet(L=6) - 88.70
ChebNet(L=7) - 88.78
L3Net (1123) 99 .10 90.24
L3Net (112) 98.90 89.67

C.2 Facial Expression Recognition

Landmarks setting 15 landmarks are selected from the standard 68 facial landmarks defined in AAM [13],
and edges are connected according to prior information of human face, e.g., nearby landmarks on the eye
are connected, see Fig. 1 (left).

Dataset setup
• CK+:
The CK+ dataset [38] is the mostly used laboratory-controlled FER dataset (downloaded from:

http://www.jeffcohn.net/resources/). It contains 327 video sequences from 118 subjects with seven basic
expression labels(anger, contempt, disgust, fear, happiness, sadness, and surprise). Every sequence shows
a shift from neutral face to the peak expression. We extract the last three frames from each sequence in
the CK+ dataset, form a dataset with 981 samples. Every facial image is aligned and resized to (120, 120)
with face alignment model [6], and then we use this model again to get facial landmarks. As we describe
in Sec. 4.2, we select 15 from 68 facial landmarks and build graph on them. The input feature for each
node is an image patch centered at the landmark with size (20, 20), concatenated with the landmark’s
coordinates, so the total input feature dimension is 402.
• FER13:
FER13 dataset [20] is a large-scaled, unconstrained database collected automatically by Goole Image

API (downloaded from: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-
recognition-challenge/data). It contains 28,709 training images, 3589 validation images and 3589 test
images of size (48, 48) with seven common expression labels as CK+. We align facial images, get facial
landmarks, and select nodes & build graph the same way as we do in CK+. Input features are local image
patch centered at each landmark with size (8, 8) and landmark’s coordinates, so the total input feature
dimension is 66.

Network architectures.
• CK+:
GraphConv(402,64)-BN-ReLU-GraphConv(64,128)-BN-ReLU-FC(7),
• FER13:
GraphConv(66,64)-BN-ReLU-GraphConv(64,128)-BN-ReLU-GraphConv(128,256)-BN-ReLU-FC(7),

22

http://www.jeffcohn.net/resources/
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

Figure A.2: Illustration of 25-point body joints and graph.

where GraphConv(feat in, feat out) here can be any type of graph convolution layer, including our
L3Net.

Training details.
• CK+:
We use 10-fold cross validation as [15]. Batch size is set as 16, learning rate is 0.001 which decay by

0.1 if validation loss remains same for last 15 epoches. We choose Adam optimizer and train 100 epoches
for each fold validation.
• FER13:
We report results on test set. Batch size is set as 32, learning rate is 0.0001 which decay 0.1 if validation

loss remains same for last 20 epoches. We choose Adam optimizer and train models for 150 epoches.
Runtime analysis details. In section 4.2, we report the running time of our L3Net(order 1,1,2,3),

13.02ms, and best ChebNet, 12.56ms, on CK+ dataset, which are comparable. Here, we provide more
details about this. The time we use to compare is the time of model finishing inference on validation set
with batch size of 16. For each model, we record all validation time usages in all folds and report the
average of them. The Runtime analysis is performed on a single NVIDIA TITAN V GPU.

C.3 Skeleton-based Action Recognition

Dataset setup.
• NTU-RGB+D:
NTU-RGB+D [53] is a large skeleton-based action recognition dataset with three-dimensional coordi-

nates given to every body joint (downloaded from: http://rose1.ntu.edu.sg/datasets/requesterAdd.asp?DS=3).
It comprises 60 action classes and total 56,000 action clips. Every clip is captured by three fixed Kineticsv2
sensors in lab environment performed by one of 40 different subjects. Three sensors are set at same height
but in different horizontal views, −45◦, 0◦, 45◦. There are 25 joints tracked, as shown in Fig. A.2. Two
experiment setting are proposed by [53], cross-view (X-view) and cross-subject (X-sub). X-view consists
of 37,920 clips for training and 18960 for testing, where training clips are from sensor on 0◦, 45◦, testing
clips from sensor on −45◦. X-sub has 40,320 clips for training and 16,560 clips for testing, where training
clips are from 20 subjects, testing clips are from the other 20 subjects. We test our model on both settings.
• Kinetics:
Kinetics [28] is a large and most commonly-used action recognition dataset with nearly 300,000 clips

for 400 classes (downloaded from: https://deepmind.com/research/open-source/kinetics). We follow [60]

23

http://rose1.ntu.edu.sg/datasets/requesterAdd.asp?DS=3
https://deepmind.com/research/open-source/kinetics

to get 18-point body joints from each frame using OpenPose [7] toolkit. Input features for each joint to
the Network is (x, y, p), in which x, y are 2D coordinates of the joint, and p is the confidence for localizing
the joint. To eliminate the effect of skeleton-based model’s inability to recognize objects in clips, we
mainly focus on action classes that requires only body movements. Thus, we conduct our experiments on
Kinetics-Motion, proposed by [60]. This is a small dataset that contains 30 action classes strongly related
to body motion. Note that there are severe data missing problem in landmark coordinates in Kinetics
data, so we also use our regularization scheme in this experiment.

Network Architectures.
• NTU-RGB+D:
We follow the architecture in [60]:
STGraphConv(3,64,9,s1)-STGraphConv(64,64,9,s1)-STGraphConv(64,64,9,s1)-STGraphConv(64,64,9,s1)-

STGraphConv(64,128,9,s2)-STGraphConv(128,128,9,s1)-STGraphConv(128,128,9,s1)-STGraphConv(128,256,9,s2)-
STGraphConv(256,256,9,s1)-STGraphConv(256,256,9,s1)-STAvgPool-fc(60).
• Kinetics:
We also design a computation-efficient architecture for Kinetics-Motion with larger temporal down-

sampling rate, which results in less forward time:
STGraphConv(3,32,9,s2)-STGraphConv(32,64,9,s2)-STGraphConv(64,64,9,s1)-STGraphConv(64,64,9,s1)-

STGraphConv(64,128,9,s2)-STGraphConv(128,128,5,s1)-STGraphConv(128,128,5,s1)-STGraphConv(128,256,5,s2)-
STGraphConv(256,256,3,s1)-STGraphConv(256,256,3,s1)-STAvgPool-fc(60),

where the structure of STGraphConv(feat in, feat out, temporal kernel size, temporal stride) is:
GraphConv(feat in, feat out)-BN-ReLU-1DTemporalConv(feat out, feat out, temporal kernel size, tem-

poral stride)-BN-ReLU.
Training Details
• NTU-RGB+D:
We use batch size of 32, initial learning rate of 0.001 which decay by 0.1 at (30, 80) epoch, and total

train 120 epoches. SGD optimizer is selected. We padding every sample temporally with 0 to 300 frames.
• Kinetics:
We use batch size of 32, initial learning rate of 0.01 which decay by 0.1 at (40, 80) epoch, and total

train 100 epoches. SGD optimizer is selected. We padding every sample temporally with 0 to 300 frames,
and during training, we perform data augmentation by randomly choosing 150 contiguous frames.

C.4 Details of experiment on MNIST

C.4.1 Simulated graph noise on 7× 7 MNIST.

Here we describe three types of noise in our experiments:
Gaussian noise. Given a 7 × 7 image from MNIST, we sample 49 values from N (0, std). the std

controls the strength of noise added. We conduct experiments under std = 0.1, 0.2, 0.3 as shown in Tab.
3. The amount of noise is also measured by PNSR which is standard for image data.

Missing value noise. Given a image, we randomly sample 49 values from U(0, 1), and select nodes
with probabilities less than a threshold. This threshold is called noise level, which controls the percentage
of nodes affected. Then, we remove the pixel value at those selected nodes. Experiments with noise level =
0.1, 0.2, 0.3 are conducted.

Graph node permutation noise. For each sample, we randomly select a permutation center node
which has exact 4 neighbors. Then, we rotate its neighbors clockwise by 90 degree, e.g., top neighbor
becomes right neighbor, and then we update the indices of permuted nodes.

24

Table A.3: Results on MNSIT with grid size 28 ×
28,

Model bases order
#params
(w/o FC)

Acc

GCN 1 2.4k 93.30 ± 0.12

ChebNet

L=3 6.5k 93.93 ± 0.18
L=4 8.6k 94.97 ± 0.06
L=5 10.7k 95.87 ± 0.09
L=6 12.8k 96.64 ± 0.12
L=7 14.8k 96.98 ± 0.19
L=9 19.0k 97.43 ± 0.14
L=15 31.5k 97.91 ± 0.08
L=20 41.9k 97.90 ± 0.04

L3Net
1;1;2 41.0k 96.78 ± 0.08

1;1;2;3 79.2k 97.32 ± 0.10

Table A.4: Results on MNSIT with grid size 14 ×
14

Model
bases
order

#params
(w/o FC)

Acc

GCN 1 2.4k 93.70 ± 0.09

ChebNet

L=3 6.5k 96.06 ± 0.16
L=4 8.6k 96.85 ± 0.11
L=5 10.7k 97.24 ± 0.28
L=6 12.8k 97.58 ± 0.10
L=7 14.9k 97.74 ± 0.07

L3Net

0;1;2 13.3k 97.17 ± 0.09
1;1;2 14.8k 97.24 ± 0.12

1;1;2reg0.001 14.8k 97.43 ± 0.07
1;1;2;3 25.1k 97.51 ± 0.07

Table A.5: Results on MNSIT with grid size 7 × 7 with different levels of missing value

Model
bases
order

reg
#params
(w/o FC)

Acc(original) Acc(psnr 18.70) Acc(psnr 15.33) Acc(psnr 13.15)

GCN 1 - 2.4k 90.02± 0.24 83.44± 0.15 77.23± 0.13 71.67± 0.06

ChebNet

L=3 - 6.5k 92.85± 0.09 87.09± 0.18 82.11± 0.18 76.15± 0.26
L=4 - 8.6k 93.12± 0.1 87.09± 0.16 82.22± 0.28 75.95± 0.22
L=5 - 10.7k 93.2± 0.07 87.01± 0.14 82.04± 0.14 76.21± 0.38
L=6 - 12.7k 93.42± 0.09 87.20± 0.3 81.19± 0.29 75.24± 0.32
L=7 - 14.8k 93.45± 0.06 87.08± 0.11 81.00± 0.17 75.31± 0.34

L3Net

1;1;2 - 8.4k 93.56± 0.08 86.64± 0.16 81.14± 0.30 75.07± 0.08
1;1;2 0.5 8.4k 93.85± 0.13 87.22± 0.23 82.84± 0.11 76.48± 0.23
1;1;2;3 - 12.2k 93.67± 0.15 86.51± 0.38 80.68± 0.11 74.24± 0.36
1;1;2;3 0.5 12.2k 93.85± 0.15 87.22± 0.08 82.64± 0.31 76.08± 0.38

C.4.2 Network architecture and training details

We use the same architecture for different experiment settings:
GraphConv(1,32)-BN-ReLU-GraphConv(32,64)-BN-ReLU-FC(10),
where GraphConv can be different types of graph convolution layers.We set batch size to 100, use

Adam optimizer, and set initial learning rate to 1e-3. Learning rate will drop by 10 if the least validation
loss remains the same for the last 15 epoches. We set total training epoches as 200.

C.4.3 Additional results

Here, we show experiments results on 28× 28, 14× 14 grid, as well as 7× 7 grid with missing values. Tab.
A.3 shows results on 28× 28 image grid. Our model have better performance than other methods.

Tab. A.4 shows results on 14× 14 image grid, where our L3Net have comparable results with the best
ChebNet [14] method.

We shows our results on 7× 7 image grid with missing values in Tab. A.5. With regularization, L3Net
achieves the best performance in every experiment with different noise levels.

25

	1 Introduction
	1.1 Related Works

	2 Method
	2.1 Decomposed local filters
	2.2 Regularization by local graph Laplacian
	2.3 A unified framework for graph convolutions

	3 Analysis
	3.1 Representation expressiveness of graph signals
	3.2 Representation stability

	4 Experiment
	4.1 Object recognition of data on spherical mesh
	4.2 Facial expression recognition (FER)
	4.3 Action recognition
	4.4 Robustness to graph noise

	5 Conclusion and Discussion
	A Proofs
	A.1 Details and proofs in Sec. 2.3
	A.1.1 Locally connected GNN
	A.1.2 ChebNet/GCN, GAT and Edgenet
	A.1.3 Standard and geometrical CNN's
	A.1.4 Strong regularization limit

	A.2 Proofs in Sec. 3.1
	A.3 Proofs in Sec. 3.2

	B Up/down-wind Classification Experiment
	B.1 Dataset Setup
	B.2 Model architecture and training details
	B.3 Additional results

	C Experimental Details
	C.1 Classification of sphere mesh data
	C.2 Facial Expression Recognition
	C.3 Skeleton-based Action Recognition
	C.4 Details of experiment on MNIST
	C.4.1 Simulated graph noise on 77 MNIST.
	C.4.2 Network architecture and training details
	C.4.3 Additional results

