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Figure 1: Visualization of a smooth geodesic path as obtained with the framework proposed in this paper. The images are

from our newly introduced dataset, CCI. Each image presents a node in a graph, and its boundary indicates the source of

the node (blue for image domain, and red for text domain). The modification between adjacent images is marked with a red

square, corresponding to a single attribute change per step on the joint embedding geodesic path. Best viewed in color.

Abstract

Image retrieval relies heavily on the quality of the data

modeling and the distance measurement in the feature

space. Building on the concept of image manifold, we first

propose to represent the feature space of images, learned

via neural networks, as a graph. Neighborhoods in the fea-

ture space are now defined by the geodesic distance between

images, represented as graph vertices or manifold samples.

When limited images are available, this manifold is sparsely

sampled, making the geodesic computation and the corre-

sponding retrieval harder. To address this, we augment the

manifold samples with geometrically aligned text, thereby

using a plethora of sentences to teach us about images. In

addition to extensive results on standard datasets illustrat-

ing the power of text to help in image retrieval, a new pub-

lic dataset based on CLEVR is introduced to quantify the

semantic similarity between visual data and text data. The

experimental results show that the joint embedding mani-

fold is a robust representation, allowing it to be a better

basis to perform image retrieval given only an image and

a textual instruction on the desired modifications over the

image.

1. Introduction

Retrieval is the task of finding the most relevant object

in a database given a query. Recent works have grown the

interest in cross-domain retrieval, especially between im-

age and text domains. The image-text retrieval task can be

generally summarized into two directions. One is to match

the corresponding images given sentence queries, or vice

versa; this has been one of the most popular branches in the

field of cross-domain research [8, 32]. The other direction,

e.g., [12, 30], is to conduct text-based retrieval; the task uses

an image with a textual instruction describing some desired

modifications to the image as a query, and the target im-

age is the modified image. In both scenarios, the search is

done by mapping the queries and database objects to a joint

feature space.

Although remarkable progress has been achieved, the ba-

sic frameworks of retrieval are mostly built upon the as-

sumption that the similarity of images is well approximated

by either negative Euclidean distance or negative cosine dis-

tance, both assuming that the features are in an Euclidean

space. This can be sub-optimal under the assumption that

images reside on a low-dimensional manifold within a high-

dimensional feature space [3], where a geodesic distance

can better define the relationship between objects. Further-

more, since we usually only have access to a limited num-

ber of samples in the visual domain, the feature space is

under sampled, and thus sparse [19]. A sparse feature space

means that some points can be far away from all the other

points, making it hard to define proper neighborhoods for

them. This is considered as the sparsity problem, and we

address this issue as well.

In this work, we model the manifold of image features,

learned via neural networks, as a graph, where each ver-
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tex represents an image. Considering that a manifold is

only locally homeomorphic to Euclidean space, we build an

edge between a pair of vertices only when their Euclidean

distance is small, as standard in the point clouds literature

[29]. Since edges represent distances, our image graph is

weighted, and we compute the geodesic distance as the sum

of weights along the shortest path instead of just as the num-

ber of edges. To evaluate the effectiveness of the geodesic

distance measurement, we study a label retrieval task which

aims at classifying every node in a graph with labels only

available for a small subset. The motivation behind this task

is from semi-supervised learning, where the goal is to prop-

agate label information in a naturally defined fashion. This

learning task has a key assumption, that points in the same

locality are likely to share the same label [6, 38]. Therefore,

it can be seen as a natural way to measure the robustness of

the feature representation, i.e., images with the same label

are closer than ones with different labels.

The geodesic distance and manifold concept further al-

low us to consider the sparsity problem, meaning the limited

number of samples (vertices), in the retrieval task. When the

number of samples is limited, some samples are far from the

rest. Then the degree of these samples are small, meaning

they only have a few or even do not have geodesic neigh-

bors. We say a point is retrievable if it has a geodesic

neighbor in the small subset that contains label informa-

tion, and otherwise it is unretrievable. We propose to ex-

ploit plethora of text in order to learn a visual-semantic em-

bedding space to reduce the number of unretrievable points

and to improve the geodesic computation accuracy. The ob-

jective of a joint embedding space is thus to improve the

learned image manifold representation by adding, to the

original image samples (vertices), new manifold samples

via semantically related text. These newly added text sam-

ples can interpolate the visual feature space, and thus in-

crease the number of geodesic neighbors for each point.

The geodesic path in a graph can be seen as a series of

modifications from the starting image to the ending one. We

consider a path to be “smooth” if the difference between

any two adjacent vertices along the path is small and in-

terpretable, i.e., we can use a sentence to describe this dif-

ference. Then we can study how well the textual domain

is incorporated into the visual domain by examining the in-

crease in the number of “smooth” geodesic paths when texts

are added to construct the graph. To quantify the concept of

smoothness, we use the CLEVR framework [17] to build

a new dataset, CLEVR-Change-Iter (CCI). The framework

renders simple 3D images; each image contains multiple

objects, and each object is determined by several attributes

(colors, shapes, materials, etc.). We then define the differ-

ence between two images to be small and interpretable iff

they differ by only one attribute of an object (see Sec. 4.2

for a formal definition). An example of a “smooth” path

is shown in Fig. 1. CCI is constructed in a way that there

exists at least one “smooth” path between any two points.

We conduct the label retrieval tasks on two natural im-

age sets: ADE20K [37] and OpenImage [21]. We show that

a geodesic neighbor leads to a better retrieval performance

than an Euclidean neighbor does. Furthermore, we observe

that using image and textual information together to repre-

sent the manifold allows a more completed neighborhood

description, where more points are retrievable. To validate

the “smooth” path counting task, we build a cross-modal

embedding space on CCI. We compare our learned text fea-

tures with random text features to show that merely having

more samples does not increase as many “smooth” paths as

semantically similar features do.

Interestingly, we also find that the manifold in the joint

feature space, with only image samples, outperforms the

one in a pretrained image feature space in the label retrieval

task. This means that we can use text as privilege infor-

mation to learn a more robust representation of images. To

validate this statement, we use the collection of image fea-

tures from the joint space as a basis for text-based image re-

trieval. We obverse consistent improvements over different

embedding methods and different datasets. We also show

that our new dataset, CCI, can be used for the text-based

retrieval task.

In conclusion, our contribution is three-fold.

• We demonstrate that the geodesic distance is a more

accurate measurement to the relationships between ob-

jects. Adding corresponding texts can alleviate the

sparsity problem, and improve the embedding mani-

fold representation.

• We show that corresponding texts can also be used as

privileged information for text-based retrieval.

• We introduce a new public dataset, CCI, along with a

new criteria to evaluate the quality of the aligment be-

tween the textual domain and the visual domain. The

dataset can be use for text-based retrieval task as well.

2. Prior Work

Fusion of Vision and Language. There is a growing in-

terest to solve the problems at the intersection of computer

vision and natural language processing; the problems range

from transferring information from one domain to another,

i.e., image captioning [1, 9, 34] and text-to-image genera-

tion [15, 24], to integrating information from both domains

to solve questions that require cross-modal knowledge, such

as visual question answering (VQA) [2, 18, 28] and novel

object captioning [16, 22, 35]. These cross-domain prob-

lems usually require a task-specific framework to answer,

although some works try to learn a visual-semantic joint

embedding space that can be more adaptive to multiple
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tasks [8, 32]. Of particular interest, we find that cross-

domain learning brings alignment that can be viewed as

an unsupervised way to solve problems. For example, [13]

finds that regions which fire high in spatial activation maps

correspond to the relevant objects described in the speech;

[27] builds an unsupervised translation system with the as-

sumption that sentences in different languages appearing

with visually similar frames are correlated. In both cases,

specific information, i.e., segments of objects and parallel

corpora, is not available. In our work, we find that captions

(text) can be seen as extra samples from the same distri-

bution (manifold) to provide a richer representation of the

image space helping in label retrieval, even though the label

for each sentence is unknown.

Cross Domain Retrieval. Deep learning based image re-

trieval usually finds images with similar content by Con-

volutional Neural Networks (CNNs) that are pretrained on

classification problems, and has gained significant progress

[10, 31]. Cross-domain retrieval extends the problem by

considering non-image queries, such as text to image re-

trieval [33] and sketch to image retrieval [25]. The works

[12, 30] further study text-based retrieval, where each query

is composed of an image plus some instructions describing

the desired modifications to that image; the framework al-

lows users to provide feedback to product search. Based

on our observation that image samples are more robustly

represented in the joint space, and the task’s tendency to

incorporate modification sentences into an image represen-

tation, we use the image features from the joint space as a

basis to perform the text-based retrieval task. Parallel to our

work, [7] also has incorporated side information into the

text-based retrieval task. Though the approach is similar,

we see the improvement as a proof of concept.

Semi-Supervised Learning. Semi-supervised learning has

two key assumptions of consistency: (1) nearby points are

likely to share the same label; and (2) points with simi-

lar structure are likely to have the same label [38]. Re-

cent works that use graph convolutional networks (GCN)

follow the second assumption and achieve promising re-

sults [20]. Although we also represent image features as a

graph, the graph is used to calculate shortest path distances

and to propagate label information. Our approach is still

K-Nearest Neighbor (KNN) based, which follows the first

assumption. We thus believe the improvement in label re-

trieval performance reflects that the image representation is

more robust.

3. Method

In this section, we first describe the proposed method of

learning a visual-semantic joint embedding space by incor-

porating text information into the visual domain. Then we

present the approach to construct a graph in this joint space.

Finally, we show how to use image features from the visual-

Figure 2: Illustration of learning the cross-domain feature

space and two corresponding distances. An image point

(blue circle) is encouraged to be close to its correspond-

ing text point (green triangle) t+, and far from non corre-

sponding text points t−. Left and right figures show dif-

ferent nearest points are found in the target set (red circles)

by ranking Euclidean and geodesic distances, respectively.

Best viewed in color.

semantic domain as a basis to conduct text-based retrieval.

Figure 2 illustrates the proposed architecture.

3.1. Cross­Modal Embedding

To learn the manifold and correspondence between im-

ages and texts in a joint feature space, we use a two-branch

neural network similar to [32, 36]. In the following, X and

Y will be the collection of images and texts respectively,

and x ∈ X and y ∈ Y will be the individual image and

text.

Visual Embedding Module. We use a CNN to project x to

image features. In our experiments, we use ResNet18 [14]

and replace the classification layer with a fully-connected

(FC) layer with d units.

Textual Embedding Module. We encode y using Uni-

versal Sentence Encoder (USE) [5], which encodes the in-

puts at the sentence level. The encoded features are passed

through two FC layers with Rectified Linear Unit (ReLU)

activation, where the second FC has d units.

Semantic Projection Layers. The projection layer for each

module is a fully-connected layer, followed by L2 normal-

ization, that maps the features (image or text) onto a joint

latent space. Denote ψi as the joint embedding for xi and φi

as the joint embedding for yi, the objective of a joint space

is that matched image and text features should be close to

each other, and unmatched ones should be far away. More

precisely, consider we have a training mini-batch of B sam-

ples, {ψi, φi}
B
i=1. For each ψi, the positive example is φi,

and we consider all other samples in the mini-batch as nega-

tive samples. This leads to the following cross entropy loss:

Ljoint = −

B∑

i=1

log{
exp{κ(ψi, φi)}∑B

j=1
exp{κ(ψi, φj)}

}, (1)

where κ is the dot product, which is equivalent to the neg-

ative Euclidean distance after the features are normalized.
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We acknowledge that this assumption penalizes all yj,j 6=i,

but some yj can be relevant to xi if their corresponding im-

ages xj are visually similar to xi. However, we empirically

find that taking this into consideration, i.e., by removing

samples with high dot products from the negative set, de-

creases the performance.

3.2. Manifold in the Joint Space

In order to promote better feature correspondence be-

tween image features and text features, we perform feature

alignments to reduce the distance between pairs. Specif-

ically, we adopt the iterative point alignment (ICP) algo-

rithm [4]. Since the pair information is known, the rotation

T has a closed form solution and thus we only run the algo-

rithm once. Given the features of the collection of images

and texts, and applying the ICP transformation on the image

features, (T (Ψ),Φ), we can now construct the graph G that

represents the manifold formed by the images. Each node

(vertex) is either an image embedding or a text embedding,

and edges encode distances between two features. To better

mimic traversing on the manifold, we encode the distances

as great circle distances on the unit sphere. Following the

local-Euclidean property of a manifold, an edge (i, j) ex-

ists iff the distance between i and j is lower than a given

threshold, which is an hyperparameter to define locality and

usually set to satisfy that O(|E|) = O(|V |).

3.2.1 Manifold Evaluation

We consider the quality of the manifold both at the vertex

level and at the path level. To evaluate at different levels, we

introduce two tasks: label retrieval and smooth path count-

ing.

Label Retrieval. This task aims to see if nearby vertices

belong to the same image class. It first selects a small sub-

set of images as the database in a N -way-k-shot fashion. In

this way, the selected images are evenly distributed in the

manifold, and all images from under-represented classes,

i.e., classes with less than k samples, are excluded from the

retrieval task. This removes the potential errors from under-

training images in these classes, which is not the subject of

this work. The rest images serve as the query images, and

each image is used to find the most similar image from the

database. A retrieve is then accurate iff the retrieved image

has the same label as the query one. When retrieving with

geodesic distances, some vertices can be unretrievable. We

solve this problem by finding their nearest neighbors using

the Euclidean distances. When more samples from the text

domain are presented, they are used as privileged informa-

tion, and thus their own label information is not computed.

Smooth Path Counting. In this task, we count the number

of “smooth” paths in the graph G. We consider all shortest

paths that start and end with an image vertex. This means

that when text features, Φ, are used to construct the graph,

they are only used to connect pairs of related images.

3.3. Retrieval in the Joint Space

To further utilize the textual information in a retrieval

task, we consider the text-based image retrieval task. This

task is similar to standard image retrieval, except that there

are additional query inputs that describe the modifications

from input images to target ones. To incorporate the queries,

we need a compositional module that integrates information

from both domains. This composition process can be seen

as moving the image features along the direction learned

from the queries. Such a task naturally favors the joint

space, as it contains privileged text information from the

captions. We thus propose to conduct the retrieval in the

joint space, while keeping all other settings the same. In

this way, this operation acts as a plug-and-play module that

can be applied to various state-of-the-art text-based image

retrieval works. We detailed this process next.

Compositional Module. Denote the input and target image

features as ψi and ψt, their corresponding captions as φi

and φt, and the query text features as φq , the goal for the

compositional module is to learn a function f that combines

ψi and φq such that the output resembles ψt most. We study

the following two methods for f :

• TIRG [30] learns gating features and residual fea-

tures from images and queries, and the output is the

weighted sum of the two features. The residual fea-

tures are learned by applying two 3x3 convolution lay-

ers with non-linearity on the concatenation of [ψi, φq].
The gating function uses the same module followed by

a Sigmoid function to learn a “filter” for the image fea-

tures, i.e., the output is the element-wise product of the

filter signal and ψi.

• Relationship [26] is a VQA method that captures the

relational reasoning. It forms a relational set by com-

bining 2 local features ψi(i, j) and ψi(i′, j′) (at differ-

ent locations) with text features φq . The set is passed

through multi-layer perceptrons (MLPs), and the sum

of the output is passed through another MLPs to get

the final output.

Retrieval in the Joint Space. With the same assump-

tion that there is a training mini-batch of B samples,

{ψi
i , ψ

t
i , φ

i
i, φ

t
i, φ

q
i }

B
i=1, we use the same cross entropy loss

as (1):

Lretrieval = −

B∑

i=1

log{
exp{κ(ψc

i , ψ
t
i)}∑B

j=1
exp{κ(ψc

i , ψ
t
j)}

}, (2)

where ψc = f(ψi, φq) is the composed features. We com-

bine this loss with (1) to conduct text-based retrieval in the
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joint space:

L = Ljoint(ψ
i, φi)+Ljoint(ψ

t, φt)+λ∗Lretrieve(ψ
c, ψt),

(3)

The first two terms ensure that the visual features are close

to their corresponding textual features in the joint space, and

the last term optimizes the compositional module. λ is set to

2 to balance the two training objectives. We empirically find

that this setting is sufficient to have promising results. In

our experiments, we simplify the text encoder to a standard

LSTM in order to introduce minimum modifications over

the original method. An identical text encoder is trained to

encode the query texts separately.

4. Experimental Protocol and Results

To quantitatively evaluate the performance of the pro-

posed manifold-based retrieval, we present the results on

label retrieval tasks and text-based retrieval tasks. In both

tasks, the evaluation metric is the recall at rank K(R@K),

as the percentage of test queries where the target image is

within the top-K retrieval samples. For label retrieval tasks,

we only consider R@1 because it resembles an image clas-

sification evaluation metric.

We use PyTorch in our experiments. The image encoder

is the ResNet18 pretrained on Imagenet throughout all ex-

periments. When constructing the graph, we use the latest

USE (V4) in tensorflow-hub (embedding size 512), and the

outputs are converted to PyTorch tensors. We adopt SGD

optimizer with a starting learning rate of 0.01 with batch

size of 50 for 200k iterations.

4.1. Datasets

Class Prediction. ADE20K [37] contains a wide range of

objects in a variety of contexts. To ensure that each im-

age has a precise label, we exclude images from the “Out-

lier” and “MISC” categories. This leads to 715 classes, and

17, 956 images. There are no corresponding captions for

each image, but we can extract side information from the

segmentation at the object level. OpenImage [21] is an im-

age dataset annotated at different levels. For our purpose,

we use the narratives for learning the joint space and image

labels for testing. We use images from the validation set

to train the model because the original training set (∼ 9M
images) is beyond our scope and all labels from the valida-

tion set are human-verified. In total, there are 528 classes,

and 41, 620 images. Each image is annotated with multiple

labels, and we consider the classification is correct iff all

labels are matched. When doing class prediction, we select

3 images per class for both classes, resulting in 2, 031 and

1, 486 images with label information respectively.

Text-based Retrieval. We use Fashion-IQ [11], CSS [30],

and a new synthetic dataset named CCI (see Section 4.2).

These datasets contain attribute-like descriptions for im-

ages, and textual modification instructions between pairs of

images. Fashion-IQ contains 18, 000 training samples. We

use all the pairs that the side information for both images

are available, which leads to 8, 847 samples. We evaluate

the performance on the validation set.1 CSS and CCI are

two CLEVR-based datasets, where each image contains at-

tribute information for all objects within the image, and the

modification instructions are generated with templates. We

follow the standard train-test splits [30] for CSS. Specifi-

cally, CSS has 18, 012 training samples and 18, 057 testing

samples; CCI has 1, 110 training samples and 10, 000 test-

ing samples.

4.2. CLEVR­Change­Iterative Dataset

Existing benchmarks focus on the scale and diversity of

images. However, to provide a measurable definition of

smoothness, it is more desirable to let every image be a vari-

ance of a “source” image, so that the difference between any

two images can be categorical and thus countable. We use

the CLEVR toolkit [17] to satisfy this goal. First, we gener-

ate one scene with random objects to serve as the “source”

image. For this image we create ten “modified” images and

the corresponding modification instructions following [23].

In particular, we apply camera position changes and scene

changes besides the “distractor” operation to ensure that ev-

ery image is unique. We iterate the modification process

by considering the ten ”modified” images as the “source”

ones, and applying the same modification process on each

of them, respectively. In total, we repeat the process four

times, and generate 11, 111 images.

The formal definitions of “smooth” paths and valid

(small and interpretable) differences are as follows:

• The difference between two images is valid if (a) two

images only differ by a single attribute of a single ob-

ject; or (b) two images only differ by one having a sin-

gle additional object.

• We present the textual nodes as their corresponding

images. Then we say a path is “smooth” if all adjacent

vertices along this path are valid, and all non-adjacent

vertices are not valid.

On average an image can form 9.73 valid pairs. We want

non-adjacent vertices along a path to be invalid since other-

wise we can ignore the vertices between two non-adjacent

vertices to make the modification.

To use the dataset for the text-based retrieval task, we

consider each modification providing a pair of source and

target images and the corresponding modification instruc-

tions. We use the pairs from the first three iterations as the

1We evaluate on the val set since the ground truth for test set is not

released.
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Figure 3: Qualitative examples from ADE20K (top 2 rows) and OpenImage (bottom 2 rows). We present the image and its

corresponding text for each point. Image points are presented with blue boundaries, and text points’ corresponding images

are presented with red boundaries. Column 1 is the starting vertex, and column 5 is its nearest geodesic neighbor, with

columns 2-4 presenting the shortest path. Column 6 is the nearest Euclidean neighbor.

training set, and the ones from the last iteration as the test-

ing set. This results in 1, 110 training samples and 10, 000
testing samples.

4.3. Manifold Evaluation

As stated in Sec. 3.2.1, we evaluate the quality of a man-

ifold at different levels with the label retrieval task and the

smooth path counting task.

4.3.1 Label Retrieval

When retrieving the images in the target set, we can com-

pute each points’ geodesic neighbors or Euclidean neigh-

bors, denoted as +Geo and +Eu respectively. When

geodesic neighbors are computed, we report the recall

scores both on retrievable points only, and on all points in

which the unretrievable points are computed by Euclidean

neighbors, denoted as full. We consider three feature collec-

tions to construct a graph. The first collection is the image

features from the joint space that learning with the cross en-

tropy loss (1), denoted as Image. This serves as a baseline

for our experiment. To see the effectiveness of using texts to

learn the visual-semantic joint space, we construct the sec-

ond collection where image features are directly from the

pretrained Resnet18, denoted as Resnet. Finally, we con-

sider further utilizing texts by using both images and texts

in the same joint space to construct the graph, and we denote

this collection as Joint. For the baseline graph, we predict

the labels by using either the Euclidean or the geodesic dis-

tances. For the other two graphs, we find the neighbors by

geodesic distances only. Finally, we include a supervised

model by adjusting the number of units for the final out-

put layer of Resnet18 to match the number of classes. The

model is trained on the database subset for a fair compari-

son. We use the standard cross-entropy loss for classifica-

tion and the same settings (learning rate, optimizer, etc.) as
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Figure 4: Qualitative failure examples from OpenImage. Column 6 is now the nearest geodesic neighbor, with columns 2-5

presenting the shortest path. Row 1 shares a general concept, “foods on a plate,” and row 2 shares a general concept, “cars

on grass.”

Method
ADE20K OpenImage

Accuracy Retrievable Points Accuracy Retrievable Points

A Image + Eu 0.1415 15925 0.0609 39665

B Resnet + Geo(full) 0.1275 15925 0.0599 39665

Resnet + Geo 0.1524 4169 0.1199 5569

C Image + Geo(full) 0.1602 15925 0.0621 39665

Image + Geo 0.2770 4169 0.1356 5569

D Joint + Geo (full) 0.1639 15925 0.0636 39665

Joint + Geo 0.2703 5774 0.1328 7461

E Supervised 0.1718 15925 0.1302 39665

Table 1: Quantitative results of label prediction on ADE20K and OpenImage.

for training the joint space.

Table 1 summarizes the quantitative results on ADE20K

and OpenImages. The supervised method (E) serves as

the baseline when label information is available during the

training. The comparison between using Euclidean dis-

tances and geodesic distances to find the neighbors (A vs.

C) validates our statement that the geodesic distance is a

better measurement for retrieval tasks. Moreover, the im-

provement by having additional texts to construct the graph

(C vs. D) suggests the originally sparse visual feature space

is now interpolated by the dense knowledge from the tex-

tual domain that is properly aligned with the visual domain.

Note that the same mechanism works better on ADE20K;

the reason can be that ADE20K provides side information

at the object level, whereas OpenImage gives natural lan-

guage captions that are likely to describe images at a higher

level. Finally, we can see that the image features from the

joint space give more robust representations than from the

pretrained space (B vs. C). This motivates our experiment

in Sec. 4.4.

4.3.2 Path Evaluation

We present some qualitative results of geodesic and Eu-

clidean neighbors in Fig. 3, which also includes the shortest

paths to the geodesic neighbors. We observe that traversing

the graph with small steps allows for an image to find other

images in the same neighborhood, while an Euclidean path

may lead to an image from a different neighborhood. We

include some qualitative results for unsuccessful prediction

cases on ADE20K in Fig. 4 as well. The first example il-

lustrates that nearby features from a visual-semantic joint

space can sometimes be semantically similar but visually

different. The second example reflects that the label re-

trieval task is only a loose representation for the robustness

of feature spaces. Specifically, the starting image is labeled

as “car, land vehicle” and the nearest geodesic neighbor is

labeled as “land vehicle, limousine, van”. The inconsis-

tency in labeling introduces additional errors.

In both successful and unsuccessful examples, we con-

sistently observe that the changes between adjacent images

is minor, even if they are from different domains. This in-
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Method
Dress Toptee Shirt

R@10 R@50 R@10 R@50 R@10 R@50

TIRG [30] 0.1264 0.3386 0.1545 0.4080 0.1457 0.3690

TIRG + in Joint 0.1507 0.3644 0.1856 0.4518 0.1638 0.4028

Relation [26] 0.0744 0.2137 0.0918 0.2478 0.1084 0.2561

Relation + in Joint 0.0843 0.2568 0.1147 0.2917 0.1178 0.2870

Table 2: Retrieval Performance (R@10 and R@50) on Fashion IQ. The recall scores are higher when the method runs on the

joint space. All results are from our implementation.

Figure 5: Log of number of paths under different thresh-

olds and feature space. Note that under different thresholds

adding text features leads to more smooth paths than adding

random features do.

dicates that the additional vertices from the text domain are

well-aligned with the original image vertices. To qualita-

tive measure the wellness of this alignment, we perform the

“smooth” path counting task on CCI. The result is shown in

Fig. 5. As finding an optimal method to learn a well-aligned

joint space is beyond the scope of our paper, we only com-

pare adding text features from the same joint space with

randomly generated features to show that having more se-

mantically similar features results in more smooth paths.

4.4. Text­based Retrieval

As image features from a visual-semantic joint space

are more robust, we can extend our work to text-based re-

trieval by adding a fully-connected layer after the encoders

and one additional text encoder to encode side informa-

tion. Our method is denoted as in Joint to emphasis that it

only projects features into the cross-modal embedding with-

out other modification to the original structure. Thus, our

method can be used as a plug-and-play module. We also

adopt the framework from [30] that allows different com-

positional methods. All networks are trained from scratch,

except for the TIRG method on the CSS dataset, where a

pretrained model is available. We only compare with the

original work to show that our method works across differ-

ent methods and on different datasets.

Table 2 shows R@10 and R@50 on the FashionIQ

dataset under different categories, and Table 3 summaries

R@1 performance on the CSS and CCI datasets. The per-

formance of retrieval on the joint embedding space outper-

forms the one on the pretrained image space across different

datasets. We note that the improvements are more signifi-

cant on the CLEVR-based dataset than on FashionIQ. This

is likely because the attributes on FashionIQ are less pre-

cise, e.g., a multi-color shirt can refer to different combi-

nation of colors, while a red object is definite. Moreover,

we note there is a large margin in the performance on CCI.

As any two images in this dataset are similar (since all im-

ages are derived from the same original image), it is more

challenging for an image encoder to learn a discriminative

feature space, where images are better separated.

Method CSS CCI

TIRG [30] 0.7525 0.4123

TIRG in Joint 0.7995 0.7802

Relation [26] 0.5301 0.2121

Relation in Joint 0.5531 0.6125

Table 3: Retrieval performance (R@1) on CSS and CCI.

The recall scores are higher when the method runs on the

joint space. All results are from our implementation.

5. Conclusion and Future Work

We investigate the sub-optimal assumption that the rela-

tion between images can be approximated by negative Eu-

clidean distance, and propose that a manifold structure and

geodesic distances are more robust representations. We fur-

ther study the manifold of a joint embedding space, where

text points can be used as additional samples. These text

samples are shown to benefit the image retrieval task, but

we believe the application goes beyond this. For example,

texts can connect visually different but semantically similar

images, which can be useful to learn a relational network;

they may be further incorporated into GCNs as extra neigh-

borhood information. Overall, we show a way to represent

the joint space of images and texts as a graph, opening mul-

tiple possibilities to interact with it.
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