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Abstract
While many existing graph neural networks
(GNNs) have been proven to perform `2-based
graph smoothing that enforces smoothness glob-
ally, in this work we aim to further enhance the lo-
cal smoothness adaptivity of GNNs via `1-based
graph smoothing. As a result, we introduce a
family of GNNs (Elastic GNNs) based on `1 and
`2-based graph smoothing. In particular, we pro-
pose a novel and general message passing scheme
into GNNs. This message passing algorithm is not
only friendly to back-propagation training but also
achieves the desired smoothing properties with a
theoretical convergence guarantee. Experiments
on semi-supervised learning tasks demonstrate
that the proposed Elastic GNNs obtain better adap-
tivity on benchmark datasets and are significantly
robust to graph adversarial attacks. The imple-
mentation of Elastic GNNs is available at https:
//github.com/lxiaorui/ElasticGNN.

1. Introduction
Graph neural networks (GNNs) generalize traditional deep
neural networks (DNNs) from regular grids, such as image,
video, and text, to irregular data such as social networks,
transportation networks, and biological networks, which are
typically denoted as graphs (Defferrard et al., 2016; Kipf
& Welling, 2016). One popular such generalization is the
neural message passing framework (Gilmer et al., 2017):

x(k+1)
u = UPDATE(k)

(
x(k)
u ,m

(k)
N (u)

)
(1)

where x
(k)
u ∈ Rd denotes the feature vector of node u in

k-th iteration of message passing and m
(k)
N (u) is the mes-

sage aggregated from u’s neighborhood N (u). The specific
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architecture design has been motivated from spectral do-
main (Kipf & Welling, 2016; Defferrard et al., 2016) and
spatial domain (Hamilton et al., 2017; Veličković et al.,
2017; Scarselli et al., 2008; Gilmer et al., 2017). Recent
study (Ma et al., 2020) has proven that the message passing
schemes in numerous popular GNNs, such as GCN, GAT,
PPNP, and APPNP, intrinsically perform the `2-based graph
smoothing to the graph signal, and they can be considered
as solving the graph signal denoising problem:

arg min
F

L(F) := ‖F−Xin‖2F + λ tr(F>LF), (2)

where Xin ∈ Rn×d is the input signal and L ∈ Rn×n is the
graph Laplacian matrix encoding the graph structure. The
first term guides F to be close to input signal Xin, while the
second term enforces global smoothness to the filtered sig-
nal F. The resulted message passing schemes can be derived
by different optimization solvers, and they typically entail
the aggregation of node features from neighboring nodes,
which intuitively coincides with the cluster or consistency
assumption that neighboring nodes should be similar (Zhu
& Ghahramani; Zhou et al., 2004). While existing GNNs
are prominently driven by `2-based graph smoothing, `2-
based methods enforce smoothness globally and the level
of smoothness is usually shared across the whole graph.
However, the level of smoothness over different regions of
the graph can be different. For instance, node features or la-
bels can change significantly between clusters but smoothly
within the cluster (Zhu, 2005). Therefore, it is desired to
enhance the local smoothness adaptivity of GNNs.

Motivated by the idea of trend filtering (Kim et al., 2009;
Tibshirani et al., 2014; Wang et al., 2016), we aim to achieve
the goal via `1-based graph smoothing. Intuitively, com-
pared with `2-based methods, `1-based methods penalize
large values less and thus preserve discontinuity or non-
smooth signal better. Theoretically, `1-based methods tend
to promote signal sparsity to trade for discontinuity (Rudin
et al., 1992; Tibshirani et al., 2005; Sharpnack et al., 2012).
Owning to these advantages, trend filtering (Tibshirani et al.,
2014) and graph trend filter (Wang et al., 2016; Varma et al.,
2019) demonstrate that `1-based graph smoothing can adapt
to inhomogenous level of smoothness of signals and yield
estimators with k-th order piecewise polynomial functions,
such as piecewise constant, linear and quadratic functions,
depending on the order of the graph difference operator.

https://github.com/lxiaorui/ElasticGNN
https://github.com/lxiaorui/ElasticGNN
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While `1-based methods exhibit various appealing proper-
ties and have been extensively studied in different domains
such as signal processing (Elad, 2010), statistics and ma-
chine learning (Hastie et al., 2015), it has rarely been inves-
tigated in the design of GNNs. In this work, we attempt to
bridge this gap and enhance the local smoothnesss adaptivity
of GNNs via `1-based graph smoothing.

Incorporating `1-based graph smoothing in the design of
GNNs faces tremendous challenges. First, since the mes-
sage passing schemes in GNNs can be derived from the
optimization iteration of the graph signal denoising prob-
lem, a fast, efficient and scalable optimization solver is
desired. Unfortunately, to solve the associated optimiza-
tion problem involving `1 norm is challenging since the
objective function is composed by smooth and non-smooth
components and the decision variable is further coupled by
the discrete graph difference operator. Second, to integrate
the derived messaging passing scheme into GNNs, it has
to be composed by simple operations that are friendly to
the back-propagation training of the whole GNNs. Third,
it requires an appropriate normalization step to deal with
diverse node degrees, which is often overlooked by exist-
ing graph total variation and graph trend filtering methods.
Our attempt to address these challenges leads to a family of
novel GNNs, i.e., Elastic GNNs. Our key contributions can
be summarized as follows:

• We introduce `1-based graph smoothing in the design
of GNNs to further enhance the local smoothness adap-
tivity, for the first time;

• We derive a novel and general message passing scheme,
i.e., Elastic Message Passing (EMP), and develop a
family of GNN architectures, i.e., Elastic GNNs, by
integrating the proposed message passing scheme into
deep neural nets;

• Extensive experiments demonstrate that Elastic GNNs
obtain better adaptivity on various real-world datasets,
and they are significantly robust to graph adversarial at-
tacks. The study on different variants of Elastic GNNs
suggest that `1 and `2-based graph smoothing are com-
plementary and the proposed GNNs are more versatile.

2. Preliminary
We use bold upper-case letters such as X to denote matri-
ces and bold lower-case letters such as x to define vectors.
Given a matrix X ∈ Rn×d, we use Xi to denote its i-th row
and Xij to denote its element in i-th row and j-th column.
We define the Frobenius norm, `1 norm, and `21 norm of
matrix X as ‖X‖F =

√∑
ijX

2
ij , ‖X‖1 =

∑
ij |Xij |, and

‖X‖21 =
∑
i ‖Xi‖2 =

∑
i

√∑
jX

2
ij , respectively. We

define ‖X‖2 = σmax(X) where σmax(X) is the largest sin-
gular value of X. Given two matrices X,Y ∈ Rn×d, we

define the inner product as 〈X,Y〉 = tr(X>Y).

Let G = {V, E} be a graph with the node set V =
{v1, . . . , vn} and the undirected edge set E = {e1, . . . , em}.
We use N (vi) to denote the neighboring nodes of node vi,
including vi itself. Suppose that each node is associated
with a d-dimensional feature vector, and the features for all
nodes are denoted as Xfea ∈ Rn×d. The graph structure G
can be represented as an adjacent matrix A ∈ Rn×n, where
Aij = 1 when there exists an edge between nodes vi and vj .
The graph Laplacian matrix is defined as L = D−A, where
D is the diagonal degree matrix. Let ∆ ∈ {−1, 0, 1}m×n
be the oriented incident matrix, which contains one row for
each edge. If e` = (i, j), then ∆ has `-th row as:

∆` = (0, . . . , −1︸︷︷︸
i

, . . . , 1︸︷︷︸
j

, . . . , 0)

where the edge orientation can be arbitrary. Note that the
incident matrix and unnormalized Laplacian matrix have the
equivalence L = ∆>∆. Next, we briefly introduce some
necessary background about the graph signal denoising per-
spective of GNNs and the graph trend filtering methods.

2.1. GNNs as Graph Signal Denoising

It is evident from recent work (Ma et al., 2020) that many
popular GNNs can be uniformly understood as graph signal
denoising with Laplacian smoothing regularization. Here
we briefly describe several representative examples.

GCN. The message passing scheme in Graph Convolutional
Networks (GCN) (Kipf & Welling, 2016),

Xout = ÃXin,

is equivalent to one gradient descent step to minimize
tr(F>(I − Ã)F) with the initial F = Xin and stepsize
1/2. Here Ã = D̂−

1
2 ÂD̂−

1
2 with Â = A + I being the

adjacent matrix with self-loop, whose degree matrix is D̂.

PPNP & APPNP. The message passing scheme in PPNP
and APPNP (Klicpera et al., 2018) follow the aggregation
rules

Xout = α
(
I− (1− α)Ã

)−1
Xin,

and
X(k+1) = (1− α)ÃX(k) + αXin.

They are shown to be the exact solution and one gradient
descent step with stepsize α/2 for the following problem

min
F
‖F−Xin‖2F + (1/α− 1) tr(F>(I− Ã)F). (3)

For more comprehensive illustration, please refer to (Ma
et al., 2020). We point out that all these message passing
schemes adopt `2-based graph smoothing as the signal dif-
ferences between neighboring nodes are penalized by the
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square of `2 norm, e.g.,
∑

(vi,vj)∈E ‖
Fi√
di+1

− Fj√
dj+1
‖22

with di being the node degree of node vi. The resulted mes-
sage passing schemes are usually linear smoothers which
smooth the input signal by their linear transformation.

2.2. Graph Trend Filtering

In the univariate case, the k-th order graph trend filtering
(GTF) estimator (Wang et al., 2016) is given by

arg min
f∈Rn

=
1

2
‖f − x‖22 + λ‖∆(k+1)f‖1 (4)

where x ∈ Rn is the 1-dimensional input signal of n nodes
and ∆(k+1) is a k-th order graph difference operator. When
k = 0, it penalizes the absolute difference across neighbor-
ing nodes in graph G:

‖∆(1)f‖1 =
∑

(vi,vj)∈E

|fi − fj |

where ∆(1) is equivalent to the incident matrix ∆. Gener-
ally, k-th order graph difference operators can be defined
recursively:

∆(k+1) =

{
∆>∆(k) = L

k+1
2 ∈ Rn×n for odd k

∆∆(k) = ∆L
k
2 ∈ Rm×n for even k.

It is demonstrated that GTF can adapt to inhomogeneity
in the level of smoothness of signal and tends to provide
piecewise polynomials over graphs (Wang et al., 2016). For
instance, when k = 0, the sparsity induced by the `1-based
penalty ‖∆(1)f‖1 implies that many of the differences fi−fj
are zeros across edges (vi, vj) ∈ E in G. The piecewise
property originates from the discontinuity of signal allowed
by less aggressive `1 penalty, with adaptively chosen knot
nodes or knot edges. Note that the smoothers induced by
GTF are not linear smoothers and cannot be simply repre-
sented by linear transformation of the input signal.

3. Elastic Graph Neural Networks
In this section, we first propose a new graph signal denois-
ing estimator. Then we develop an efficient optimization
algorithm for solving the denoising problem and introduce
a novel, general and efficient message passing scheme, i.e.,
Elastic Message Passing (EMP), for graph signal smoothing.
Finally, the integration of the proposed message passing
scheme and deep neural networks leads to Elastic GNNs.

3.1. Elastic Graph Signal Estimator

To combine the advantages of `1 and `2-based graph smooth-
ing, we propose the following elastic graph signal estimator:

arg min
F∈Rn×d

λ1‖∆F‖1︸ ︷︷ ︸
g1(∆F)

+
λ2

2
tr(F>LF) +

1

2
‖F−Xin‖2F︸ ︷︷ ︸

f(F)

(5)

where Xin ∈ Rn×d is the d-dimensional input signal of n
nodes. The first term can be written in an edge-centric way:
‖∆(1)F‖1 =

∑
(vi,vj)∈E ‖Fi − Fj‖1, which penalizes the

absolute difference across connected nodes in graph G. Sim-
ilarly, the second term penalizes the difference quadratically
via tr(F>LF) =

∑
(vi,vj)∈E ‖Fi − Fj‖22. The last term is

the fidelity term which preserves the similarity with the in-
put signal. The regularization coefficients λ1 and λ2 control
the balance between `1 and `2-based graph smoothing.
Remark 1. It is potential to consider higher-order graph
differences in both the `1-based and `2-based smoothers.
But, in this work, we focus on the 0-th order graph difference
operator ∆, since we assume the piecewise constant prior
for graph representation learning.

Normalization. In existing GNNs, it is beneficial to nor-
malize the Laplacian matrix for better numerical stability,
and the normalization trick is also crucial for achieving
superior performance. Therefore, for the `2-based graph
smoothing, we follow the common normalization trick in
GNNs: L̃ = I− Ã, where Ã = D̂−

1
2 ÂD̂−

1
2 , Â = A + I

and D̂ii = di =
∑
j Âij . It leads to a degree normalized

penalty

tr(F>L̃F) =
∑

(vi,vj)∈E

∥∥∥∥∥ Fi√
di + 1

− Fj√
dj + 1

∥∥∥∥∥
2

2

.

In the literature of graph total variation and graph trend filter-
ing, the normalization step is often overlooked and the graph
difference operator is directly used as in GTF (Wang et al.,
2016; Varma et al., 2019). To achieve better numerical sta-
bility and handle diverse node degrees in real-world graphs,
we propose to normalize each column of the incident matrix
by the square root of node degrees for the `1-based graph
smoothing as follows1:

∆̃ = ∆D̂−
1
2 .

It leads to a degree normalized total variation penalty 2

‖∆̃F‖1 =
∑

(vi,vj)∈E

∥∥∥∥∥ Fi√
di + 1

− Fj√
dj + 1

∥∥∥∥∥
1

.

Note that this normalized incident matrix maintains the
relation with the normalized Laplacian matrix as in the
unnormalized case

L̃ = ∆̃>∆̃ (6)

given that

L̃ = D̂−
1
2 (D̂− Â)D̂−

1
2 = D̂−

1
2LD̂−

1
2 = D̂−

1
2 ∆>∆D̂−

1
2 .

1It naturally supports read-value edge weights if the edge
weights are set in the incident matrix ∆.

2With the normalization, the piecewise constant prior is up to
the degree scaling, i.e., sparsity in ∆̃F.
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With the normalization, the estimator defined in (5) be-
comes:

arg min
F∈Rn×d

λ1‖∆̃F‖1︸ ︷︷ ︸
g1(∆̃F)

+
λ2

2
tr(F>L̃F) +

1

2
‖F−Xin‖2F︸ ︷︷ ︸

f(F)

.

(7)

Capture correlation among dimensions. The node fea-
tures in real-world graphs are usually multi-dimensional.
Although the estimator defined in (7) is able to handle multi-
dimensional data since the signal from different dimensions
are separable under `1 and `2 norm, such estimator treats
each feature dimension independently and does not exploit
the potential relation between feature dimensions. How-
ever, the sparsity patterns of node difference across edges
could be shared among feature dimensions. To better ex-
ploit this potential correlation, we propose to couple the
multi-dimensional features by `21 norm, which penalizes
the summation of `2 norm of the node difference

‖∆̃F‖21 =
∑

(vi,vj)∈E

∥∥∥∥∥ Fi√
di + 1

− Fj√
dj + 1

∥∥∥∥∥
2

.

This penalty promotes the row sparsity of ∆̃F and enforces
similar sparsity patterns among feature dimensions. In other
words, if two nodes are similar, all their feature dimensions
should be similar. Therefore, we define the `21-based esti-
mator as

arg min
F∈Rn×d

λ1‖∆̃F‖21︸ ︷︷ ︸
g21(∆̃F)

+
λ2

2
tr(F>L̃F) +

1

2
‖F−Xin‖2F︸ ︷︷ ︸

f(F)

(8)

where g21(·) = λ1‖ · ‖21. In the following subsections, we
will use g(·) to represent both g1(·) and g21(·). We use `1
to represent both `1 and `21 if not specified.

3.2. Elastic Message Passing

For the `2-based graph smoother, message passing schemes
can be derived from the gradient descent iterations of the
graph signal denoising problem, as in the case of GCN and
APPNP (Ma et al., 2020). However, computing the esti-
mators defined by (7) and (8) is much more challenging
because of the nonsmoothness, and the two components,
i.e., f(F) and g(∆̃F), are non-separable as they are cou-
pled by the graph difference operator ∆̃. In the literature,
researchers have developed optimization algorithms for the
graph trend filtering problem (4) such as Alternating Di-
rection Method of Multipliers (ADMM) and Newton type
algorithms (Wang et al., 2016; Varma et al., 2019). However,
these algorithms require to solve the minimization of a non-
trivial sub-problem in each single iteration, which incurs

high computation complexity. Moreover, it is unclear how to
make these iterations compatible with the back-propagation
training of deep learning models. This motivates us to de-
sign an algorithm which is not only efficient but also friendly
to back-propagation training. To this end, we propose to
solve an equivalent saddle point problem using a primal-dual
algorithm with efficient computations.

Saddle point reformulation. For a general convex function
g(·), its conjugate function is defined as

g∗(Z) := sup
X
〈Z,X〉 − g(X).

By using g(∆̃F) = sup
Z
〈∆̃F,Z〉 − g∗(Z), the problem (7)

and (8) can be equivalently written as the following saddle
point problem:

min
F

max
Z

f(F) + 〈∆̃F,Z〉 − g∗(Z). (9)

where Z ∈ Rm×d. Motivated by Proximal Alternating
Predictor-Corrector (PAPC) (Loris & Verhoeven, 2011;
Chen et al., 2013), we propose an efficient algorithm with
per iteration low computation complexity and convergence
guarantee:

F̄k+1 = Fk − γ∇f(Fk)− γ∆̃>Zk, (10)
Zk+1 = proxβg∗(Z

k + β∆̃F̄k+1), (11)

Fk+1 = Fk − γ∇f(Fk)− γ∆̃>Zk+1, (12)

where proxβg∗(X) = arg min
Y

1
2‖Y − X‖2F + βg∗(Y).

The stepsizes, γ and β, will be specified later. The first
step (10) obtains a prediction of Fk+1, i.e., F̄k+1, by a
gradient descent step on primal variable Fk. The second
step (11) is a proximal dual ascent step on the dual variable
Zk based on the predicted F̄k+1. Finally, another gradient
descent step on the primal variable based on (Fk,Zk+1)
gives next iteration Fk+1 (12). Algorithm (10)–(12) can be
interpreted as a “predict-correct” algorithm for the saddle
point problem (9). Next we demonstrate how to compute
the proximal operator in Eq. (11).

Proximal operators. Using the Moreau’s decomposition
principle (Bauschke & Combettes, 2011)

X = proxβg∗(X) + λproxβ−1g(X/β),

we can rewrite the step (11) using the proximal operator of
g(·), that is,

proxβg∗(X) = X− βprox 1
β g

(
1

β
X). (13)

We discuss the two options for the function g(·) correspond-
ing to the objectives (7) and (8).
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

Yk+1 = γXin + (1− γ)ÃFk

F̄k+1 = Yk − γ∆̃>Zk

Z̄k+1 = Zk + β∆̃F̄k+1Zk+1 = min(|Z̄k+1|, λ1) · sign(Z̄k+1) (Option I: `1 norm)

Zk+1
i = min(‖Z̄k+1

i ‖2, λ1) · Z̄k+1
i

‖Z̄k+1
i ‖2

,∀i ∈ [m] (Option II: `21 norm)

Fk+1 = Yk − γ∆̃>Zk+1

Figure 1. Elastic Message Passing (EMP). F0 = Xin and Z0 = 0m×d.

• Option I (`1 norm): g1(X) = λ1‖X‖1
By definition, the proximal operator of 1

β g1(X) is

prox 1
β g1

(X) = arg min
Y

1

2
‖Y −X‖2F +

1

β
λ1‖Y‖1,

which is equivalent to the soft-thresholding operator
(component-wise):

(S 1
β λ1

(X))ij =sign(Xij) max(|Xij | −
1

β
λ1, 0)

=Xij − sign(Xij) min(|Xij |,
1

β
λ1).

Therefore, using (13), we have

(proxβg∗1 (X))ij = sign(Xij) min(|Xij |, λ1). (14)

which is a component-wise projection onto the `∞ ball
of radius λ1.

• Option II (`21 norm): g21(X) = λ1‖X‖2,1
By definition, the proximal operator of 1

β g21(X) is

prox 1
β g21

(X) = arg min
Y

1

2
‖Y −X‖2F +

1

β
λ1‖Y‖2,1

with the i-th row being(
prox 1

β g21
(X)

)
i

=
Xi

‖Xi‖2
max(‖Xi‖2 −

1

β
λ1, 0).

Similarly, using (13), we have the i-th row of
proxβg∗21(X) being

(proxβg∗21(X))i

= Xi − βprox 1
β g21

(Xi/β)

= Xi − β
Xi/β

‖Xi/β‖2
max(‖Xi/β‖2 − λ1/β, 0)

= Xi −
Xi

‖Xi‖2
max(‖Xi‖2 − λ1, 0)

=
Xi

‖Xi‖2
(‖Xi‖2 −max(‖Xi‖2 − λ1, 0))

=
Xi

‖Xi‖2
min(‖Xi‖2, λ1), (15)

which is a row-wise projection on the `2 ball of radius
λ1. Note that the proximal operator in the `1 norm case
treats each feature dimension independently, while in the
`21 norm case, it couples the multi-dimensional features,
which is consistent with the motivation to exploit the
correlation among feature dimensions.

The Algorithm (10)–(12) and the proximal operators (14)
and (15) enable us to derive the final message passing
scheme. Note that the computation Fk − γ∇f(Fk) in
steps (10) and (12) can be shared to save computation.
Therefore, we decompose the step (10) into two steps:

Yk = Fk − γ∇f(Fk)

=
(
(1− γ)I− γλ2L̃

)
Fk + γXin, (16)

F̄k+1 = Yk − γ∆̃>Zk. (17)

In this work, we choose γ = 1
1+λ2

and β = 1
2γ . Therefore,

with L̃ = I− Ã, Eq. (16) can be simplified as

Yk+1 = γXin + (1− γ)ÃFk. (18)

Let Z̄k+1 := Zk + β∆̃F̄k+1, then steps (11) and (12) be-
come

Zk+1 = proxβg∗(Z̄
k+1), (19)

Fk+1 = Fk − γ∇f(Fk)− γ∆̃Zk+1

= Yk − γ∆̃>Zk+1. (20)

Substituting the proximal operators in (19) with (14)
and (15), we obtain the complete elastic message passing
scheme (EMP) as summarized in Figure 1.

Interpretation of EMP. EMP can be interpreted as the stan-
dard message passing (MP) (Y in Fig. 1) with extra opera-
tions (the following steps). The extra operations compute
∆̃>Z to adjust the standard MP such that sparsity in ∆̃F is
promoted and some large node differences can be preserved.
EMP is general and covers some existing propagation rules
as special cases as demonstrated in Remark 2.
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Remark 2 (Special cases). If there is only `2-based regu-
larization, i.e., λ1 = 0, then according to the projection
operator, we have Zk = 0m×n. Therefore, with γ = 1

1+λ2
,

the proposed message passing scheme reduces to

Fk+1 =
1

1 + λ2
Xin +

λ2

1 + λ2
ÃFk.

If λ2 = 1
α − 1, it recovers the message passing in APPNP:

Fk+1 = αXin + (1− α)ÃFk.

If λ2 =∞, it recovers the simple aggregation operation in
many GNNs:

Fk+1 = ÃFk.

Computation Complexity. EMP is efficient and com-
posed by simple operations. The major computation cost
comes from four sparse matrix multiplications, include
ÃFk, ∆̃>Zk, ∆̃F̄k+1 and ∆̃>Zk+1. The computation com-
plexity is in the order O(md) where m is the number of
edges in graph G and d is the feature dimension of input
signal Xin. Other operations are simple matrix additions
and projection.

The convergence of EMP and the parameter settings are
justified by Theorem 1, with a proof deferred to Appendix B.

Theorem 1 (Convergence). Under the stepsize setting γ <
2

1+λ2‖L̃‖2
and β ≤ 4

3γ‖∆̃∆̃>‖2
, the elastic message passing

scheme (EMP) in Figure 1 converges to the optimal solution
of the elastic graph signal estimator defined in (7) (Option I)
or (8) (Option II). It is sufficient to choose any γ < 2

1+2λ2

and β ≤ 2
3γ since ‖L̃‖2 = ‖∆̃>∆̃‖2 = ‖∆̃∆̃>‖2 ≤ 2.

3.3. Elastic GNNs

Incorporating the elastic message passing scheme from the
elastic graph signal estimator (7) and (8) into deep neural
networks, we introduce a family of GNNs, namely Elastic
GNNs. In this work, we follow the decoupled way as pro-
posed in APPNP (Klicpera et al., 2018), where we first make
predictions from node features and aggregate the prediction
through the proposed EMP:

Ypre = EMP
(
hθ(Xfea),K, λ1, λ2

)
. (21)

Xfea ∈ Rn×d denotes the node features, hθ(·) is any
machine learning model, such as multilayer perceptrons
(MLPs), θ is the learnable parameters in the model, and K
is the number of message passing steps. The training objec-
tive is the cross entropy loss defined by the final prediction
Ypre and labels for training data. Elastic GNNs also have
the following nice properties:

• In addition to the backbone neural network model, Elas-
tic GNNs only require to set up three hyperparameters

including two coefficients λ1, λ2 and the propagation
step K, but they do not introduce any learnable param-
eters. Therefore, it reduces the risk of overfitting.

• The hyperparameters λ1 and λ2 provide better smooth-
ness adaptivity to Elastic GNNs depending on the
smoothness properties of the graph data.

• The message passing scheme only entails simple and
efficient operations, which makes it friendly to the
efficient and end-to-end back-propagation training of
the whole GNN model.

4. Experiment
In this section, we conduct experiments to validate the effec-
tiveness of the proposed Elastic GNNs. We first introduce
the experimental settings. Then we assess the performance
of Elastic GNNs and investigate the benefits of introducing
`1-based graph smoothing into GNNs with semi-supervised
learning tasks under normal and adversarial settings. In the
ablation study, we validate the local adaptive smoothness,
sparsity pattern, and convergence of EMP.

4.1. Experimental Settings

Datasets. We conduct experiments on 8 real-world
datasets including three citation graphs, i.e., Cora, Citeseer,
Pubmed (Sen et al., 2008), two co-authorship graphs, i.e.,
Coauthor CS and Coauthor Physics (Shchur et al., 2018),
two co-purchase graphs, i.e., Amazon Computers and Ama-
zon Photo (Shchur et al., 2018), and one blog graph, i.e.,
Polblogs (Adamic & Glance, 2005). In Polblogs graph,
node features are not available so we set the feature matrix
to be a n× n identity matrix.

Baselines. We compare the proposed Elastic GNNs with
representative GNNs including GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), ChebNet (Deffer-
rard et al., 2016), GraphSAGE (Hamilton et al., 2017),
APPNP (Klicpera et al., 2018) and SGC (Wu et al., 2019).
For all models, we use 2 layer neural networks with 64
hidden units.

Parameter settings. For each experiment, we report the
average performance and the standard variance of 10 runs.
For all methods, hyperparameters are tuned from the fol-
lowing search space: 1) learning rate: {0.05, 0.01, 0.005};
2) weight decay: {5e-4, 5e-5, 5e-6}; 3) dropout rate:
{0.5, 0.8}. For APPNP, the propagation step K is
tuned from {5, 10} and the parameter α is tuned from
{0, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0}. For Elastic GNNs, the prop-
agation step K is tuned from {5, 10} and parameters λ1 and
λ2 are tuned from {0, 3, 6, 9}. As suggested by Theorem
1, we set γ = 1

1+λ2
and β = 1

2γ in the proposed elastic
message passing scheme. Adam optimizer (Kingma & Ba,
2014) is used in all experiments.
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4.2. Performance on Benchmark Datasets

On commonly used datasets including Cora, CiteSeer,
PubMed, Coauthor CS, Coauthor Physics, Amazon Comput-
ers and Amazon Photo, we compare the performance of the
proposed Elastic GNN (`21 + `2) with representative GNN
baselines on the semi-supervised learning task. The detail
statistics of these datasets and data splits are summarized
in Table 5 in Appendix A. The classification accuracy are
showed in Table 1. From these results, we can make the
following observations:

• Elastic GNN outperforms GCN, GAT, ChebNet, Graph-
SAGE and SGC by significant margins on all datasets.
For instance, Elastic GNN improves over GCN by
3.1%, 2.0% and 1.8% on Cora, CiteSeer and PubMed
datasets. The improvement comes from the global and
local smoothness adaptivity of Elastic GNN.

• Elastic GNN (`21 + `2) consistently achieves higher
performance than APPNP on all datasets. Essentially,
Elastic GNN covers APPNP as a special case when
there is only `2 regularization, i.e., λ1 = 0. Beyond the
`2-based graph smoothing, the `21-based graph smooth-
ing further enhances the local smoothness adaptivity.
This comparison verifies the benefits of introducing
`21-based graph smoothing in GNNs.

4.3. Robustness Under Adversarial Attack

Locally adaptive smoothness makes Elastic GNNs more
robust to adversarial attack on graph structure. This is be-
cause the attack tends to connect nodes with different labels,
which fuzzes the cluster structure in the graph. But EMP
can tolerate large node differences along these wrong edges,
and maintain the smoothness along correct edges.

To validate this, we evaluate the performance of Elastic
GNNs under untargeted adversarial graph attack, which
tries to degrade GNN models’ overall performance by delib-
erately modifying the graph structure. We use the MetaAt-
tack (Zügner & Günnemann, 2019) implemented in Deep-
Robust (Li et al., 2020)3, a PyTorch library for adversarial
attacks and defenses, to generate the adversarially attacked
graphs based on four datasets including Cora, CiteSeer, Pol-
blogs and PubMed. We randomly split 10%/10%/80% of
nodes for training, validation and test. The detailed data
statistics are summarized in Table 6 in Appendix A. Note
that following the works (Zügner et al., 2018; Zügner &
Günnemann, 2019; Entezari et al., 2020; Jin et al., 2020),
we only consider the largest connected component (LCC)
in the adversarial graphs. Therefore, the results in Table 2
are not directly comparable with the results in Table 1. We

3https://github.com/DSE-MSU/DeepRobust

focus on investigating the robustness introduced by `1-based
graph smoothing but not on adversarial defense so we don’t
compare with defense strategies. Existing defense strate-
gies can be applied on Elastic GNNs to further improve the
robustness against attacks.

Variants of Elastic GNNs. To make a deeper investiga-
tion of Elastic GNNs, we consider the following variants:
(1) `2 (λ1 = 0); (2) `1 (λ2 = 0,Option I); (3) `21 (λ2 =
0,Option II); (4) `1+`2 (Option I); (5) `21+`2 (Option II).
To save computation, we fix the learning rate as 0.01, weight
decay as 0.0005, dropout rate as 0.5 and K = 10 since this
setting works well for the chosen datasets and models. Only
λ1 and λ2 are tuned. The classification accuracy under
different perturbation rates ranging from 0% to 20% is sum-
marized in Table 2. From the results, we can make the
following observations:

• All variants of Elastic GNNs outperforms GCN and
GAT by significant margins under all perturbation rates.
For instance, when the pertubation rate is 15%, Elastic
GNN (`21 + `2) improves over GCN by 12.1%, 7.4%,
13.7% and 7.7% on the four datasets being considered.
This is because Elastic GNN can adapt to the change
of smoothness while GCN and GAT can not adapt well
when the perturbation rate increases.

• `21 outperforms `1 in most cases, and `21 + `2 outper-
forms `1 + `2 in almost all cases. It demonstrates the
benefits of exploiting the correlation between feature
channels by coupling multi-dimensional features via
`21 norm.

• `21 outperforms `2 in most cases, which suggests the
benefits of local smoothness adaptivity. When `21 and
`2 is combined, the Elastic GNN (`21 + `2) achieves
significantly better performance than solely `2, `21 or
`1 variant in almost all cases. It suggests that `1 and
`2-based graph smoothing are complementary to each
other, and combining them provides significant better
robustness against adversarial graph attacks.

4.4. Ablation Study

We provide ablation study to further investigate the adaptive
smoothness, sparsity pattern, and convergence of EMP in
Elastic GNN, based on three datasets including Cora, Cite-
Seer and PubMed. In this section, we fix λ1 = 3, λ2 = 3
for Elastic GNN, and α = 0.1 for APPNP. We fix learning
rate as 0.01, weight decay as 0.0005 and dropout rate as 0.5
since this setting works well for both methods.

Adaptive smoothness. It is expected that `1-based smooth-
ing enhances local smoothness adaptivity by increasing the
smoothness along correct edges (connecting nodes with
same labels) while lowering smoothness along wrong edges
(connecting nodes with different labels). To validate this,

https://github.com/DSE-MSU/DeepRobust
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Table 1. Classification accuracy (%) on benchmark datasets with 10 times random data splits.

Model Cora CiteSeer PubMed CS Physics Computers Photo

ChebNet 76.3± 1.5 67.4± 1.5 75.0± 2.0 91.8± 0.4 OOM 81.0± 2.0 90.4± 1.0
GCN 79.6± 1.1 68.9± 1.2 77.6± 2.3 91.6± 0.6 93.3± 0.8 79.8± 1.6 90.3± 1.2
GAT 80.1± 1.2 68.9± 1.8 77.6± 2.2 91.1± 0.5 93.3± 0.7 79.3± 2.4 89.6± 1.6
SGC 80.2± 1.5 68.9± 1.3 75.5± 2.9 90.1± 1.3 93.1± 0.6 73.0± 2.0 83.5± 2.9
APPNP 82.2± 1.3 70.4± 1.2 78.9± 2.2 92.5± 0.3 93.7± 0.7 80.1± 2.1 90.8± 1.3
GraphSAGE 79.0± 1.1 67.5± 2.0 77.6± 2.0 91.7± 0.5 92.5± 0.8 80.7± 1.7 90.9± 1.0
ElasticGNN 82.7± 1.0 70.9± 1.4 79.4± 1.8 92.5± 0.3 94.2± 0.5 80.7± 1.8 91.3± 1.3

Table 2. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

Dataset Ptb Rate Basic GNN Elastic GNN
GCN GAT `2 `1 `21 `1 + `2 `21 + `2

Cora

0% 83.5±0.4 84.0±0.7 85.8±0.4 85.1±0.5 85.3±0.4 85.8±0.4 85.8±0.4
5% 76.6±0.8 80.4±0.7 81.0±1.0 82.3±1.1 81.6±1.1 81.9±1.4 82.2±0.9
10% 70.4±1.3 75.6±0.6 76.3±1.5 76.2±1.4 77.9±0.9 78.2±1.6 78.8±1.7
15% 65.1±0.7 69.8±1.3 72.2±0.9 73.3±1.3 75.7±1.2 76.9±0.9 77.2±1.6
20% 60.0±2.7 59.9±0.6 67.7±0.7 63.7±0.9 70.3±1.1 67.2±5.3 70.5±1.3

Citeseer

0% 72.0±0.6 73.3±0.8 73.6±0.9 73.2±0.6 73.2±0.5 73.6±0.6 73.8±0.6
5% 70.9±0.6 72.9±0.8 72.8±0.5 72.8±0.5 72.8±0.5 73.3±0.6 72.9±0.5
10% 67.6±0.9 70.6±0.5 70.2±0.6 70.8±0.6 70.7±1.2 72.4±0.9 72.6±0.4
15% 64.5±1.1 69.0±1.1 70.2±0.6 68.1±1.4 68.2±1.1 71.3±1.5 71.9±0.7
20% 62.0±3.5 61.0±1.5 64.9±1.0 64.7±0.8 64.7±0.8 64.7±0.8 64.7±0.8

Polblogs

0% 95.7±0.4 95.4±0.2 95.4±0.2 95.8±0.3 95.8±0.3 95.8±0.3 95.8±0.3
5% 73.1±0.8 83.7±1.5 82.8±0.3 78.7±0.6 78.7±0.7 82.8±0.4 83.0±0.3
10% 70.7±1.1 76.3±0.9 73.7±0.3 75.2±0.4 75.3±0.7 81.5±0.2 81.6±0.3
15% 65.0±1.9 68.8±1.1 68.9±0.9 72.1±0.9 71.5±1.1 77.8±0.9 78.7±0.5
20% 51.3±1.2 51.5±1.6 65.5±0.7 68.1±0.6 68.7±0.7 77.4±0.2 77.5±0.2

Pubmed

0% 87.2±0.1 83.7±0.4 88.1±0.1 86.7±0.1 87.3±0.1 88.1±0.1 88.1±0.1
5% 83.1±0.1 78.0±0.4 87.1±0.2 86.2±0.1 87.0±0.1 87.1±0.2 87.1±0.2
10% 81.2±0.1 74.9±0.4 86.6±0.1 86.0±0.2 86.9±0.2 86.3±0.1 87.0±0.1
15% 78.7±0.1 71.1±0.5 85.7±0.2 85.4±0.2 86.4±0.2 85.5±0.1 86.4±0.2
20% 77.4±0.2 68.2±1.0 85.8±0.1 85.4±0.1 86.4±0.1 85.4±0.1 86.4±0.1

we compute the average adjacent node differences (based
on node features in the last layer) along wrong and correct
edges separately, and use the ratio between these two av-
erages to measure the smoothness adaptivity. The results
are summarized in Table 3. It is clearly observed that for
all datasets, the ratio for ElasticGNN is significantly higher
than `2 based method such as APPNP, which validates its
better local smoothness adaptivity.

Sparsity pattern. To validate the piecewise constant prop-
erty enforced by EMP, we also investigate the sparsity pat-
tern in the adjacent node differences, i.e., ∆̃F, based on
node features in the last layer. Node difference along edge
ei is defined as sparse if ‖(∆̃F)i‖2 < 0.1. The sparsity
ratios for `2-based method such as APPNP and `1-based
method such as Elastic GNN are summarized in Table 4. It
can be observed that in Elastic GNN, a significant portion
of ∆̃F are sparse for all datasets. While in APPNP, this
portion is much smaller. This sparsity pattern validates the
piecewise constant prior as designed.

Table 3. Ratio between average node differences along wrong and
correct edges.

Model Cora CiteSeer PubMed

`2 (APPNP) 1.57 1.35 1.43
`21+`2 (ElasticGNN) 2.03 1.94 1.79

Table 4. Sparsity ratio (i.e., ‖(∆̃F)i‖2 < 0.1) in node differences
∆̃F.

Model Cora CiteSeer PubMed

`2 (APPNP) 2% 16% 11%
`21+`2 (ElasticGNN) 37% 74% 42%

Convergence of EMP. We provide two additional experi-
ments to demonstrate the impact of propagation step K on
classification performance and the convergence of message
passing scheme. Figure 2 shows that the increase of classifi-
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cationaccuracywhenthepropagationstepKincreases.It
verifiestheeffectivenessofEMPinimprovinggraphrep-
resentationlearning.Italsoshowsthatasmallnumberof
propagationstepcanachieveverygoodperformance,and
thereforethecomputationcostforEMPcanbesmall.Fig-
ure3showsthedecreasingoftheobjectivevaluedefinedin
Eq.(8)duringtheforwardmessagepassingprocess,andit
verifiestheconvergenceoftheproposedEMPassuggested
byTheorem1
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Eq.(8)duringmessagepassing.

5.RelatedWork

ThedesignofGNNarchitecturescanbemajorlymotivated
inspectraldomain(Kipf&Welling,2016;Defferrardetal.,
2016)andspatialdomain(Hamiltonetal.,2017;Velǐckovíc
etal.,2017;Scarsellietal.,2008;Gilmeretal.,2017).The
messagepassingscheme(Gilmeretal.,2017;Ma&Tang,
2020)forfeatureaggregationisonecentralcomponentof
GNNs.Recentworkshaveproventhatthemessagepassing
inGNNscanberegardedaslow-passgraphfilters(Nt&
Maehara,2019;Zhao&Akoglu,2019). Generally,itis
recentlyprovedthatmessagepassinginmanyGNNscan

beunifiedinthegraphsignaldenosingframework(Ma
etal.,2020;Panetal.,2020;Zhuetal.,2021;Chenetal.,
2020).Wepointoutthattheyintrinsicallyperform2-based
graphsmoothingandtypicallycanberepresentedaslinear
smoothers.

1-basedgraphsignaldenoisinghasbeenexploredingraph
trendfiltering(Wangetal.,2016;Varmaetal.,2019)which
tendstoprovideestimatorswithk-thorderpiecewisepoly-
nomialsovergraphs.Graphtotalvariationhasalsobeen
utilizedinsemi-supervisedlearning(Nieetal.,2011;Jung
etal.,2016;Jungetal.,2019;Aviles-Riveroetal.,2019),
spectralclustering(B̈uhler&Hein,2009;Bressonetal.,
2013b)andgraphcutproblems(Szlam&Bresson,2010;
Bressonetal.,2013a).However,itisunclearwhetherthese
algorithmscanbeusedtodesignGNNs.Tothebestofour
knowledge,wemakefirstsuchinvestigationinthiswork.

6.Conclusion

Inthiswork,weproposetoenhancethesmoothnessadaptiv-
ityofGNNsvia1and2-basedgraphsmoothing.Through
theproposedelasticgraphsignalestimator,wederivea
novel,efficientandgeneralmessagepassingscheme,i.e.,
elasticmessagepassing(EMP).Integratingtheproposed
messagepassingschemeanddeepneuralnetworksleads
toafamilyofGNNs,i.e.,ElasticGNNs.Extensitveexper-
imentsonbenchmarkdatasetsandadversariallyattacked
graphsdemonstratethebenefitsofintroducing 1-based
graphsmoothinginthedesignofGNNs.Theempirical
studysuggeststhat1and2-basedgraphsmoothingiscom-
plementarytoeachother,andtheproposedElasticGNNs
hasbettersmoothnesssadaptivityowningtotheintegration
of1and2-basedgraphsmoothing.Wehopetheproposed
elasticmessagepassingschemecaninspiremorepowerful
GNNarchitecturedesigninthefuture.
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Appendix for Elastic Graph Neural Networks

A. Data Statistics
The data statistics for the benchmark datasets used in Section 4.2 are summarized in Table 5. The data statistics for the
adversarially attacked graph used in Section 4.3 are summarized in Table 6.

Table 5. Statistics of benchmark datasets.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes

Cora 7 2708 5278 1433 20 per class 500 1000
CiteSeer 6 3327 4552 3703 20 per class 500 1000
PubMed 3 19717 44324 500 20 per class 500 1000
Coauthor CS 15 18333 81894 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 745 20 per class 30 per class Rest nodes

Table 6. Dataset Statistics for adversarially attacked graph.

NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
CiteSeer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 /
PubMed 19,717 44,338 3 500

B. Convergence Guarantee
We provide Theorem 1 to show the convergence guarantee of the proposed elastic messsage passing scheme and the practical
guidance for parameter settings in EMP.

Theorem 1 (Convergence of EMP). Under the stepsize setting γ < 2
1+λ2‖L̃‖2

and β ≤ 4
3γ‖∆̃∆̃>‖2

, the elastic message
passing scheme (EMP) in Figure 1 converges to the optimal solution of the elastic graph signal estimator defined in (7)
(Option I) or (8) (Option II). It is sufficient to choose any γ < 2

1+2λ2
and β ≤ 2

3γ since ‖L̃‖2 = ‖∆̃>∆̃‖2 = ‖∆̃∆̃>‖2 ≤ 2.

Proof. We first consider the general problem

min
F
f(F) + g(BF) (22)

where f and g are convex functions and B is a bounded linear operator. It is proved in (Loris & Verhoeven, 2011; Chen
et al., 2013) that the iterations in (10)–(12) guarantee the convergence of Fk to the optimal solution of the minimization
problem (22) if the parameters satisfy γ < 2

L and β ≤ 1
γλmax(BB>)

, where L is the Lipschitz constant of ∇f(F). These
conditions are further relaxed to γ < 2

L and β ≤ 4
3γλmax(BB>)

in (Li & Yan, 2017).

For the specific problems defined in (7) and (8), the two function components f and g are both convex, and the linear
operator ∆ is bounded. The Lipschitz constant of∇f(F) can be computed by the largest eigenvalue of the Hessian matrix
of f(F):

L = λmax(∇2f(F)) = λmax(I + λ2L̃) = 1 + λ2‖L̃‖2.

Therefore, the elastic message passing scheme derived from iterations (10)–(12) is guaranteed to converge to the optimal
solution of problem (7) (Option I) or problem (8) (Option II) if the stepsizes satisfy γ < 2

1+λ2‖L̃‖2
and β ≤ 4

3γ‖∆̃∆̃>‖2
.
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Let ∆̃ = UΣV> be the singular value decomposition of ∆̃ and we derive

‖∆̃∆̃>‖2 = ‖UΣV>VΣU>‖2 = ‖UΣ2U>‖2 = ‖VΣ2V>‖2 = ‖VΣU>UΣV>‖2 = ‖∆̃>∆̃‖2.

The equivalence L̃ = ∆̃>∆̃ in (6) further gives

‖L̃‖2 = ‖∆̃>∆̃‖2 = ‖∆̃∆̃>‖2.

Since ‖L̃‖2 ≤ 2 (Chung & Graham, 1997), we have 2
1+2λ2

≤ 2
1+λ2‖L̃‖2

and 2
3γ ≤

4
3γ‖∆̃∆̃>‖2

. Therefore, γ < 2
1+2λ2

β ≤ 2
3γ are sufficient for the convergence of EMP.


