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Abstract—In this paper, we study the problem of federated
learning over a wireless channel with user sampling, modeled by
a Gaussian multiple access channel, subject to central and local
differential privacy (DP/LDP) constraints. It has been shown
that the superposition nature of the wireless channel provides
a dual benefit of bandwidth efficient gradient aggregation, in
conjunction with strong DP guarantees for the users. Specifically,
the central DP privacy leakage has been shown to scale as
O(1/VK), where K is the number of users. It has also been
shown that user sampling coupled with orthogonal transmission
can enhance the central DP privacy leakage with the same scaling
behavior. In this work, we show that, by jointly incorporating
both wireless aggregation and user sampling, one can obtain even
stronger central DP guarantees. We propose a private wireless
gradient aggregation scheme, which relies on independently
randomized participation decisions by each user. The central
DP leakage of our proposed scheme scales as O(1/K%/*). In
addition, we show that LDP is also boosted by user sampling.

Full version of the paper available in [1].
I. INTRODUCTION

Federated learning (FL) [2] is a framework that enables
multiple users to jointly train a learning model with the
help of a parameter server (PS), typically, in an iterative
manner. In this paper, we focus on a variation of FL termed
federated stochastic gradient descent (FedSGD), where users
compute gradients for the machine learning (ML) model on
their local datasets, and subsequently exchange the gradients
for model updates at the PS. There are several motivating
factors behind the surging popularity of FL: (a) centralized
approaches can be inefficient in terms of storage/computation,
whereas FL provides natural parallelization for training, and
(b) local data at each user is never shared, but only the local
gradients are collected. However, even exchanging gradients
in a raw form can leak information, as shown in recent works
[3]-[9]. In addition, exchanging gradients incurs significant
communication overhead. Therefore, it is crucial to design
training protocols that are both communication efficient and
private.

Since the training of FedSGD involves gradient aggregation
from multiple users, the superposition property of wireless
channels can naturally support this operation. Several recent
works [10]-[20] have focused on exploiting the wireless
channel to alleviate the communication overhead of FL (see
a comprehensive survey [21]). Depending on the transmission
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Fig. 1: Illustration of the private wireless FedSGD framework: Users
collaborate with the PS to jointly train a ML model over a MAC.

strategy, wireless FL can be broadly categorized into digital
or analog schemes. In digital schemes, gradients from each
user are compressed and transmitted to the PS using a multi-
access scheme. However, digital schemes require the PS to
decode individual gradients and then aggregate them. For
analog schemes, on the other hand, gradient is rescaled at each
user to satisfy the power constraint and to mitigate the effect
of channel noise. All users then transmit the rescaled gradients
via wireless channel simultaneously. Non-orthogonal over the
air aggregation makes analog schemes more bandwidth effi-
cient compared to digital ones.

In addition to saving bandwidth and computation, it has
been shown in [22]-[24] that wireless FL also naturally
provides strong differential privacy (DP) [25] guarantees.
Specifically, in [22], it was shown that the superposition
nature of the wireless channel provides a stronger privacy
guarantee as well as faster convergence in comparison to
orthogonal transmission. The privacy level is shown to scale
as O(1/vK), where K is the number of users in the wireless
FL system. On the other hand, it was shown in [26] that
one can obtain a similar scaling of O(1/vK) for privacy
leakage through user sampling. The scheme of [26], however,
considers orthogonal transmission from the sampled users.

One natural question to ask is the following: Could we
achieve even stronger privacy guarantees by incorporating
both user sampling and wireless aggregation? If it does
provide stronger guarantee, how much additional gain can be
obtained? How can we optimally utilize the wireless resources,
and what are the tradeoffs between convergence of FedSGD
training, wireless resources and privacy?

Main Contributions: In this paper, we consider the problem
of FedSGD training over Gaussian multiple access channels
(MACs), subject to LDP and DP constraints. We propose a

2732



Transmission scheme | Without sampling
O(1) [28]

O(1/VEK) [22]

With sampling
O(1/VK) [26]
O(1/K3/*) (This work)

Orthogonal

Wireless Aggregation

TABLE I: Comparison for central privacy under different settings:
(a) orthogonal and (b) wireless aggregation transmissions.

wireless FedSGD scheme with user sampling, where users
are sampled uniformly or based on their channel conditions.
We then study analog aggregation schemes coupled with the
proposed sampling schemes, in which each user transmits
a linear combination of (a) local gradient and (b) artificial
Gaussian noise. The local gradients are processed as a function
of the channel gains to align the resulting gradients at the
PS, whereas the artificial noise parameters are selected to
satisfy the privacy constraints. The existing privacy analysis
in [26], [27] for FL with user sampling cannot be applied
to our problem. The key challenge is that in each training
iteration, the effective noise seen at the signal received by
the PS over the wireless channel is a function of a random
number of sampled users, making the DP/LDP analysis non-
trivial. Using concentration inequalities, we are able to prove
that the central privacy leakage scales as O(1/K?3/*) with
wireless aggregation and user sampling. We also provide
convergence analysis of the proposed scheme for different
sampling schemes in the full version of this paper [1]. To
the best of our knowledge, this is the first result on wireless
FedSGD with LDP and DP constraints with user sampling (see
Table I for comparison of results).

II. SYSTEM MODEL

Wireless Channel Model: We consider a wireless FL system
with K users and a central PS. Users are connected to the PS
through a Gaussian MAC as shown in Fig. 1. Let K, denote
the random set of users who participate in iteration ¢. The
input-output relationship at the ¢-th block is

yt = Z Py i Xp,p 4 my, (D
ke,

where x;; € R? is the signal transmitted by user k at the
t-th block, and y; is the received signal at the PS. Here,
hi+ € R is the channel coefficient between user k£ and the PS
at iteration t. We assume a block flat-fading channel, where
the channel coefficient remains constant within the duration
of a communication block. Each user is assumed to know
its local channel gain, whereas we assume that the PS has
global channel state information (CSI). Each user can transmit
subject to average power constraint i.e., I [||xp.[|3] < Pp.
m; € R? is the channel noise whose elements are indepen-
dent and identically distributed (i.i.d.) according to Gaussian
distribution A/ (0, Ny). The random set of participants K; can
be obtained through various strategies. In this paper, we focus
on user sampling, where user & participates in the training at
time ¢ according to probability py ., for £ =1,..., K. When
K, = [K], we recover the conventional federated SGD where
every user participates in the training.

For this work, we consider (a) time-invariant uniform
sampling; (b) time-variant uniform sampling; and (¢) channel
aware sampling. We note that sampling strategies based on
gradients or losses can potentially leak information about local
datasets, hence, require different privacy analysis. Thus, we
leave gradient-based sampling strategies to future work.

Federated Learning Problem: Each user k has a private
local dataset Dy with Dy data points, denoted as D =
{(ugk),vgk))}l 1, where u(k) is the i-th data point and vgk)

is the corresponding label at user k. The local loss function at
user k is given by fr(w) = (1/Dy) S22% f(w;u! ),UEk)) +
QR(w), where w € R? is the parameter vector to be
optimized, R(w) is a regularization function and © > 0 is
a regularization hyperparameter. Users communicate with the
PS through the Gaussian MAC described above in order to
train a model by minimizing the loss function F(w), i.e.,

ZDkfk )

w* = argmin F(w) =
v Zk 1 Dk
The minimization of F'(w) is carried out iteratively through
a distributed SGD algorithm. More specifically, in the t¢-
th training iteration, the PS broadcasts the global parameter
vector w; to all users. Each user k& computes his local gradient
using stochastic mini batch By, C Dy, with size by points, i.e.,

Zwk we: (o) + QVR(w,), (3)

ZGBk

gk Wt

where gi(w;) is the stochastic gradient estimate of user k.
The participants, i.e., k € IC;, next pre-process their g (w;)
and obtains xy,;, which is subsequently send to the PS. The
PS then receives y; as defined in (1). Upon receiving y, the
PS performs post-processing on y; to obtain g;, the estimate
of the true gradient g, which is defined as,

1
gt = DV fi(wy “4)
Zk 1 Dk Z !
The global parameter w; is updated using the estimated gradi-
ent g; according to the update rule wy; = w; — 1,8, where
1 is the learning rate of the distributed SGD algorithm at
iteration ¢. The iteration process continues until convergence.

Typically, in the wireless setting, post-processing is done at
the PS to remove impact of the channel, and to ensure unbiased
gradient estimates. Post-processing requires the PS to have
knowledge of the channel condition, number of participants,
and knowing how users are selected to participate. We assume
that the PS has global CSI, and knows sampling probabilities
Dk,t, Vk,t. However, the number of participants may or may
not be known. Thus, in this work, we study both cases where
(a) K¢ is known, or (b) K; is unknown at the PS.

Wireless FL with User Sampling: Here, we describe the per-
iteration operation of the algorithm. At each iteration ¢, the PS
transmits the model w; to the users, and each user computes
the local gradient using its local dataset (as in (3)). Each user
k decides whether or not it wants to participate in the training
according to probability py ;. Users then transmit their local
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gradients with d channel uses of the wireless channel described
in (1). The transmitted signal of user £ at iteration ¢ is given
as:

Xt = {ak,t (gk(Wt) + nk,t)v W.D. Dkt )

0, otherwise

where ny.; ~ N(0,0% 1) is the artificial noise term to
ensure privacy, and «ay, ; is the scaling factor satisfying power
constraint at each user. If a user is not participating, it does
not transmit anything. We assume that the gradient vectors
have a bounded norm, i.e., ||gr(w¢)||2 < L, Vk, and normalize
the gradient vector by L. The parameters oy, ;s and oy, ;S are
designed such that the power constraints are satisfied, i.e.,
E [[[x.¢l3] = oF , [Ilgk(wt)n2 + dazyt} < Pg. From (1) and
(5), the received signal at the PS is given as:

g Ik, i8r (W) E Dy iog g ¢ 4 my.
kEICt ke)ct

(6)

In order to carry out the summation of the local gradients
over-the-air, all users pick the coefficients ay, ;s to align their
transmitted local gradient estimates. Specifically, user k picks
ay ¢ so that

hkytak’t = ].,Vk S ]Ct. (7)

The PS can perform two different post-processing to get
unbiased gradient estimate g, i.e., IE [8;:] = g: (see Appendix
in [1]), based on the knowledge it has about /C;:

Case (a): When K is known at the PS, it obtains the unbiased
gradient estimate g; as follows,

. 1
gt - Ct“Ct‘yt
AP > npetm |, ()
kGIC C |’Ct ke,
where (; =1 — szl(l — Pkt)-

Case (b): When K; (thus |/C;|) is unknown at the PS, it obtains
the unbiased gradient estimate g; as follows,

. 1
8t = Yt
HIK|
1
=—ng )+ — ng+m |, (9
MK fex, HIK | gex,
where pxc,| = E[|K:]] = Zszl pi¢ is the expected number

of participants in iteration ¢. The PS then updates the model.
The process then repeats for 7' iterations.

Privacy Definitions: We assume the PS is honest but curious.
It is honest in the sense that it follows the procedure accord-
ingly, but it might learn sensitive information about users.
Therefore, the wireless FedSGD algorithm should satisfy LDP
constraints for each user. At the end of the training process,
the PS may release the trained model to a third party. Thus,
the training algorithm should provide central DP guarantees
against any further post-processing or inference. The local and
central privacy are formally defined as follows:

Definition 1. ((e\"),6,)-LDP [29]) Let X; be a set of all
possible data points at user k. For user k, a randomized
mechanism My, : X, — R is (62 ,0¢)-LDP if for any
x, &' € Xy, and any measurable subset Oy, C Range(My,),
we have

Pr(Mpy(z) € Of) < exp( )Pr(/\/lk( ") € Ok) + bs.

(10)
The case of 0y = 0 is called pure egk)—LDP.

Definition 2. ((e.,0.)-DP [29]) Let D & X x Xy x - -+ x X
be the collection of all possible datasets of all K users. A
randomized mechanism M : D — R% is (e, 6..)-DP if for any
two neighboring datasets D, D’ and any measurable subset
O C Range(M), we have

Pr(M(D) € O) < exp (e.) Pr(M(D') € O) + .. (11)

We refer to a pair of datasets D, D’ € D if D' can be obtained
from D by removing one data element x; for some i € [K].
The case when 6. = 0 is called pure €.-DP.

III. MAIN RESULTS & DISCUSSIONS
A. Privacy Analysis for wireless FedSGD with User Sampling

In this section, we first derive the central privacy leak-
age for wireless FedSGD with user sampling. Specifically,
we consider non-uniform sampling, where each user can
be sampled according to a probability that depends on the
channel conditions. We then study a special case, i.e., uniform
sampling, to understand the asymptotic behavior of the central
privacy as a function of the total number of users. In addition,
we show that user sampling is also beneficial for the local
privacy level. We also quantify the gain for the local privacy
level achieved by user sampling and wireless aggregation
where Gaussian mechanism is used at each sampled user. We
note that the knowledge of KC; at the PS does not play a role in
the proofs of the privacy guarantees due to the robustness of
post-processing of DP. The privacy guarantee of the proposed
wireless FedSGD with non-uniform sampling scheme is stated
in the following Theorem:

Theorem 1. (Non-uniform sampling) Suppose each user k
participates in the training process at iteration t according to
probabzltty Dk,t» and utilizes local mechanism that satisfies
(6“,54) -LDP if they decided to participate. The central
privacy level of the wireless FedSGD with user sampling at
iteration t is given as

et < log {1+ mi‘L‘;’w (em B 1)} 7
maxy, Pr,+0e
60 :5/ 777 12
)t + s (12)

for any &' € (2672#‘2’@'/1(,1) and B = ﬁ\/o.f)log (2/0"),

where x| Zszl Di,t denotes the expected num-
ber of users participating in iteration t, and c¢ =

21og(1.25/0¢), where Oyin = ming ; oy ¢ and L is the
Lipschitz constant for the loss function.
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Proof Sketch: To derive analyze the central DP leakage at
iteration t, we need to compare the distributions of the outputs
seen at the PS via MAC for two cases: (a) when user k par-
ticipates in training, and (b) when user k does not participate
in the training. The existing privacy analysis for user sampling
(with orthogonal transmissions) in [26], [27] cannot be directly
applied to the current problem. The key challenge is that in
each training iteration, the effective noise seen at the signal
received by the PS over the wireless channel is a function
of a random number (K;) of sampled users. To account for
this randomness, we consider two sub-cases, one where K;
is close to its mean i, , and the complementary event.
We bound the terms arising from these sub-cases individually
using concentration inequalities, and then arrive at the central
DP leakage result €., presented in Theorem 1 by taking the
worst case bounds across all users k. The detailed proof can
be found in [1].

The privacy parameters in Eq. (12) indicates that the central
privacy leakage depends on the user with the highest sampling
probability. Intuitively, a user with high sampling probability
participates in the training process more often than other users,
hence, having most impact on the central privacy leakage.

We note that (12) is a convex function of {pj;}5_, when
eékt) < 1. If the primary goal is to have strong privacy
guarantee and does not need fast convergence, one can solve
for the optimal sampling probabilities using the expression in
(12). However, it is difficult to obtain a closed form solution
of the optimal sampling probability for the non-uniform case.
Due to convexity, one can still solve it numerically using
convex solvers [30]. In contrast to the non-uniform case, one
can solve for the optimal sampling probability for the uniform
case analytically and obtain the following p; by first setting
Dkt = Pt, Vk in (12), and obtain the following Lemma:

Lemma 1. The optimal sampling probability that minimizes
the central privacy level for the uniform case is given by

pfzminl = 10g(2>].

,/%log (%) one can obtain the

13)

Using p; and defining ¢’ =
following upper bound on the central privacy level,

c 1

/

o los [ml—m

From Lemma 1, we observe that the central privacy level
behaves as O(1/K3/*) as opposed to the O(1/v/K) in [22]
and [27]. Clearly, when both wireless aggregation and user
sampling are employed, we can obtain additional benefit in
terms of central privacy (see Table I and Fig. 2). Interestingly,
the addition of user sampling in wireless FedSGD also pro-
vides benefit for LDP as shown in the following Lemma:

(8 n " H
= 10 —— Orthogonal transmission, w/ sampling
3 Wireless aggregation, w/o sampling
- —o— Wireless aggregation, w/ sampling
[2)
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Fig. 2: Comparison for central privacy when oy = 3. The proposed
scheme is shown to outperform other variants when L = 1, Ny = 3,

6 =6"=10"* and p = min [1,\/%,/%1og (2)]-

Lemma 2. For each user k, the proposed transmission scheme
achieves (6@1?,]7;@7,5(55 + &"))-LDP per iteration, where

. 1 oL 1.25
e < — X 2log< 5 ) (14)

h S . S K
where Omin,t = Mg Okt Kt = Zi:l,i;ﬁk Dit —
B and &' are defined in Theorem 1.

BK, where

From Lemma 2, we observe the benefits of wireless aggre-
gation. Asymptotically, LDP behaves like O(1/y/1 + k). In
contrast, LDP achieved for orthogonal transmission scales as
a constant, and does not decay with K. In the full version [1]
of this paper, we present additional results on the total central
leakage for the entire training process (7 iterations) by using
composition results for DP [31] [32].

IV. EXPERIMENTS

In this section, we conduct experiments to assess the
performance of the wireless FedSGD with user sampling
on MNIST dataset for image classification. We model the
instances of fading channels hy, ;’s via an autoregressive (AR)
Rician model [33], where the Rician parameter I' = 5 and
the temporal correlation coefficient p = 0.1. The channel
noise variance (receiver noise) is set as Ng = 1. The user’s
transmit signal-to-noise ratio is defined as SNRy, = d];\, We
use o3 + = 0.1 as the perturbation noise. Prior to sending the
local gradlent to the PS, each user clips the local gradient using
the Lipschitz constant chosen empirically with test runs. We
use 6 = 10~ and &' = 2¢ 2#ixa/K 11075 to satisfy the
constraint on ¢’ and to avoid it from going to 0. We consider
two different sampling schemes described as follows,

Uniform Sampling: Let p;, ; = p, Vk,t for any p.

Channel Aware Sampling: Each user computes pr: =
hi.¢/hw, where the threshold hy, is a hyperparameter which
is optimized via cross-validation.

We train a single-layer neural network (with no hidden
layer) using MNIST dataset [34], which consists of 60,000
training and 10,000 testing samples. The loss function we
used is cross-entropy, and ADAM optimizer for training with
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Fig. 3: The impact of the sampling probability on the training
accuracy with a,%yt =0.1, L =1 and T = 400.

Channel Aware Uniform
hgy =2 p=03 | p=09
€0, max 3.675 5.124 2.46
€c,max 4.535 5.61 3.132
Avg. |K| 96 60 180
Testing Acc. 85.27% 83.98% | 86.42%

TABLE II: Comparison of privacy leakage per iteration with (J’]%’t =
0.1, L = 1 and T' = 400 iterations. €¢max and €. max are the
maximum leakages across iterations.

a learning rate of n = 0.001. The training samples are evenly
and randomly distributed across K = 200 users. Users are split
into three groups where the first group consists of 68 users with
SNRj, = 2 dB; the second and third group consist of 66 users
in each group with SNR;, = 10 and 30 dB, respectively. We
use hy, = 2 as the threshold for the channel aware sampling
scheme. Empirically, the scaling factor is computed as follows,

1 VP
Mot fllgi(wo)|? + do?

In Fig. 3 and 4, we show the impact of sampling probability
on the training accuracy. First, we observe that a higher p
leads to a higher accuracy for the model. Next, in Table II,
we observe that, for the uniform case with L = 1, the central
DP leakage decreases as p increases, which contradicts with
the intuition that higher p leads to higher leakage. However,
let pr+ = p,Vk,t in (12), ie.,

Q¢ = min

15)

» .
< P (VEe- _
€er < log [1 + (e 1)} .6

we can see that the behavior of €., depends on two terms:
p/(1 —0") and exp(c/+/K(p — B)). As p increases, the first
term increases and the second term decreases. For a certain
range of ¢, the second term dominates, therefore, €., as a
whole, decreases. This is due to the fact that, since perturbation
noises get aggregated over the wireless channel, the privacy
enhances. Hence, users are encouraged to participate more
when c is in that range. In general, ¢ depends on oy, +, L, 6,
and c for Fig. 3 and Table II falls in the range that allows the
second term to dominate as p increases. We also demonstrate
the case when the first term dominates, i.e., L = 0.1 for this
set of parameters. We can see that the central DP leakage

100

——Error-free

————— Uniform, p = 0.9

---------- Uniform, p = 0.3

- = =Channel Aware, hy, = 2

Training Accuracy (%)

1000 1500
Iteration

0 500 2000 2500

Fig. 4: The impact of the sampling probability on the training
accuracy with o , = 0.1, L = 0.1 and 7' = 2500.

Channel Aware Uniform
hp =2 p=031] p=09
€0, max 0.3677 0.5124 0.2460
€c,max 0.3642 0.2258 0.2317
Avg. |K| 96 60 180
Testing Acc. 84.33% 81.76% | 86.25%

TABLE III: Comparison of privacy leakage per iteration with O’;%’t =
0.1, L = 0.1 and T" = 2500 iterations.

increases as p increases from Table III. When ¢ is in this
range, the amplification of privacy is not enough to outweigh
the disadvantage of participating more. Thus, the intuition that
higher p leads to higher leakage holds. From Table II and III,
we can see that channel aware sampling achieves 85.27% and
84.33% testing accuracy, which is lower than those of uniform
sampling with p = 0.9. This is due to the choice of hy. By
reducing hy,, we can improve the accuracy of the channel
aware sampling. Another interesting observation is that, while
channel aware sampling suffers slightly from higher central DP
leakages, it does achieve relatively high testing accuracy and
good local DP leakages with significant less average number
of participants compare to uniform sampling with p = 0.9.
We refer the readers to the full version of this paper [1] for
more discussions and experiments.

V. CONCLUSIONS

In this work, we showed the privacy benefits of user
sampling and wireless aggregation for federated learning.
The resulting leakage for central DP was shown to scale as
O(1/K?/%), improving upon prior results on this topic. As a
future work, we would like to study other variations of FL
such as FedAvg, where each user performs local model up-
dates through multiple SGD computations, followed by model
exchange with the PS. Another interesting direction would be
to consider scenarios where the sampling probabilities can
depend on the local gradients/losses. These scenarios may
require new techniques for privacy analysis than the ones used
in this paper, where sampling probabilities are independent of
the local data (gradients/local loss function).
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