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Abstract

There has been an increased interest in discovering heuristics for combinatorial
problems on graphs through machine learning. While existing techniques have
primarily focused on obtaining high-quality solutions, scalability to billion-sized
graphs has not been adequately addressed. In addition, the impact of budget-
constraint, which is necessary for many practical scenarios, remains to be studied.
In this paper, we propose a framework called GCOMB to bridge these gaps. GCOMB
trains a Graph Convolutional Network (GCN) using a novel probabilistic greedy
mechanism to predict the quality of a node. To further facilitate the combinatorial
nature of the problem, GCOMB utilizes a Q-learning framework, which is made
efficient through importance sampling. We perform extensive experiments on real
graphs to benchmark the efficiency and efficacy of GCOMB. Our results establish
that GCOMB is 100 times faster and marginally better in quality than state-of-the-art
algorithms for learning combinatorial algorithms. Additionally, a case-study on the
practical combinatorial problem of Influence Maximization (IM) shows GCOMB is
150 times faster than the specialized IM algorithm IMM with similar quality.

1 Introduction and Related Work
Combinatorial optimization problems on graphs appear routinely in various applications such as
viral marketing in social networks [14, 4], computational sustainability [8], health-care [33], and
infrastructure deployment [20, 23, 24, 22]. In these set combinatorial problems, the goal is to identify
the set of nodes that optimizes a given objective function. These optimization problems are often
NP-hard. Therefore, designing an exact algorithm is infeasible and polynomial-time algorithms, with
or without approximation guarantees, are often desired and used in practice [13, 31]. Furthermore,
these graphs are often dynamic in nature and the approximation algorithms need to be run repeatedly
at regular intervals. Since real-world graphs may contain millions of nodes and edges, this entire
process becomes tedious and time-consuming.

To provide a concrete example, consider the problem of viral marketing on social networks through
Influence Maximization [2, 14]. Given a budget b, the goal is to select b nodes (users) such that their
endorsement of a certain product (ex: through a tweet) is expected to initiate a cascade that reaches
the largest number of nodes in the graph. This problem is NP-hard [14]. Advertising through social
networks is a common practice today and needs to solved repeatedly due to the graphs being dynamic
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in nature. Furthermore, even the greedy approximation algorithm does not scale to large graphs [2]
resulting in a large body of research work [31, 13, 16, 26, 14, 5, 32, 6].

At this juncture, we highlight two key observations. First, although the graph is changing, the
underlying model generating the graph is likely to remain the same. Second, the nodes that get
selected in the answer set of the approximation algorithm may have certain properties common in
them. Motivated by these observations, we ask the following question [7]: Given a set combinatorial
problem P on graphG and its corresponding solution set S, can we learn an approximation algorithm
for problem P and solve it on an unseen graph that is similar to G?

1.1 Limitations of Existing Work
The above observations were first highlighted by S2V-DQN [7], where they show that it is indeed
possible to learn combinatorial algorithms on graphs. Subsequently, an improved approach was
proposed in GCN-TREESEARCH [19]. Despite these efforts, there is scope for further improvement.

• Scalability: The primary focus of both GCN-TREESEARCH and S2V-DQN have been on obtaining
quality that is as close to the optimal as possible. Efficiency studies, however, are limited to graphs
containing only hundreds of thousands nodes. To provide a concrete case study, we apply GCN-
TREESEARCH for the Influence Maximization problem on the YouTube social network. We observe
that GCN-TREESEARCH takes one hour on a graph containing a million edges (Fig. 3a; we will
revisit this experiment in § 4.3). Real-life graphs may contain billions of edges (See. Table 1a).

• Generalizability to real-life combinatorial problems: GCN-TREESEARCH proposes a learning-
based heuristic for the Maximal Independent Set problem (MIS). When the combinatorial problem is
not MIS, GCN-TREESEARCH suggests that we map that problem to MIS. Consequently, for problems
that are not easily mappable to MIS, the efficacy is compromised (ex: Influence Maximization).

• Budget constraints: Both GCN-TREESEARCH and S2V-DQN solve the decision versions of
combinatorial problems (Ex. set cover, vertex cover). In real life, we often encounter their budget-
constrained versions, such as max-cover and Influence Maximization [14].

Among other related work, Gasse et al. [9] used GCN for learning branch-and-bound variable selection
policies, whereas Prates et al. [27] focused on solving Travelling Salesman Problem. However, the
proposed techniques in these papers do not directly apply to our setting of set combinatorial problems.

1.2 Contributions

At the core of our study lies the observation that although the graph may be large, only a small
percentage of the nodes are likely to contribute to the solution set. Thus, pruning the search space
is as important as prediction of the solution set. Both S2V-DQN [7] and GCN-TREESEARCH [19]
have primarily focused on the prediction component. In particular, S2V-DQN learns an end-to-end
neural model on the entire graph through reinforcement learning. The neural model integrates node
embedding and Q-learning into a single integrated framework. Consequently, the model is bogged
down by a large number of parameters, which needs to be learned on the entire node set. As a result,
we will show in §. 4 that S2V-DQN fails to scale to graphs beyond 20, 000 nodes.

On the other hand, GCN-TREESEARCH employs a two-component framework: (1) a graph convolu-
tional network (GCN) to learn and predict the individual value of each node, and (2) a tree-search
component to analyze the dependence among nodes and identify the solution set that collectively
works well. Following tree-search, GCN is repeated on a reduced graph and this process continues
iteratively. This approach is not scalable to large graphs since due to repeated iterations of GCN and
TreeSearch where each iteration of tree-search has O(|E|) complexity; E is the set of edges.

Our method GCOMB builds on the observation that computationally expensive predictions should be
attempted only for promising nodes. Towards that end, GCOMB has two separate components: (1) a
GCN to prune poor nodes and learn embeddings of good nodes in a supervised manner, and (2) a
Q-learning component that focuses only on the good nodes to predict the solution set. Thus, unlike
S2V-DQN, GCOMB uses a mixture of supervised and reinforcement learning, and does not employ an
end-to-end architecture. Consequently, the prediction framework is lightweight with a significantly
reduced number of parameters.

When compared to GCN-TREESEARCH, although both techniques use a GCN, in GCOMB, we
train using a novel probabilistic greedy mechanism. Furthermore, instead of an iterative procedure
of repeated GCN and TreeSearch calls, GCOMB performs a single forward pass through GCN
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Figure 1: The flowchart of the training phase of GCOMB.

during inference. In addition, unlike TreeSearch, which is specifically tailored for the MIS problem,
GCOMB is problem-agnostic 2. Finally, unlike both S2V-DQN and GCN-TREESEARCH, GCOMB uses
lightweight operations to prune poor nodes and focus expensive computations only on nodes with a
high potential of being part of the solution set. The pruning of the search space not only enhances
scalability but also removes noise from the search space leading to improved prediction quality.
Owing to these design choices, (1) GCOMB is scalable to billion-sized graphs and up to 100 times
faster, (2) on average, computes higher quality solution sets than S2V-DQN and GCN-TREESEARCH,
and (3) improves upon the state-of-the-art algorithm for Influence Maximization on social networks.

2 Problem Formulation

Objective: Given a budget-constrained set combinatorial problem P over graphs drawn from
distribution D, learn a heuristic to solve problem P on an unseen graph G generated from D.

Next, we describe three instances of budget-constrained set combinatorial problems on graphs.

Maximum Coverage Problem on bipartite graph (MCP): Given a bipartite graph G = (V,E),
where V = A ∪ B, and a budget b, find a set S∗ ⊆ A of b nodes such that coverage is maximized.
The coverage of set S∗ is defined as f(S∗) = |X|

|B| , where X = {j|(i, j) ∈ E, i ∈ S∗, j ∈ B}.
Budget-constrained Maximum Vertex Cover (MVC): Given a graph G = (V,E) and a budget
b, find a set S∗ of b nodes such that the coverage f(S∗) of S∗ is maximized. f(S∗) = |X|

|E| , where
X = {(i, j)|(i, j) ∈ E, i ∈ S∗, j ∈ V }.
Influence Maximization (IM) [2]: Given a budget b, a social networkG, and a information diffusion
modelM, select a set S∗ of b nodes such that the expected diffusion spread f(S∗) = E[Γ(S∗)] is
maximized. (See App. A in supplementary for more details).

3 GCOMB
The input to the training phase is a set of graphs and the optimization function f(·) corresponding to
the combinatorial problem in hand. The output is a sequence of two separate neural graphs, GCN [10]
and Q-learning network, with their corresponding learned parameters ΘG and ΘQ respectively. In
the testing phase, the inputs include a graph G = (V,E), the optimization function f(·) and the
budget b. The output of the testing part is the solution set of nodes constructed using the learned
neural networks. Fig. 1 presents the training pipeline. We will now discuss each of the phases.

3.1 Generating Training Data for GCN

Our goal is to learn node embeddings that can predict “quality”, and thereby, identify those nodes that
are likely to be part of the answer set. We could adopt a classification-based method, where, given
a training graph G = (V,E), budget b and its solution set S, a node v is called positive if v ∈ S;
otherwise it is negative. This approach, however, assumes all nodes that are not a part of S to be
equally bad. In reality, this may not be the case. Consider the case where f({v1})=f({v2}), but the
marginal gain of node v2 given S = {v1}, i.e., f({v1, v2}) − f({v1}), is 0 and vice versa. In this
scenario, only one of v1 and v2 would be selected in the answer set although both are of equal quality
on their own.

2We are, however, limited to set combinatorial problems only.

3



Probabilistic greedy: To address the above issue, we sample from the solution space in a greedy
manner and learn embeddings that reflect the marginal gain f(S ∪{v})− f(S) provided by a node v
towards the solution set S (Alg. 2 in Appendix). To sample from the solution space, in each iteration,
instead of selecting the node with the highest marginal gain, we choose a node with probability
proportional to its marginal gain. The probabilistic greedy algorithm runs m times to construct m
different solution sets S = {S1, · · · , Sm} and the score of node v ∈ V is set to:

score(v) =

∑m
i gaini(v)∑m
i f(Si)

(1)

Here, gaini(v) denotes the marginal gain contribution of v to Si. Specifically, assume v is added
to Si in the (j + 1)th iteration and let Sji be the set of nodes that were added in the first j iterations

while constructing Si. Then, gaini(v) = f
(
Sji ∪ {v}

)
− f

(
Sji

)
. In our experiments, m is set to

30 for all three problems of MCP, MVC and IM.

Termination condition of probabilistic greedy: Probabilistic greedy runs till convergence of the
marginal gains, i.e., gaini(v) ≤ ∆, where ∆ is a small value. The goal here is to identify all nodes
that could potentially be part of the solution set for any given budget. ∆ in our experiments is set to
0.01 for all three problems of MCP, MVC and IM.

3.2 Training the GCN
Our goal in this phase is two-fold: (1) Identify nodes that are unlikely to be part of the solution set
and are therefore noise in the context of our problem; (2) Learn a predictive model for node quality.

Noise predictor: The noise predictor should be lightweight so that expensive computations are
reserved only for the good nodes. With this goal, we exploit the first layer information of the GCN
and learn a classifier to predict for a given budget b, whether a node can be safely pruned without
affecting the quality of the solution set. Typically, the first layer of a GCN contains the raw features
of nodes that are relevant for the problem being solved. In GCOMB, we use the summation of the
outgoing edge weights as node features. Let xv denote the total outgoing edge weight of node v. To
learn the noise predictor, given a set of training graphs {G1, · · · , Gt}, we first sort all nodes based on
xv . Let rank(v,Gi) denote the position of v in the sorted sequence based on xv in Gi. Furthermore,
let Sij denote the jth solution set constructed by probabilistic greedy on Gi. Given a budget b,
SjGi,b

⊆ Sij denotes the subset containing the first b nodes added to Sij by probabilistic greedy.

Therefore, rbGi
= maxmj=0

{
max∀v∈Sj

Gi,b
{rank(v,Gi)}

}
represents the lowest rank of any node in

a solution set of budget b in Gi. This measure is further generalized to all training graphs in the form
of rbmax = max∀Gi

{
rbGi

}
, which represents the lowest rank of any node that has a realistic chance

of being included in an answer set of budget b. To generalize across budgets, we compute rbimax
for a series of budgets {b1, · · · , bmax}, where bmax = max∀Gi

{
maxmj=0

{
|Sij |

}}
. On this data, we

can perform curve fitting [1] to predict rbmax for any (unseen) budget b. In our experiments, we use
linear interpolation. To generalize across graph sizes, all of the above computations are performed on
normalized budgets, where b is expressed in terms of the proportion of nodes with respect to the node
set size of the graph. Similarly, rank rank(v,Gi) is expressed in terms of percentile.

Node quality predictor: To train the GCN, we sample a training graph Gi = (Vi, Ei) and a

(normalized) budget b from the range (0, bimax], where bimax = maxmj=0

{
|Si

j |
|Vi|

}
. This tuple is sent to

the noise predictor to obtain the good (non-noisy) nodes. The GCN parameters (ΘG) are next learned
by minimizing the loss function only on the good nodes. Specifically, for each good node v, we want
to learn embeddings that can predict score(v) through a surrogate function score′(v). Towards that
end, we draw multiple samples of training graphs and budgets, and the parameters are learned by
minimizing the mean squared error loss (See Alg.3 for detailed pseudocode in the Supplementary).

J(ΘG) =
∑
∼〈Gi,b〉

1

|V gi |
∑
∀v∈V g

i

(score(v)− score′(v))2 (2)

In the above equation, V gi denotes the set of good nodes for budget b in graph Gi. Since GCNs are
trained through message passing, in a GCN with K hidden layers, the computation graph is limited
to the induced subgraph formed by the K-hop neighbors of V gi , instead of the entire graph.
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3.3 Learning Q-function
While GCN captures the individual importance of a node, Q-learning [29] learns the combinatorial
aspect in a budget-independent manner. Given a set of nodes S and a node v 6∈ S, we predict the
n-step reward, Qn(S, v), for adding v to set S (action) via the surrogate function Q′n(S, v; ΘQ).

Defining the framework: We define the Q-learning task in terms of state space, action, reward,
policy and termination with the input as a set of nodes and their predicted scores.

• State space: The state space characterizes the state of the system at any time step t in terms of the
candidate nodes being considered, i.e., Ct = V g \ St, with respect to the partially computed solution
set St; V g represents the set of good nodes from a training graph. In a combinatorial problem over
nodes, two factors have a strong influence: (1) the individual quality of a node, and (2) its locality.
The quality of a node v is captured through score′(v). Locality is an important factor since two
high-quality nodes from the same neighborhood may not be good collectively. The locality of a node
v ∈ Ct (Ct = V g \ St) is defined as:

loc(v, St) = |N(v) \ ∪∀u∈StN(u)| (3)

where N(v) = {v′ ∈ V | (v, v′) ∈ E} are the neighbors of v. Note that N(v) may contain noisy
nodes since they contribute to the locality of v ∈ V g . However, locality (and q-learning in general) is
computed only on good nodes. The initial representation µv of each node v ∈ Ct is therefore the
2-dimensional vector [score′(v), loc(v, St)]. The representation of the set of nodes Ct is defined as
µCt = MAXPOOL {µv | v ∈ Ct}. µSt is defined analogously as well. We use MAXPOOL since it
captures the best available candidate node better than alternatives such as MEANPOOL. Empirically,
we obtain better results as well.

• Action and Reward: An action corresponds to adding a node v ∈ Ct to the solution set St. The
immediate (0-step) reward of the action is its marginal gain, i.e. r(St, v) = f(St ∪ {v})− f(St).

• Policy and Termination: The policy π(v | St) selects the node with the highest predicted n-step
reward, i.e., arg maxv∈Ct

Q′n(St, v; ΘQ). We terminate after training the model for T samples.

Learning the parameter set ΘQ: We partition ΘQ into three weight matrices Θ1, Θ2, Θ3,
and one weight vector Θ4 such that, Q′n(St, v; ΘQ) = Θ4 · µCt,St,v, where µCt,St,v =
CONCAT

(
Θ1 · µCt

,Θ2 · µSt
,Θ3 · µv

)
. If we want to encode the state space in a d-dimensional

layer, the dimensions of the weight vectors are as follows: Θ4 ∈ R1×3d; Θ1,Θ2,Θ3 ∈ Rd×2. Q-
learning updates parameters in a single episode via Adam optimizer[15] to minimize the squared loss.

J(ΘQ) = (y −Q′n(St, vt; ΘQ))2, where y = γ · max
v∈V g

{Q′n(St+n, v; ΘQ)}+
n−1∑
i=0

r(St+i, vt+i)

γ is the discount factor and balances the importance of immediate reward with the predicted n-step
future reward [29]. The pseudocode with more details is provided in the Supplementary (App. C).

3.3.1 Importance Sampling for Fast Locality Computation
Since degrees of nodes in real graphs may be very high, computing locality (Eq. 3) is expensive.
Furthermore, locality is re-computed in each iteration. We negate this computational bottleneck
through importance sampling. Let N(V g) = {(v, u) ∈ E | v ∈ V g} be the neighbors of all nodes in
V g. Given a sample size z, we extract a subset Nz(V g) ⊆ N(V g) of size z and compute locality
only based on the nodes in Nz(V g). Importance sampling samples elements proportional to their
importance. The importance of a node in N(V g) is defined as I(v) = score′(v)∑

∀v′∈N(V g) score
′(v′) .

Determining sample size: Let µN(V g) be the mean importance of all nodes in N(V g) and µ̂Nz(V g)

the mean importance of sampled nodes. The sampling is accurate if µN(V g) ≈ µ̂Nz(V g).

Theorem 1 Given an error bound ε, if sample size z is O
(

log |N(V g)|
ε2

)
, then

P
[
|µ̂Nz(V g) − µN(V g)| < ε

]
> 1− 1

|N(V g)|2 .
Remarks: (1) The sample size grows logarithmically with the neighborhood size, i.e., |N(V g)| and
thus scalable to large graphs. (2) z is an inversely proportional function of the error bound ε.

3.4 Test Phase
Given an unseen graph G and budget b, we (1) identify the noisy nodes, (2) embed good nodes
through a single forward pass through GCN, and (3) use GCN output to embed them and perform
Q-learning to compute the final solution set.
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Name |V | |E|
Brightkite (BK) 58.2K 214K

Twitter-ego (TW-ew) 81.3K 1.7M
Gowalla (GO) 196.5K 950.3K
YouTube (YT) 1.13M 2.99M

StackOverflow (Stack) 2.69M 5.9M
Orkut 3.07M 117.1M

Twitter (TW) 41.6M 1.5B
FriendSter (FS) 65.6M 1.8B

(a) Datasets from SNAP repository [18].

Dataset BP-500 Gowalla-900
Budget GCOMB Greedy Optimal GCOMB Greedy Optimal

2 0.295 0.295 0.295 0.75 0.75 0.75
4 0.495 0.505 0.51 0.902 0.904 0.904
6 0.765 0.77 0.773 0.941 0.93 0.941

10 0.843 0.845 0.845 0.952 0.952 0.952
15 0.96 0.953 0.963 0.963 0.963 0.963
20 0.998 0.99 1 0.974 0.974 0.974
25 1 1 1 0.985 0.985 0.985
30 − − − 0.996 0.996 0.996
35 − − − 1 1 1

(b) Coverage in MCP

Table 1: In (b), the specific cases where GCOMB matches or outperforms Greedy are highlighted in
bold. Gowalla-900 is a small subgraph of 900 nodes extracted from Gowalla (See App. I for details).

Complexity analysis: The time complexity of the test phase in GCOMB is
O
(
|V |+ |V g,K |

(
dmG +m2

G

)
+ |V g|b (d+mQ)

)
, where d is the average degree of a node, mG

and mQ are the dimensions of the embeddings in GCN and Q-learning respectively, K is the number
of layers in GCN, and V g,K represents the set of nodes within the K-hop neighborhood of V g . The
space complexity is O(|V |+ |E|+Km2

G +mQ). The derivations are provided in App. D.

4 Empirical Evaluation
In this section, we benchmark GCOMB against GCN-TREESEARCH and S2V-DQN, and establish
that GCOMB produces marginally improved quality, while being orders of magnitudes faster. The
source code can be found at https://github.com/idea-iitd/GCOMB .

4.1 Experimental Setup

All experiments are performed on a machine running Intel Xeon E5-2698v4 processor with 64 cores,
having 1 Nvidia 1080 Ti GPU card with 12GB GPU memory, and 256 GB RAM with Ubuntu 16.04.
All experiments are repeated 5 times and we report the average of the metric being measured.

Datasets: Table 1a) lists the real datasets used for our experiments.
Random Bipartite Graphs (BP): We also use the synthetic random bipartite graphs from S2V-DQN
[7]. In this model, given the number of nodes, they are partitioned into two sets with 20% nodes
in one side and the rest in other. The edge between any pair of nodes from different partitions is
generated with probability 0.1. We use BP-X to denote a generated bipartite graph of X nodes.

Problem Instances: The performance of GCOMB is benchmarked on Influence Maximization (IM),
Maximum Vertex Cover (MVC), and Maximum Coverage Problem (MCP) (§ 2). Since MVC can be
mapped to MCP, empirical results on MVC are included in App. M.

Baselines: The performance of GCOMB is primarily compared with (1) GCN-TREESEARCH [19],
which is the state-of-the-art technique to learn combinatorial algorithms. In addition, for MCP, we
also compare the performance with (2) Greedy (Alg.1 in App. B), (3) S2V-DQN [7], (5) CELF [17]
and (6) the Optimal solution set (obtained using CPLEX [12] on small datasets). Greedy and CELF
guarantees a 1 − 1/e approximation for all three problems. We also compare with (6) Stochastic
Greedy(SG) [21] in App. L. For the problem of IM, we also compare with the state-of-the-art
algorithm (7) IMM [31]. Additionally, we also compare GCOMB with (8) OPIM [30]. For S2V-DQN,
GCN-TREESEARCH, IMM, and OPIM we use the code shared by the authors.

Training: In all our experiments, for a fair comparison of GCOMB with S2V-DQN and GCN-
TREESEARCH, we train all models for 12 hours and the best performing model on the validation set
is used for inference. Nonetheless, we precisely measure the impact of training time in Fig. 2a. The
break-up of time spent in each of the three training phases is shown in App. G in the Supplementary.

Parameters: The parameters used for GCOMB are outlined in App. H and their impact on perfor-
mance is analyzed in App. N. For S2V-DQN and GCN-TREESEARCH, the best performing parameter
values are identified using grid-search. In IMM, we set ε = 0.5 as suggested by the authors. In OPIM,
ε is recommended to be kept in range [0.01, 0.1]. Thus, we set it to ε = 0.05.

4.2 Performance on Max Cover (MCP)
We evaluate the methods on both synthetic random bipartite (BP) graphs as well as real networks.
Train-Validation-Test split: While testing on any synthetic BP graph, we train and validate on five

6
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Graph S2V-DQN GCN-TS GCOMB Greedy
BP-2k 0.87 0.86 0.89 0.89
BP-5k 0.85 0.84 0.86 0.86

BP-10k 0.84 0.83 0.85 0.85
BP-20k NA 0.82 0.83 0.83

(a) Coverage achieved in MCP at b = 15.

Budget Speed-up
20 4
50 3.9

100 3.01
150 2.11
200 2.01

(b) Speed-up against
CELF in MCP on YT.

Table 2: (a) Coverage on Random Graphs in MCP. (b) Speed-up achieved by GCOMB against CELF
on YT in MCP.

BP-1k graphs each. For real graphs, we train and validate on BrightKite (BK) (50 : 50 split for train
and validate) and test on other real networks. Since our real graphs are not bipartite, we convert it to
one by making two copies of V : V1 and V2. We add an edge from u ∈ V1 to u′ ∈ V2 if (u, u′) ∈ E.

Comparison with Greedy and Optimal: Table 1b presents the achieved coverage (Recall § 2 for
definition of coverage). We note that Greedy provides an empirical approximation ratio of at least
99% when compared to the optimal. This indicates that in larger datasets where we are unable to
compute the optimal, Greedy can be assumed to be sufficiently close to the optimal. Second, GCOMB
is sometimes able to perform even better than greedy. This indicates that Q-learning is able to learn a
more generalized policy through delayed rewards and avoid a myopic view of the solution space.

Synthetic Datasets: Table 2a presents the results. GCOMB and Greedy achieves the highest coverage
consistently. While S2V-DQN performs marginally better than GCN-TREESEARCH, S2V-DQN is the
least scalable among all techniques; it runs out of memory on graphs containing more than 20, 000
nodes. As discussed in details in § 1.2, the non-scalability of S2V-DQN stems from relying on an
architecture with significantly larger parameter set than GCOMB or GCN-TREESEARCH. In contrast,
GCOMB avoids noisy nodes, and focuses the search operation only on the good nodes.

Impact of training time: A complex model with more number of parameters results in slower learning.
In Fig. 2a, we measure the coverage against the training time. While GCOMB’s performance saturates
within 10 minutes, S2V-DQN and GCN-TREESEARCH need 9 and 5 hours respectively for training
to obtain its best performance.

Real Datasets: Figs. 2b and 2c present the achieved Coverage as the budget is varied. GCOMB
achieves similar quality as Greedy, while GCN-TREESEARCH is marginally inferior. The real impact
of GCOMB is highlighted in Figs. 2d and 2e, which shows that GCOMB is up to 2 orders of magnitude
faster than GCN-TREESEARCH and 10 times faster than Greedy. Similar conclusion can also be
drawn from the results on Gowalla dataset in App. K in Supplementary.

Comparison with CELF: Table 2b presents the speed-up achieved by GCOMB against CELF. The
first pass of CELF involves sorting the nodes, which has complexityO(|V |log|V |). On the other hand,
no such sorting is required in GCOMB. Thus, the speed-up achieved is higher in smaller budgets.

4.3 Performance on Influence Maximization

Influence Maximization (IM) is the hardest of the three combinatorial problems since estimating the
spread of a node is #P-hard [14].
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Figure 2: MCP: (a) Improvement in Coverage against training time at b = 15. (b-c) Coverage
achieved by GCOMB, GCN-TREESEARCH and Greedy. (d-e) Running times in TW-ew and YT.

7



Edge weights: We assign edge weights that denote the influence of a connection using the two
popular models [2]: (1) Constant (CO:) All edge weights are set to 0.1, (2) Tri-valency (TV): Edge
weights are sampled randomly from the set {0.1, 0.01, 0.001}. In addition, we also employ a third
(3) Learned (LND) model, where we learn the influence probabilities from the action logs of users.
This is only applicable to the Stack data which contain action logs from 8/2008 to 3/2016. We define
the influence of u on v as the probability of v interacting with u’s content at least once in a month.

Train-Validation-Test split: In all of the subsequent experiments, for CO and TV edge weight
models, we train and validate on a subgraph sampled out of YT by randomly selecting 30% of the
edges (50% of this subset is used for training and 50% is used for validation). For LND edge weight
models, we train and validate on the subgraph induced by the 30% of the earliest edges from Stack in
terms of temporal order. While testing, on YT and Stack, we use the graph formed by the remaining
70% of the edges that are not used for training. On other datasets, we use the entire graph for testing
since neither those datasets nor their subsets are used for training purposes.

GCOMB vs.GCN-TREESEARCH: Fig. 3a compares the running time in IM on progressively larger
subgraphs extracted from YT. While GCN-TREESEARCH consumes≈ 3 hours on the 70% sub-graph,
GCOMB finishes in 5 seconds.

GCOMB vs. NOISEPRUNER+CELF NOISEPRUNER+CELF, i.e., running CELF only on non-noisy
nodes, is orders of magnitude slower than GCOMB in IM (See Fig 3d). Pruning noisy nodes does not
reduce the graph size; it only reduces the number of candidate nodes. To compute expected spread in
IM, we still require the entire graph, resulting in non-scalability.

Billion-sized graphs: IMM crashes on both the billion-sized datasets of TW and FS, as well as Orkut.
Unsurprisingly, similar results have been reported in [2]. IMM strategically samples a subgraph of
the entire graph based on the edge weights. On this sampled subgraph, it estimates the influence of a
node using reverse reachability sets. On large graphs, the sample size exceeds the RAM capacity of
256GB. Hence, it crashes. In contrast, GCOMB finishes within minutes for smaller budgets (b < 30)
and within 100 minutes on larger budgets of 100 and 200 (Figs. 3g-3h ). This massive scalability of
GCOMB is a result of low storage overhead (only the graph and GCN and Q-learning parameters;
detailed Space complexity provided in App. D in the Supplementary) and relying on just forwarded
passes through GCN and Q-learning. The speed-up with respect to OPIM on billion-sized graphs can
be seen in App. J.

Performance on YT and Stack: Since IMM crashes on Orkut, TW, and FS, we compare the quality
of GCOMB with IMM on YT and Stack. Table 3a reports the results in terms of spread difference,
where Spread Difference = f(SIMM )−f(SGCOMB)

f(SIMM ) × 100. SIMM and SGCOMB are answer sets computed
by IMM and GCOMB respectively. A negative spread difference indicates better performance by
GCOMB. The expected spread of a given set of nodes S, i.e. f(S), is computed by taking the average
spread across 10, 000 Monte Carlo simulations.

Table 3a shows that the expected spread obtained by both techniques are extremely close. The true
impact of GCOMB is realized when Table 3a is considered in conjunction with Figs. 3b-3c, which
shows GCOMB is 30 to 160 times faster than IMM. In this plot, speed-up is measured as timeIMM

timeGCOMB

where timeIMM and timeGCOMB are the running times of IMM and GCOMB respectively.

Similar behavior is observed when compared against OPIM as seen in Table 3b and Figs. 3e- 3f.

b YT-TV YT-CO Stack-TV Stack-CO Stack-LND
10 −1× 10−3 1× 10−4 2× 10−5 ≈ 0 1× 10−5

20 −2× 10−3 2× 10−4 3× 10−5 3× 10−5 −7× 10−5

50 −3× 10−3 −5× 10−5 2× 10−5 6× 10−5 −7× 10−5

100 −1× 10−3 6× 10−4 2× 10−4 2× 10−4 −1× 10−4

150 −6× 10−4 3× 10−4 1× 10−4 1× 10−4 −3× 10−5

200 −2× 10−3 2× 10−5 2× 10−4 2× 10−4 −1× 10−4

(a) Spread difference between IMM and GCOMB.

b YT-TV YT-CO Stack-TV Stack-CO Stack-LND
10 −5× 10−5 −1× 10−5 2× 10−5 ≈ 0 1× 10−5

20 −1× 10−4 1× 10−5 3× 10−5 2× 10−5 −2× 10−5

50 −2× 10−4 −3× 10−5 2× 10−5 5× 10−5 −6× 10−4

100 −3× 10−4 2× 10−5 1× 10−4 7× 10−5 −2× 10−4

150 −3× 10−4 −2× 10−5 1× 10−4 1× 10−4 −3× 10−4

200 −4× 10−4 −7× 10−5 2× 10−4 2× 10−4 −3× 10−4

(b) Spread difference between OPIM and GCOMB.

Table 3: Comparison with respect to (a) IMM and (b) OPIM on YT and Stack. A negative value,
highlighted in bold, indicates better performance by GCOMB.
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Figure 3: (a) Comparison of running time between GCOMB and GCN-TREESEARCH in YT at
b = 20. (b-c) Speed-up achieved by GCOMB over IMM. (d) Speed-up achieved by GCOMB over
NoisePruner+CELF on IM. (e-f) Speed-up achieved by GCOMB over OPIM. (g-h) Running times of
GCOMB in IM in large graphs under the CO and TV edge models. (i) Distributions of running time
between GCN and Q-learning in GO and YT datasets for MCP. (j) Improvement of Q-learning over
GCN in MCP. (k-l) Impact of noise predictor on (k) running time and (l) quality.

4.4 Design Choices

Impact of Q-learning: Since GCN predicts the expected marginal gain of a node, why not simply
select the top-b nodes with the highest predicted marginal gains for the given budget b? This is a
pertinent question since, as visible in Fig. 3i, majority of the time in GCOMB is spent on Q-learning.
Fig. 3j shows that Q-learning imparts an additional coverage of up to 10%. Improvement (%) is
quantified as CoverageGCOMB−CoverageGCN

CoverageGCN
× 100.

Impact of Noise Predictor: Fig. 3k presents the impact of noise predictor which is close to two
orders of magnitude reduction in running time. This improvement, however, does not come at the
cost of efficacy (Fig. 3l). In fact, the quality improves slightly due to the removal of noisy nodes.

5 Conclusion

S2V-DQN [7] initiated the promising direction of learning combinatorial algorithms on graphs.
GCN-TREESEARCH [19] pursued the same line of work and enhanced scalability to larger graphs.
However, the barrier to million and billion-sized graphs remained. GCOMB removes this barrier
with a new lightweight architecture. In particular, GCOMB uses a phase-wise mixture of supervised
and reinforcement learning. While the supervised component predicts individual node qualities and
prunes those that are unlikely to be part of the solution set, the Q-learning architecture carefully
analyzes the remaining high-quality nodes to identify those that collectively form a good solution
set. This architecture allows GCOMB to generalize to unseen graphs of significantly larger sizes and
convincingly outperform the state of the art in efficiency and efficacy. Nonetheless, there is scope for
improvement. GCOMB is limited to set combinatorial problems on graphs. In future, we will explore
a bigger class of combinatorial algorithms such as sequential and capacity constrained problems.
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Broader Impact

The need to solve NP-hard combinatorial problems on graphs routinely arise in several real-world
problems. Examples include facility location problems on road networks [20], strategies to combat
rumor propagation in online social networks [3], computational sustainability [8] and health-care [33].
Each of these problems plays an important role in our society. Consequently, designing effective and
efficient solutions are important, and our current work is a step in that direction. The major impact of
this paper is that good heuristics for NP-hard problems can be learned for large-scale data. While we
are not the first to observe that heuristics for combinatorial algorithms can be learned, we are the first
to make them scale to billion-size graphs, thereby bringing an algorithmic idea to practical use-cases.
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