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Abstract. Relational Hoare logics extend the applicability of modular,
deductive verification to encompass important 2-run properties including
dependency requirements such as confidentiality and program relations
such as equivalence or similarity between program versions. A consider-
able number of recent works introduce different relational Hoare logics
without yet converging on a core set of proof rules. This paper looks
backwards to little known early work. This brings to light some princi-
ples that clarify and organize the rules as well as suggesting a new rule
and a new notion of completeness.

A shorter version of this paper appears in ISOLA, the 9th International
Symposium On Leveraging Applications of Formal Methods, Verification and
Validation (Springer LNCS 12477, pages 93–116). This version has additional
material as endnotes, and minor revisions.

1 Introduction

Even in the archivally published part of the scientific literature, there are some
gems known to few but deserving the attention of many. Such a gem is a paper by
Nissim Francez published in 1983, around the time of Apt’s two-part paper “Ten
Years of Hoare Logic” [2,3]. Relational Hoare Logic (RHL) formalizes reasoning
about two programs. The term, and a version of the logic, are introduced in a
well known gem by Nick Benton published in 2004 [22]. Relating two programs is
far from new, and is important: it encompasses equivalence (as in compilation),
refinement and conditional similarity (as in software development, evolution, and
re-engineering), and properties of a single program (like determinacy of output)
for which one must consider two executions. Reasoning about two executions
inevitably leads to reasoning about two different programs—that is one of the
principles already articulated in the paper by Francez titled “Product Properties
and Their Direct Verification” [35] which introduces many rules of RHL.

The fundamental safety property is partial correctness : for each of the pro-
gram’s runs, if the initial state satisfies the designated precondition, and the
run terminates, then the final state satisfies the designated postcondition. The
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fundamental liveness property is termination: for each of the program’s runs,
if the initial state satisfies the precondition then the run is finite. Many inter-
esting or desirable behavioral properties of a program are such trace properties,
that is, a condition on runs is required to hold for all runs. Relations between
programs involve two runs at a time, for example one notion of equivalence is
that from the same initial state, runs of the two programs reach the same final
state. One cannot expect this property if the programs are nondeterministic.
What then is determinacy? It is the property of a program that from any initial
state, its runs all diverge or all terminate in the same state. This can be defined
more parsimoniously: from any initial state, any two runs either both diverge
or both terminate in the same state. Behavioral program properties involving
multiple runs have been dubbed hyperproperties and an important subclass are
the k-safety properties which, for some fixed k ≥ 1 can be defined by requiring
all k-tuples of runs satisfy a condition on k-tuples [69,26]. Francez uses the term
power property for what is now called k-safety, and product property for relations
between programs.

The k-safety properties are an attractive object of study because they are
amenable to reasoning techniques that are natural generalizations of those for
safety properties. As is likely to occur to anyone familiar with programming
or automata theory, to prove a 2-safety property one may construct a product
program whose runs represent pairs of runs of the original. Francez points out
that product programs can be expressed as ordinary programs, so that Hoare
logic (HL) can be used to prove 2-safety: If C is a sequential program acting on
variables, we can choose fresh names and obtain a renamed copy C ′, and then
C;C ′ serves as a product. This particular product construction is often called
self-composition, a term from Barthe et al [17,18] who rediscover the idea (and
also consider other forms of product) for proving information flow security.

By now, scientific interest together with practical importance has led to ex-
citing achievements. Related challenges are under active study by a number of
research groups, often making use of some form of RHL. Quite a few papers
have appeared with RHLs, some emphasizing frameworks meant to provide uni-
fying principles [22,16,1,50], but there is considerable variety in the proof rules
included or omitted. By contrast, the core rules of HL for imperative programs
appear in many places with relatively little variation. There is a scientific expla-
nation for this situation: the recipe for boiling a logic down to its essentials is to
state and prove a completeness theorem that says true properties are provable.
But, through product programs, relational reasoning is reduced to HL—so com-
pleteness in this sense is a trivial consequence of completeness for unary (i.e.,
1-safety) properties, as Francez observes. His paper concludes with a problem
that is still open: “It would be interesting to obtain a formal characterization of
the situation in which the proposed method achieves actual proof simplification
over the indirect proofs using Hoare’s (unary) logic.”

In this paper I describe, in as plain terms as I can, various reasoning prin-
ciples and their embodiment in proof rules. One contribution is to systematize
knowledge and in particular to emphasize the importance of program equiva-
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lences to reduce the number of core rules. I also introduce a new rule to fill a
gap that becomes evident when one considers one of the key motivations for re-
lational reasoning. Finally, I introduce a new notion: alignment completeness. It
appears naturally when one recapitulates, as Francez does and I do with slightly
more generality, the development from Floyd to Hoare.

Scientists thrive on getting credit and good scientists take care in giving
credit. But it is not always easy to determine the origin of ideas, in part because
good ideas may be independently rediscovered several times before becoming
firmly ensconced in the edifice of the known. My primary aim in this paper is to
explain some principles as I have understood them, not to give a survey of prior
work. I do point out ideas found in the paper by Francez, and cite some other
work in passing. Other early works that may have been overlooked can be found
in the first paragraph of Sec. 5.

Outline. Following background on the inductive assertion method and HL (Sec. 2),
the method is extended to aligned pairs of runs in Sec. 3, as background for RHL
which comprises Sec. 4. Sec. 5 discusses related work and Sec. 6 concludes. In
this long version of the paper, superscript numerals refer to end notes. These
provide additional details including related work on completeness.

2 Preliminaries

2.1 The inductive assertion method

We focus on the simple imperative or “while” language with assignments and
possibly other primitive commands like nondeterministic assignment. The reader
is expected to be familiar with transition semantics, in which the program acts on
stores, where a store is a total mapping from variables to values.1 The following
abstraction of a program’s semantics is convenient.

An automaton is a tuple (Ctrl, Sto, init, fin, 7→) where Sto is a set (the
data stores), Ctrl is a finite set that contains distinct elements init and fin,
and 7→ ⊆ (Ctrl × Sto) × (Ctrl × Sto) is the transition relation. We require
(c, s) 7→ (d, t) to imply c 6= fin and c 6= d and call these the finality and non-
stuttering conditions respectively.2 A pair (c, s) is called a state . Let β and γ
range over states. A trace of an automaton is a non-empty sequence τ of states,
consecutive under the transition relation, with ctrl(τ0) = init. It is terminated
provided τ is finite and ctrl(τ−1) = fin, where τ−1 denotes the last state of τ .

In structural operational semantics, transitions act on configurations of the
form (c, s) where c is a command, and skip by itself indicates termination. This
fits our model: take init to be the program of interest, Ctrl to be all com-
mands,3 and fin to be skip. Another instantiation treats Ctrl as the points in
the program’s control flow graph (CFG).

A partial correctness property is given by a pair of store predicates, P,Q,
for which we write P ; Q. In a formal logic, P and Q range over formulas
in some assertion language, usually first order logic for a designated signature
that includes types and operations used in the program. We write s |= P to
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say s satisfies predicate P , and define (c, s) |= P iff s |= P . As a means to
specify requirements, the notation is inadequate. The postcondition y = x + 1
can be achieved by changing x or by changing y. This problem is best solved by
including a frame condition which for simple imperative programs is just a
list x of variables permitted to change, which we write as P ; Q [x]. Its meaning
can be reduced to the simpler form provided we distinguish between program
variables and spec-only variables not allowed to occur in programs.4 That being
so, we focus on the form P ; Q and use for it the succinct term spec.

Let us spell out two semantics for specs in terms of an automaton A. The
basic semantics is as follows. For a finite trace τ to satisfy P ; Q means that
τ0 |= P and ctrl(τ−1) = fin imply τ−1 |= Q, in which case we write τ |= P ; Q.
Then A satisfies P ; Q just if all its finite traces do. The non-stuck semantics
adds a second condition for τ to satisfy the spec: ctrl(τ−1) 6= fin implies τ−1 7→ −,
where τ−1 7→ − means there is at least one successor state. Stuck states are often
used to model runtime faults.

The inductive assertion method (IAM) of Floyd [34],5 is a way to establish
that command C satisfies spec P ; Q. The first idea is to generalize the prob-
lem: in addition to establishing that Q must hold in a final state, we establish
additional conditions at intermediate steps, with the aim to reason by induc-
tion on steps of execution. The second idea is to designate which intermediate
steps in terms of C’s CFG. An assertion is thus a formula R associated with
a particular point in the CFG, designating the claim that in any run, R holds
whenever control is at that point. This beautiful idea, called annotation , has
a simple representation in syntax which has become commonplace: the assert
statement. The third idea ensures that the claim is strong enough to be an in-
duction hypothesis to prove the spec: (i) The entry point is annotated as P and
the exit point is annotated as Q. (ii) Every cycle in the CFG is annotated with
at least one assertion. The annotated points are said to form a cutpoint set .
Such an annotation determines a finite set of acyclic paths through the CFG,
each starting and ending with an annotation and having no intervening one—we
call these segments .

Floyd shows, by induction on execution steps, that C satisfies P ; Q pro-
vided that the verification conditions (VCs) all hold [34]. Each segment de-
termines the following VC: for any state that satisfies the initial assertion, and
any execution along the segment, such that the branch conditions hold, the final
assertion holds in the last state. In effect, the VCs are cases of the induction
step in a proof that the assertions hold in any run from a state satisfying P .

Given a program and cutpoint set for its CFG, there is an automaton with
Ctrl the cutpoint set; the transitions (c, s) 7→ (d, t) are given by the semantics of
a segment from c to d. An annotation assigns a store predicate anno(c) to each
cutpoint c. Define the state set S ⊆ (Ctrl × Sto) by (c, s) ∈ S iff s |= anno(c).
Then the VCs amount to the condition that S is closed under 7→.

The IAM requires us to reason about the semantics of straight-line program
fragments, which is amenable to automation in a number of different ways, in-
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x := e : P x
e ; P

C : P ; R D : R ; Q

C;D : P ; Q

C : P ∧ e ; Q D : P ∧ ¬e ; Q

if e then C else D : P ; Q

C : P ; Q D : P ; R

C + D : P ; Q ∨R

C : P ∧ b ; P

while b do C od : P ; P ∧ ¬b

Fig. 1. Syntax-directed rules of HL for simple imperative programs.

P ⇒ R C : R ; S S ⇒ Q

C : P ; Q
(Conseq)

C : P ; Q C : P ; R

C : P ; Q ∧R
(Conj)

C : P ; R C : Q ; R

C : P ∨Q ; R
(Disj)

C : P ; Q FV (R) ∩ V ars(C) = ∅
C : P ∧R ; Q ∧R

(Frame)

Fig. 2. Rules to manipulate specs in HL.

cluding the direct use of operational semantics [51]. What makes program veri-
fication difficult is finding inductive intermediate assertions.

2.2 Hoare logic

Hoare showed that the IAM can be presented as a deductive system, in which
inference rules capture the semantics of the constructs of the programming lan-
guage and verification conditions are, to some degree, compositonal in terms of
program syntax. The system derives what are known variously as partial cor-
rectness assertions, Hoare triples, etc., and which ascribe a spec to a program.
Hoare wrote P{C}Q but it has become standard to write {P}C{Q}. We write
C : P ; Q and call it a correctness judgment .

There are many Hoare logics, because a deductive system is defined for a
particular language, i.e., set of program constructs. The textbook by Apt et
al [5] has logics encompassing procedures, concurrency, etc. In this paper we
focus on sequential programs but the principles apply broadly.

Rules for some program constructs can be found in Fig. 1. The axiom for as-
signment involves capture-avoiding substitution of an expression for a variable,
written P x

e , wherein we see that the system treats program expressions and vari-
ables as mathematical ones, a slightly delicate topic that does not obtrude in the
sequel. These rules transparently embody the reasoning that underlies the IAM.
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The sequence rule adds an intermediate assertion, changing one verification con-
dition into two (typically simpler) ones. The rule for conditional alternatives
has two premises, corresponding to the two paths through the CFG. Nondeter-
ministic choice (notation +) again gives rise to two paths. The rules in Fig. 1
provide for deductive proof following the program structure but are incomplete;
e.g., they give no way to prove the judgment x := x + 1 : (x = y) ; (x > y).
Such gaps are bridged by rules like those in Fig. 2. For HL to be a self-contained
deductive system it needs to include means to infer valid formulas, such as the
first and third premises of rule Conseq.

For while programs, the syntax-directed rules together with Conseq are com-
plete in the sense that any true judgment can be proved.6 The other rules embody
useful reasoning principles. Disj provides proof by cases, which is useful when
a program’s behavior has two quite different cases. In terms of IAM, one might
apply the method twice, to prove C : P ; R and C : Q ; R with entirely dif-
ferent annotations, and then conclude C : P ∨Q; R by some argument about
the meaning of specs. This principle is expressed directly in Hoare logic, as is
the oft-used principle of establishing conjuncts of a postcondition separately.

Modular reasoning. HL easily admits procedure-modular reasoning, sometimes
formalized by judgments of the form H ` C : P ; Q where hypothesis H
comprises procedure signatures and their specs [61,10]. With the addition of
procedures, Conseq is not sufficient for completeness. Other rules are needed
to manipulate specs, such as substitution rules to adapt procedure specs to
their calling contexts [40,62,5]. We use the name Frame for a rule Hoare called
Invariance [40], with a nod towards a similar rule in separation logic [60] where
disjointness of heap locations is expressed by using the separating conjunction in
place of ∧. With explicit frame conditions the rule can be phrased like this: From
C : P ; Q [x] and FV (R)∩x = ∅ infer C : P ∧R; Q∧R [x]. The principle here
is to reason “locally” with assertions P,Q pertinent to the effect of C, and then
infer a spec P ∧R; Q∧R needed to reason about a larger program of which C
is a part. Locality is important for effective reasoning about programs involving
the heap. (Explicit frame conditions for the heap can be found, for example in
the Dafny language [49] and in the variation of HL dubbed region logic [10].)
The notion of adaptation completeness characterizes the extent to which a HL
has sufficient rules for reasoning about specs [62,43,58,6].7

Refinement. Validity of assertions is a separate concern from program correct-
ness and Conseq brings the two together in a simple way—but it has noth-
ing to do with a specific command. It connects two specs, in a way that can
be made precise by defining the intrinsic refinement order (v, “refined
by”) on specs. Fixing a class of programs, we define P ; Q v R ; S iff
C : R ; S implies C : P ; Q for all C. This relation can itself be given a de-
ductive system, with rules including that P ; Q v R; S can be inferred from
P ⇒ R and S ⇒ Q. The program correctness rule infers C : spec1 from C : spec0
and spec1 v spec0. Using frame conditions, the Frame rule can also be phrased
as a spec refinement: P ∧R; Q ∧R [x] v P ; Q [x] provided FV (R) ∩ x = ∅.
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Disentangling spec reasoning from reasoning about the correctness judgment
helps clarify that that adaptation completeness is about spec refinement [58].
But it does come at a cost: To account for the Conj and Disj rules one needs not
only the relation v on specs but also meet/join operators.8 Explicit formalization
of spec refinement could be useful for relational specs, owing to the additional
manipulations that exist owing to the additional dimension. But I do not develop
the topic further in this paper.

Program transformation. Verification tools employ semantics-preserving trans-
formations as part of the process of generating VCs.9 Less commonly, transfor-
mations are an ingredient in a Hoare logic. An instance of this is the logic for
distributed programs of Apt et al [4,5], where the main rule for a distributed
program has as premise the correctness of a derived sequential program. An-
other instance is rules to justify the use of auxiliary or ghost state in reasoning
[63]. One such rule uses variable blocks var x in C. The variables x are called
auxiliary in C provided their only occurrences are in assignments to variables
in x. Writing C \ x for the command obtained by replacing all such assignments
with skip, the rule is

x /∈ FV (P,Q) x auxiliary in C var x in C : P ; Q

C \ x : P ; Q
(AuxVar)

It is sound because the auxiliary variables cannot influence values or branch con-
ditions, and thus have no effect on the variables in P or Q, nor on termination.10

As relational correctness judgments can express both dependency and program
equivalences, we should be able to bring both the condition “auxiliary in” and
the transformation C \ x into the logic, making the above rule admissible.

3 Relational properties, alignment, and program products

Here are some example relational properties of a single program.

(determinacy) For all terminated traces τ, υ from the same initial state, the
final states are the same: τ0 = υ0 implies τ−1 = υ−1.

(monotonicity) For all terminated traces τ, υ, if τ0(x) ≤ υ0(x) then τ−1(z) ≤
υ−1(z). Here x, z are integer variables.

(dependence, non-interference) (“z depends on nothing except possibly x”)
For all terminated traces τ, υ, if τ0(x) = υ0(x) then τ−1(z) = υ−1(z).

Here are some example relations between programs C and D.

(equivalence) For all terminated traces τ of C and υ of D, if τ0 = υ0 then
τ−1 = υ−1. Determinacy is self-equivalence in this sense.

(majorization) For all terminated traces τ of C and υ of D, if τ0(x) = υ0(x)
then τ−1(z) > υ−1(z)

(refinement) For all terminated traces τ of C, there is a terminated trace υ of
D with τ0 = υ0 and τ−1 = υ−1.
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(relative termination) (For a given relation R.) For all initial states β, γ that
satisfy R, if C has a terminated trace from β then D has a terminated trace
from γ [39].

(mutual termination) For all initial β, γ that satisfy R, C can diverge from
β iff D can diverge from γ [37].

Refinement and relative termination involve existential quantification over traces,
as do generalizations of refinement such as simulation and also dependence for
nondeterministic programs (if τ is terminated and τ0(x) = γ(x) then there is
terminated υ with υ0 = γ and υ−1(z) = τ−1(z)). We refer to these as ∀∃ prop-
erties, by contrast with the preceding items which universally quantify traces
(denoted ∀∀). The ∀∀ properties above are also termination-insensitive in
the sense that they only constrain terminating traces. In this paper we focus on
termination-insensitive ∀∀ properties while discussing some ∀∃ properties (which
are hyperliveness [26], not 2-safety) in passing. Mutual termination also involves
existentials, unless programs are deterministic as they are in Benton [22] where
mutual termination is used.

Let A′ = (Ctrl′, Sto′, init′,fin ′, 7→′) be an automaton. A relational specR ≈>
S is comprised of relations R and S from Sto to Sto′. We write (c, s), (c′, s′) |= R
to mean s, s′ |= R. Finite traces τ of A and τ ′ of A′ satisfy R ≈> S, written
τ, τ ′ |= R ≈> S, just if τ0, τ

′
0 |= R, ctrl(τ−1) = fin, and ctrl(τ ′−1) = fin imply

τ−1, τ
′
−1 |= S. The non-stuck semantics of relational specs requires, in addition,

that ctrl(τ−1) 6= fin implies τ−1 7→ − and ctrl(τ ′−1) 6= fin′ implies τ ′−1 7→′ −.
Finally, the pair A,A′ satisfies R ≈> S just if all pairs of finite traces do, and we
write A|A′ : R ≈> S for satisfaction. (Where I write A|A′, as in [55,11], Francez
writes A×A′, and Benton’s A ∼ A′ is popular.)

A key idea (in [35] and elsewhere) is to form a single automaton, runs of
which encode pairs of runs of the considered programs, and to which IAM can be
applied. For a single program there is not much flexibility in how it is represented
as an automaton or CFG but there are many product automata for a given
pair of programs—these represent different ways of aligning the steps of the two
programs.11 This flexibility is crucial for the effectiveness of the IAM, specifically
on the simplicity of annotations and thus the ease of finding them and proving
the VCs. To discuss this we consider the four examples in Fig. 3.

Consider proving monotonicity of P0. To express relations we use dashed (′)
identifiers for the second run, so the spec can be written x ≤ x′ ≈> z ≤ z′.
One can prove the functional property that P0 computes factorial (x!) and then
prove monotonicity for the recursive definition of !. But, as pointed out in [35],
one can also consider two runs from initial values x, x′ with x ≤ x′, aligning
their iterations in lockstep with invariant y ≤ y′ ∧ z ≤ z′ and no use of !.

Consider proving that P2 is equivalent to P0, which we again specify just
using the relevant variables: P0|P2 : x = x′ ≈> z = z′. Lockstep alignment of
their iterations is not helpful; we would like to align each iteration of P0 with
two iterations of P2 in order to use simple annotations like y = y′ ∧ z = z′.
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P0: (∗ z := x! ∗) y:= x; z:= 1; while y 6= 0 do z:= z∗y; y:= y−1 od

P1: (∗ z := 2x ∗) y:= x; z:= 1; while y 6= 0 do z:= z∗2; y:= y−1 od

P2: (∗ z := x!, half as fast ∗)
y:= x; z:= 1; w:= 0;
while y 6= 0 do if w mod 2 = 0 then z:= z∗y; y:= y−1 fi; w:= w+1 od

P3: (∗ z := 2x , a third as fast ∗)
y:= x; z:= 1; w:= 0;
while y 6= 0 do if w mod 3 = 0 then z:= z∗2; y:= y−1 fi; w:= w+1 od

Fig. 3. Example programs. P0 and P1 are from [35].

3.1 Product automata represent alignments

Let ⊗ denote the cartesian product of relations,12 so 7→ ⊗ 7→′ is a relation
on (Ctrl × Sto) × (Ctrl′ × Sto′), i.e., on state pairs. Let idA be the identity
relation on states of A. A pre-product of A and A′ is an automaton PA,A′

of the form ((Ctrl×Ctrl′), (Sto× Sto′), (init, init′), (fin,fin ′), Z⇒) such that we
have Z⇒ ⊆ ( 7→ ⊗ 7→′) ∪ ( 7→ ⊗idA′) ∪ (idA⊗ 7→′). The union is disjoint, owing
to non-stuttering of A and A′. Each transition of PA,A′ corresponds to one of
both A and A′, or else one of A or A′ leaving the other side unchanged. Such Z⇒
satisfies the requirements of finality and non-stuttering.

Let T be a trace of a pre-product of A,A′. Mapping the first projection
(fst) over T does not necessarily yield a trace of A, as it may include stuttering
steps (related by idA). So we define left(T ) to be destutter(map(fst, T )) where
destutter removes stuttering transitions.13 Observe that left(T ) is a trace of
A, and we obtain mutatis mutandis a trace, right(T ), of A′. A pre-product is
adequate if it covers all finite traces: For all finite traces τ of A and τ ′ of A′ there
is a trace T of PA,A′ with τ � left(T ) and τ ′ � right(T ), where � means prefix.
It is weakly adequate if it covers all finite prefixes τ, τ ′ of terminated traces.
(To see that equality τ = left(T ) and τ ′ = right(T ) would be too restrictive,
consider lockstep alignment with τ strictly shorter or longer than τ ′.)

Owing to the definition of states of a pre-product, a relational spec R ≈> S
for A,A′ can be seen as a unary spec R ; S for PA,A′ . For a trace T of PA,A′

we have T |= R ; S iff left(T ), right(T ) |= R ≈> S by definitions. We obtain
the following by definitions.

Theorem 1. For the basic semantics of specs, if PA,A′ is a weakly adequate pre-
product of A,A′ then PA,A′ satisfies R; S iff the pair A,A′ satisfies R ≈> S.

This confirms that a relational spec can be proved using the IAM and a pre-
product. The challenge is to construct one that admits a simple annotation and
is at least weakly adequate. Adequacy is a more robust condition that holds for
several forms of product. The number of cutpoints needed for a product may be
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on the order of the product of the number for the underlying automata, but a
good alignment makes many unreachable; those can be annotated as false so the
corresponding VCs are vacuous.

Apropos stuck states, an adequate pre-product may have stuck states that
do not correspond to stuck states of A or A′; this is one way for a pre-product
to be helpful, rendering unreachable states such as those where the guards of a
conditional are not in agreement. However, if PA,A′ is an adequate pre-product
and satisfies R; S in non-stuck semantics, it does not follow that A,A′ satisfies
R ≈> S in non-stuck semantics —contrary to a misstatement in a previous
version of this paper. The problem is one-sided divergence. For example, suppose
trace τ of A is not terminated but τ−1 is stuck. If A′ can diverge then it is possible
for a PA,A′ to be adequate yet have an infinite sequence of traces Ti such that
i < j ⇒ Ti < Tj (so that it is not stuck), yet fst(Ti) = τ for all i. That problem
can be solved by requiring A′ to be terminating (and A as well, to prevent
divergence on the left), an approach taken in [12]. Alternatively, products can
be required not to have one-sided divergence, an approach taken in [8].

Here are some pre-products defined for arbitrary A,A′. For brevity, we ex-
press product states as pairs of A- and A′-states, as if the product’s state had
type (Ctrl × Sto)× (Ctrl′ × Sto′).

only-lockstep. (γ, γ′) Z⇒olck (β, β′) iff γ 7→ β and γ′ 7→′ β′.
eager-lockstep. (γ, γ′) Z⇒elck (β, β′) iff (γ, γ′) Z⇒olck (β, β′), or ctrl(γ) = fin

and γ′ 7→′ β′ and γ = β, or ctrl(γ′) = fin ′ and γ 7→ β and γ′ = β′.
interleaved. (γ, γ′) Z⇒int (β, β′) iff γ 7→ β and γ′ = β′ or γ′ 7→′ β′ and γ = β.
maximal. The union Z⇒olck ∪ Z⇒int.
sequenced. (γ, γ′) Z⇒seq (β, β′) iff γ 7→ β and ctrl(γ′) = init′ and γ′ = β′ or

ctrl(γ) = fin and γ = β and γ′ 7→′ β′.
simple-condition. Given “alignment condition” ac ⊆ (Ctrl×Sto)×(Ctrl′×Sto′),

define Z⇒scnd by (γ, γ′) Z⇒scnd (β, β′) iff either (γ, γ′) ∈ ac and (γ, γ′) Z⇒olck

(β, β′) or (γ, γ′) /∈ ac and (γ, γ′) Z⇒int (β, β′).

As Francez observes, interleaved has a relatively large reachable state space,
making it more difficult to find inductive invariants.

The only-lockstep form is not adequate, in general, because a terminated
state or stuck state can be reached on one side before it is on the other. The eager-
lockstep, interleaved, and maximal pre-products are all adequate. The sequenced
form is not adequate in general: a stuck or divergent state on the left prevents
coverage on the right. Sequenced is weakly adequate if A,A′ have no stuck states.

The simple-condition product can also fail to be adequate: if ac holds, both
sides are required to take a step, which may be impossible if one side is stuck
or terminated. It is also insufficiently general: as we show later, it may be most
convenient to designate that steps should be taken on one side or the other. This
suggests the following, which subsumes the preceding constructions.

3-condition. Given state conditions l, r, b, define (γ, γ′) Z⇒3cnd (β, β′) iff either
(γ, γ′) ∈ l and γ 7→ β and γ′ = β′, or (γ, γ′) ∈ b and (γ, γ′) Z⇒olck (β, β′), or
(γ, γ′) ∈ r and γ′ 7→′ β′ and γ = β.
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3.2 Examples

Consider proving that P0 majorizes P1, for inputs x > 3, that is, P0|P1 : x =
x′ ∧ x > 3 ≈> z > z′.14 Francez observes that using sequenced product would
require reasoning about z = x! and z′ = 2x

′
, and suggests aligning the iterations

in lockstep and using this relational invariant: y = y′ ∧ (z = z′ = 1 ∨ z > z′).
This condition is not preserved by the loop bodies under guard condition y > 0,
for example in the state y = 2, z = 6, z′ = 4 reached when x = x′ = 3, but
here we are concerned with the case x > 3. If we add x > 3 as a conjunct we
get a condition that is indeed invariant for lockstep executions, but it is not
inductive— that is, the verification condition for the loop body is not valid. But
there is a simple invariant with which the relation can be proved:

y = y′ ∧ ((y > 4 ∧ z = z′ = 1) ∨ (y > 0 ∧ z > 2 ∗ z′) ∨ (y = 0 ∧ z > z′)) (1)

This is not established by the initialization, in case x = 4. Instead we use this
invariant to prove correctness under precondition x > 4 and separately prove
correctness under the very specific precondition x = 4 which can be proved, for
example, by unrolling the loops. In short, we do case analysis, as in rule Disj.15

Program P2 is equivalent to P0, and P3 to P1, but neither fact is eas-
ily proved using lockstep alignment. For the simplest invariants in proving P0
equivalent to P2 we should let P2 take two iterations for each one of P0. The
question is how to formulate that nicely.

As another example, P2 majorizes P3, for x > 4, but again this is not easily
proved by reasoning about lockstep alignment of the loops. Both programs have
gratuitous iterations in which y and z are not changed. We would like to align
the computations so that when w = w′ = 0 we can assert (1). Indeed, when
w 6= 0 (respectively w′ 6= 0), an iteration on the left (resp. right) has no effect on
the other variables and thus maintains (1). For this proof we may try a simple-
condition product so joint steps are taken when (w mod 2) = 0 = (w ′ mod 3).
But this is insufficient: it allows one side to run ahead in states where the con-
dition does not require both sides to step together, precluding a simple invari-
ant. What we need is a 3-condition product. The left may advance indepen-
dently when w mod 2 6= 0 and w/2=w ′/3; the right when w ′ mod 3 6= 0 and
w/2=w ′/3. Then (1) is invariant.

The examples only scratch the surface. Compilation, refactoring, and pro-
gram revision need less obvious alignments, but often do admit alignments for
which simple and even inferrable invariants suffice.

In examples like equivalence of P0 and P2 there is a fixed correspondence
between loops of one versus the other program, a pattern that arises in some
loop transformations used in compilers (e.g., to introduce vector operations).
For majorization of P3 by P2 our alignment is more data-dependent, although
it is not surprising that it can be described succinctly since the iterations have
a regular pattern. Here is a less regular example (from [11]): the program uses
a loop to sum the integers in a list, where list elements have a boolean flag that
indicates an element should be ignored. The property is that two runs yield the
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same sum, provided the two lists have the same non-deleted elements in the same
order. This can be handled nicely using a 3-condition product.16

One can imagine more elaborate product automata using ghost state to track
alignment conditions, but it seems that in any case what is needed is to designate
when to advance on one side, the other side, or both.

4 Rules of relational program logic

As has been rediscovered and noted several times, it is not difficult to use pro-
gram syntax to make a program that behaves as a product of programs. A simple
case, mentioned earlier, is the sequence C;C ′ where C ′ has no variables in com-
mon with C, and which corresponds to the sequenced product automaton. But
it is also natural to interleave code from such disjoint programs, so as to align
intermediate points in control flow. For a deductive system one also needs to
account for the connection between such a product and the original program
(or programs), the primary objects of interest. It is also desirable to disentan-
gle reasoning principles, such as various alignments, from details of encoding.
Furthermore, although disjoint variables suffice to reduce relational reasoning
to standard HL for simple imperative programs, this is no longer the case for
languages with more elaborate notions of state. For example, many languages
feature a single heap and it is not trivial to use it to encode two disjoint heaps
(see [59,23]). Another example is assembly language for a conventional archi-
tecture with a fixed set of registers. In such situations it may be preferable
to work more directly with the relational correctness judgment, suitably inter-
preted, rather than depending entirely on products encoded as single programs.

We have reached the main topic of this paper, deductive systems for the
relational judgment C|C ′ : R ≈> S, in which various principles of reasoning are
manifest in proof rules. With HL in mind we may expect syntax-directed rules
that embody program semantics, rules for manipulation of specs, and rules for
program transformation. In addition, relational reasoning benefits from judicious
alignment of program fragments. For lockstep automata, the corresponding rules
are dubbed “diagonal” [35] and relate programs with the same control structure.
The sequenced and interleaved automata involve one-sided steps, corresponding
to proof rules syntax-directed on one side. The 3-condition product is manifest
in a three-premise rule for relating two loops. There are also rules that involve
both relational and unary judgments.

Good alignment not only enables use of simple assertions, it is also essential
to enable the use of relational specs for procedure calls. For lack of space we do
not delve into this topic.

We refrain from formalizing relational formulas but we do assume they are
closed under the propositional connectives with classical semantics. Usual for-
mulations of HL rely on the use of program variables and expressions both as
part of programs and as terms in formulas; in relational formulas we need to
designate whether they refer to the left or right execution. As an alternative to
the dashed/undashed convention used in Sec. 3, we use the notation 〈[e〈] (resp.
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x := e | x′ := e′ : Rx|x′

e|e′ ≈> R
C|C′ : R ≈> Q D|D′ : Q ≈> S

C;D | C′;D′ : R ≈> S

C|C′ : R∧ 〈[e〈] ∧ [〉e′]〉 ≈> S D|D′ : R∧ 〈[¬e〈] ∧ [〉¬e′]〉 ≈> S
C|D′ : R∧ 〈[e〈] ∧ [〉¬e′]〉 ≈> S D|C′ : R∧ 〈[¬e〈] ∧ [〉e′]〉 ≈> S

if e then C else D | if e′ then C′ else D′ : R ≈> S

R ⇒ 〈[e〈] = [〉e′]〉

C|C′ : R∧ 〈[e〈] ∧ [〉e′]〉 ≈> S D|D′ : R∧ 〈[¬e〈] ∧ [〉¬e′]〉 ≈> S
if e then C else D | if e′ then C′ else D′ : R ≈> S

(AltAgree)

Q ⇒ 〈[e〈] = [〉e′]〉 C | C′ : Q∧ 〈[e〈] ∧ [〉e′]〉 ≈> Q
while e do C od | while e′ do C′ od : Q ≈> Q∧ 〈[¬e〈] ∧ [〉¬e]〉

(IterAgree)

Q ⇒ 〈[e〈] = [〉e′]〉 ∨ (L ∧ 〈[e〈]) ∨ (R∧ [〉e′]〉) C | C′ : Q∧ 〈[e〈] ∧ [〉e′]〉 ∧ ¬L ∧ ¬R ≈> Q
C | skip : Q∧ L ∧ 〈[e〈] ≈> Q skip | C′ : Q∧R ∧ [〉e]〉 ≈> Q
while e do C od | while e′ do C′ od : Q ≈> Q∧ 〈[¬e〈] ∧ [〉¬e]〉

Fig. 4. Diagonal syntax-directed rules.

[〉e]〉) for the value of expression e on the left (resp. right) side. As naming con-
vention we tend to use dashed names for commands on the right side, but this
does not imply renaming of variables or anything of the sort. In the logic, the
programs are considered to act on distinct states which may or may not have
the same variables. For example, we can write 〈[x〈] ≤ [〉x]〉 rather than x ≤ x′.

4.1 Diagonal and one-side rules

The rules in Fig. 4 relate programs with the same control structure. Such rules
are found in [35,22,73] and many other papers. In the assignment rule, the nota-

tion Rx|x′

e|e′ is meant to be the formula R in which left-side occurrences of x are

replaced by e and right-side occurrences of x′ by e′. For example, (〈[x〈] = [〉x]〉)x|xx+1|y
is 〈[x+ 1〈] = [〉y]〉. The first rule for if/else is general, covering the possible control
flows, whereas AltAgree is applicable when the guard conditions are in agree-
ment (and can be understood in terms of simple-condition pre-product with a
condition to ensure adequacy). AltAgree can be derived from the first rule,
using that C|C ′ : false ≈> S and RelConseq (Fig. 6).

The IterAgree rule (e.g., [22,73]) is applicable when the loop conditions
remain in agreement under lockstep alignment; it uses a single invariant rela-
tion Q much like the unary loop rule. The rule can be use to prove example
P0 majorizes P1, for x > 4, using (1) as invariant. Francez gives a loop rule
that corresponds to the eager-lockstep product:17 with a single invariant like in
IterAgree but with additional premises C | skip : Q ∧ 〈[e〈] ∧ [〉¬e′]〉 ≈> Q and
skip | C ′ : Q ∧ 〈[¬e〈] ∧ [〉e′]〉 ≈> Q to handle the situation that one loop continues
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x := e|skip : Rx|
e| ≈> R

C | skip : R ≈> Q D |D′ : Q ≈> S
C;D |D′ : R ≈> S

(LeftSeq)

B | C : R∧ 〈[e〈] ≈> S D | C : R∧ 〈[¬e〈] ≈> S
if e then B else D | C : R ≈> S

while e ∧ b do B od | C : P ≈> Q
while e do B od |D : Q ≈> R Q∧ 〈[¬e〈] ⇒ R

while e do B od | C;D : P ≈> R
(WhSeq)

Fig. 5. Some left side and mixed structure rules.

while the other has terminated; it is seldom helpful. Our second loop rule, from
Beringer [23], corresponds to the 3-condition product: It augments the invariant
Q with two other relations: L is precondition for an iteration on the left while
the right side remains stationary; mutatis mutandis for R. The side condition
Q ⇒ ((〈[e〈] = [〉e′]〉) ∨ (L ∧ 〈[e〈]) ∨ (R ∧ [〉e′]〉)) ensures adequacy, i.e., covering all
pairs of unary traces.

To relate differing programs, a natural idea is one-side rules, some of which we
give in Fig. 5. The assignment rule is from Francez, where several one-side rules
are given with skip on the other side, corresponding to interleaved product. The
alternation rule is given in the more general form found in Barthe et al [14,16]
and in Beringer [23] which also gives LeftSeq. If we identify D′ with skip;D′ (see
Sec. 4.5), rule LeftSeq can be derived from sequence rule in Fig. 4 by replacing
C;D | D′ with C;D | skip;D′. Right-side rules can be derived using rule Swap

(Sec. 4.4).

In addition to one-side rules that relate a structured program with an ar-
bitary one, Francez considers rules for relating different program structures, for
example WhSeq. The rule is unusual in that the premises are not judgments for
subprograms of the one in the conclusion. The rule is derivable provided there are
rules to rewrite programs to equivalent ones (see Sec. 4.5). Since while e do B od is
unconditionally equivalent to the sequence (while e ∧ b do B od);while e do B od,
rewriting the conclusion results in a relation between two sequences.

4.2 From unary correctness to relational

If the variables of C ′ are disjoint from those of C then the semantics of com-
mand C;C ′ amounts to the sequenced product of the corresponding automata,
suggesting:

C and C ′ have disjoint variables C;C ′ : R; S
C|C ′ : R ≈> S

(SeqProd)
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For programs that cannot get stuck, it is sound in basic semantics according
to Theorem 1 and the weak adequacy of sequenced product. Stuckness can be
addressed using additional unary premises.

SeqProd is useful as means to obtain relational judgments for small sub-
programs such as assignments and basic blocks where a functional spec is not
difficult to prove. An alternative way to get relational correctness from unary is
by this rule, essentially introduced by Yang [73].

C : P ; Q D : R; S

C|D : 〈[P 〈] ∧ [〉R]〉 ≈> 〈[Q〈] ∧ [〉S]〉
(Embed)

It is sound in both basic and non-stuck semantics.
Typically, the relational assertion language does not express equality of entire

states, but rather of specific variables and sometimes of partial heaps [73,11].
Equivalence of two programs can be specified as C|C ′ : E ≈> F where E (resp.
F) expresses agreement on whatever parts of the state are read (resp. written)
by C or C ′. In a unary logic with frame conditions, suitable E ,F can be derived
from the frame condition [8] but I leave this informal in the following rule which
yields a relational judgment from a unary one.

C : P ; Q

C|C : E ∧ BP ≈> F
(Erefl)

Here BP abbreviates 〈[P 〈]∧ [〉P ]〉. One can add postcondition BQ by means of Em-

bed and RelConseq. Further agreements can be added using RelFrame (Fig. 6).

4.3 From relational correctness to unary

Preservation of unary correctness by equivalence transformation can be ex-
pressed as follows, where E ,F are suitable agreements as in Erefl.

C : P ; Q C|D : E ∧ BP ≈> F
D : P ; Q

(Ecorr)

Whereas using unary judgments to infer relational ones allows for a deductive
system in which the unary judgment stands on its own, this rule makes a depen-
dency in reverse. We now take a further step which entangles assertion reasoning
with correctness judgments.

Francez [35] motivates interest in the property of monotonicity by considering
that it could be a requirement on a procedure passed to a routine for numeric
integration. Similarly, a sorting routine requires that the comparator passed to
it computes a transitive relation, and collections libraries require that the equals
method compute a symmetric relation (at least) [68]. Evidently the functional
correctness of such routines relies on these k-safety properties, but the cited
papers do not even sketch such reasoning. Let us do so, glossing over details
about parameter passing.
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Consider a sorting routine that uses comparator comp with inputs x, y and
output z. Suppose in the proof of sort(a, comp) : true ; sorted(a) we rely
on symmetry.18 That is, some use of Conseq is for an entailment that is valid
owing to symmetry of comparison. Symmetry can be expressed as the relational
judgment comp|comp : x = y′ ∧ y = x′ ≈> z = z′. But we need to connect this
with reasoning about unary assertions, within the confines of a logic of relational
and unary correctness judgments.

Such a connection is made in tools and theories that allow “pure methods”
to be used in assertions while avoiding illogical nonsense using arbitrary pro-
gram functions as mathematical ones [28,13]. Let C be some command meant
to compute a function of input variables x as output z. Let f be an unin-
terpreted (and fresh) name which we will use to represent that function. We
have already seen how to express that z depends only on x, deterministically:
C|C : x = x′ ≈> z = z′. A property such as symmetry or monotonicity has the
form C|C : R(x, x′) ≈> S(z, z′). To express that f is the function computed in z
we use a unary spec, thus C : true ; z = f(x). Finally, we express the relational
property of f as a first order (unary) formula: ∀x, x′.R(x, x′)⇒ S(f(x), f(x′)).
With these ingredients we can state a rule.

C|C : x = x′ ≈> z = z′ C|C : R(x, x′) ≈> S(z, z′) f fresh
C : true ; z = f(x) ; (∀x, x′.R(x, x′)⇒ S(f(x), f(x′))) ` D : P ; Q

“link D with C” : P ; Q
(CmdFun)

We are glossing over procedures and parameter passing, and termination of C.
The last premise, for D, is meant to indicate reasoning under a hypothesis.
The hypothesis includes a unary judgment, as in formalizations of HL with
procedures. It also includes the axiom about f for reasoning about assertions.
The rule does not require C to be entirely deterministic and have no effects on
other variables besides z, but we should disallow writes to x, so z = f(x) means
what we want.

From C : true ; z = f(x) one can derive C|C : x = x′ ≈> z = z′ by Embed

and RelConseq. But CmdFun does not require proof of C : true ; z = f(x).
Instead, that spec is used to define f in terms of C, in reasoning about D.

4.4 Reasoning about specs

The reasoning embodied by Conseq and other spec rules in HL is also needed in
RHL, e.g., in Sec. 3.2 we suggested an appeal to the relational disjunction rule.
Some of these rules are in Fig. 6. In addition to logical connectives, it is natural
to consider formulas with converse and relational composition, for which I write
R∼ and R;S respectively. Rule Swap is sound in basic and non-stuck semantics
(but not for relative termination). Rule Comp is not sound in basic or non-stuck
semantics, owing to possible divergences of C1; these are precluded under relative
termination and mutual termination semantics. Soundness of Comp can also be
achieved using an additional premise for termination.
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P ⇒ R C|D : R ≈> S S ⇒ Q
C|D : P ≈> Q

(RelConseq)

C|C′ : P ≈> Q FV (R) disjoint from V ars(C,C ′)

C|C′ : P ∧R ≈> Q∧R
(RelFrame)

C|C′ : P ≈> Q
C′|C : P∼ ≈> Q∼

(Swap)
C0|C1 : P ≈> Q C1|C2 : R ≈> S

C0|C2 : P;R ≈> Q;S
(Comp)

Fig. 6. Some rules that manipulate specs.

Let us abbreviate the agreement 〈[x〈] = [〉x]〉 by Ax. We have focused on local
agreements like Ax, but one may wish to include a global identity relation, for
which we write I. As Benton shows, partial equivalences (symmetric and transi-
tive relations, per for short) are particularly important, and relation operations
let us express such properties as valid implications: R∼ ⇒ R (symmetry) and
R;R ⇒ R (transitivity). Several works use relational specs to express partial
declassification of secrets (e.g., [57]). To declassify the value of expression e, a
typical precondition has the form Ae∧BP which is a per but not reflexive. Apro-
pos rule Comp instantiated in the form C0|C2 : R;R ≈> S;S, if S is transitive
we obtain C0|C2 : R;R ≈> S using RelConseq. Then if R is reflexive (I ⇒ R)
we obtain C0|C2 : R ≈> S, as I;R is equivalent to R.

By analogy with rule Ecorr we would like to reason about preservation
of a relational property by equivalence transformation. Consider the relation
C|C ′ : R ≈> S together with equivalences D|C : E ≈> F and C ′|D′ : E ≈> F
where E ,F are suitable agreements. By Comp we get D|D′ : E ;R; E ≈> F ;S;F .
If E is a conjunction of agreements including variables of R, then R is equivalent
to E ;R; E and likewise for S so by RelConseq we obtain D|D′ : R ≈> S.
Besides enabling derivation of right-side rules from left-side rules, rule Swap

facilitates instantiating the preceding reasoning in case C = C ′ and D = D′, to
show a security property of C is preserved by the equivalence. (Take R,S to be
agreement on non-secret variables.)

Benton [22] makes the beautiful observation that just as the relational spec
Ax ≈> Az characterizes a dependency property of a single program, it also
captures that two programs are equivalent with respect to their effect on z, e.g.
z := x; y := z | z := x : Ax ≈> Az captures a dead-code elimination transform,
for a context where the subsequent code does not use y and therefore requires
no agreement on it.

With this in mind, consider programs in which atomic actions happen in
different orders, for example z := x + 1;w := y versus w := y; z := w + 1,
the equivalence of which can be expressed by the spec Ax ∧ Ay ≈> Az ∧ Aw. A
general rule for commuting assignments can be formulated requiring disjointness
of the variables read in the assignments. Moreover, one can express such a rule
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for assignments involving heap locations, given means to express agreements
thereof.

Heap agreements are often needed up to bijective renaming of pointers [9,23],
which can be encoded in ghost state. Such specs can be localized to the loca-
tions read and written by a given command, since preservation of additional
agreements can be derived by RelFrame. Yang’s logic [73] features a frame rule
taking advantage of separating conjunction of relations. It is also possible to
formulate a frame rule based on relational specs with frame conditions, as in the
work of Banerjee et al [8] which features local equivalence specs derived from
frame conditions.

4.5 Transformations

The diagonal and one-side rules enable reasoning in terms of convenient align-
ments but apply only to specific control structure patterns. Programs that do not
exactly match the patterns can be rewritten by equivalences such as skip;C ∼= C,
C; skip ∼= C, and the following:

while e do C od ∼= while e do C; while e ∧ e0 do C od od
while e do C od ∼= if e do C fi; while e do C od

Commands C,C ′ are unconditionally equivalent , written C ∼= C ′, if they
have exactly the same store traces.19 The relation can be formalized using laws
like these together with congruence rules. Such equivalences can be used to
desugar fancy control structures, as done in some verification tools; the justifi-
cation is that C : P ; Q and C ∼= D implies D : P ; Q (cf. rule Ecorr in
Sec. 4.4). The relational logic of Banerjee et al [11] features a rule like this: from
C|C ′ : R ≈> S, D ∼= C, and C ′ ∼= D′, infer D|D′ : R ≈> S. The rule is applied
in proving a loop tiling transformation, using the above rewrites to enable appli-
cation of diagonal rules. Transformations are used similarly in [19,42]. To enable
use of sequenced product one may use the equivalence var x in C ∼= var x′ in Cx

x′

for fresh x′.
It seems unparsimonious to rely on an additional program relation (∼=) for

which axioms and rules must be provided and proved sound, in a setting where
we already consider a form of program relation.20 On the other hand, we have
seen in Sec. 4.4 that there are limitations on the use of equivalence judgments for
reasons of termination. Having a separate judgment of unconditional equivalence
is one way to address termination in connection with the basic or non-stuck
semantics of relational judgments.

4.6 Alignment completeness

The usual notion of completeness is that true judgments are provable. Suppose
the relational judgment C|C ′ : R ≈> S is true. In a setting where R,S can
be expressed as, or considered to be, unary formulas, one can prove it by ap-
plication of SeqProd. In turn, the sequence can be reduced to true judgments
C : R ; Q and C ′ : Q ; S. What matters is not that an explicit product
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C;C ′ can be formed but rather that store relations can be expressed as store
predicates [35,17,24,23]. If so, the judgment is provable provided the unary HL
is complete. Then a single rule for relational judgments (SeqProd or Embed) is
complete on its own!21 A different notion is needed.

Suppose C : P ; Q can be proved using IAM with a particular annotation.
Then there is a HL proof using that annotation, in the sense that at least the
loop rule is instantiated according to the annotation (assuming that loops are
cut at loop headers). Why? Because the VCs will be provable, by completeness
of HL, and the syntax-directed rules suffice to compose the VCs. In this sense,
HL is complete with respect to IAM for unary correctness.

A natural measure of completeness for RHL is whether any proof of C|C ′ :
R ≈> S using IAM with a product automaton can be represented by an RHL
proof using the same annotation and alignment. Turning this into a precise defi-
nition requires, first, a convincing general definition of product automaton; our 3-
condition form is relatively general but does not encompass the use of ghost state
for alignment conditions or store relations. Second, the correspondence between
proof rules and aligned products, discussed informally throughout Secs. 4.1–4.5,
needs to be made precise. To this end it may help to limit attention to annota-
tions in which all branch points are cutpoints. We leave this to future work but
note that formal proof outlines [5] may be a convenient intermediary.

It is straightforward to add ghost state to our notions of pre-product and
adequacy, to express store relations and alignments. But some program trans-
formations used in optimizing compilers reorder an unbounded number of atomic
actions. These do not have an obvious representation by pre-product and they
have not been formalized using RHL rules [56].

5 Selected additional related work

The idea of relating C to C ′ by unary reasoning about a program that repre-
sents their product goes back at least to the 1970s. In Reynolds’ book [65] we
find stepwise refinement from an algorithm C using local variables of abstract
mathematical types to C ′ acting on concrete data structures, expressed by aug-
menting C with parts of C ′ interwoven in such a way that assertions can express
the coupling relation between abstract and concrete data. DeRoever and Engel-
hardt call this Reynolds’ method and devote a chapter to it, citing work by Susan
Geary as precursor [66]. Morgan [52] formalizes the idea in terms of auxiliary
variables, cf. rule AuxVar. The idea of encoding two runs as a sequence of dis-
joint copies, and specifying determinacy as a Hoare triple, appears (in passing)
in a 1986 paper by Csirmaz and Hart [30].

The influential papers by Benton [22] and Barthe et al [17] have been followed
by many works. The rest of this section gives selected highlights.

Barthe, Crespo and Kunz [16] give several ways of formulating deductive
reasoning about relational properties, including deductive systems for product
programs in conjunction with unary HL. They formalize a judgment that con-
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nects two commands with a command that represents their product. Products
include assertions which must be verified to ensure what we call adequacy.

Beringer [23] considers partial correctness specs in “VDM style” i.e., as rela-
tions from pre- to post-state, so partial correctness means the relational seman-
tics of the program is a subset of the spec. He defines relational decompositions,
essentially the relations that hold at the semicolon of a product C;C ′ (as in rule
SeqProd), and observes that given such an “interpolant” one can derive VCs for
C and C ′ as quotients in the sense of relational calculus (also known as weakest
prespecification [41]). This is used to derive a collection of RHL rules includ-
ing diagonal and one-side rules as well as relational Disj/Conj, for imperative
commands including the heap.

Beckert and Ulbrich [21] survey some of the main ideas in relational verifica-
tion and describe a range of applications and works on verification. Maillard et
al [50] introduce a general framework for relational logics, applicable to a range
of computational effects such as exceptions. Aguirre et al [1] develop a logic
based on relational refinement types, for terminating higher order functional
programs, and provide an extensive discussion of work on relational logics. Re-
cent proceedings of CAV include quite a few papers on relational verification, and
further perspectives can be found in the report from a recent Dagstuhl Seminar
on program equivalence [47].

Numerous works develop variations and extensions of the ideas in this pa-
per. Terauchi and Aiken [69] observe that sequenced product necessitates use
of strong intermediate assertions, and use a dependency type system to guide
the construction of more effective products. They also coin the term 2-safety.
Several works focus on modular reasoning and product constructions that en-
able use of relational specs for procedures [37,74,45,39,46,11,72,32]. Sousa and
Dillig [68] formulate a logic for k-safety, with notation that stands for “any prod-
uct” and may be understood as providing for lazy product construction. Eilers
et al [32] give a k-product encoding that lessens code duplication. Whereas many
works handle only lockstep alignment of loops, some cover the 3-condition au-
tomata [23,19]; Shemer et al [67] provide for more general alignment and infer
state-dependent alignment conditions. Other works on inferring or expressing
effective alignments include [36,64,25]. Product constructions for ∀∃ properties
appear in [15,27].

Richer formalisms like Dynamic Logic [31,20] and embedding in higher order
logic [38,1,50] have their advantages and can address reasoning like rule Cmd-

Fun and the linking of procedures to their implementations which is often left
semi-formal. But such embeddings, in particular, are far from providing the level
of automation (and teachability!) that more direct implementations of HL/RHL
can provide. Completeness results show how HL/RHL suffice for proving cor-
rectness judgments.
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6 Conclusion

I spelled out a number of patterns of reasoning for program relations and rela-
tional properties of programs, in terms of product automata that model pairs
of executions, and also as rules of relational program logic. Almost all the rules
can be found in at least one prior publication but some “obvious” and useful
rules are missing in several papers. Spelling out the inductive assertion method
for relational properties, as Francez [35] does, makes explicit the alignment prin-
ciples that should be embodied in deductive rules, guiding the design of such
rules. On this basis I introduced the notion of alignment completeness, leaving
its formalization to future work; it should be done for a more general form of
product than the one I chose for expository purposes.

To streamline notation I focused on 2-run properties but there is strong
motivation for some 3-run (e.g., transitivity). I am not aware of fundamentally
different techniques or principles for k-run that are not at hand for 2-run.22

Although several papers have described the need for k-safety properties in
order to reason about unary correctness, to my knowledge this pattern of rea-
soning has not been provided by relational logics (aside from those embedded
in expressive higher order logics). I present a new rule for this (CmdFun) that
stays within the limited resources of RHL, i.e., assertions, unary correctness, and
relational correctness judgments.

A couple of years ago I moved to a smaller office. While winnowing paper
files I came across the paper by Francez, which I had acquired but not fully
appreciated when working full time at IBM as a programmer in the ’80s. The
dearth of citations shows I am not alone in not finding it when I searched online
for relevant work. My copy is a publisher’s reprint, affixed with stickers that
indicate IBM paid a fee. Such stickers became obsolete but the flow of scientific
knowledge is still too tangled with commerce.
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Notes

1 Consult, for example, the book [5]. There may be infinitely many variables
but any program has the frame property : there is a finite set of variables
(or memory locations) such that the program acts on, and depends on, only
those, leaving the rest unchanged.

2 This loses no generality and facilitates the definition, later, of destutter.
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3 For some variations of structural operational semantics it suffices for Ctrl to
be something like finite sequences of subprograms of the program of interest.

4 Because then we can write P̂ ; Q̂ where P̂ conjoins to P some equations
of the form x = x̂, one for each program variable y not in x, with each x̂ a
distinct spec-only variable not free in P or Q. Conjoining the same equations
to Q gives the property that program variables y /∈ x are unchanged, given
the stipulation that spec-only variables are never changed.

5 A detailed history of these ideas and terminology, which go back to Tur-
ing [70], is provided by Apt and Olderog in their article on Hoare’s logic [6].

6 See for example Apt et al [5] where completeness is defined relative to com-
pleteness of reasoning about assertions and with the requirement that the
assertion language be expressive enough to capture loop invariants, which I
gloss over in this paper.

7 There seems to be only a little room for variation in formulating the syntax-
directed rules, but more room for the rules that manipulate correctness
judgments. For example, consider this sound rule which is akin to the Disj

rule:
C : P ; Q x /∈ FV (Q) x /∈ V ars(C)

C : ∃x. P ; Q

In some sources one finds a variation with conclusion of this form: C :
∃x. P ; ∃x. Q. The variation can be derived from the displayed rule using
Conseq and the tautology Q⇒ ∃x. Q.

8 Such operators are available in JML and are useful in connection with be-
havioral subtyping [48]. One can also define an intrinsic refinement order
on programs in terms of the specs they satisfy. Tony Hoare long ago shifted
his attention towards algebraic approaches in which programs and specs are
freely combined and related by refinement. In the variation called refinement
calculus [7,53,54], specs are considered as a kind of atomic command the cen-
tral judgment is refinement, of programs, specs, and combinations thereof,
which subsumes the correctness judgment C : P ; Q as P ; Q v C.

9 For example, rewriting potentially faulting or diverging expressions into
primitive commands, so other expressions are pure and have mathemati-
cal semantics as needed by the “pun” of program expressions in formulas.
Another example is assigning subexpressions to temporary variables in order
for atomic commands to make at most one heap access.

10 We give the rule AuxVar in a simple form, for clarity. But one may want
other ghost computation besides assignments. For soundness of such a rule
the ghost code must be terminating [33].
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11 Francez and others notice the analogy with disjoint parallelism and use terms
like “synchronization”. I prefer the term “alignment” [44] which is apt and
not confusing even if relations are considered between concurrent programs.

12 That is, (a, b)(R⊗ S)(c, d) iff aRc and bSd.

13 For trace τ define destutter(τ) = τ if len(τ) = 1, destutter(γ0 :: γ1 ::
τ) = destutter(γ1 :: τ) if γ0 = γ1, and destutter(γ0 :: γ1 :: τ) = γ0 ::
destutter(γ1 :: τ) otherwise.

14 In [35] this is claimed for x > 2, but that is not true of these programs, as
we have 3! < 23.

15 In the case we have precondition x > 4, the initializations establish (1), in
particular the first of the disjuncts. Note that following the loop we have
both (1) and the negated guard, i.e. y = 0, whence the postcondition z > z′.
It remains to show that (1) is preserved by the loop body when y 6= 0. To
this end we reason forward, considering each disjunct in turn, and writing
y0, z0, y

′
0, z
′
0 for the initial values. so we have y = y0−1, y′ = y′0−1, z = z0∗y0,

and z′ = z0 ∗ 2.

– If the first disjunct holds initially, i.e., y0 > 4∧ z0 = z′0 = 1, we get z = y0 >
4 = 2 ∗ 2 = z′ ∗ 2 and y > 0, whence the second disjunct in (1).

– If the second disjunct holds initially, i.e., y0 > 0 ∧ z0 > 2 ∗ z′0, we make a
further case split:
• if y0 = 1∧z0 > 2∗z′0 then y = 0 and we get the rest of the third disjunct

by z = z0 ∗ 1 > 2 ∗ z′0 = z′.
• if y0 > 1 ∧ z0 > 2 ∗ z′0 then y > 0 and we get the rest of the second

disjunct by z = z0 ∗ y0 ≥ z0 ∗ 2 > 2 ∗ z′0 ∗ 2 = 2 ∗ z′
– The third disjunct does not hold initially, given the guard conditions y 6= 0.

16 Advance on the left (resp. right) if the next element on the left (resp. right)
is deleted; if neither are deleted then both sides advance together.

17 As does the rule Fusion 2 of Sousa and Dillig [68].

18 Transitivity is certain to be needed, but it is 3-safety which is inconvenient
for expository purposes.

19 That is, projecting out just the stores from their state traces.

20 Indeed, Benton formulates some unconditional equivalences within his rela-
tional calculus DDCC [22, sec 3].

21 The fact that the technique of SeqProd is complete relative to unary HL
is observed by Francez [35] but not worked out in detail. The fact is also
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mentioned in Barthe et al [17], for the special case of relating a program to
itself; it is evident that it holds more generally as noted in [14]. Semantic
completeness of the technique, for general relational properties, is proved by
Beringer [23]. A RHL is proved complete for deterministic programs, on this
basis, in [19]. The logic of Sousa and Dillig [68] includes a rule like SeqProd

for k-products, and their Theorem 2 is completeness relative to completeness
of an underlying HL; Wang et al [71] prove a similar result specialized to
program equivalence. The crux of these completeness results is that product
programs are complete in the sense of representing all pairs or k-tuples of
unary executions (called adequacy in this paper). Francez gives a semantic
completeness result of this sort, for eager-lockstep product, as do Eilers et
al [32] for a more general form of product. For (higher order) functional
programs, Aguirre et al [1] prove completeness for a RHL via embedding in
a unary logic.

22 Another topic omitted for lack of space is the soundness of the relational rules
under ∀∃ interpretations. As in the case of partial versus total correctness
interpretation of unary specs, most of the rules are sound but loop rules must
be changed. Different notions of adequacy are needed for product automata.
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