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Abstract—In latent-variable private information retrieval (LV-
PIR), a user wishes to retrieve one out of K messages (indexed
by 0) without revealing any information about a sensitive latent
attribute (modeled by a latent variable S correlated with 0).
While conventional PIR protocols, which keep 6 private, also
suffice for hiding S, they can be too costly in terms of the
download overhead. In this paper, we characterize the capacity
(equivalently, the optimal download cost) of LV-PIR as a function
of the distribution Psy. We present a converse proof that yields
a lower bound on the optimal download cost, and a matching
achievable scheme. The optimal scheme, however, involves an
exhaustive search over subset queries and over all messages,
which can be computationally prohibitive. We further present two
low-complexity, albeit sub-optimal, schemes that also outperform
the conventional PIR solution.

I. INTRODUCTION

Private information retrieval (PIR) [1] allows a user to
download one out of K messages from a curious database,
without revealing the message index to the database. This
is typically achieved at the expense of an increased com-
munication cost, because more than one message has to be
downloaded to preserve privacy. The PIR problem has been
widely studied under information-theoretic privacy assump-
tions, [2]-[39], for different model setups. However, when a
single database is considered or databases belong to a single
operator as is the case for most online services, the majority
of information-theoretic PIR models degenerate to impractical
solutions requiring the download of the entire database.

We consider the latent-variable PIR (LV-PIR) problem
which focuses on retrieving content while preserving the
privacy of sensitive (latent) attributes. Clearly, a traditional PIR
protocol that hides the identity of content (modeled by index
0) also preserves the privacy of the latent variable (modeled
by 5). However, this may not be necessary, as latent-variable
privacy constraint is weaker than perfect message privacy,
thereby providing an opportunity to reduce the download
overhead. The LV-PIR problem was introduced in our prior
work [40], where it was shown that it is possible to reduce
the download cost beyond that of conventional PIR.

In this paper, we settle the LV-PIR problem by character-
izing the optimal download cost as a function of the joint
distribution P x Pgg. We focus on the case where the message
index 6 is uniformly distributed over the set {1,2,..., K},
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Fig. 1: Latent-variable PIR (LV-PIR).

whereas Pg|g can be arbitrary, and described by a |S| x [6)]
matrix H. Our main contributions are summarized as follows:

e We derive a converse proof for the LV-PIR problem that
gives a lower bound on the optimal download cost. We
show that the cost reduction (compared to conventional
PIR) depends on the correlation between the message
index 6 and S, as captured by matrix H. We present
an LV-PIR scheme that achieves the lower bound based
on the idea of probabilistic subset queries over the
messages. The minimum download cost is then obtained
by searching over all possible probability assignments and
over all subset queries that contain the desired message.

o The optimal probabilistic subset query scheme can be
computationally prohibitive in practice, as it involves
a search over a probability simplex of size 2K~1 (all
subsets containing the desired message). Alternatively,
we present two low-complexity schemes that, while
not necessarily optimal, significantly outperform conven-
tional PIR. Our first low-complexity scheme reduces the
search space to a probability simplex of size (mngH)) =
O(K™&(H)) "and achieves a download cost which never
exceeds rank(H). This scheme can be particularly useful
when the number of latent attributes is much smaller
compared to the number of messages in the database
(IS] << |0]). Our second scheme further reduces the
complexity to O(K') and achieves a download cost not
exceeding the number of unique columns in H. This
scheme can be beneficial in scenarios where content(s)
(e.g., movies from a genre) reveal the same information
about a sensitive attribute, which translates to a large
number of repeated columns in H.

Due to space limitations, we present the proof of our main
result (Theorem 1) in the paper and describe the main ideas
behind the two low-complexity schemes via an example.
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II. PROBLEM FORMULATION

We consider the PIR setting in Fig. 1. A set W =
{W1,Wa,...,Wk} of K independent messages, each of size
L bits, are stored on a single database (DB). The user draws
a message index 6 uniformly from the set {1,2,..., K} £
[1: K. The user is interested in retrieving message Wy while
hiding a latent variable .S, which can take one of T values
from alphabet S = {s1,$2,...,$r}. The latent variable S
is correlated with the message index 6, as described by the
conditional probability Pr(S = s;|0 = k), where t € [1 : T).
We capture this conditional probability via a 7' x K matrix H
with [H]; ;. 2 hye = Pr(S = ;0 = k). We assume that the
matrix H is fixed and publicly-known to the DB and the user.
The pair (S, 6) is assumed to be independent of the messages.

To retrieve message Wp, the user submits a query Q(?) to
the DB. The DB determines the corresponding answer A()
as a function of the query Q®) and the K messages. We
assume that the user does not exploit the knowledge of S in
the query construction. Then, the variables S — 6 — Q)
form a Markov chain as S is conditionally independent of
Q9 given the index 6, i.e.,

Pr(S=s0 =k Q" =¢q)=Pr(S=s0=k). (1)

An LV-PIR scheme must satisfy the following correctness and
privacy constraints.

Correctness Constraint: The user must be able to recover
the requested message W from Q(¥) and A, ie.,

H(Wy|Q”, A®) = 0. )

Latent-variable Privacy Constraint: The latent variable .S
should be independent of the query Q(?) and its corresponding
answer A i.e, Q9 and A should not leak any additional
information about S than what is known by the prior distribu-
tion of S. This implies that I(S; Q(® | A(®)) = 0. Equivalently,
for any realization of (Q(®) = ¢, A() = @), we must have

Pr(S = 5|Q" = ¢, A = a) = Pr(S = 1), Vs1,q,a. (3)

Let Hk be the kt" column of H. Then, we can express the
privacy constraint (3) in terms of the elements in matrix H,
as shown in the following Lemma:

Lemma 1. For an LV-PIR problem characterized by matrix
H = [hy -+ hk] and K equiprobable messages at the DB,
the LV-PIR privacy constraint (3) is equivalent to

W

2 (? — Drjg) - hi =0, 4)

where py|q 2 Pr(6 = k|Q¥) = q).

The proof of Lemma 1 follows by substituting hy =
Pr(S = s¢|0 = k) in (3) followed by algebraic manipulations.
The full proof is shown in the detailed version [41].

Download Cost: The average download cost Dy of a LV-

PIR scheme is defined as follows:

Dy = H(ADQ®W) =Y Pr(Q” = q)Dula), (5)
q

where Dy(q) = H(A®|Q®) = ¢) is the expected number
of downloaded bits when query Q(¥) = ¢ is submitted. The
pair (L, Dg) is said to be achievable if there exists an LV-PIR
scheme that satisfies the correctness and LV privacy constraint,
and can retrieve a message of size L bits by downloading an
average of Dyy bits. Our goal is to characterize the minimum
download cost D*(H),

D*(H) = min{Dy/L : (L, Dy) is achievable}.  (6)

IIT. MAIN RESULTS AND DISCUSSION

The following theorem states the minimum download cost
for the LV-PIR problem defined in (6).

Theorem 1. Define K as the powerset of [1 : K| excluding the
empty set (), i.e., K includes all non-empty subsets of indices
[1 : K. Define Ky, as the set of all subsets within K that
include index k. Also, define Ty = {mq, 2 Pr(QY) = ¢|0 =
k)| Yq € K} to be a valid PMF over the support K. The
optimal download cost of LV-PIR is given as follows

K
D*(H) = min EZZFW lq] (7)
T, T2, TR
k=1qek
st mae =0, VYg& Ky, Vkel[l: K], (8)
K 1 K
Z (g — e Z Tgw) - hi =0, Ygek, (9
k=1 k'=1
0<mr <1, > mu=1 Vke[l:K]. (10)
qgeK

Proof of Theorem 1 is presented in Section IV. The query
cardinality |g| is the number of downloaded messages when
the user submits query g. The objective function in (7) mini-
mizes the average download cost over all probabilistic sub-set
queries. The condition in (8) is used to satisfy correctness. The
condition in (9) is used to ensure LV-PIR privacy, while (10) is
to ensure valid distributions 71, 7a, . . ., M. The achievability
scheme for the optimal download cost in Theorem 1 requires
searching over all subset queries that include the desired
message index k. The number of these queries is 251,
leading to an exponentially-increasing complexity with K.

In the following theorems, we propose two low-complexity
achievability schemes. Due to space limitations, the two
schemes are fully described in [41]. Here, we sketch the main
ideas behind the schemes.

Probabilistic LV-PIR scheme: The probabilistic scheme uti-
lizes a connection between valid subset queries and vectors
é¢={ci1,...,cx} inside the null-space of H. For any query ¢
that belongs to the powerset of [1 : K] and satisfies LV-privacy,
there is a vector ¢ where ¢, = /K — py|4, Vk. This connection
follows from the privacy condition in Lemma 1 where the
equality only holds when there is some vector ¢, inside the
null-space of H, with elements equal ¢, = /K — pyq, Vk.
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The scheme reduces the download cost by minimizing the size
lg| of the submitted query, hence minimizing the number of
downloaded messages. This is performed by setting 7, = 0
for as many messages as possible. Having ¢, = /K (equiv-
alently py, = 0) ensures that 7,;, = 0 which means ¢ will
not be submitted to download W, then it is not required to
include k. Using the above connection, the main idea of the
scheme is to find vectors ¢ that have the maximum number of
elements set to 1/k, then create a related subset query from
each of them. The related query is formed such that it includes
all indices k, where ¢, < & (mg > 0). Let R(H) be the
rank of H, then we have K — R(H) free variables inside each
vector ¢. These variables can be controlled and set to !/x.
Thus, each query can avoid downloading at least K — R(H)
messages. This explains the intuition behind the statement of
Theorem 2 which states that the download cost of this scheme
is upper-bounded by R(H).

Theorem 2. The Probabilistic LV-PIR scheme achieves a
download cost not exceeding R(H), and has a query search
complexity of (Rgl)) = O(KRH) where R(H) denotes the
rank of H.

The probabilistic scheme that obtains the bound in Theorem
2 requires searching over ( Rg{)) = O(K M) subset queries.
Although the complexity of the Probabilistic LV-PIR scheme
grows polynomially with /, it can still be substantial if H has
a high rank. We propose a grouping LV-PIR scheme which
further reduces the query complexity as follows.

Grouping LV-PIR scheme: The grouping scheme deals with
the case when groups of messages are equivalently correlated
to the latent variable S. In this scheme, all messages with
identical columns in H are grouped together. The subset
queries are then designed such that one message is downloaded
from each group. The number of downloaded messages for any
query is U(H), the number of unique columns in H. Then,
this always leads to a download cost of U(H).

Theorem 3. The Grouping LV-PIR scheme achieves a down-
load cost not exceeding U(H), where U(H) denotes the
number of unique columns in H, and has a query search
complexity of O(K).

We emphasize that this grouping scheme always yields
a lower download cost compared to the grouping scheme
proposed in our previous work [40]. In the following example,
we compare conventional PIR with the proposed LV-PIR
schemes and show how the download cost can be reduced.

Example 1. Consider the LV-PIR problem with K = 5
equiprobable messages and a latent variable S taking T' = 2
values. The conditional distribution Pgjy described by the
matrix H is given as follows:

14 5/8 5/8 5/8 3/8

1 3/4 3/8 3/8 3/8 5/8 | (b

Conventional PIR scheme [3]: For the PIR setting with one
DB, the only solution that satisfies perfect privacy for 6

TABLE I: Deterministic LV-PIR scheme [40]

Subset query Tyl Tq|2 Tql3 Tqld Tyl5
@1 ={1,2,3} 1 1 1 0 0
g2 ={4.5} 0 0 0 1 1

TABLE II: Probabilistic LV-PIR scheme (Theorem 2)

Subset query | mgp1 T2 Tql3 Tql4 Tql5
¢ = {1,2} 1/3 2/3 0 0 0
g2 = {1,3} 1/3 0 2/3 0 0
g3 = {1,4} 1/3 0 0 2/3 0

g1 ={2,5} 0 1/3 0 0 1/3
g5 = 13,5} 0 0 1/3 0 1/3
g6 = {4,5} 0 0 0 1/3 1/3

(and subsequently for S) is the following: download all five

messages, i.e., the download cost is:
Dpr = K = 5. (12)

Deterministic LV-PIR scheme [40]: In this scheme, messages

are divided into disjoint subsets such that downloading any
individual subset does not violate LV privacy (meets the prior
distribution of .S). In this example, we divide the five messages
into subsets ¢; = {1,2,3} and ¢2 = {4,5}. To download any
desired message, the user submits the query that includes its
index. Table I shows the query assignment for every message.
The download cost for this scheme is

3 5
LV
D& e = > _Pr(0=k) - 1| + Y Pr(6 = k) - |go]
k=1 k=4
3
= - X

2 13
- X2="—=26.
5 3+5>< 5 6

This is clearly less than Dpr. However, we can further reduce
the download cost using a probabilistic scheme.

Probabilistic LV-PIR scheme (Theorem 2): The first step in
this scheme is to find vectors ¢, inside the null-space of
H, that include the maximum number of elements set to
1/5 = 0.2. As the matrix H in (11) is of rank R(H) = 2,
there can be three free variables inside ¢ that can be set to
0.2. The free variables can be freely chosen, then we can
obtain (2) = 10 different vectors. The next step is to exclude
any vector ¢ that includes elements exceeding 0.2 as this later
can lead to negative probability assignment. Following that,
we get only six remaining vectors. From each vector ¢, we
obtain a related subset query, ¢ = {k : ¢ < 0.2}. For
instance, setting cs = c4 = ¢5 = 0.2 as free variables, we
get the vector ¢ = {—2/15,—7/15,0.2,0.2,0.2}. The related
query for this vector is ¢ = {k : ¢, < 0.2} = {1,2}.
The remaining five vectors ¢, and their related queries, can
be obtained similarly. Then, we have a total of six queries:
{1,2},{1,3},{1,4},{2,5},{3,5}, and {4,5}. For each de-
sired message Wy, the user assigns a probability 7, =
a4(0.2—¢y,) to each of these queries, where oy is a weighting
factor used to ensure that the values for 7y, Vk, ¢ create a
valid PMFs for the distributions 7, s, . .., Tx. For instance,
the factor o, for the query {1,2} is calculated as oy = 1.

13)
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TABLE III: Grouping LV-PIR scheme (Theorem 3)

Subset query | g1 T2 | Tq3 Tql4 Tyl5
¢ ={1,2,5} 1/3 1 0 0 1/3
g2 ={1,3,5} 1/3 0 1 0 1/3
g3 = {1,4,5} 1/3 0 0 1 1/3

Then, the query {1,2} is submitted to request messages W
and Wy with probabilities 7,; = 1 x (0.2 +2/15) = 1/3
and g2 = 1 x (0.2 4 7/15) = 2/3, respectively. The query
assignment for each message is shown in Table II.

As all subset queries are of size two, the download cost for
this scheme can be written as

5
H)=> Pr(f=
k=1

where R(H) is the rank of matrix H. We highlight that for
this example, the scheme shown in Table II is optimal.

Grouping LV-PIR scheme (Theorem 3): For the matrix H in
(11), since there are U(H) = 3 unique columns, the following
three groups are formed: {1}, {2,3,4}, and {5}. By picking
one message from each group, we obtain the three queries
shown in Table III. For any desired message, the user uni-
formly selects between queries that include the message index.
For instance, the user selects each of the three queries with
probability 1/3 when message W7 or Wi is desired. All subset
queries are of size three. The average download cost is

ZPr

Although this scheme yields a higher download cost than
the previous two LV-PIR schemes, it is still lower than the
conventional PIR solution of downloading all messages. The
advantage of this scheme is its lower complexity.

It is straightforward to verify the correctness of the proposed
solutions for the three LV-PIR schemes where each message
index k is included in any subset query ¢ that can be requested
to download W) with a non-zero probability (myx > 0).
Furthermore, it can be shown that the three solutions satisfy
the LV privacy condition in (9) by substituting the values of
mq % for different queries, inside Tables L, II, and IIL

Lv
D;()rob)abilistic = =2=R(H), (14)

(Lv)

grouping =3= U(H)

15)

IV. PROOF OF THEOREM 1

To prove Theorem 1, we present an LV-PIR scheme fol-
lowed by a converse proof with a matching lower bound.

A. Achievability: Exhaustive Search LV-PIR Scheme

We propose an exhaustive search scheme that minimizes
the LV-PIR download cost by searching over all valid subset
queries that satisfy both the correctness and LV privacy re-
quirements. Let K be the powerset of the set [1 : K], excluding
the empty set (), i.e., K includes all non-empty subsets of the
indices [1 : K]. Consider any subset ¢ C K, for which we
define 7y, as follows:

o 2 Pr(Q® = ql6 = k), (16)

i.e., g, is probability of sending the subset query g if message
k is desired by the user. For any query ¢, the LV privacy
constraint in (4) can be written in terms of {my}/ as

a 1 as 1 71'|;§~i
7_pk 'hk: ——711 K ‘hk:O.
> (g m) =22 (- s )

Rearranging the above equation and substituting Pr(Q = ¢) =
K .
& 31 Tk yields

K
(mae = 72 § , Tali)
=1 k'=1

hr,=0, Vgek. (17

Any valid choice for the distribution 7}, = {7, | Vq € K},

over all possible queries has to satisfy two properties. First,
each distribution 7, must be a valid PMF.

S =1, Vke[l:K]
qeR

Second, let K, be the set of all subsets within /C that include
index k. To satisfy decodability of message W, the subset
query must be chosen such that ¢ € K. That is,

Vq¢ /Ck.

This is equivalent to ¢ = {k | mg;, > 0}.

Download cost: Let |¢| be the cardinality of the subset
query q. We can express the number of downloaded bits when
query ¢ is submitted as Dy(q) = |q| - L = LZle I(mgi >
0), where I(.) is an indicator function. The download cost Dy,
given specific distributions 71, 7o, ..., Tk, can be written as

1 K
H=17:) D T Dulq)

k=1qell

0< g <1, (18)

ok =0, (19)

(20)

An exhaustive search LV-PIR scheme minimizes the download
cost by searching over all possible distributions 7y, 7, ...,
Tk that satisfy the requirements in (18), (19), and LV privacy
constraint in (17). Thus, the exhaustive search scheme leads
to the following upper bound on the optimal download cost,

m1n7rKK Z Z Talk |4l

k=1qek
Vg gZICk,Vk €[l: K],

K

Z Tqlk — Zﬂ-q‘k/ hk;—o VqEIC,
k=1 k’ 1

0<mr <1, > me=1, Vke€ [1: K]. (1)

qer
B. Converse Proof

We now derive a lower bound on the minimum download
cost D*(H) that matches the upper bound in (21). Consider
any arbitrary scheme B that satisfies both the correctness and
privacy conditions in (2) and (3), respectively. The minimum
download cost D*(H) for LV-PIR can be represented as

D*(H) = min D (H), (22)

1910



where Dg(H) is the download cost when scheme B is used.
Since § — Q) — A we define A(q) to be the answer
when a query ¢ is submitted, regardless of the desired message.
Dp(H) can be expressed as follows:

Di(H) = ~H(AD|Q®, 0)

H(AM|Q®, 9 = k)
k

—KZZ r(Q™ = ql0 = k) H(A(@)|Q™ = .0 = k)
k=1

a) 1
( )Tzzﬂq\k
k

I
h
- K-
I
=0 Mwh

~ L

2)|Q® = g), (23)

where (a) is due to the Markov chain in (1). We next state a
lemma that gives a necessary condition for decodability.

Lemma 2. For any query q that can be submitted to download
message Wy, with non-zero probability, i.e., T, = Pr(Q®) =
ql0 = k) > 0, the message W, must be decodable from the
corresponding answer A(q), i.e.,

H(Wi|A(q),Q™ = ¢) = 0. (24)

The proof of this Lemma follows readily by expanding the
correctness constraint (2) and is omitted. We next define the
image set of query g, as p'? £ {k| m,; > 0}, as the set of
message indices for which ¢ can be submitted. Let W, ) be
the set of messages whose indices are included in ;(?). Using
Lemma 2, we can lower bound the term in (23) as follows:

H(A(g)|Q™ = q)

= HW,w, A(@)|Q™ = q)
9 H W0, A@)IQ" = g)
> HW,w QW =q) = [ul?]- L

where (a) is due to Lemma 2, and |x(?)| is the cardinality of
the image set ;(9) for query ¢. Substituting (25) in (23) yields

K
H) > = 5 g )]

k=1 gq

- H(Wy,(q) |A(Q)7 Q(k) = Q)

(25)

(26)

Furthermore, any query ¢ using scheme 3, must also satisfy
the LV privacy constraint, which can be written as follows:

Pr(S = s;) = Pr(S = 5,]Q" = q)

Pr(0 = k|Q™ = ;) Pr(S = 5|0 = k, Q") = q)

I
M=

~
Il
_

Pr(9 = k)wq‘k

I
M=
M=

Pr(S = 5|0 = k), 27

£
Il

1 Pr(9 = k)ﬂ—q‘k"

k'=1

which can be rearranged in the following relation

Z Tqe(Pr(S = s¢)
k=1

Our main idea for proving the optimality of subset queries is
as follows: given an arbitrary query ¢ for a scheme B (which
may or may not be a subset query), we can construct a sub-
set query ¢ which also satisfies decodability and LV-privacy,
and does not exceed the download cost of g. Specifically, we
let § = (9, ie., the derived sub-set query only requests to
download the messages in the image set (7 of query ¢, and
define the query probabilities as follows:

0, k¢ M(q),
Tk = M|k =
Tq|k

ke p@,
We denote the resulting subset query scheme as B. It is clear
that ¢ satisfies decodability, a~nd it follows from (28), (29)
that every query g in scheme B also satisfies LV-privacy. The
download cost of B can be exactly written as follows:

Dg(H) = + Zzﬂqw lal = % Zzﬂmmk (@]
q k=1 p(a)
- %ZZWW |ﬂ(q)|_

k=1 q

Hence, from (26) and (30), it follows that Dg(H) > Dgz(H).
Thus, we can now obtain a lower bound for the optimal
download cost by minimizing over all valid subset queries,
and arrive at the following lower bound on D*(H):

D*(H) > _ mm Zzﬂ-q\’“ lq]

k 1gek
ngZle,Vke 1: K],

—Pr(S=s0=k) = (28)

(29)

(30)

K

Z Tqlk — Zﬂ-q‘k/ hk;—O VqEIC,
k=1 k’ 1

0<mr <1, > me=1, Vke[1: K]. (31)

qer

This completes the proof of Theorem 1.

V. CONCLUSION

In this paper, we studied the problem of latent-variable PIR,
where information-theoretic privacy is preserved with respect
to a latent variable. We characterized the capacity for the LV-
PIR under the practical assumption of a single database. We
derived a converse proof that gives a lower bound on the
optimal download cost, and proposed an achievability scheme
that matches the derived bound. Furthermore, we introduced
a simplified general scheme that decreases the complexity of
obtaining efficient retrieval queries. We utilized the structure
of H to achieve a low-complexity LV-PIR grouping construc-
tion when messages are partitioned in groups with the same
statistical properties with respect to the latent variable.
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