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CHOW QUOTIENTS OF GRASSMANNIANS BY DIAGONAL SUBTORI

NOAH GIANSIRACUSA∗ AND XIAN WU∗∗

ABSTRACT. The literature on maximal torus orbits in the Grassmannian is vast; in this paper we

initiate a program to extend this to diagonal subtori. Our main focus is generalizing portions of

Kapranov’s seminal work on Chow quotient compactifications of these orbit spaces. This leads

naturally to discrete polymatroids, generalizing the matroidal framework underlying Kapranov’s re-

sults. By generalizing the Gelfand-MacPherson isomorphism, these Chow quotients are seen to

compactify spaces of arrangements of parameterized linear subspaces, and a generalized Gale du-

ality holds here. A special case is birational to the Chen-Gibney-Krashen moduli space of pointed

trees of projective spaces, and we show that the question of whether this birational map is an iso-

morphism is a specific instance of a much more general question that hasn’t previously appeared in

the literature, namely, whether the geometric Borel transfer principle in non-reductive GIT extends

to an isomorphism of Chow quotients.

1. INTRODUCTION

The literature on maximal torus orbits in the Grassmannian and the torus-equivariant geome-

try (cohomology, K-theory, etc.) of the Grassmannian is extensive; it is a rich field beautifully

interweaving combinatorics, representation theory, and geometry, with many applications across

these disciplines. One of the seminal works is Kapranov’s paper on Chow quotients in which he

compactifies the space of maximal torus orbit closures [Kap93]. The goal of the present paper is

to initiate a program of studying diagonal subtorus orbits in the Grassmannian; we focus here on

extending portions of Kapranov’s paper to this setting and explore some consequences.

1.1. Setup and notation. Fix a base field k. By a diagonal subtorus S we mean that coordinates

in the maximal torus T = (k×)n acting on Gr(d,n) are allowed to coincide; that is, S = (k×)m for

m ≤ n and we have an inclusion map S →֒ T given by a matrix whose rows are all standard basis

vectors. Up to permutation, every such subtorus is of the form

S = {(t1, . . . , t1
︸ ︷︷ ︸

r1

, t2, . . . , t2
︸ ︷︷ ︸

r2

, . . . , tm, . . . , tm
︸ ︷︷ ︸

rm

) | ti ∈ k×} ⊆ T,

where ∑ri = n. Setting ri = 1 for all i recovers Kapranov’s case of the maximal torus. In essence,

the combinatorics in Kapranov’s paper (matroids, matroid subdivisions, etc.) are generalized by

replacing the set [n] = {1,2, . . . ,n} with the multiset

[~r] := {1, . . . ,1
︸ ︷︷ ︸

r1

,2, . . . ,2
︸ ︷︷ ︸

r2

, . . . ,m, . . . ,m
︸ ︷︷ ︸

rm

}

where i has multiplicity ri. (Matroids on multisets appear in the literature under the name discrete

polymatroids [HH02].) The hypersimplex ∆(d,n)⊆ Rn, a polytope playing a fundamental role in
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Kapranov’s paper, is replaced with its projection under the linear map

λ~r : Rn →R
m

given by the matrix |e1 · · · e1 e2 · · · e2 · · · em · · · em|, the transpose of the matrix defining the

inclusion S →֒ T . These vague assertions will be made precise in what follows.

1.2. Results. The T -orbit closure of any k-point of Gr(d,n)⊆ P(
n
d)−1 is a polarized toric variety

whose corresponding lattice polytope is a subpolytope of the hypersimplex

∆(d,n) = {(a1, . . . ,an) | ai ∈ [0,1] and ∑ai = d} ⊆ R
n.

This subpolytope has its vertices and edges among those of ∆(d,n); subpolytopes with this prop-

erty are called matroid polytopes and are known to be in bijection with rank d matroids on [n],
with matroids representable over k identified with the polytopes of T -orbit closures in Gr(d,n)
[GGMS87]. This perspective of matroid polytopes is a relatively recent advance in matroid theory

that has fruitfully brought the subject closer to algebraic geometry (cf. [ABD10, §1]). Via diagonal

subtori, this story extends seamlessly to discrete polymatroids:

Theorem 1.1. Rank d discrete polymatroids on the multiset [~r] are in bijection with subpolytopes

of λ~r(∆(d,n))⊆ Rm whose vertices and edges are among the images of the vertices and edges of

∆(d,n); moreover, this bijection identifies the discrete polymatroids representable over k with the

lattice polytopes corresponding to S-orbit closures in Gr(d,n).

Now let k = C. Kapranov’s idea for compactifying the space of maximal torus orbit closures in

Gr(d,n) is to take a sufficiently small T -invariant Zariski open locus U ⊆ Gr(d,n) such that the

T -action on U is free and there is an inclusion U/T →֒ Chow(Gr(d,n)) sending each torus orbit to

its Zariski closure, viewed as an algebraic cycle on the Grassmannian. The closure of the image of

this embedding in the Chow variety is by definition the Chow quotient Gr(d,n)//ChT [Kap93]. We

can apply the same idea here and study the diagonal subtorus Chow quotient Gr(d,n)//ChS. We

compute some explicit examples of this Chow quotient, together with its natural closed embedding

in the toric Chow quotient P(
n
d)−1//ChS, in §3.

Kapranov shows [Kap93, Theorem 1.6.6] that the rational maps sending a linear space to its

intersection with, and projection onto, a coordinate hyperplane induce morphisms

Gr(d,n)//ChT → Gr(d −1,n−1)//ChT ′ and Gr(d,n)//ChT → Gr(d,n−1)//ChT ′,

respectively, where T ′ = (k×)n−1 is the maximal torus acting on these smaller Grassmannians. We

have the following extension of this to the subtorus setting:

Theorem 1.2. Fix an index 1 ≤ i ≤ m, let I ⊆ [n] index the ri coordinates of S corresponding to

the ith Gm-factor, and let Si denote the rank m−1 torus given by projecting S onto the complement

of the I-coordinates. Then intersection with, and projection onto, the codimension ri coordinate

linear space defined by x j = 0 for all j ∈ I induce morphisms

Gr(d,n)//ChS → Gr(d− ri,n− ri)//ChSi and Gr(d,n)//ChS → Gr(d,n− ri)//ChSi,

respectively.

Kapranov’s proof directly analyzes Chow forms to demonstrate their polynomial dependence,

whereas we use polytopal subdivisions to apply a valuative criterion for regularity; thus, we obtain

in particular a new variant of Kapranov’s proof in the case of the maximal torus.
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The Gelfand-MacPherson correspondence identifies generic torus orbits in the Grassmannian

with generic general linear group orbits in a product of projective spaces, and Kapranov shows

[Kap93, Theorem 2.2.4] that this extends to an isomorphism of Chow quotients

Gr(d,n)//ChT ∼= (Pd−1)n//Ch GLd .

Thus, his Grassmannian Chow quotient can be viewed as compactifying the space of configurations

of points in projective space, up to projectivity, or dually, the space of hyperplane arrangements.

This has been a fruitful perspective [HKT06, Ale15] and it generalizes to our setting as follows:

Theorem 1.3. There is an isomorphism

Gr(d,n)//ChS ∼=
(

m

∏
i=1

PHom(kri,kd)

)

//Ch GLd

where GLd acts diagonally by left matrix multiplication.

To prove this, we adapt an argument of Thaddeus in [Tha99] and so also obtain a new proof of

Kapranov’s original result as a special case. We can view the right side of the above isomorphism as

compactifying the space of arrangements of “parameterized” linear subspaces: (L1,α1, . . . ,Lm,αm)
where Li ⊆ Pd−1 is a linear subspace of dimension ri −1 and αi ∈ Aut(Li)∼= PGLri

.

Since orthogonal complement yields a T -equivariant isomorphism Gr(d,n) ∼= Gr(n−d,n) and

hence an isomorphism of Chow quotients Gr(d,n)//ChS ∼= Gr(n − d,n)//ChS for any diagonal

subtorus S ⊆ T , our generalized Gelfand-MacPherson isomorphism implies the following gen-

eralized Gale duality:

Corollary 1.4. There is a natural involutive isomorphism
(

m

∏
i=1

PHom(kri,kd)

)

//Ch GLd
∼=
(

m

∏
i=1

PHom(kri ,k(∑
m
i=1 ri)−d)

)

//Ch GL(∑m
i=1 ri)−d

In geometric terms, arrangements (up to projectivity) of m generic parameterized linear sub-

spaces Li →֒ Pd−1 and their Chow limits are in natural bijection with arrangements (up to projec-

tivity) of m generic parameterized linear subspaces, of the same dimensions, in Pm−d−1+∑dim(Li)

and their Chow limits.

Kapranov showed [Kap93, Theorem 4.1.8] that his Chow quotients generalize the ubiquitous

Grothendieck-Knudsen moduli spaces of stable pointed rational curves, namely

Gr(2,n)//Ch GL2
∼= M0,n.

Another generalization was constructed by Chen-Gibney-Krashen in [CGK09], where a moduli

space denoted Td,n compactifying the space of n distinct points and a disjoint parameterized hy-

perplane in Pd up to projectivity was introduced and studied and shown to satisfy T1,n
∼= M0,n+1.

Essentially Td,n is the locus in the Fulton-MacPherson configuration space X [n] [FM94] where

all n points have come together at a single fixed smooth point on a d-dimensional variety X

[CGK09, §3.1]. The space Td,n is birational to Gr(d+1,n+d)//ChS, where

S = {(t1, . . . , t1
︸ ︷︷ ︸

d

, t2, . . . , tn+1) | ti ∈ k×},

since both compactify the space of n distinct points and a disjoint parameterized hyperplane

Pd−1 →֒ Pd up to projectivity. Krashen has asked, informally, whether this birational map is actu-

ally an isomorphism. While we have not been able to answer this question, we conclude this paper



4 CHOW QUOTIENTS OF GRASSMANNIANS BY DIAGONAL SUBTORI

by showing that Krashen’s question is a specific instance of a much more general question that

appears not to have been asked previously in the literature—namely, whether the classical Borel

transfer principle (relating non-reductive invariants to reductive invariants) extends from GIT quo-

tients [DK07] to Chow quotients.

Acknowledgements. We thank Gary Gordon and Felipe Rincon for drawing our attention to dis-

crete polymatroids, and we thank Valery Alexeev, Danny Krashen, and Angela Gibney for helpful

conversations on this project. This paper is part of the second author’s PhD dissertation at the Uni-

versity of Georgia, supervised by the first author. The first author was supported in part by NSF

grant DMS-1802263, NSA grant H98230-16-1-0015, and Simons Collaboration Grant 346304.

2. DISCRETE POLYMATROIDS

For a non-negative integer vector v = (v1, . . . ,vm) ∈ Zm
≥0, the modulus is |v| = ∑vi. A discrete

polymatroid on the ground set [m] = {1,2, . . . ,m} can be defined as a nonempty finite subset B ⊆
Z

m
≥0 of vectors all of the same modulus (called the rank of B) satisfying the following exchange

property: if u,v ∈ B with ui > vi for some 1 ≤ i ≤ m, then there exists 1 ≤ j ≤ m such that u j < v j

and u−ei+e j ∈B [HH02, Theorem 2.3]. This can be reformulated in terms of multisets as follows.

Given a discrete polymatroid B, let

[~r] := {1, . . . ,1
︸ ︷︷ ︸

r1

,2, . . . ,2
︸ ︷︷ ︸

r2

, . . . ,m, . . . ,m
︸ ︷︷ ︸

rm

}

be the multiset where i has multiplicity ri := maxv∈B{vi}. Each element of B can then be viewed

as a sub-multiset of [~r]. If one considers the usual basis definition of a matroid except replacing

the word “set” with “multiset” then the discrete polymatroid B is a matroid on the multiset [~r], and

conversely any matroid on a multiset is a discrete polymatroid on the ground set given by the set

underlying the multiset. We will freely switch between the multiset perspective and the integer

vector perspective of discrete polymatroids.

Proof of Theorem 1.1. This can either be proven by adapting the original arguments in [GGMS87],

or it can be reduced to the results in [GGMS87] by using a multiset projection map; we present

here the latter approach.

Fix an integer d ≥ 1 and a multiset [~r] with underlying set [m] = {1,2, . . . ,m} where i has

multiplicity ri ≥ 1. Let π~r : [n] → [m] be the “projection” map sending 1,2, . . . ,r1 to 1, and r1 +
1, . . . ,r1 + r2 to 2, etc. By a slight abuse of notation, for a subset A = {a1, . . . ,aℓ} ⊆ [n] we denote

by π~r(A) the multiset {π~r(a1), . . . ,π~r(aℓ)}, in other words the multiplicity of j is the cardinality of

the fiber π−1
~r ( j)∩A. Clearly π~r then sends a rank d matroid on [n] to a rank d discrete polymatroid

on [m], and conversely if B is a rank d discrete polymatroid on [m] then {A ⊆ [n] | π~r(A) ∈ B} is a

rank d matroid on [n]; we denote the latter matroid by π−1
~r (B).

Given a rank d discrete polymatroid B on the multiset [~r], the rank d matroid π−1
~r (B) on [n] has

basis polytope P given by the convex hull of the vectors eA := ∑i∈A ei for A ∈ π−1
~r (B), and by the

classical results of [GGMS87] the vertices and edges of P are among the vertices and edges of the

hypersimplex ∆(d,n). It then follows trivially that the linear projection λ~r(P) has its vertices and

edges among the images under λ~r of the vertices and edges of ∆(d,n). Moreover, λ~r(P) ⊆ R
m is

the convex hull of the basis vectors of B (where now we view B as a set of vectors in Zm
≥0), and by

[HH02, Theorem 3.4] we can recover B from this convex hull (specifically, the integral vectors in

this convex hull are the independent sets in B). This faithfully embeds the set of rank d discrete

polymatroids on [~r] into the set of subpolytopes of λ~r(∆(d,n)) whose vertices and edges are among
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the images under λ~r of those of ∆(d,n). This association is also surjective, since if Q ⊆ λ~r(∆(d,n))
is a subpolytope whose vertices and edges are among the images of those of ∆(d,n), then the

preimage of Q under λ~r is a subpolytope of ∆(d,n) whose vertices and edges are among those

of this hypersimplex, i.e., λ−1
~r (Q) is a matroid polytope, and the multiset image under π~r of the

corresponding rank d matroid on [n] is a rank d discrete polymatroid with Q as its associated

polytope.

We now turn to the assertion about representability. Given a k-point of the Grassmannian L ∈
Gr(d,n)(k), the lattice polytope ∆S·L for the projective toric variety S ·L ⊆ P(

n
d)−1 is the image

of this torus orbit closure under the moment map µS : P(
n
d)−1 → R

m for S. This moment map is

the composition of the moment map µT : P(
n
d)−1 → Rn for the maximal torus T with the linear

projection λ~r : Rn → Rm. Thus,

∆S·L = µS(S ·L) = λ~r
(
µT (S ·L)

)
= λ~r

(
µT (T ·L)

)
= λ~r(∆T ·L),

which is the polytope associated to the discrete polymatroid π~r(M(L)), where M(L) is the matroid

represented by L. But π~r(M(L)) is also the discrete polymatroid represented by L. �

The linear projection λ~r : Rn →R
m may send vertices of the hypersimplex ∆(d,n) to non-vertex

points of the polytope λ~r(∆(d,n)), and for the above theorem it is crucial that our subpolytopes

are allowed to use such points rather than just the actual vertices of λ~r(∆(d,n)), as the following

example illustrates:

Example 2.1. Let ~r = (1,2,2), so n = 5 and m = 3; the projection function π~r is 1 7→ 1, and

2,3 7→ 2, and 4,5 7→ 3; in coordinates, the linear projection λ~r : R5 → R3 is (x1,x2 + x3,x4 + x5).
Consider rank 3 matroids. The hypersimplex ∆(3,5) has 10 vertices, the permutations of the vector

(1,1,1,0,0); the images of these 10 vertices are (1,1,1) four times, (1,2,0) once, (1,0,2) once,

(0,1,2) twice, and (0,2,1) twice. The polytope λ~r(∆(3,5)) is a trapezoid, and the point (1,1,1)
is not a vertex of this trapezoid even though it is the image of vertices of the hypersimplex (see

Figure 1). The segment from, say, (1,1,1) to (1,2,0) is a discrete polymatroid even though it has

a vertex that is not a vertex of the trapezoid. On the other hand, the four vertices of the trapezoid

(1,2,0),(1,0,2),(0,1,2),(0,2,1) do not form a discrete polymatroid because the trapezoid edge

from (1,2,0) to (1,0,2) is not an edge of the projected hypersimplex, it is a union of two such

edges (and indeed the basis exchange axiom fails on these two without the presence of the midpoint

(1,1,1)).

The interior of the Chow quotient Gr(d,n)//ChS consists, by definition, of torus orbit closures

S ·L (viewed as algebraic cycles) for generic linear subspaces L ∈ Gr(d,n); taking the closure of

this interior locus in the Chow quotient adds limit points that are certain algebraic cycles

ℓ

∑
i=1

miZi ∈ Chow(Gr(d,n)) ,

about which, following Kapranov, we can now say a bit more (cf. [Kap93, Proposition 1.2.11]):

Proposition 2.2. For each cycle ∑ℓ
i=1 miZi ∈ Gr(d,n)//ChS, the multiplicities mi are all 1 and the

irreducible cycles Zi are single orbit closures S ·Li, Li ∈ Gr(d,n). The lattice polytopes ∆S·Li
, for

i = 1, . . . , ℓ, form a polyhedral decomposition of λ~r(∆(d,n)).

Proof. The condition in Kapranov’s [Kap93, Theorem 0.3.1] is automatically satisfied here so each

Zi is a single orbit closure S ·Li. Kapranov’s proof of [Kap93, Proposition 1.2.15] shows that the
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(1,0,2)

(0,1,2)

(0,2,1)
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•
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•

•

•

•

FIGURE 1. For the multiset {1,2,2,3,3} the projected polytope λ~r(∆(3,5)) is a

trapezoid lying on a triangle. The point (1,1,1) is not a vertex of the trapezoid even

though it is the image under the linear projection λ~r : R5 → R3 of a vertex (in fact,

four of them) of the hypersimplex ∆(3,5).

index of the sub-lattice generated by the vertices of the representable matroid polytope ∆T ·Li
inside

the lattice generated by the vertices of the hypersimplex ∆(d,n) is one. This index is preserved

when applying the linear map λ~r, and as we noted at the end of the proof of Theorem 1.1 we have

∆S·Li
= λ~r(∆T ·Li

), so we have that the multiplicity mi of our cycle S ·Li is also one. The assertion

about polyhedral decompositions follows the more general result [KSZ91, Proposition 3.6], since

the torus equivariant Plücker embedding identifies each point of the Chow quotient Gr(d,n)//ChS

with a point of the toric Chow quotient P(
n
d)−1//ChS. �

3. EXAMPLES OF SUBTORUS CHOW QUOTIENTS

In this section we describe some diagonal subtorus Chow quotients of Gr(2,4), starting with the

case of the maximal torus that Kapranov worked out in [Kap93, Example 1.2.12] so that we can

present an explicit equational approach that generalizes to the other cases. First, let us recall the

more general setup. The Plücker embedding Gr(d,n) ⊆ P(
n
d)−1 is maximal torus equivariant so

induces a closed embedding of Chow quotients

Gr(d,n)//ChS ⊆ P(
n
d)−1//ChS

for any diagonal subtorus S ⊆ T . Since S acts here through the dense torus for P(
n
d)−1, the Chow

quotient P(
n
d)−1//ChS is a projective toric variety; the lattice polytope for it is a secondary polytope

that we now describe (see [KSZ91] and [Kap93, §0.2]).

If we denote the coordinates on P(
n
d)−1 by xI, I ∈

([n]
d

)
then t = (t1, . . . , tn) ∈ T acts by t · xI =

(∏i∈I ti)xI . These weights are encoded by the
(

n
d

)
integer vectors ∑i∈I ei ∈ Zn. The weights for the

rank m diagonal subtorus S ⊆ T are then the images of these integer vectors under the linear map
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λ~r : Rn → R
m. Define the following cardinality

(
n
d

)
multiset:

A := {λ~r

(

∑
i∈I

ei

)

| I ∈
(
[n]

d

)

}.

The lattice polytope for P(
n
d)−1//ChS is the secondary polytope Σ(A). Recall that this means Σ(A)

is the convex hull in RA of the characteristic functions ϕT : A → Z where T is a triangulation of

the pair (Conv(A),A)—meaning a collection of simplices, intersecting only along common faces,

whose union is Conv(A) and whose vertices lie in A—and where by definition the value of ϕT on

a ∈ A is the sum of the volumes of all simplices in T for which a is a vertex (with the volume

form normalized by setting the volume of the smallest possible lattice simplex to be 1).

3.1. Gr(2,4) with the maximal torus action. Here~r = (1,1,1,1) and λ~r is the identity on R4,

so A consists of the six vertices of the octahedron ∆(2,4), namely all permutations of the vector

(1,1,0,0). There are three triangulations here: choose two of the three pairs of non-adjacent ver-

tices and for each of these chosen pairs slice a plane through the remaining four vertices. The three

characteristic functions are then the vectors (4,4,2,2,2,2), (2,2,4,4,2,2), and (2,2,2,2,4,4).
These form an equilateral triangle whose lattice points, in addition to the three vertices, are the

midpoints of the three edges, namely (3,3,3,3,2,2), (3,3,2,2,3,3), and (2,2,3,3,3,3). This lat-

tice polytope defines the toric variety P2 polarized by the line bundle O(2); by labeling the lattice

points, in the order listed above, we can view this as Projk[x2,y2,z2,xy,xz,yz].
The Grassmannian Gr(2,4) is a hypersurface in P

5, defined by a single Plücker relation, so the

Chow quotient Gr(2,4)//ChS ⊆ P5//ChS ∼= P2 is also a hypersurface and our next task is finding

the equation for it. If we write the coordinates for P5 as (x12,x34,x13,x24,x14,x23) then the mono-

mials specified by the six lattice points described in the preceding paragraph, after dividing by the

common factor that is the product of the squares of all the variables, are the following:

m1 = x2
12x2

34, m2 = x2
13x2

24, m3 = x2
14x2

23, m4 = x12x34x13x24, m5 = x12x34x14x23, m6 = x13x24x14x23.

Multiplying the Plücker relation

x12x34 − x13x24 + x14x23 = 0

by x12x34 yields the relation m1 −m4 +m5, and similarly multiplying by x13x24 yields m4 −m2 +
m6 = 0 and multiplying by x14x23 yields m5 −m6 +m3 = 0. These are linear relations among the

monomials mi, so they are three quadratic relations among the variables x,y,z introduced at the end

of the preceding paragraph, namely

x2 − xy+ xz = 0, xy− y2 + yz = 0, and xz− yz+ z2 = 0.

These quadratics generate a non-saturated ideal whose saturation is the principal ideal generated by

x−y+z = 0; this linear relation is the defining equation for the Chow quotient Gr(2,4)//ChT ⊆ P
2

that we were seeking. Note that in [Kap93, Example 1.2.12] Kapranov described this as a conic

in the plane, whereas we see here more specifically it is a line in the plane together embedded by

O(2) as a conic in the Veronese surface in P5.

3.2. Gr(2,4) with a rank 3 diagonal subtorus. Now consider the rank 3 diagonal subtorus S ⊆ T

defined by~r = (1,1,2), namely S = {(t1, t2, t3, t3) | ti ∈ k×}, which acts on a subspace L ∈ Gr(2,4)
represented by a 2×4 matrix by rescaling the first two columns independently and rescaling the last

two columns together. Here Gr(2,4)//ChS is a surface embedded in the toric threefold P
5//ChS. The

linear map λ~r : R4 → R3 is (x1,x2,x3 + x4). The multiset A, the image under this linear projection
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of the 6 vertices of the octahedron ∆(2,4), is (1,1,0), (1,0,1) with multiplicity 2, (0,1,1) with

multiplicity 2, and (0,0,2). This is a square with a pair of non-adjacent vertices doubled, and there

are eight triangulations: there are two ways of subdividing with a diagonal line segment, and for

each of these there are four ways of choosing which of the doubled vertices to use in the resulting

pair of triangles. The six characteristic functions, which we shall name v1, . . . ,v4,w1, . . . ,w4, then

take the following form:

v1 = (1,2,0,2,0,1), v2 = (1,2,0,0,2,1), v3 = (1,0,2,0,2,1), v4 = (1,0,2,2,0,1),

w1 = (2,1,0,1,0,2), w2 = (2,1,0,0,1,2), w3 = (2,0,1,0,1,2), w4 = (2,0,1,1,0,2).

The convex hull of these is a 3-dimensional polytope. The convex hull of the vi is a square and

the convex hull of the wi is a smaller square that is parallel to it, so altogether we have a truncated

square pyramid. A square is the toric polytope description of P1 ×P1, extending this to a square

pyramid corresponds to taking the projective cone over P1×P
1, and truncating this pyramid corre-

sponds to blowing up the torus-fixed cone point corresponding to the pyramid apex. In coordinates

this can be written

P
5//ChS ∼= Bl (Projk[x0,x1,x2,x3,y]/(x0x3 − x1x2)) ,

and by computing lattice lengths one sees that the polarization is O(2H−E). To find the equations

for the closed subvariety Gr(2,4)//ChS inside here, we follow the approach in the previous exam-

ple. Plugging the variables xi j into the 8 vertices of our secondary polytope yields the following

monomials:

m1 = x12x2
13x2

23x34, m2 = x12x2
13x2

24x34, m3 = x12x2
14x2

24x34, m4 = x12x2
14x2

23x34,

n1 = x2
12x13x23x2

34, n2 = x2
12x13x24x2

34, n3 = x2
12x14x24x2

34, n4 = x2
12x14x23x2

34.

Multiplying the Plücker relation by x12x13x24x34 and by x12x14x23x34 yields the relations

n2 −m2 +∏xi j = 0 and n4 −∏xi j +m4 = 0

so our Grassmannian Chow quotient here is defined in the above toric Chow quotient by the single

relation m2 −m4 −n2 −n4 = 0 in the polynomial Cox ring.

3.3. Gr(2,4) with a balanced rank two diagonal subtorus. Next, consider the diagonal subtorus

{(t1, t1, t2, t2) | ti ∈ k×} defined by~r = (2,2). The linear projection λ~r :R4 →R2 is (x1+x2,x3+x4)
which sends the vertices of ∆(2,4) to (2,0), (1,1) four times, and (0,2). The result of course is

an interval with a single interior lattice point that has been quadrupled. There are five triangula-

tion, four from subdividing with the different midpoints and one from not subdividing at all; the

characteristic functions are:

v1 =(1,2,0,0,0,1),v2 =(1,0,2,0,0,1),v3=(1,0,0,2,0,1),v4 =(1,0,0,0,2,1),v5=(2,0,0,0,0,2).

The convex hull of v1, . . . ,v4 is a tetrahedron giving the polarized toric variety (P3,O(2)), and

P5//ChS is the toric variety given by the convex cone over this tetrahedron with apex v5. Plugging

the variables xi j into these five vertices yields

m1 = x12x2
13x34, m2 = x12x2

14x34, m3 = x12x2
23x34, m4 = x12x2

24x34, m5 = x2
12x2

34.

The Plücker relation can be expressed as

√
m5 −

√
m1m4

m5

+

√
m2m3

m5

= 0,
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which after some elementary algebra yields the relation

m2
1m2

4 +m2
2m2

3 +m2
5 −2m1m2m3m4 −2m1m4m2

5 −2m2m3m2
5 = 0

defining Gr(2,4)//ChS in the Cox ring of our toric variety P5//ChS.

4. MAPS BETWEEN CHOW QUOTIENTS

Let us start here by generalizing Kapranov’s [Kap93, Theorem 1.6.6]; while one probably could

have adapted Kapranov’s proof nearly verbatim to our setting, we instead provide a slight variant

that we feel brings out more prominently the elegant toric geometry underlying the result.

Proof of Theorem 1.2. Recall from the theorem statement that we have fixed an index i and denoted

by I the index of the ri columns acted upon nontrivially by the ith Gm factor of S and by Si the

projection of S onto the coordinates outside of I. So S has rank m and Si has rank m−1. Let

ai : Gr(d,n)//ChS 99K Gr(d − ri,n− ri)//ChSi

be the rational map sending a generic torus orbit closure S ·L, L∈Gr(d,n), to the torus orbit closure

Si · (L∩HI), where HI ⊆ kn is the coordinate linear subspace defined by setting all coordinates in I

equal to zero (and Gr(d− ri,n− ri) here parameterizes subspaces of HI
∼= kn−r−i). Let

bi : Gr(d,n)//ChS 99K Gr(d,n− ri)//ChSi

be the rational map sending a generic S ·L to Si ·πIc(L), where πIc : kn → kn−ri projects away the

I-coordinates.

To show that these rational maps extend to morphisms, we will use the valuative criterion

provided in [GG14, Theorem 7.3] (here for convenience we will use the analytic language of

1-parameter families, rather valuation rings, since we have restricted to the setting k =C anyway).

This means we need to show that for any 1-parameter family of cycles Zt , t ∈ k×, in the interior

of Gr(d,n)//ChS, which necessarily maps to a 1-parameter family of cycles ai(Zt) in the interior of

Gr(d − ri,n− ri)//ChSi, the limit cycle

lim
t→0

ai(Zt) ∈ Gr(d− ri,n− ri)//ChSi ⊆ Chow(Gr(d − ri,n− ri))⊆ Chow

(

P
(n−ri

d−ri
)−1
)

depends only on the limit cycle

Z0 := lim
t→0

Zt ∈ Gr(d,n)//ChS ⊆ Chow(Gr(d,n))⊆ Chow
(

P(
n
d)−1

)

,

and similarly for bi. We will do this by explicitly describing limai(Z0) and limbi(Zt) in terms of

Z0.

Following Kapranov, let G+
j ⊆ Gr(d,n) be the locus of linear subspaces containing the jth co-

ordinate axis, and let G−
j ⊆ Gr(d,n) be the locus of linear subspaces contained in the hyperplane

where the jth coordinate is zero. Then, as noted in [Kap93, Proposition 1.6.10],

Gr(d −1,n−1)∼= G+
j = Gr(d,n)∩Π+

j

where Π+
j ⊆ P(

n
d)−1 is the coordinate linear subspace defined by xJ = 0 for J 6∋ j, and

Gr(d,n−1)∼= G−
j = Gr(d,n)∩Π−

j
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where Π−
j is the coordinate linear subspace defined by xJ = 0 for J ∋ j. In our setting we shall

need to consider certain intersections of these sub-Grassmannians, so let

Π±
I :=

⋂

j∈I

Π±
j and G±

I :=
⋂

j∈I

G±
j = Gr(d,n)∩Π±

I .

We claim that

lim
t→0

ai(Zt) = Z0 ∩Π+
I and lim

t→0
bi(Zt) = Z0 ∩Π−

I .

Verifying this claim will establish the theorem, by the aforementioned valuative criterion.

The argument in Kapranov’s [Kap93, Lemma 1.6.13] applies equally well for diagonal subtori

and shows that for t 6= 0 we have ai(Zt) = Zt ∩Π+
I and bi(Zt) = Zt ∩Π−

I , and from this it immedi-

ately follows from elementary topology that

(1) lim
t→0

ai(Zt)⊆ Z0 ∩Π+
I and lim

t→0
bi(Zt)⊆ Z0 ∩Π−

I ,

We claim that in both cases the intersection on the right has the same dimension as the limit on

the left, namely m− 2 (the diagonal Gm where all torus coordinates are equal acts trivially so a

full-dimensional orbit has dimension one less than the rank of the torus). To see, first note that

by Proposition 2.2 we can write Z0 = ∑ℓ
j=1 S ·L j for linear subspaces L j whose S-orbits have full

dimension m−1. Then

Z0 ∩Π±
I =

ℓ

∑
j=1

(
S ·L j ∩Π±

I

)
.

If the dimension of this intersection were not equal to m−2 it would have to be dimension m−1,

the dimension of Z0, which means for at least one j we would have L j ⊆ Π±
I , But this would mean

that the S-orbit of this L j is not full-dimensional, contradicting our assumption on it. Indeed, if

L j ⊆ Π+
I then the rank one subtorus of S where all Gm factors except for the ith are trivial is in

the stabilizer of L j, since this Gm subtorus rescales equally by tri the Plücker coordinates xJ where

J ⊇ I and by definition of Π+
I all remaining Plücker coordinates are zero; similarly, if L j ⊆Π−

I then

this same Gm factor is in the stabilizer of L j, since here it acts trivially on the Plücker coordinates

xJ where J ∩ I =∅ and by definition of Π−
I all remaining Plücker coordinates are zero.

For each of the containments in Equation (1), since the dimensions of both sides are equal, to

prove that the containment is an equality it suffices to prove that the degrees of both sides are

equal. Now, limt→0 ai(Zt) is a limit of generic Si-orbit closures so it has the same degree as a

generic orbit closure Si ·L, L ∈ Gr(d − ri,n − ri)
0. But Si ·L is a toric variety so its degree is

the volume of the lattice polytope ∆Si·L, and since L here is generic this lattice polytope is the

full linearly projected hypersimplex λπ[m]\i~r (∆(d− ri,n− ri)), where λπ[m]\i~r : Rn−ri → Rm−1 is the

linear projection map corresponding to the diagonal subtorus Si of the maximal torus acting on

Gr(d − ri,n− ri). On the other hand, by Proposition 2.2 for the limit cycle Z0 = ∑ℓ
j=1 S ·L j the

lattice polytopes ∆S·L1
, . . . ,∆S·Lℓ

form a polyhedral decomposition of λ~r (∆(d,n)). Then the lattice

polytopes ∆S·L1
∩λ~r(Γ

+
I ), . . . ,∆S·Lℓ

∩λ~r(Γ
+
I ) form a polyhedral decomposition of the face λ~r(Γ

+
I )

of λ~r(∆(d,n)), where Γ+
I := ∩ j∈IΓ

+
j and Γ+

j is the face of ∆(d,n) that Kapranov identified in
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[Kap93, Proposition 1.6.10] as the image under the moment map µT of G+
j ⊆ Gr(d,n). We claim

deg(Z0 ∩Π+
I )≤

ℓ

∑
j=1

deg
(
S ·L j ∩Π+

I

)
=

ℓ

∑
j=1

vol
(

∆S·L j
∩Γ+

I

)

= vol
(
λ~r(Γ

+
I )
)

= vol
(

λπ[m]\i~r (∆(d − ri,n− ri))
)

.

Indeed, the inequality here allows for the possibility that some of these intersected orbit closures

are not full-dimensional, the first equality is Kapranov’s observation in [Kap93, Proposition 1.6.10]

about the interplay between the moment map and the sub-Grassmannians G+
j , the second equality

is due to the above observation about having a polyhedral decomposition, and the final equality

follows from the observation that the moment map µS restricted to the sub-Grassmannian Γ+
I
∼=

Gr(d − ri,n− ri) is identified by this isomorphism with the moment map µSi
= λπ[m]\i~r ◦µ ′

T where

T ′ is the maximal torus acting on Gr(d − ri,n− ri). This concludes the argument for ai, and the

volume calculation for bi is entirely analogous. �

5. GENERALIZED GELFAND-MACPHERSON CORRESPONDENCE AND GALE DUALITY

In [Tha99] Thaddeus studies an interesting classical geometric situation related to the configura-

tion spaces studied by Kapranov in [Kap93], and while doing so he proves a handful of results that

are in close analogy with results in Kapranov’s paper—but in almost all cases, the proofs Thad-

deus provides are new, not merely adaptations of Kapranov’s. In particular, when studying Chow

quotients Thaddeus avails himself of the functorial machinery developed by Kollár in [Kol96],

obviating the need to rely on the analytic methods for working with Chow varieties that were the

only option for Kapranov at the time his paper was written. We adapt here one particular proof of

Thaddeus (and a particularly clever one at that) which in our setting yields the generalized Gelfand-

MacPherson isomorphism Theorem 1.3 stated in the introduction. Note that by specializing to the

maximal torus this yields an explicit Thaddeus-esque proof of Kapranov’s original Chow-theoretic

Gelfand-MacPherson isomorphism [Kap93, Theorem 2.2.4].

Proof of Theorem 1.3. The basic idea is, quite like the usual Gelfand-MacPherson correspondence,

to observe that the GLd-action on the affine space of n× d matrices (we have taken a transpose

here to work with sub rather than quotient objects, but that is immaterial and just to ease notation)

commutes with the torus action; taking the GLd quotient first yields the Grassmannian Gr(d,n),
whereas taking the S-quotient first projectivizes the size ri ×d matrix blocks, i = 1, . . . ,m, of this

space of matrices resulting in a product of projective spaces. In fact, this already shows that the

two sides of the claimed isomorphism are birational, so the work is to extend this birational map

to an isomorphism. To do this, we follow and mildly adapt the argument of Thaddeus in his proof

in [Tha99, §6.3]. The main insight in Thaddeus’ proof, translated to our situation, is that the two

rational quotient maps

(2) PHom(kd,kn) 99K Gr(d,n)

and

(3) PHom(kd,kn) 99K
m

∏
i=1

PHom(kd,kri)

have different base loci, and by resolving both it is easier to compare cycles by using pullback and

pushforward properties of the Chow variety. We now go through these details in earnest.
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The rational GLd-quotient map in (2) sends an injective linear map ϕ : kd →֒ kn to [ϕ(kd)] ∈
Gr(d,n), the point in the Grassmannian corresponding to the image of this linear map; the base

locus is the set of linear maps kd → kn with nontrivial kernel. Let Sd,n → Gr(d,n) denote the

universal sub-bundle over the Grassmannian. Then the rational GLd-quotient map is resolved by

the space PHom(kd,Sd,n):

PHom(kd,Sd,n)

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

PHom(kd,kn) //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Gr(d,n)

Indeed, the fiber over a point ϕ : kd → kn of PHom(kd,kn) is a single point of PHom(kd,Sd,n) if ϕ

is injective, namely ϕ viewed as a map from kd to its image ϕ(kd)⊆ kn, whereas if dimϕ(kd)< d

then the fiber in PHom(kd,Sd,n) is in bijection with all d-dimensional subspaces L⊆ kn containing

ϕ(kd) ⊆ kn, since for each such L ⊇ ϕ(kd) we have the element of the fiber given by viewing ϕ
as a map from kd to L. In fact, PHom(kd,Sd,n) is the iterated blow-up of PHom(kd,kn) along

the locus of non-full rank maps, ordered in increasing order of rank. Note that the morphism to

Gr(d,n) is a P
d2−1-bundle; in particular, it is flat.

On the other hand, the rational S-quotient map (3) is resolved by the Pm−1-bundle given by the

projectivization of the total space the direct sum of the dual line bundles to the tautological bundles:

P(
⊕m

i=1 O(ei))

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

PHom(kd,kn) //❴❴❴❴❴❴❴❴❴❴❴❴❴ ∏m
i=1PHom(kd,kri)

Here O(e j) denotes the pull-back of O(1) along the jth projection

m

∏
i=1

PHom(kd,kri)→ PHom(kd,kr j)∼= P
r jd−1.

One can see this as follows. The base locus for this map consists of matrices where any of the ri×d

blocks (corresponding to the diagonal subtorus action) are entirely zero, so to resolve this map we

need to blow up this locus. Since it is a union of linear subspaces meeting transversely, this can be

done one subspace at a time, in any order, and we thus reduce to the standard observation that the

total space of O(1) on any projective space Pℓ is the blow-up of Aℓ+1 at the origin.
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Putting this together, we get the following commutative diagram:

P(
⊕m

i=1 O(ei))

��

**❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

PHom(kd,Sd,n)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

��

PHom(kd,kn)

tt✐ ✐
✐

✐
✐

✐
✐

✐

((◗
◗

◗
◗

◗
◗

◗

∏m
i=1PHom(kd,kri)

��
✤

✤

✤

Gr(d,n)

��
✤

✤

✤

(

∏m
i=1PHom(kd,kri)

)
//Ch GLd Gr(d,n)//ChS

Here the vertical morphisms are both projective space bundles, the diagonal morphisms are bira-

tional, and the dashed arrows are all rational quotient maps—on the left by the torus first then GLd ,

and on the right by GLd first then the torus.

The rest of Thaddeus’ argument now goes through essentially verbatim. The universal family

of cycles on Gr(d,n) over the Chow quotient Gr(d,n)//ChS ⊆ Chow(Gr(d,n)) pulls back along

the flat morphism to a family of cycles on PHom(kd,Sd,n) over Gr(d,n)//ChS with general fiber

a (GLd ×S)-orbit closure. This family pushes forward along the birational morphism to an S-

invariant family of cycles on PHom(kd,kn). The restriction of the cycles in this family to the com-

plement of the base locus of the torus quotient map (3) pushes forward along this quotient map, a

geometric quotient, and yields a family of cycles on ∏m
i=1PHom(kd,kri) over Gr(d,n)//ChS. Since

Gr(d,n)//ChS is reduced and the cycles over it in this last family all have the expected dimension,

there is an induced morphism

Gr(d,n)//ChS → Chow

(
m

∏
i=1

PHom(kd,kri)

)

by [Kol96, Theorem 3.21]. A general point of this Chow quotient gets sent to a GLd-orbit closure,

so the image of this morphism is contained in the Chow quotient
(

∏m
i=1PHom(kd,kri)

)
//Ch GLd .

On the other hand, the same argument applied symmetrically to other side of the above big commu-

tative diagram yields a morphism between these Chow quotients in the other direction. Since these

Chow quotients are separated varieties, to show that these morphisms are inverse to each other, and

hence that the two Chow quotients are isomorphic, it suffices to show that they are inverse on open

dense loci. For this we apply the naive argument discussed at the beginning of this proof, regarding

commuting group actions, to see that indeed these maps identify generic orbit closures. �

An immediate corollary of this is the generalized Gale duality Corollary 1.4 stated in the in-

troduction. Indeed, the orthogonal complement isomorphism Gr(d,n) ∼= Gr(n− d,n) is torus-

equivariant so descends to an isomorphism Gr(d,n)//ChS ∼= Gr(n− d,n)//ChS of Chow quotients

for any subtorus S, and applying our generalized Gelfand-MacPherson isomorphisms to both sides

of this isomorphism provides our generalized Gale duality isomorphism.

Remark 5.1. For parameters m,d,d1, . . . ,dm such that

2d −m =
m

∑
i=1

di,
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our generalized Gale duality sends configurations of m parameterized linear subspaces of di-

mensions d1, . . . ,dm in Pd to configurations of m parameterized linear subspaces of dimensions

d1, . . . ,dm in Pd , so in this situation one could study “self-associated” configurations, generalizing

the maximal torus case studied by Kapranov in [Kap93, Paragraph (2.3.9)] (see also [EP00, §II]

for another setting for self-association).

6. THE BOREL TRANSFER PRINCIPLE AND THE CHEN-GIBNEY-KRASHEN MODULI SPACE

Consider a connected unipotent group H, and suppose G is a reductive group containing H as a

closed subgroup. The quotient G/H, where H acts on the right, is a quasi-affine variety (and if H

is positive-dimensional then it is not affine); it admits a natural embedding in the affinization

(G/H)aff := SpecOG/H(G/H) = SpecOG(G)H

which is a scheme possibly of infinite type since the ring of invariants of a non-reductive group

need not be finitely generated.

Example 6.1. Let

G := Speck[x11,x12,x21,x22,(x11x22 − x12x21)
−1]∼= GL2

be the affine group variety of 2×2 invertible matrices, and let H := Speck[s]∼=Ga be the subgroup

of unipotent matrices of the form

(
1 s

0 1

)

. The quotient G/H is the quasi-affine variety A2\{0},

because the affinization is

(G/H)aff = Speck[x11,x12,x21,x22,(x11x22 − x12x21)
−1]H = Speck[x11,x21]∼= A

2

but the image of the quotient morphism G → (G/H)aff does not include the origin since a matrix

where x11 and x21 are both zero is not invertible. In this case the affinization is of finite type.

Continue to let G and H be a reductive group and unipotent subgroup as above, and suppose

now that X is an affine variety with an H-action that extends to a G-action. The classical Borel

transfer principle states, in the language of (non-reductive) GIT, that there is an isomorphism

X//H ∼=
(

(G/H)aff×X
)

//G,

where G acts diagonally on this product, with the G-action on (G/H)aff induced by left-multiplication

of G on itself, and the symbol “//” simply means to take Spec of the ring of invariants [DK07, §5.1].

This allows one to replace a non-reductive invariant ring with a reductive invariant ring, though in

the process one replaces the k-algebra being acted upon with one that need not be finitely gener-

ated. This is often a useful tradeoff as it means instead of studying the H-action of X , it suffices to

study the typically simpler H-action on G together with the (again, typically simpler) G-action on

X . This geometric formulation of the Borel transfer principle has been globalized to the case that

X is projective in [DK07, §5.1].

The definition of a Chow quotient is perfectly valid for any algebraic group, not just reductive

groups, so a natural question, which seems not to have appeared in the literature previously, is

whether this global Borel transfer principle for GIT quotients extends to Chow quotients:

Question 6.2. Let G be a reductive group containing a connected unipotent closed subgroup H, let

G/H be a projective completion of the quotient, and let X be a projective variety with a G-action.

Is there an isomorphism

X//ChH
?∼=
(

G/H ×X
)

//ChG,
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or at least are there reasonable hypotheses guaranteeing such an isomorphism?

The projective completion here is needed since Chow varieties are only defined for projective

varieties. In what follows we show that a specific instance of this question is an open question

about a Grassmannian Chow quotient first asked (in casual conversation) by Krashen.

Consider the diagonal subtorus action on Gr(d,n) defined by~r = (d−1,1, . . . ,1), so that S is the

rank n−d +2 torus that acts by rescaling the first d −1 columns of a matrix together and the last

n−d +1 columns individually. By our generalized Gelfand-MacPherson isomorphism (Theorem

1.3) we have

(4) Gr(d,n)//ChS ∼=
(

PHom(kd−1,kd)× (Pd−1)n−d+1
)

//Ch GLd ,

a compactification of the configuration space of n−d +1 points and a parameterized hyperplane

in Pd−1. On the other hand, the Chen-Gibney-Krashen moduli space Td−1,n−d+1 is a compacti-

fication of the same configuration space [CGK09], and Krashen’s question is whether these are

isomorphic. In [GG18] it is shown that Td−1,n−d+1 is isomorphic to the normalization of the Chow

quotient (Pd−1)n−d+1//ChH, where H ∼= G2
m ⋊Gd−1

a is the non-reductive subgroup of GLd fixing

a hyperplane pointwise. Since this H-action extends to the standard GLd-action, we can apply

Question 6.2 and ask whether this non-reductive Chow quotient is isomorphic to the reductive

Chow quotient
(

GLd /H × (Pd−1)n−d+1
)

//GLd . The following lemma describes GLd /H and the

induced group actions and implies that this reductive Chow quotient is precisely the one appearing

in our generalized Gelfand-MacPherson correspondence, the right side of Equation (4), and hence

as claimed that the Krashen question is a specific instance of Question 6.2:

Td−1,n−d+1
?

Gr(d,n)//ChS

(Pd−1)n−d+1//ChH
?

(

GLd /H × (Pd−1)n−d+1
)

//GLd

The left vertical equality (up to normalization) here is [GG18], the right vertical equality is the

following lemma together with the Gelfand-MacPherson isomorphism, the top horizontal equality

is the Krashen question, and the bottom horizontal equality is a special instance of Question 6.2.

Lemma 6.3. For the right-multiplication action of H on GLd , the quotient GLd /H is isomorphic

to the open subvariety of PHom(kd−1,kd) consisting of projective equivalence classes of full rank

d × (d −1) matrices. The left-multiplication action of GLd on itself descends to an action on this

quotient corresponding, via this isomorphism, to left matrix multiplication.

Certainly the most natural projective completion to take for the space of full rank matrices is its

Zariski closure in the space of all matrices, hence GLd /H = PHom(kd−1,kd).

Proof. If we choose coordinates so that the fixed hyperplane is defined by the vanishing of the first

coordinate, then H ∼=G2
m ⋊Gd−1

a consists of matrices of the form






t1 0 · · · 0

s1 t2 0
...

. . .

sd−1 0 · · · t2






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for si ∈ k and ti ∈ k×.

Since the additive action is normalized by the torus action, we can compute the quotient in

stages:

GLd /H ∼= (GLd /G
d−1
a )/G2

m.

We claim GLd /G
d−1
a is the space of full rank d × (d −1) matrices. Indeed, by viewing

GLd ⊆ Hom(kd,kd)∼= A
d2

as the affine open complement of the hypersurface det = 0, the ring of invariants for the Gd−1
a -

action is generated by all entries of the matrix except for those of the first column. Thus the

categorical quotient, in the category of affine varieties, is

GLd //G
d−1
a

∼= Hom(kd−1,kd)∼= A
(d−1)d .

However, similar to the situation in Example 6.1, since this is a non-reductive quotient the quotient

morphism need not be surjective, and indeed in the present situation its image is manifestly the set

of full rank matrices.

The residual G2
m-action on this space of full rank d × (d −1) matrices has the Gm factor corre-

sponding to t1 acting trivially and the Gm factor corresponding to t2 acting by rescaling all entries

equally, so the quotient by G2
m is simply the projectivization. The assertion about the induced

left-multiplication action of GLd on this space of matrices follows immediately from our explicit

description of the quotient in terms of invariants as the rightmost d −1 columns of a square d ×d

matrix of indeterminates. �
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