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Abstract—In this paper, we study the problem of federated
learning over a wireless channel with user sampling, modeled by
a Gaussian multiple access channel, subject to central and local
differential privacy (DP/LDP) constraints. It has been shown
that the superposition nature of the wireless channel provides
a dual benefit of bandwidth efficient gradient aggregation, in
conjunction with strong DP guarantees for the users. Specifically,
the central DP privacy leakage has been shown to scale as
O(1/

√
K), where K is the number of users. It has also been

shown that user sampling coupled with orthogonal transmission
can enhance the central DP privacy leakage with the same scaling
behavior. In this work, we show that, by jointly incorporating
both wireless aggregation and user sampling, one can obtain even
stronger central DP guarantees. We propose a private wireless
gradient aggregation scheme, which relies on independently
randomized participation decisions by each user. The central
DP leakage of our proposed scheme scales as O(1/K3/4). In
addition, we show that LDP is also boosted by user sampling.

Full version of the paper available in [1].
I. INTRODUCTION

Federated learning (FL) [2] is a framework that enables

multiple users to jointly train a learning model with the

help of a parameter server (PS), typically, in an iterative

manner. In this paper, we focus on a variation of FL termed

federated stochastic gradient descent (FedSGD), where users

compute gradients for the machine learning (ML) model on

their local datasets, and subsequently exchange the gradients

for model updates at the PS. There are several motivating

factors behind the surging popularity of FL: (a) centralized

approaches can be inefficient in terms of storage/computation,

whereas FL provides natural parallelization for training, and

(b) local data at each user is never shared, but only the local

gradients are collected. However, even exchanging gradients

in a raw form can leak information, as shown in recent works

[3]–[9]. In addition, exchanging gradients incurs significant

communication overhead. Therefore, it is crucial to design

training protocols that are both communication efficient and

private.

Since the training of FedSGD involves gradient aggregation

from multiple users, the superposition property of wireless

channels can naturally support this operation. Several recent

works [10]–[20] have focused on exploiting the wireless

channel to alleviate the communication overhead of FL (see

a comprehensive survey [21]). Depending on the transmission
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Fig. 1: Illustration of the private wireless FedSGD framework: Users
collaborate with the PS to jointly train a ML model over a MAC.

strategy, wireless FL can be broadly categorized into digital

or analog schemes. In digital schemes, gradients from each

user are compressed and transmitted to the PS using a multi-

access scheme. However, digital schemes require the PS to

decode individual gradients and then aggregate them. For

analog schemes, on the other hand, gradient is rescaled at each

user to satisfy the power constraint and to mitigate the effect

of channel noise. All users then transmit the rescaled gradients

via wireless channel simultaneously. Non-orthogonal over the

air aggregation makes analog schemes more bandwidth effi-

cient compared to digital ones.

In addition to saving bandwidth and computation, it has

been shown in [22]–[24] that wireless FL also naturally

provides strong differential privacy (DP) [25] guarantees.

Specifically, in [22], it was shown that the superposition

nature of the wireless channel provides a stronger privacy

guarantee as well as faster convergence in comparison to

orthogonal transmission. The privacy level is shown to scale

as O(1/
√
K), where K is the number of users in the wireless

FL system. On the other hand, it was shown in [26] that

one can obtain a similar scaling of O(1/
√
K) for privacy

leakage through user sampling. The scheme of [26], however,

considers orthogonal transmission from the sampled users.

One natural question to ask is the following: Could we
achieve even stronger privacy guarantees by incorporating
both user sampling and wireless aggregation? If it does
provide stronger guarantee, how much additional gain can be
obtained? How can we optimally utilize the wireless resources,
and what are the tradeoffs between convergence of FedSGD
training, wireless resources and privacy?

Main Contributions: In this paper, we consider the problem

of FedSGD training over Gaussian multiple access channels

(MACs), subject to LDP and DP constraints. We propose a
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Transmission scheme Without sampling With sampling

Orthogonal O(1) [28] O(1/
√
K) [26]

Wireless Aggregation O(1/
√
K) [22] O(1/K3/4) (This work)

TABLE I: Comparison for central privacy under different settings:
(a) orthogonal and (b) wireless aggregation transmissions.

wireless FedSGD scheme with user sampling, where users

are sampled uniformly or based on their channel conditions.

We then study analog aggregation schemes coupled with the

proposed sampling schemes, in which each user transmits

a linear combination of (a) local gradient and (b) artificial

Gaussian noise. The local gradients are processed as a function

of the channel gains to align the resulting gradients at the

PS, whereas the artificial noise parameters are selected to

satisfy the privacy constraints. The existing privacy analysis

in [26], [27] for FL with user sampling cannot be applied

to our problem. The key challenge is that in each training

iteration, the effective noise seen at the signal received by

the PS over the wireless channel is a function of a random

number of sampled users, making the DP/LDP analysis non-

trivial. Using concentration inequalities, we are able to prove

that the central privacy leakage scales as O(1/K3/4) with

wireless aggregation and user sampling. We also provide

convergence analysis of the proposed scheme for different

sampling schemes in the full version of this paper [1]. To

the best of our knowledge, this is the first result on wireless

FedSGD with LDP and DP constraints with user sampling (see

Table I for comparison of results).

II. SYSTEM MODEL

Wireless Channel Model: We consider a wireless FL system

with K users and a central PS. Users are connected to the PS

through a Gaussian MAC as shown in Fig. 1. Let Kt denote

the random set of users who participate in iteration t. The

input-output relationship at the t-th block is

yt =
∑
k∈Kt

hk,txk,t +mt, (1)

where xk,t ∈ Rd is the signal transmitted by user k at the

t-th block, and yt is the received signal at the PS. Here,

hk,t ∈ R is the channel coefficient between user k and the PS

at iteration t. We assume a block flat-fading channel, where

the channel coefficient remains constant within the duration

of a communication block. Each user is assumed to know

its local channel gain, whereas we assume that the PS has

global channel state information (CSI). Each user can transmit

subject to average power constraint i.e., E
[‖xk,t‖22

] ≤ Pk.

mt ∈ Rd is the channel noise whose elements are indepen-

dent and identically distributed (i.i.d.) according to Gaussian

distribution N (0, N0). The random set of participants Kt can

be obtained through various strategies. In this paper, we focus

on user sampling, where user k participates in the training at

time t according to probability pk,t, for k = 1, . . . ,K. When

Kt = [K], we recover the conventional federated SGD where

every user participates in the training.

For this work, we consider (a) time-invariant uniform

sampling; (b) time-variant uniform sampling; and (c) channel

aware sampling. We note that sampling strategies based on

gradients or losses can potentially leak information about local

datasets, hence, require different privacy analysis. Thus, we

leave gradient-based sampling strategies to future work.

Federated Learning Problem: Each user k has a private

local dataset Dk with Dk data points, denoted as Dk =

{(u(k)
i , v

(k)
i )}Dk

i=1, where u
(k)
i is the i-th data point and v

(k)
i

is the corresponding label at user k. The local loss function at

user k is given by fk(w) = (1/Dk)
∑Dk

i=1 f(w;u
(k)
i , v

(k)
i ) +

ΩR(w), where w ∈ Rd is the parameter vector to be

optimized, R(w) is a regularization function and Ω ≥ 0 is

a regularization hyperparameter. Users communicate with the

PS through the Gaussian MAC described above in order to

train a model by minimizing the loss function F (w), i.e.,

w∗ = argmin
w

F (w) � 1∑K
k=1 Dk

K∑
k=1

Dkfk(w). (2)

The minimization of F (w) is carried out iteratively through

a distributed SGD algorithm. More specifically, in the t-
th training iteration, the PS broadcasts the global parameter

vector wt to all users. Each user k computes his local gradient

using stochastic mini batch Bk ⊆ Dk, with size bk points, i.e.,

gk(wt) =
1

bk

∑
i∈Bk

∇fk(wt; (u
(k)
i , v

(k)
i )) + Ω∇R(wt), (3)

where gk(wt) is the stochastic gradient estimate of user k.

The participants, i.e., k ∈ Kt, next pre-process their gk(wt)
and obtains xk,t, which is subsequently send to the PS. The

PS then receives yt as defined in (1). Upon receiving yt, the

PS performs post-processing on yt to obtain ĝt, the estimate

of the true gradient gt which is defined as,

gt =
1∑K

k=1 Dk

K∑
k=1

Dk∇fk(wt). (4)

The global parameter wt is updated using the estimated gradi-

ent ĝt according to the update rule wt+1 = wt − ηtĝt, where

ηt is the learning rate of the distributed SGD algorithm at

iteration t. The iteration process continues until convergence.

Typically, in the wireless setting, post-processing is done at

the PS to remove impact of the channel, and to ensure unbiased

gradient estimates. Post-processing requires the PS to have

knowledge of the channel condition, number of participants,

and knowing how users are selected to participate. We assume

that the PS has global CSI, and knows sampling probabilities

pk,t, ∀k, t. However, the number of participants may or may

not be known. Thus, in this work, we study both cases where

(a) Kt is known, or (b) Kt is unknown at the PS.

Wireless FL with User Sampling: Here, we describe the per-

iteration operation of the algorithm. At each iteration t, the PS

transmits the model wt to the users, and each user computes

the local gradient using its local dataset (as in (3)). Each user

k decides whether or not it wants to participate in the training

according to probability pk,t. Users then transmit their local

  



gradients with d channel uses of the wireless channel described

in (1). The transmitted signal of user k at iteration t is given

as:

xk,t =

{
αk,t

(
gk(wt) + nk,t

)
, w.p. pk,t

0, otherwise
(5)

where nk,t ∼ N (0, σ2
k,tId) is the artificial noise term to

ensure privacy, and αk,t is the scaling factor satisfying power

constraint at each user. If a user is not participating, it does

not transmit anything. We assume that the gradient vectors

have a bounded norm, i.e., ‖gk(wt)‖2 ≤ L, ∀k, and normalize

the gradient vector by L. The parameters αk,ts and σk,ts are

designed such that the power constraints are satisfied, i.e.,

E
[‖xk,t‖22

]
= α2

k,t

[
‖gk(wt)‖2 + dσ2

k,t

]
≤ Pk. From (1) and

(5), the received signal at the PS is given as:

yt =
∑
k∈Kt

hk,tαk,tgk(wt) +
∑
k∈Kt

hk,tαk,tnk,t +mt. (6)

In order to carry out the summation of the local gradients

over-the-air, all users pick the coefficients αk,ts to align their

transmitted local gradient estimates. Specifically, user k picks

αk,t so that

hk,tαk,t = 1, ∀k ∈ Kt. (7)

The PS can perform two different post-processing to get

unbiased gradient estimate ĝt, i.e., E [ĝt] = gt (see Appendix

in [1]), based on the knowledge it has about Kt:

Case (a): When Kt is known at the PS, it obtains the unbiased

gradient estimate ĝt as follows,

ĝt =
1

ζt|Kt|yt

=
1

ζt|Kt|
∑
k∈Kt

gk(wt) +
1

ζt|Kt|

[∑
k∈Kt

nk,t +mt

]
, (8)

where ζt = 1−∏K
k=1(1− pk,t).

Case (b): When Kt (thus |Kt|) is unknown at the PS, it obtains

the unbiased gradient estimate ĝt as follows,

ĝt =
1

μ|Kt|
yt

=
1

μ|Kt|

∑
k∈Kt

gk(wt) +
1

μ|Kt|

[∑
k∈Kt

nk,t +mt

]
, (9)

where μ|Kt| = E [|Kt|] =
∑K

k=1 pk,t is the expected number

of participants in iteration t. The PS then updates the model.

The process then repeats for T iterations.

Privacy Definitions: We assume the PS is honest but curious.

It is honest in the sense that it follows the procedure accord-

ingly, but it might learn sensitive information about users.

Therefore, the wireless FedSGD algorithm should satisfy LDP

constraints for each user. At the end of the training process,

the PS may release the trained model to a third party. Thus,

the training algorithm should provide central DP guarantees

against any further post-processing or inference. The local and

central privacy are formally defined as follows:

Definition 1. ((ε(k)� , δ�)-LDP [29]) Let Xk be a set of all
possible data points at user k. For user k, a randomized
mechanism Mk : Xk → Rd is (ε

(k)
� , δ�)-LDP if for any

x, x′ ∈ Xk, and any measurable subset Ok ⊆ Range(Mk),
we have

Pr(Mk(x) ∈ Ok) ≤ exp (ε
(k)
� ) Pr(Mk(x

′) ∈ Ok) + δ�.
(10)

The case of δ� = 0 is called pure ε
(k)
� -LDP.

Definition 2. ((εc, δc)-DP [29]) Let D � X1×X2×· · ·×XK

be the collection of all possible datasets of all K users. A
randomized mechanism M : D → Rd is (εc, δc)-DP if for any
two neighboring datasets D,D′ and any measurable subset
O ⊆ Range(M), we have

Pr(M(D) ∈ O) ≤ exp (εc) Pr(M(D′) ∈ O) + δc. (11)

We refer to a pair of datasets D,D′ ∈ D if D′ can be obtained
from D by removing one data element xi for some i ∈ [K].
The case when δc = 0 is called pure εc-DP.

III. MAIN RESULTS & DISCUSSIONS

A. Privacy Analysis for wireless FedSGD with User Sampling

In this section, we first derive the central privacy leak-

age for wireless FedSGD with user sampling. Specifically,

we consider non-uniform sampling, where each user can

be sampled according to a probability that depends on the

channel conditions. We then study a special case, i.e., uniform

sampling, to understand the asymptotic behavior of the central

privacy as a function of the total number of users. In addition,

we show that user sampling is also beneficial for the local

privacy level. We also quantify the gain for the local privacy

level achieved by user sampling and wireless aggregation

where Gaussian mechanism is used at each sampled user. We

note that the knowledge of Kt at the PS does not play a role in

the proofs of the privacy guarantees due to the robustness of

post-processing of DP. The privacy guarantee of the proposed

wireless FedSGD with non-uniform sampling scheme is stated

in the following Theorem:

Theorem 1. (Non-uniform sampling) Suppose each user k
participates in the training process at iteration t according to
probability pk,t, and utilizes local mechanism that satisfies
(ε

(k)
�,t , δ�)-LDP if they decided to participate. The central

privacy level of the wireless FedSGD with user sampling at
iteration t is given as

εc,t ≤ log

[
1 +

maxk pk,t
1− δ′

(
e

c√
μ|Kt|−βK − 1

)]
,

δc,t = δ′ +
maxk pk,tδ�

1− δ′
, (12)

for any δ′ ∈ (2e−2μ2
|Kt|/K , 1) and β = 1√

K

√
0.5 log (2/δ′),

where μ|Kt| =
∑K

k=1 pk,t denotes the expected num-
ber of users participating in iteration t, and c =
2L
σmin

√
2 log(1.25/δ�), where σmin = mink,t σk,t and L is the

Lipschitz constant for the loss function.
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Proof Sketch: To derive analyze the central DP leakage at

iteration t, we need to compare the distributions of the outputs

seen at the PS via MAC for two cases: (a) when user k par-

ticipates in training, and (b) when user k does not participate

in the training. The existing privacy analysis for user sampling

(with orthogonal transmissions) in [26], [27] cannot be directly

applied to the current problem. The key challenge is that in

each training iteration, the effective noise seen at the signal

received by the PS over the wireless channel is a function

of a random number (Kt) of sampled users. To account for

this randomness, we consider two sub-cases, one where Kt

is close to its mean μ|Kt|, and the complementary event.

We bound the terms arising from these sub-cases individually

using concentration inequalities, and then arrive at the central

DP leakage result εc,t presented in Theorem 1 by taking the

worst case bounds across all users k. The detailed proof can

be found in [1].

The privacy parameters in Eq. (12) indicates that the central

privacy leakage depends on the user with the highest sampling

probability. Intuitively, a user with high sampling probability

participates in the training process more often than other users,

hence, having most impact on the central privacy leakage.

We note that (12) is a convex function of {pk,t}Kk=1 when

ε
(k)
�,t ≤ 1. If the primary goal is to have strong privacy

guarantee and does not need fast convergence, one can solve

for the optimal sampling probabilities using the expression in

(12). However, it is difficult to obtain a closed form solution

of the optimal sampling probability for the non-uniform case.

Due to convexity, one can still solve it numerically using

convex solvers [30]. In contrast to the non-uniform case, one

can solve for the optimal sampling probability for the uniform

case analytically and obtain the following p∗t by first setting

pk,t = pt, ∀k in (12), and obtain the following Lemma:

Lemma 1. The optimal sampling probability that minimizes
the central privacy level for the uniform case is given by

p∗t = min

[
1,

2√
K

√
1

2
log

(
2

δ′

)]
. (13)

Using p∗t and defining c′ =
√

1
2 log

(
2
δ′
)
, one can obtain the

following upper bound on the central privacy level,

εc = log

[
2c′√

K(1− δ′)

(
e

c
4√
K

√
c′ − 1

)
+ 1

]
= O

(
1

K3/4

)

From Lemma 1, we observe that the central privacy level

behaves as O(1/K3/4) as opposed to the O(1/
√
K) in [22]

and [27]. Clearly, when both wireless aggregation and user

sampling are employed, we can obtain additional benefit in

terms of central privacy (see Table I and Fig. 2). Interestingly,

the addition of user sampling in wireless FedSGD also pro-

vides benefit for LDP as shown in the following Lemma:
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Fig. 2: Comparison for central privacy when σk,t = 3. The proposed
scheme is shown to outperform other variants when L = 1, N0 = 3,

δl = δ′ = 10−4 and p = min
[
1, 2√

K

√
1
2
log

(
2
δ′
)]

.

Lemma 2. For each user k, the proposed transmission scheme
achieves (ε

(k)
�,t , pk,t(δ� + δ′))-LDP per iteration, where

ε
(k)
�,t ≤ 1√

1 + κt
× 2L

σmin,t

√
2 log

(
1.25

δ�

)
, (14)

where σmin,t � mink σk,t, κt �
∑K

i=1,i �=k pi,t − βK, where
β and δ′ are defined in Theorem 1.

From Lemma 2, we observe the benefits of wireless aggre-

gation. Asymptotically, LDP behaves like O(1/
√
1 + κt). In

contrast, LDP achieved for orthogonal transmission scales as

a constant, and does not decay with K. In the full version [1]

of this paper, we present additional results on the total central

leakage for the entire training process (T iterations) by using

composition results for DP [31] [32].

IV. EXPERIMENTS

In this section, we conduct experiments to assess the

performance of the wireless FedSGD with user sampling

on MNIST dataset for image classification. We model the

instances of fading channels hk,t’s via an autoregressive (AR)

Rician model [33], where the Rician parameter Γ = 5 and

the temporal correlation coefficient ρ = 0.1. The channel

noise variance (receiver noise) is set as N0 = 1. The user’s

transmit signal-to-noise ratio is defined as SNRk = Pk

dN0
. We

use σ2
k,t = 0.1 as the perturbation noise. Prior to sending the

local gradient to the PS, each user clips the local gradient using

the Lipschitz constant chosen empirically with test runs. We

use δ� = 10−5 and δ′ = 2e−2μ2
|Kt|/K + 10−5 to satisfy the

constraint on δ′ and to avoid it from going to 0. We consider

two different sampling schemes described as follows,

Uniform Sampling: Let pk,t = p, ∀k, t for any p.

Channel Aware Sampling: Each user computes pk,t =
hk,t/hth, where the threshold hth is a hyperparameter which

is optimized via cross-validation.

We train a single-layer neural network (with no hidden

layer) using MNIST dataset [34], which consists of 60, 000
training and 10, 000 testing samples. The loss function we

used is cross-entropy, and ADAM optimizer for training with
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Fig. 3: The impact of the sampling probability on the training
accuracy with σ2

k,t = 0.1, L = 1 and T = 400.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε�,max 3.675 5.124 2.46
εc,max 4.535 5.61 3.132

Avg. |K| 96 60 180
Testing Acc. 85.27% 83.98% 86.42%

TABLE II: Comparison of privacy leakage per iteration with σ2
k,t =

0.1, L = 1 and T = 400 iterations. ε�,max and εc,max are the
maximum leakages across iterations.

a learning rate of η = 0.001. The training samples are evenly

and randomly distributed across K = 200 users. Users are split

into three groups where the first group consists of 68 users with

SNRk = 2 dB; the second and third group consist of 66 users

in each group with SNRk = 10 and 30 dB, respectively. We

use hth = 2 as the threshold for the channel aware sampling

scheme. Empirically, the scaling factor is computed as follows,

αk,t = min

⎡
⎣ 1

hk,t
,

√
Pk√

‖gk(wt)‖2 + dσ2
k,t

⎤
⎦ . (15)

In Fig. 3 and 4, we show the impact of sampling probability

on the training accuracy. First, we observe that a higher p
leads to a higher accuracy for the model. Next, in Table II,

we observe that, for the uniform case with L = 1, the central

DP leakage decreases as p increases, which contradicts with

the intuition that higher p leads to higher leakage. However,

let pk,t = p, ∀k, t in (12), i.e.,

εc,t ≤ log

[
1 +

p

1− δ′
(
e

c√
K(p−β) − 1

)]
, (16)

we can see that the behavior of εc,t depends on two terms:

p/(1 − δ′) and exp(c/
√
K(p− β)). As p increases, the first

term increases and the second term decreases. For a certain

range of c, the second term dominates, therefore, εc,t, as a

whole, decreases. This is due to the fact that, since perturbation

noises get aggregated over the wireless channel, the privacy

enhances. Hence, users are encouraged to participate more

when c is in that range. In general, c depends on σk,t, L, δ�,
and c for Fig. 3 and Table II falls in the range that allows the

second term to dominate as p increases. We also demonstrate

the case when the first term dominates, i.e., L = 0.1 for this

set of parameters. We can see that the central DP leakage
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Fig. 4: The impact of the sampling probability on the training
accuracy with σ2

k,t = 0.1, L = 0.1 and T = 2500.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε�,max 0.3677 0.5124 0.2460
εc,max 0.3642 0.2258 0.2317

Avg. |K| 96 60 180
Testing Acc. 84.33% 81.76% 86.25%

TABLE III: Comparison of privacy leakage per iteration with σ2
k,t =

0.1, L = 0.1 and T = 2500 iterations.

increases as p increases from Table III. When c is in this

range, the amplification of privacy is not enough to outweigh

the disadvantage of participating more. Thus, the intuition that

higher p leads to higher leakage holds. From Table II and III,

we can see that channel aware sampling achieves 85.27% and

84.33% testing accuracy, which is lower than those of uniform

sampling with p = 0.9. This is due to the choice of hth. By

reducing hth, we can improve the accuracy of the channel

aware sampling. Another interesting observation is that, while

channel aware sampling suffers slightly from higher central DP

leakages, it does achieve relatively high testing accuracy and

good local DP leakages with significant less average number

of participants compare to uniform sampling with p = 0.9.

We refer the readers to the full version of this paper [1] for

more discussions and experiments.

V. CONCLUSIONS

In this work, we showed the privacy benefits of user

sampling and wireless aggregation for federated learning.

The resulting leakage for central DP was shown to scale as

O(1/K3/4), improving upon prior results on this topic. As a

future work, we would like to study other variations of FL

such as FedAvg, where each user performs local model up-

dates through multiple SGD computations, followed by model

exchange with the PS. Another interesting direction would be

to consider scenarios where the sampling probabilities can

depend on the local gradients/losses. These scenarios may

require new techniques for privacy analysis than the ones used

in this paper, where sampling probabilities are independent of

the local data (gradients/local loss function).
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