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Abstract—In latent-variable private information retrieval (LV-
PIR), a user wishes to retrieve one out of K messages (indexed
by θ) without revealing any information about a sensitive latent
attribute (modeled by a latent variable S correlated with θ).
While conventional PIR protocols, which keep θ private, also
suffice for hiding S, they can be too costly in terms of the
download overhead. In this paper, we characterize the capacity
(equivalently, the optimal download cost) of LV-PIR as a function
of the distribution PS|θ . We present a converse proof that yields
a lower bound on the optimal download cost, and a matching
achievable scheme. The optimal scheme, however, involves an
exhaustive search over subset queries and over all messages,
which can be computationally prohibitive. We further present two
low-complexity, albeit sub-optimal, schemes that also outperform
the conventional PIR solution.

I. INTRODUCTION

Private information retrieval (PIR) [1] allows a user to

download one out of K messages from a curious database,

without revealing the message index to the database. This

is typically achieved at the expense of an increased com-

munication cost, because more than one message has to be

downloaded to preserve privacy. The PIR problem has been

widely studied under information-theoretic privacy assump-

tions, [2]–[39], for different model setups. However, when a

single database is considered or databases belong to a single

operator as is the case for most online services, the majority

of information-theoretic PIR models degenerate to impractical

solutions requiring the download of the entire database.

We consider the latent-variable PIR (LV-PIR) problem

which focuses on retrieving content while preserving the

privacy of sensitive (latent) attributes. Clearly, a traditional PIR

protocol that hides the identity of content (modeled by index

θ) also preserves the privacy of the latent variable (modeled

by S). However, this may not be necessary, as latent-variable

privacy constraint is weaker than perfect message privacy,

thereby providing an opportunity to reduce the download

overhead. The LV-PIR problem was introduced in our prior

work [40], where it was shown that it is possible to reduce

the download cost beyond that of conventional PIR.

In this paper, we settle the LV-PIR problem by character-

izing the optimal download cost as a function of the joint

distribution Pθ×PS|θ. We focus on the case where the message

index θ is uniformly distributed over the set {1, 2, . . . ,K},
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Fig. 1: Latent-variable PIR (LV-PIR).

whereas PS|θ can be arbitrary, and described by a |S| × |θ|
matrix H. Our main contributions are summarized as follows:

• We derive a converse proof for the LV-PIR problem that

gives a lower bound on the optimal download cost. We

show that the cost reduction (compared to conventional

PIR) depends on the correlation between the message

index θ and S, as captured by matrix H. We present

an LV-PIR scheme that achieves the lower bound based

on the idea of probabilistic subset queries over the

messages. The minimum download cost is then obtained

by searching over all possible probability assignments and

over all subset queries that contain the desired message.

• The optimal probabilistic subset query scheme can be

computationally prohibitive in practice, as it involves

a search over a probability simplex of size 2K−1 (all

subsets containing the desired message). Alternatively,

we present two low-complexity schemes that, while

not necessarily optimal, significantly outperform conven-

tional PIR. Our first low-complexity scheme reduces the

search space to a probability simplex of size
(

K
rank(H)

)
=

O(K rank(H)), and achieves a download cost which never

exceeds rank(H). This scheme can be particularly useful

when the number of latent attributes is much smaller

compared to the number of messages in the database

(|S| << |θ|). Our second scheme further reduces the

complexity to O(K) and achieves a download cost not

exceeding the number of unique columns in H. This

scheme can be beneficial in scenarios where content(s)

(e.g., movies from a genre) reveal the same information

about a sensitive attribute, which translates to a large

number of repeated columns in H.

Due to space limitations, we present the proof of our main

result (Theorem 1) in the paper and describe the main ideas

behind the two low-complexity schemes via an example.
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II. PROBLEM FORMULATION

We consider the PIR setting in Fig. 1. A set W =
{W1,W2, . . . ,WK} of K independent messages, each of size

L bits, are stored on a single database (DB). The user draws

a message index θ uniformly from the set {1, 2, . . . ,K} �
[1 : K]. The user is interested in retrieving message Wθ while

hiding a latent variable S, which can take one of T values

from alphabet S = {s1, s2, . . . , sT }. The latent variable S
is correlated with the message index θ, as described by the

conditional probability Pr(S = st|θ = k), where t ∈ [1 : T ].
We capture this conditional probability via a T ×K matrix H
with [H]t,k � htk = Pr(S = st|θ = k). We assume that the

matrix H is fixed and publicly-known to the DB and the user.

The pair (S, θ) is assumed to be independent of the messages.

To retrieve message Wθ, the user submits a query Q(θ) to

the DB. The DB determines the corresponding answer A(θ)

as a function of the query Q(θ) and the K messages. We

assume that the user does not exploit the knowledge of S in

the query construction. Then, the variables S → θ → Q(θ)

form a Markov chain as S is conditionally independent of

Q(θ) given the index θ, i.e.,

Pr(S = st|θ = k,Q(θ) = q) = Pr(S = st|θ = k). (1)

An LV-PIR scheme must satisfy the following correctness and

privacy constraints.

Correctness Constraint: The user must be able to recover

the requested message Wθ from Q(θ) and A(θ), i.e.,

H(Wθ|Q(θ), A(θ)) = 0. (2)

Latent-variable Privacy Constraint: The latent variable S
should be independent of the query Q(θ) and its corresponding

answer A(θ), i.e, Q(θ) and A(θ) should not leak any additional
information about S than what is known by the prior distribu-

tion of S. This implies that I(S;Q(θ), A(θ)) = 0. Equivalently,

for any realization of (Q(θ) = q, A(θ) = a), we must have

Pr(S = st|Q(θ) = q, A(θ) = a) = Pr(S = st), ∀st, q, a. (3)

Let �hk be the kth column of H. Then, we can express the

privacy constraint (3) in terms of the elements in matrix H,

as shown in the following Lemma:

Lemma 1. For an LV-PIR problem characterized by matrix
H = [�h1 · · · �hK ] and K equiprobable messages at the DB,
the LV-PIR privacy constraint (3) is equivalent to

K∑
k=1

( 1

K
− pk|q

) · �hk = 0, (4)

where pk|q
Δ
= Pr(θ = k|Q(θ) = q).

The proof of Lemma 1 follows by substituting htk =
Pr(S = st|θ = k) in (3) followed by algebraic manipulations.

The full proof is shown in the detailed version [41].

Download Cost: The average download cost DH of a LV-

PIR scheme is defined as follows:

DH = H(A(θ)|Q(θ)) =
∑
q

Pr(Q(θ) = q)DH(q), (5)

where DH(q) = H(A(θ)|Q(θ) = q) is the expected number

of downloaded bits when query Q(θ) = q is submitted. The

pair (L,DH) is said to be achievable if there exists an LV-PIR

scheme that satisfies the correctness and LV privacy constraint,

and can retrieve a message of size L bits by downloading an

average of DH bits. Our goal is to characterize the minimum

download cost D∗(H),

D∗(H) = min{DH/L : (L,DH) is achievable}. (6)

III. MAIN RESULTS AND DISCUSSION

The following theorem states the minimum download cost

for the LV-PIR problem defined in (6).

Theorem 1. Define K as the powerset of [1 : K] excluding the
empty set ∅, i.e., K includes all non-empty subsets of indices
[1 : K]. Define Kk as the set of all subsets within K that
include index k. Also, define �πk = {πq|k

Δ
= Pr(Q(θ) = q|θ =

k)| ∀q ∈ K} to be a valid PMF over the support K. The
optimal download cost of LV-PIR is given as follows

D∗(H) = min
�π1,�π2,...,�πK

1

K

K∑
k=1

∑
q∈K

πq|k |q| (7)

s.t. πq|k = 0, ∀q �∈ Kk, ∀k ∈ [1 : K], (8)

K∑
k=1

(
πq|k − 1

K

K∑
k′=1

πq|k′
) · �hk = 0, ∀q ∈ K, (9)

0 ≤ πq|k ≤ 1,
∑
q∈K

πq|k = 1, ∀k ∈ [1 : K]. (10)

Proof of Theorem 1 is presented in Section IV. The query

cardinality |q| is the number of downloaded messages when

the user submits query q. The objective function in (7) mini-

mizes the average download cost over all probabilistic sub-set

queries. The condition in (8) is used to satisfy correctness. The

condition in (9) is used to ensure LV-PIR privacy, while (10) is

to ensure valid distributions �π1, �π2, . . . , �πK . The achievability

scheme for the optimal download cost in Theorem 1 requires

searching over all subset queries that include the desired

message index k. The number of these queries is 2K−1,

leading to an exponentially-increasing complexity with K.

In the following theorems, we propose two low-complexity

achievability schemes. Due to space limitations, the two

schemes are fully described in [41]. Here, we sketch the main

ideas behind the schemes.

Probabilistic LV-PIR scheme: The probabilistic scheme uti-

lizes a connection between valid subset queries and vectors

�c = {c1, . . . , cK} inside the null-space of H. For any query q
that belongs to the powerset of [1 : K] and satisfies LV-privacy,

there is a vector �c where ck = 1/K−pk|q, ∀k. This connection

follows from the privacy condition in Lemma 1 where the

equality only holds when there is some vector �c, inside the

null-space of H, with elements equal ck = 1/K − pk|q, ∀k.
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The scheme reduces the download cost by minimizing the size

|q| of the submitted query, hence minimizing the number of

downloaded messages. This is performed by setting πq|k = 0
for as many messages as possible. Having ck = 1/K (equiv-

alently pk|q = 0) ensures that πq|k = 0 which means q will

not be submitted to download Wk, then it is not required to

include k. Using the above connection, the main idea of the

scheme is to find vectors �c that have the maximum number of

elements set to 1/K, then create a related subset query from

each of them. The related query is formed such that it includes

all indices k, where ck < 1
K (πq|k > 0). Let R(H) be the

rank of H, then we have K−R(H) free variables inside each

vector �c. These variables can be controlled and set to 1/K.

Thus, each query can avoid downloading at least K − R(H)
messages. This explains the intuition behind the statement of

Theorem 2 which states that the download cost of this scheme

is upper-bounded by R(H).

Theorem 2. The Probabilistic LV-PIR scheme achieves a
download cost not exceeding R(H), and has a query search
complexity of

(
K

R(H)

)
= O(KR(H)), where R(H) denotes the

rank of H.

The probabilistic scheme that obtains the bound in Theorem

2 requires searching over
(

K
R(H)

)
= O(KR(H)) subset queries.

Although the complexity of the Probabilistic LV-PIR scheme

grows polynomially with K, it can still be substantial if H has

a high rank. We propose a grouping LV-PIR scheme which

further reduces the query complexity as follows.

Grouping LV-PIR scheme: The grouping scheme deals with

the case when groups of messages are equivalently correlated

to the latent variable S. In this scheme, all messages with

identical columns in H are grouped together. The subset

queries are then designed such that one message is downloaded

from each group. The number of downloaded messages for any

query is U(H), the number of unique columns in H. Then,

this always leads to a download cost of U(H).

Theorem 3. The Grouping LV-PIR scheme achieves a down-
load cost not exceeding U(H), where U(H) denotes the
number of unique columns in H, and has a query search
complexity of O(K).

We emphasize that this grouping scheme always yields

a lower download cost compared to the grouping scheme

proposed in our previous work [40]. In the following example,

we compare conventional PIR with the proposed LV-PIR

schemes and show how the download cost can be reduced.

Example 1. Consider the LV-PIR problem with K = 5
equiprobable messages and a latent variable S taking T = 2
values. The conditional distribution PS|θ described by the

matrix H is given as follows:

H =

[
1/4 5/8 5/8 5/8 3/8

3/4 3/8 3/8 3/8 5/8

]
. (11)

Conventional PIR scheme [3]: For the PIR setting with one

DB, the only solution that satisfies perfect privacy for θ

TABLE I: Deterministic LV-PIR scheme [40]

Subset query πq|1 πq|2 πq|3 πq|4 πq|5
q1 ={1,2,3} 1 1 1 0 0

q2 ={4,5} 0 0 0 1 1

TABLE II: Probabilistic LV-PIR scheme (Theorem 2)

Subset query πq|1 πq|2 πq|3 πq|4 πq|5
q1 = {1, 2} 1/3 2/3 0 0 0

q2 = {1, 3} 1/3 0 2/3 0 0

q3 = {1, 4} 1/3 0 0 2/3 0

q4 = {2, 5} 0 1/3 0 0 1/3

q5 = {3, 5} 0 0 1/3 0 1/3

q6 = {4, 5} 0 0 0 1/3 1/3

(and subsequently for S) is the following: download all five

messages, i.e., the download cost is:

DPIR = K = 5. (12)

Deterministic LV-PIR scheme [40]: In this scheme, messages

are divided into disjoint subsets such that downloading any

individual subset does not violate LV privacy (meets the prior

distribution of S). In this example, we divide the five messages

into subsets q1 = {1, 2, 3} and q2 = {4, 5}. To download any

desired message, the user submits the query that includes its

index. Table I shows the query assignment for every message.

The download cost for this scheme is

D
(LV)
deterministic =

3∑
k=1

Pr(θ = k) · |q1|+
5∑

k=4

Pr(θ = k) · |q2|

=
3

5
× 3 +

2

5
× 2 =

13

5
= 2.6. (13)

This is clearly less than DPIR. However, we can further reduce

the download cost using a probabilistic scheme.

Probabilistic LV-PIR scheme (Theorem 2): The first step in

this scheme is to find vectors �c, inside the null-space of

H, that include the maximum number of elements set to
1/5 = 0.2. As the matrix H in (11) is of rank R(H) = 2,

there can be three free variables inside �c that can be set to

0.2. The free variables can be freely chosen, then we can

obtain
(
5
3

)
= 10 different vectors. The next step is to exclude

any vector �c that includes elements exceeding 0.2 as this later

can lead to negative probability assignment. Following that,

we get only six remaining vectors. From each vector �c, we

obtain a related subset query, q = {k : ck < 0.2}. For

instance, setting c3 = c4 = c5 = 0.2 as free variables, we

get the vector �c = {−2/15,−7/15, 0.2, 0.2, 0.2}. The related

query for this vector is q = {k : ck < 0.2} = {1, 2}.

The remaining five vectors �c, and their related queries, can

be obtained similarly. Then, we have a total of six queries:

{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, and {4, 5}. For each de-

sired message Wk, the user assigns a probability πq|k =
αq(0.2−ck) to each of these queries, where αq is a weighting

factor used to ensure that the values for πq|k, ∀k, q create a

valid PMFs for the distributions �π1, �π2, . . . , �πK . For instance,

the factor αq for the query {1, 2} is calculated as αq = 1.

 



TABLE III: Grouping LV-PIR scheme (Theorem 3)

Subset query πq|1 πq|2 πq|3 πq|4 πq|5
q1 = {1, 2, 5} 1/3 1 0 0 1/3

q2 = {1, 3, 5} 1/3 0 1 0 1/3

q3 = {1, 4, 5} 1/3 0 0 1 1/3

Then, the query {1, 2} is submitted to request messages W1

and W2 with probabilities πq|1 = 1 × (0.2 + 2/15) = 1/3
and πq|2 = 1 × (0.2 + 7/15) = 2/3, respectively. The query

assignment for each message is shown in Table II.

As all subset queries are of size two, the download cost for

this scheme can be written as

D
(LV)
probabilistic = D(H) =

5∑
k=1

Pr(θ = k) · 2 = 2 = R(H), (14)

where R(H) is the rank of matrix H. We highlight that for

this example, the scheme shown in Table II is optimal.

Grouping LV-PIR scheme (Theorem 3): For the matrix H in

(11), since there are U(H) = 3 unique columns, the following

three groups are formed: {1}, {2, 3, 4}, and {5}. By picking

one message from each group, we obtain the three queries

shown in Table III. For any desired message, the user uni-

formly selects between queries that include the message index.

For instance, the user selects each of the three queries with

probability 1/3 when message W1 or W5 is desired. All subset

queries are of size three. The average download cost is

D
(LV)
grouping = D(H) =

5∑
k=1

Pr(θ = k) · 3 = 3 = U(H). (15)

Although this scheme yields a higher download cost than

the previous two LV-PIR schemes, it is still lower than the

conventional PIR solution of downloading all messages. The

advantage of this scheme is its lower complexity.

It is straightforward to verify the correctness of the proposed

solutions for the three LV-PIR schemes where each message

index k is included in any subset query q that can be requested

to download Wk with a non-zero probability (πq|k > 0).

Furthermore, it can be shown that the three solutions satisfy

the LV privacy condition in (9) by substituting the values of

πq|k for different queries, inside Tables I, II, and III.

IV. PROOF OF THEOREM 1

To prove Theorem 1, we present an LV-PIR scheme fol-

lowed by a converse proof with a matching lower bound.

A. Achievability: Exhaustive Search LV-PIR Scheme

We propose an exhaustive search scheme that minimizes

the LV-PIR download cost by searching over all valid subset

queries that satisfy both the correctness and LV privacy re-

quirements. Let K be the powerset of the set [1 : K], excluding

the empty set ∅, i.e., K includes all non-empty subsets of the

indices [1 : K]. Consider any subset q ⊆ K, for which we

define πq|k as follows:

πq|k
Δ
= Pr(Q(θ) = q|θ = k), (16)

i.e., πq|k is probability of sending the subset query q if message

k is desired by the user. For any query q, the LV privacy

constraint in (4) can be written in terms of {πq|k}Kk=1 as

K∑
k=1

(
1

K
− pk|q

)
· �hk =

K∑
k=1

(
1

K
− πq|k · 1

K

Pr(Q = q)

)
· �hk = 0.

Rearranging the above equation and substituting Pr(Q = q) =
1
K

∑K
k′=1 πq|k′ yields

K∑
k=1

(
πq|k − 1

K

K∑
k′=1

πq|k′
) · �hk = 0, ∀q ∈ K. (17)

Any valid choice for the distribution �πk = {πq|k | ∀q ∈ K},

over all possible queries has to satisfy two properties. First,

each distribution �πk must be a valid PMF.

0 ≤ πq|k ≤ 1,
∑
q∈K

πq|k = 1, ∀k ∈ [1 : K]. (18)

Second, let Kk be the set of all subsets within K that include

index k. To satisfy decodability of message Wk, the subset

query must be chosen such that q ∈ Kk. That is,

πq|k = 0, ∀q /∈ Kk. (19)

This is equivalent to q = {k | πq|k > 0}.
Download cost: Let |q| be the cardinality of the subset

query q. We can express the number of downloaded bits when

query q is submitted as DH(q) = |q| · L = L
∑K

k=1 I(πq|k >
0), where I(.) is an indicator function. The download cost DH,

given specific distributions �π1, �π2, . . . , �πK , can be written as

DH =
1

K

K∑
k=1

∑
q∈K

πq|k ·DH(q). (20)

An exhaustive search LV-PIR scheme minimizes the download

cost by searching over all possible distributions �π1, �π2, . . . ,

�πK that satisfy the requirements in (18), (19), and LV privacy

constraint in (17). Thus, the exhaustive search scheme leads

to the following upper bound on the optimal download cost,

D∗(H) ≤ min
�π1,�π2,...,�πK

1

K

K∑
k=1

∑
q∈K

πq|k |q|

s.t. πq|k = 0, ∀q �∈ Kk, ∀k ∈ [1 : K],
K∑

k=1

(
πq|k − 1

K

K∑
k′=1

πq|k′
) · �hk = 0, ∀q ∈ K,

0 ≤ πq|k ≤ 1,
∑
q∈K

πq|k = 1, ∀k ∈ [1 : K]. (21)

B. Converse Proof

We now derive a lower bound on the minimum download

cost D∗(H) that matches the upper bound in (21). Consider

any arbitrary scheme B that satisfies both the correctness and

privacy conditions in (2) and (3), respectively. The minimum

download cost D∗(H) for LV-PIR can be represented as

D∗(H) = min
B

DB(H), (22)

 



where DB(H) is the download cost when scheme B is used.

Since θ → Q(θ) → A(θ), we define A(q) to be the answer

when a query q is submitted, regardless of the desired message.

DB(H) can be expressed as follows:

DB(H) =
1

L
H(A(θ)|Q(θ), θ)

=
1

LK

K∑
k=1

H(A(k)|Q(k), θ = k)

=
1

LK

K∑
k=1

∑
q

Pr(Q(k) = q|θ = k)H(A(q)|Q(k) = q, θ = k)

(a)
=

1

LK

K∑
k=1

∑
q

πq|k H(A(q)|Q(k) = q), (23)

where (a) is due to the Markov chain in (1). We next state a

lemma that gives a necessary condition for decodability.

Lemma 2. For any query q that can be submitted to download
message Wk with non-zero probability, i.e., πq|k = Pr(Q(k) =
q|θ = k) > 0, the message Wk must be decodable from the
corresponding answer A(q), i.e.,

H(Wk|A(q), Q(k) = q) = 0. (24)

The proof of this Lemma follows readily by expanding the

correctness constraint (2) and is omitted. We next define the

image set of query q, as μ(q) � {k| πq|k > 0}, as the set of

message indices for which q can be submitted. Let Wμ(q) be

the set of messages whose indices are included in μ(q). Using

Lemma 2, we can lower bound the term in (23) as follows:

H(A(q)|Q(k) = q)

= H(Wμ(q) , A(q)|Q(k) = q)−H(Wμ(q) |A(q), Q(k) = q)

(a)
= H(Wμ(q) , A(q)|Q(k) = q)

≥ H(Wμ(q) |Q(k) = q) = |μ(q)| · L, (25)

where (a) is due to Lemma 2, and |μ(q)| is the cardinality of

the image set μ(q) for query q. Substituting (25) in (23) yields

DB(H) ≥ 1

K

K∑
k=1

∑
q

πq|k |μ(q)|. (26)

Furthermore, any query q using scheme B, must also satisfy

the LV privacy constraint, which can be written as follows:

Pr(S = st) = Pr(S = st|Q(k) = q)

=
K∑

k=1

Pr(θ = k|Q(k) = qj) Pr(S = st|θ = k,Q(k) = q)

=
K∑

k=1

Pr(θ = k)πq|k
K∑

k′=1

Pr(θ = k)πq|k′

Pr(S = st|θ = k), (27)

which can be rearranged in the following relation

K∑
k=1

πq|k(Pr(S = st)− Pr(S = st|θ = k)) = 0. (28)

Our main idea for proving the optimality of subset queries is

as follows: given an arbitrary query q for a scheme B (which

may or may not be a subset query), we can construct a sub-

set query q̃ which also satisfies decodability and LV-privacy,

and does not exceed the download cost of q. Specifically, we

let q̃ = μ(q), i.e., the derived sub-set query only requests to

download the messages in the image set μ(q) of query q, and

define the query probabilities as follows:

πq̃|k = πμ(q)|k =

{
0, k /∈ μ(q),

πq|k k ∈ μ(q).
(29)

We denote the resulting subset query scheme as B̃. It is clear

that q̃ satisfies decodability, and it follows from (28), (29)

that every query q̃ in scheme B̃ also satisfies LV-privacy. The

download cost of B̃ can be exactly written as follows:

DB̃(H) =
1

K

K∑
k=1

∑
q̃

πq̃|k |q̃| = 1

K

K∑
k=1

∑
μ(q)

πμ(q)|k |μ(q)|

=
1

K

K∑
k=1

∑
q

πq|k |μ(q)|. (30)

Hence, from (26) and (30), it follows that DB(H) ≥ DB̃(H).
Thus, we can now obtain a lower bound for the optimal

download cost by minimizing over all valid subset queries,

and arrive at the following lower bound on D∗(H):

D∗(H) ≥ min
�π1,�π2,...,�πK

1

K

K∑
k=1

∑
q∈K

πq|k |q|

s.t. πq|k = 0, ∀q �∈ Kk, ∀k ∈ [1 : K],
K∑

k=1

(
πq|k − 1

K

K∑
k′=1

πq|k′
) · �hk = 0, ∀q ∈ K,

0 ≤ πq|k ≤ 1,
∑
q∈K

πq|k = 1, ∀k ∈ [1 : K]. (31)

This completes the proof of Theorem 1.

V. CONCLUSION

In this paper, we studied the problem of latent-variable PIR,

where information-theoretic privacy is preserved with respect

to a latent variable. We characterized the capacity for the LV-

PIR under the practical assumption of a single database. We

derived a converse proof that gives a lower bound on the

optimal download cost, and proposed an achievability scheme

that matches the derived bound. Furthermore, we introduced

a simplified general scheme that decreases the complexity of

obtaining efficient retrieval queries. We utilized the structure

of H to achieve a low-complexity LV-PIR grouping construc-

tion when messages are partitioned in groups with the same

statistical properties with respect to the latent variable.
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