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Abstract

While many existing graph neural networks
(GNNss) have been proven to perform /o-based
graph smoothing that enforces smoothness glob-
ally, in this work we aim to further enhance the lo-
cal smoothness adaptivity of GNNs via ¢;-based
graph smoothing. As a result, we introduce a
family of GNN5s (Elastic GNNs) based on ¢; and
{5-based graph smoothing. In particular, we pro-
pose a novel and general message passing scheme
into GNNs. This message passing algorithm is not
only friendly to back-propagation training but also
achieves the desired smoothing properties with a
theoretical convergence guarantee. Experiments
on semi-supervised learning tasks demonstrate
that the proposed Elastic GNNs obtain better adap-
tivity on benchmark datasets and are significantly
robust to graph adversarial attacks. The imple-
mentation of Elastic GNNSs is available at ht tps:
//github.com/lxiaorui/ElasticGNN.

1. Introduction

Graph neural networks (GNN5s) generalize traditional deep
neural networks (DNNs) from regular grids, such as image,
video, and text, to irregular data such as social networks,
transportation networks, and biological networks, which are
typically denoted as graphs (Defferrard et al., 2016; Kipf
& Welling, 2016). One popular such generalization is the
neural message passing framework (Gilmer et al., 2017):

k1) E) ((k (k)
XD = UPDATE® (x{¥, m{) ) M

where x&k) € R9 denotes the feature vector of node u in
k-th iteration of message passing and mﬁ\lﬁgu) is the mes-

sage aggregated from u’s neighborhood NV (u). The specific
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architecture design has been motivated from spectral do-
main (Kipf & Welling, 2016; Defferrard et al., 2016) and
spatial domain (Hamilton et al., 2017; Velickovi¢ et al.,
2017; Scarselli et al., 2008; Gilmer et al., 2017). Recent
study (Ma et al., 2020) has proven that the message passing
schemes in numerous popular GNNs, such as GCN, GAT,
PPNP, and APPNP, intrinsically perform the ¢5-based graph
smoothing to the graph signal, and they can be considered
as solving the graph signal denoising problem:

argmin £(F) := [|[F — X;,||% + Atr(F'LF), (2)
F

where X, € R"*4 is the input signal and L. € R™*" is the
graph Laplacian matrix encoding the graph structure. The
first term guides F to be close to input signal Xj,, while the
second term enforces global smoothness to the filtered sig-
nal F'. The resulted message passing schemes can be derived
by different optimization solvers, and they typically entail
the aggregation of node features from neighboring nodes,
which intuitively coincides with the cluster or consistency
assumption that neighboring nodes should be similar (Zhu
& Ghahramani; Zhou et al., 2004). While existing GNNs
are prominently driven by ¢5-based graph smoothing, /-
based methods enforce smoothness globally and the level
of smoothness is usually shared across the whole graph.
However, the level of smoothness over different regions of
the graph can be different. For instance, node features or la-
bels can change significantly between clusters but smoothly
within the cluster (Zhu, 2005). Therefore, it is desired to
enhance the local smoothness adaptivity of GNNs.

Motivated by the idea of trend filtering (Kim et al., 2009;
Tibshirani et al., 2014; Wang et al., 2016), we aim to achieve
the goal via ¢;-based graph smoothing. Intuitively, com-
pared with ¢5-based methods, ¢;-based methods penalize
large values less and thus preserve discontinuity or non-
smooth signal better. Theoretically, /1-based methods tend
to promote signal sparsity to trade for discontinuity (Rudin
et al., 1992; Tibshirani et al., 2005; Sharpnack et al., 2012).
Owning to these advantages, trend filtering (Tibshirani et al.,
2014) and graph trend filter (Wang et al., 2016; Varma et al.,
2019) demonstrate that ¢, -based graph smoothing can adapt
to inhomogenous level of smoothness of signals and yield
estimators with k-th order piecewise polynomial functions,
such as piecewise constant, linear and quadratic functions,
depending on the order of the graph difference operator.
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While /;-based methods exhibit various appealing proper-
ties and have been extensively studied in different domains
such as signal processing (Elad, 2010), statistics and ma-
chine learning (Hastie et al., 2015), it has rarely been inves-
tigated in the design of GNNSs. In this work, we attempt to
bridge this gap and enhance the local smoothnesss adaptivity
of GNNss via ¢4 -based graph smoothing.

Incorporating ¢1-based graph smoothing in the design of
GNNs faces tremendous challenges. First, since the mes-
sage passing schemes in GNNs can be derived from the
optimization iteration of the graph signal denoising prob-
lem, a fast, efficient and scalable optimization solver is
desired. Unfortunately, to solve the associated optimiza-
tion problem involving ¢; norm is challenging since the
objective function is composed by smooth and non-smooth
components and the decision variable is further coupled by
the discrete graph difference operator. Second, to integrate
the derived messaging passing scheme into GNNS, it has
to be composed by simple operations that are friendly to
the back-propagation training of the whole GNNs. Third,
it requires an appropriate normalization step to deal with
diverse node degrees, which is often overlooked by exist-
ing graph total variation and graph trend filtering methods.
Our attempt to address these challenges leads to a family of
novel GNNg, i.e., Elastic GNNs. Our key contributions can
be summarized as follows:

* We introduce ¢ -based graph smoothing in the design
of GNNss to further enhance the local smoothness adap-
tivity, for the first time;

* We derive a novel and general message passing scheme,
i.e., Elastic Message Passing (EMP), and develop a
family of GNN architectures, i.e., Elastic GNNs, by
integrating the proposed message passing scheme into
deep neural nets;

» Extensive experiments demonstrate that Elastic GNNs
obtain better adaptivity on various real-world datasets,
and they are significantly robust to graph adversarial at-
tacks. The study on different variants of Elastic GNNs
suggest that /1 and /5-based graph smoothing are com-
plementary and the proposed GNNs are more versatile.

2. Preliminary

We use bold upper-case letters such as X to denote matri-
ces and bold lower-case letters such as x to define vectors.
Given a matrix X € R™*? we use X to denote its i-th row
and X;; to denote its element in i-th row and j-th column.
We define the Frobenius norm, #; norm, and #5; norm of

matrix X as || X||p = \/m Xl =22 X5
1X21 = 3, 1Xill2 = >, m, respectively. We

define | X||2 = omax(X) where oymax(X) is the largest sin-
gular value of X. Given two matrices X, Y € R"*4, we

, and

define the inner product as (X, Y) = tr(XTY).

Let G = {V,€} be a graph with the node set V =
{v1,...,v,} and the undirected edge set € = {eq,...,emn}.
We use A (v;) to denote the neighboring nodes of node v;,
including v; itself. Suppose that each node is associated
with a d-dimensional feature vector, and the features for all
nodes are denoted as X, € R”*%. The graph structure G
can be represented as an adjacent matrix A € R™*", where
A;; = 1 when there exists an edge between nodes v; and v;.
The graph Laplacian matrix is defined as L = D — A, where
D is the diagonal degree matrix. Let A € {—1,0, 1}™*"
be the oriented incident matrix, which contains one row for
each edge. If ¢, = (4, 7), then A has ¢-th row as:

Ap=(0,..., =1,..., 1 ,...,0)
=~ ~
7 J
where the edge orientation can be arbitrary. Note that the
incident matrix and unnormalized Laplacian matrix have the
equivalence L = ATA. Next, we briefly introduce some
necessary background about the graph signal denoising per-
spective of GNNs and the graph trend filtering methods.

2.1. GNNs as Graph Signal Denoising

It is evident from recent work (Ma et al., 2020) that many
popular GNNs can be uniformly understood as graph signal
denoising with Laplacian smoothing regularization. Here
we briefly describe several representative examples.

GCN. The message passing scheme in Graph Convolutional
Networks (GCN) (Kipf & Welling, 2016),

Xoul = AXim

is equivalent to one gradient descent step to minimize
tr(FT (I — A)F) with the initial F = X, and stepsize
1/2. Here A = D2 AD~2 with A = A + I being the
adjacent matrix with self-loop, whose degree matrix is D.
PPNP & APPNP. The message passing scheme in PPNP

and APPNP (Klicpera et al., 2018) follow the aggregation
rules

Xou = a(T— (1 — @)A) "X,
and

X*+H) = (1 — ) AX®) 4+ aXj,.

They are shown to be the exact solution and one gradient
descent step with stepsize «/2 for the following problem

min|[F — X3 + (1/a — 1) (P (1~ A)F). ()

For more comprehensive illustration, please refer to (Ma
et al., 2020). We point out that all these message passing
schemes adopt ¢2-based graph smoothing as the signal dif-
ferences between neighboring nodes are penalized by the
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) F.
square of ¢y norm, e.g., Z(%Uj)eg H\/% — \/ﬁﬂg

with d; being the node degree of node v;. The resulted mes-
sage passing schemes are usually linear smoothers which
smooth the input signal by their linear transformation.

2.2. Graph Trend Filtering

In the univariate case, the k-th order graph trend filtering
(GTF) estimator (Wang et al., 2016) is given by

argmin = = [|f — x|Z + AJAHOE], @)
feRn 2

where x € R" is the 1-dimensional input signal of n nodes

and A*+1) is a k-th order graph difference operator. When

k = 0, it penalizes the absolute difference across neighbor-

ing nodes in graph G:

[AWE = > |f 1
(vi,vi)€E
where A1) is equivalent to the incident matrix A. Gener-
ally, k-th order graph difference operators can be defined
recursively:

A(k‘+1) _ {

It is demonstrated that GTF can adapt to inhomogeneity
in the level of smoothness of signal and tends to provide
piecewise polynomials over graphs (Wang et al., 2016). For
instance, when k = 0, the sparsity induced by the ¢, -based
penalty | A(f||; implies that many of the differences f; —f;
are zeros across edges (v;,v;) € € in G. The piecewise
property originates from the discontinuity of signal allowed
by less aggressive ¢1 penalty, with adaptively chosen knot
nodes or knot edges. Note that the smoothers induced by
GTF are not linear smoothers and cannot be simply repre-
sented by linear transformation of the input signal.

k+1
2

ATA(k) =L c Rnxn
AAR) = AL € R™*"

for odd k
for even k.

3. Elastic Graph Neural Networks

In this section, we first propose a new graph signal denois-
ing estimator. Then we develop an efficient optimization
algorithm for solving the denoising problem and introduce
a novel, general and efficient message passing scheme, i.e.,
Elastic Message Passing (EMP), for graph signal smoothing.
Finally, the integration of the proposed message passing
scheme and deep neural networks leads to Elastic GNNs.

3.1. Elastic Graph Signal Estimator

To combine the advantages of ¢ and ¢5-based graph smooth-
ing, we propose the following elastic graph signal estimator:

. A 1
argmin A [|AF||; + Z2tr(FTLF) + = ||F — Xu|% (5)
PeRnxd e 2 2

g1 (AF) f(F)

where X;, € R"*4 is the d-dimensional input signal of n
nodes. The first term can be written in an edge-centric way:
[AWF|1 =3, 4, ee [Fi = Fjll1, which penalizes the
absolute difference across connected nodes in graph G. Sim-
ilarly, the second term penalizes the difference quadratically
via tr(FTLF) = > (vi0;)ee IFi — ;3. The last term is
the fidelity term which preserves the similarity with the in-
put signal. The regularization coefficients A; and A2 control
the balance between ¢; and ¢2-based graph smoothing.

Remark 1. It is potential to consider higher-order graph
differences in both the {1-based and {s-based smoothers.
But, in this work, we focus on the 0-th order graph difference
operator A, since we assume the piecewise constant prior
for graph representation learning.

Normalization. In existing GNNs, it is beneficial to nor-
malize the Laplacian matrix for better numerical stability,
and the normalization trick is also crucial for achieving
superior performance. Therefore, for the /5-based graph
smoothing, we follow the common normalization trick in
GNNs:L=1-— A, where A = ]AD*%A]A)*%, A=A+1
and ]5“ =d;, =5, j Aw It leads to a degree normalized
penalty

F, F;
Vdi+1  Jd; +1

w(FLF) = )

(vi,vj)€EE

2

In the literature of graph total variation and graph trend filter-
ing, the normalization step is often overlooked and the graph
difference operator is directly used as in GTF (Wang et al.,
2016; Varma et al., 2019). To achieve better numerical sta-
bility and handle diverse node degrees in real-world graphs,
we propose to normalize each column of the incident matrix
by the square root of node degrees for the ¢;-based graph
smoothing as follows':

A =AD"z,

It leads to a degree normalized total variation penalty 2

IAF =

(Ul sUj ) €&

F; F;
Vdi+1  /d;j+1

1

Note that this normalized incident matrix maintains the
relation with the normalized Laplacian matrix as in the
unnormalized case

L=ATA (6)

given that
L-D3D-AD}-DiLD?

Tt naturally supports read-value edge weights if the edge
weights are set in the incident matrix A.

2With the normalization, the piecewise constant prior is up to
the degree scaling, i.e., sparsity in AF.

—D :ATAD =,

[N
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With the normalization, the estimator defined in (5) be-
comes:

- A ~ 1
argmin A [|AF||; + Z2tr(FTLF) + = |F — Xu||%.
FeRnde/_/ 2 2

91(AF) F(F)

)

Capture correlation among dimensions. The node fea-
tures in real-world graphs are usually multi-dimensional.
Although the estimator defined in (7) is able to handle multi-
dimensional data since the signal from different dimensions
are separable under ¢; and /5 norm, such estimator treats
each feature dimension independently and does not exploit
the potential relation between feature dimensions. How-
ever, the sparsity patterns of node difference across edges
could be shared among feature dimensions. To better ex-
ploit this potential correlation, we propose to couple the
multi-dimensional features by ¢2; norm, which penalizes
the summation of /5 norm of the node difference

A2 = >

(vi,vj)€E

F, F,
Vdi +1 \/d;j+1

2

This penalty promotes the row sparsity of AF and enforces
similar sparsity patterns among feature dimensions. In other
words, if two nodes are similar, all their feature dimensions
should be similar. Therefore, we define the ¢2;-based esti-
mator as

. - A _ 1
argmin A | AF o1 + Z2tr(FTLF) + = ||F — Xi|/%
FeRnXd w—/ 2 2

921(AF) )

®)

where g21(-) = A1|| - ||21. In the following subsections, we
will use g(-) to represent both g1 (-) and go1(-). We use ¢4
to represent both ¢; and /o7 if not specified.

3.2. Elastic Message Passing

For the ¢5-based graph smoother, message passing schemes
can be derived from the gradient descent iterations of the
graph signal denoising problem, as in the case of GCN and
APPNP (Ma et al., 2020). However, computing the esti-
mators defined by (7) and (8) is much more challenging
because of the nonsmoothness, and the two components,
ie., f(F) and g(AF), are non-separable as they are cou-
pled by the graph difference operator A. In the literature,
researchers have developed optimization algorithms for the
graph trend filtering problem (4) such as Alternating Di-
rection Method of Multipliers (ADMM) and Newton type
algorithms (Wang et al., 2016; Varma et al., 2019). However,
these algorithms require to solve the minimization of a non-
trivial sub-problem in each single iteration, which incurs

high computation complexity. Moreover, it is unclear how to
make these iterations compatible with the back-propagation
training of deep learning models. This motivates us to de-
sign an algorithm which is not only efficient but also friendly
to back-propagation training. To this end, we propose to
solve an equivalent saddle point problem using a primal-dual
algorithm with efficient computations.

Saddle point reformulation. For a general convex function
g(+), its conjugate function is defined as

9" (Z) := sup(Z, X) — g(X).
X

By using g(AF) = sup(AF, Z) — g*(Z), the problem (7)
Z

and (8) can be equivalently written as the following saddle
point problem:

minmax f(F) + (AF,Z) - g*(Z). ©)

where Z € R™*? Motivated by Proximal Alternating
Predictor-Corrector (PAPC) (Loris & Verhoeven, 2011;
Chen et al., 2013), we propose an efficient algorithm with
per iteration low computation complexity and convergence
guarantee:

FiL = FF AV f(FF) — yATZF, (10)
ZF!' = proxg,. (ZF + BAFFHY), (11)
FEl — Fk _ ’ny(Fk) _ ’}/ATZk+1, (12)

where proxs,. (X) = argmin 3|Y — X|[f + g"(Y).
Y

The stepsizes, v and 3, will be specified later. The first
step (10) obtains a prediction of F¥*1 ie., F¥*! by a
gradient descent step on primal variable F*. The second
step (11) is a proximal dual ascent step on the dual variable
Z* based on the predicted F**'. Finally, another gradient
descent step on the primal variable based on (F*, ZF+1)
gives next iteration F**1 (12). Algorithm (10)—(12) can be
interpreted as a “predict-correct” algorithm for the saddle
point problem (9). Next we demonstrate how to compute
the proximal operator in Eq. (11).

Proximal operators. Using the Moreau’s decomposition
principle (Bauschke & Combettes, 2011)

X = proxg,. (X) + Aproxg-1,(X/f3),

we can rewrite the step (11) using the proximal operator of
g(), that is,

1
proxg . (X) =X - ﬂprox%g(EX). (13)

We discuss the two options for the function g(-) correspond-
ing to the objectives (7) and (8).
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YhtH = fyXin +(1- V)AF’“

Figure 1. Elastic Message Passing (EMP). F° =

* Option I (¢; norm): g1(X) = A1 ||X]|1
By definition, the proximal operator of % g1(X) is

1
B/\lllYllh

which is equivalent to the soft-thresholding operator
(component-wise):

prox:

1
400 (X) = angmin 5[ Y X3+

. 1
(S22, (X))i =sign(Xy;) max(| X[ - 3/\170)
. . 1
=X, — sign(X;;) min(|X;;|, =A1).

B
Therefore, using (13), we have
(Proxgg- (X))i; = sign(X;) min(| X[, A1).  (14)

which is a component-wise projection onto the £, ball
of radius ;.

hd OptiOl’l 1I (621 IIOI'III)Z ggl(X) = )\1||X||271
By definition, the proximal operator of % g21(X) is

1
B/\lHYHz,l

ProXi,,, (

1
X) = argmin - ||[Y — X||% +
Yy 2
with the ¢-th row being

([1Xil[2 = >\1,0)-

(pro 3921(X>)i X H 3

Similarly, using (13), we have the i-th row of
proxg,. (X) being

(proxﬁg* (X))s

=X, — 5pr0X1921(X /B)

= X; - e (/B — Au/6,0)
X;
= X,‘ ||X ” max(HX ||2 )\1,0)
X;
=X, ||2(||X ill2 — max([| X2 — A1,0))
X; )
= mmln(||xi“27)\l)a (15)

Fh = vk ATZE
Zh+1 _ Zk 4 BAFHFH
ZE = min(|ZFHL|, ) - sign(ZF 1) (Option I: ¢; norm)
ZF = min(||ZF |2, M) - |\z::1\| ,Vi € [m] (Option IT: (5 norm)
FrH = vk _ yATZkH!

Omxd

X, and Z° =

which is a row-wise projection on the {5 ball of radius
A1. Note that the proximal operator in the ¢; norm case
treats each feature dimension independently, while in the
{21 norm case, it couples the multi-dimensional features,
which is consistent with the motivation to exploit the
correlation among feature dimensions.

The Algorithm (10)—(12) and the proximal operators (14)
and (15) enable us to derive the final message passing
scheme. Note that the computation F¥ — 4V f(F¥) in
steps (10) and (12) can be shared to save computation.
Therefore, we decompose the step (10) into two steps:

Y" =F* 4V f(F")
= (1= I—yAL)F* +9X;,  (16)
Frtl =Yk — yATZF, (17)

In this work, we choose v = T /\2 and g =
withL =1 — A, Eq. (16) can be simplified as

. Therefore,
7

Y = X, + (1 — 7)AF*. (18)

Let ZF+1 .= ZF 4+ BAF*+1 | then steps (11) and (12) be-
come

ZFt! = proxg,. (ZF1), (19)
Frl = FF -V f(FY) —yAZ*!
=YF —yATZF, (20)

Substituting the proximal operators in (19) with (14)
and (15), we obtain the complete elastic message passing
scheme (EMP) as summarized in Figure 1.

Interpretation of EMP. EMP can be interpreted as the stan-
dard message passing (MP) (Y in Fig. 1) with extra opera-
tions (the following steps). The extra operations compute
ATZto adjust the standard MP such that sparsity in AF is
promoted and some large node differences can be preserved.
EMP is general and covers some existing propagation rules
as special cases as demonstrated in Remark 2.
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Remark 2 (Special cases). If there is only {s-based regu-
larization, i.e., Ay = 0, then according to the projection
operator, we have ZF = 0™*". Therefore, with v =
the proposed message passing scheme reduces to

1
1+’

1 Ao
Fk+1 = in
14+ Ao *

If Ao = é — 1, it recovers the message passing in APPNP:
FFl = aX;, + (1 — a)AFF,

If Ao = 00, it recovers the simple aggregation operation in
many GNNs:
Fk+1 _ AFk

Computation Complexity. EMP is efficient and com-
posed by simple operations. The major computation cost
comes from four sparse matrix multiplications, include
AFk ATZF AFF+!and ATZF+!, The computation com-
plexity is in the order O(md) where m is the number of
edges in graph G and d is the feature dimension of input
signal Xj,. Other operations are simple matrix additions
and projection.

The convergence of EMP and the parameter settings are
justified by Theorem 1, with a proof deferred to Appendix B.

Theorem 1 (Convergence). Under the stepsize setting v <
2 4 i i

SwWIAR and B < AT, the elastic message passing
scheme (EMP) in Figure 1 converges to the optimal solution
of the elastic graph signal estimator defined in (7) (Option I)

or (8) (Option II). It is sufficient to choose any v < ﬁ

and < % since |Lllz = [ATAlly = |[AAT |2 < 2.

3.3. Elastic GNNs

Incorporating the elastic message passing scheme from the
elastic graph signal estimator (7) and (8) into deep neural
networks, we introduce a family of GNNs, namely Elastic
GNNs. In this work, we follow the decoupled way as pro-
posed in APPNP (Klicpera et al., 2018), where we first make
predictions from node features and aggregate the prediction
through the proposed EMP:

Ypre = EMP (hG (Xfea)> K, A1, )\2) (21)

Xea € R™*4 denotes the node features, hg(-) is any
machine learning model, such as multilayer perceptrons
(MLPs), 0 is the learnable parameters in the model, and K
is the number of message passing steps. The training objec-
tive is the cross entropy loss defined by the final prediction
Y pre and labels for training data. Elastic GNNs also have
the following nice properties:

¢ In addition to the backbone neural network model, Elas-
tic GNNs only require to set up three hyperparameters

including two coefficients A1, A2 and the propagation
step K, but they do not introduce any learnable param-
eters. Therefore, it reduces the risk of overfitting.

* The hyperparameters A; and Ay provide better smooth-
ness adaptivity to Elastic GNNs depending on the
smoothness properties of the graph data.

* The message passing scheme only entails simple and
efficient operations, which makes it friendly to the
efficient and end-to-end back-propagation training of
the whole GNN model.

4. Experiment

In this section, we conduct experiments to validate the effec-
tiveness of the proposed Elastic GNNs. We first introduce
the experimental settings. Then we assess the performance
of Elastic GNNs and investigate the benefits of introducing
¢1-based graph smoothing into GNNs with semi-supervised
learning tasks under normal and adversarial settings. In the
ablation study, we validate the local adaptive smoothness,
sparsity pattern, and convergence of EMP.

4.1. Experimental Settings

Datasets. We conduct experiments on 8§ real-world
datasets including three citation graphs, i.e., Cora, Citeseer,
Pubmed (Sen et al., 2008), two co-authorship graphs, i.e.,
Coauthor CS and Coauthor Physics (Shchur et al., 2018),
two co-purchase graphs, i.e., Amazon Computers and Ama-
zon Photo (Shchur et al., 2018), and one blog graph, i.e.,
Polblogs (Adamic & Glance, 2005). In Polblogs graph,
node features are not available so we set the feature matrix
to be a n X n identity matrix.

Baselines. We compare the proposed Elastic GNNs with
representative GNNs including GCN (Kipf & Welling,
2016), GAT (Velickovic¢ et al., 2017), ChebNet (Deffer-
rard et al., 2016), GraphSAGE (Hamilton et al., 2017),
APPNP (Klicpera et al., 2018) and SGC (Wu et al., 2019).
For all models, we use 2 layer neural networks with 64
hidden units.

Parameter settings. For each experiment, we report the
average performance and the standard variance of 10 runs.
For all methods, hyperparameters are tuned from the fol-
lowing search space: 1) learning rate: {0.05,0.01,0.005};
2) weight decay: {5e-4, 5e-3, 5e-6}; 3) dropout rate:
{0.5, 0.8}. For APPNP, the propagation step K is
tuned from {5,10} and the parameter « is tuned from
{0,0.1,0.2,0.3,0.5,0.8,1.0}. For Elastic GNNs, the prop-
agation step K is tuned from {5, 10} and parameters \; and
Ag are tuned from {0,3,6,9}. As suggested by Theorem
1, we set y = ﬁ and 8 = % in the proposed elastic
message passing scheme. Adam optimizer (Kingma & Ba,
2014) is used in all experiments.
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4.2. Performance on Benchmark Datasets

On commonly used datasets including Cora, CiteSeer,
PubMed, Coauthor CS, Coauthor Physics, Amazon Comput-
ers and Amazon Photo, we compare the performance of the
proposed Elastic GNN ({37 + ¢5) with representative GNN
baselines on the semi-supervised learning task. The detail
statistics of these datasets and data splits are summarized
in Table 5 in Appendix A. The classification accuracy are
showed in Table 1. From these results, we can make the
following observations:

* Elastic GNN outperforms GCN, GAT, ChebNet, Graph-
SAGE and SGC by significant margins on all datasets.
For instance, Elastic GNN improves over GCN by
3.1%, 2.0% and 1.8% on Cora, CiteSeer and PubMed
datasets. The improvement comes from the global and
local smoothness adaptivity of Elastic GNN.

¢ Elastic GNN ({57 + ¢5) consistently achieves higher
performance than APPNP on all datasets. Essentially,
Elastic GNN covers APPNP as a special case when
there is only /5 regularization, i.e., A; = 0. Beyond the
£5-based graph smoothing, the ¢21-based graph smooth-
ing further enhances the local smoothness adaptivity.
This comparison verifies the benefits of introducing
{51 -based graph smoothing in GNNSs.

4.3. Robustness Under Adversarial Attack

Locally adaptive smoothness makes Elastic GNNs more
robust to adversarial attack on graph structure. This is be-
cause the attack tends to connect nodes with different labels,
which fuzzes the cluster structure in the graph. But EMP
can tolerate large node differences along these wrong edges,
and maintain the smoothness along correct edges.

To validate this, we evaluate the performance of Elastic
GNNs under untargeted adversarial graph attack, which
tries to degrade GNN models’ overall performance by delib-
erately modifying the graph structure. We use the MetaAt-
tack (Ziigner & Giinnemann, 2019) implemented in Deep-
Robust (Li et al., 2020)3, a PyTorch library for adversarial
attacks and defenses, to generate the adversarially attacked
graphs based on four datasets including Cora, CiteSeer, Pol-
blogs and PubMed. We randomly split 10%/10%/80% of
nodes for training, validation and test. The detailed data
statistics are summarized in Table 6 in Appendix A. Note
that following the works (Ziigner et al., 2018; Ziigner &
Giinnemann, 2019; Entezari et al., 2020; Jin et al., 2020),
we only consider the largest connected component (LCC)
in the adversarial graphs. Therefore, the results in Table 2
are not directly comparable with the results in Table 1. We

*https://github.com/DSE-MSU/DeepRobust

focus on investigating the robustness introduced by ¢;-based
graph smoothing but not on adversarial defense so we don’t
compare with defense strategies. Existing defense strate-
gies can be applied on Elastic GNNs to further improve the
robustness against attacks.

Variants of Elastic GNNs. To make a deeper investiga-
tion of Elastic GNNs, we consider the following variants:
(1) £y ()\1 = 0); 2) 44 (/\2 = 0, Option I); 3) o1 ()\2 =
0, Option II); (4) £1 +£5 (Option I); (5) £21 + £ (Option II).
To save computation, we fix the learning rate as 0.01, weight
decay as 0.0005, dropout rate as 0.5 and K = 10 since this
setting works well for the chosen datasets and models. Only
A1 and \g are tuned. The classification accuracy under
different perturbation rates ranging from 0% to 20% is sum-
marized in Table 2. From the results, we can make the
following observations:

* All variants of Elastic GNNs outperforms GCN and
GAT by significant margins under all perturbation rates.
For instance, when the pertubation rate is 15%, Elastic
GNN (¢51 + £5) improves over GCN by 12.1%, 7.4%,
13.7% and 7.7% on the four datasets being considered.
This is because Elastic GNN can adapt to the change
of smoothness while GCN and GAT can not adapt well
when the perturbation rate increases.

¢ {21 outperforms ¢; in most cases, and ¢21 + {5 outper-
forms /1 + /5 in almost all cases. It demonstrates the
benefits of exploiting the correlation between feature
channels by coupling multi-dimensional features via
{51 norm.

¢ {51 outperforms {5 in most cases, which suggests the
benefits of local smoothness adaptivity. When ¢5; and
/5 is combined, the Elastic GNN ({51 + £5) achieves
significantly better performance than solely ¢5, ¢2; or
£ variant in almost all cases. It suggests that /; and
{5-based graph smoothing are complementary to each
other, and combining them provides significant better
robustness against adversarial graph attacks.

4.4. Ablation Study

We provide ablation study to further investigate the adaptive
smoothness, sparsity pattern, and convergence of EMP in
Elastic GNN, based on three datasets including Cora, Cite-
Seer and PubMed. In this section, we fix Ay = 3, A5 = 3
for Elastic GNN, and o = 0.1 for APPNP. We fix learning
rate as 0.01, weight decay as 0.0005 and dropout rate as 0.5
since this setting works well for both methods.

Adaptive smoothness. It is expected that ¢;-based smooth-
ing enhances local smoothness adaptivity by increasing the
smoothness along correct edges (connecting nodes with
same labels) while lowering smoothness along wrong edges
(connecting nodes with different labels). To validate this,
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Table 1. Classification accuracy (%) on benchmark datasets with 10 times random data splits.

Model Cora CiteSeer PubMed CS Physics Computers Photo

ChebNet 76.3+15 674+15 75.0+£2.0 91.8+04 OOM 81.0+2.0 904+1.0
GCN 796+11 689+12 776+23 91.6+0.6 93.3+0.8 79.8+16 90.3+t1.2
GAT 80.1+1.2 689+18 776+22 91.1+05 933+£0.7 793+24 89.6+1.6
SGC 80.2+15 689+13 755+29 90.1+13 93.1+0.6 73.0+£20 83.5+29
APPNP 822+13 704+1.2 789+22 925+03 93.7+0.7 80.1+21 90.8+1.3
GraphSAGE  79.0+1.1 67.54+£20 77.6+£20 91.7+£05 925+08 80.7+1.7 90.9+1.0
ElasticGNN 827+1.0 709+14 794+18 925+03 942+05 80.7+18 91.3+13

Table 2. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

Dataset | Pib Rate Basic GNN Elastic GNN
GCN GAT 62 él €21 fl + EQ 321 + 62
0% 83.5+04 84.0+0.7 | 85.8+0.4 85.1£0.5 853+04 858404 85.8+0.4
5% 76.6+£0.8 80.4+0.7 | 81.0£1.0 82.3+1.1 81.6+1.1 81.9+14 82.2+09
Cora 10% 704+£1.3 75.6+£0.6 | 76.3£1.5 76.2+14 779409 782+1.6 78.8+£1.7
15% 65.1£0.7 69.8£1.3 | 72.24+09 733+1.3 757+1.2 76.9+0.9 77.2+1.6
20% 60.04+2.7 59.9+0.6 | 67.7+£0.7 63.7£09 70.3+1.1 67.2453 70.5+1.3
0% 72.0£0.6 73.3£0.8 | 73.6£0.9 73.24+0.6 73.2+0.5 73.6+£0.6 73.8+0.6
5% 70.9+£0.6 72.9+0.8 | 72.8£0.5 72.840.5 72.840.5 73.3+0.6 72.9+0.5
Citescer 10% 67.6£0.9 70.6+£0.5 | 70.2+0.6 70.8+£0.6 70.7+£1.2 724409 72.6+0.4
15% 64.5+1.1 69.0£1.1 | 70.2+0.6 68.1+1.4 682+1.1 71.3+1.5 71.9+0.7
20% 62.0+£3.5 61.0£1.5 | 64.9+1.0 64.7+0.8 64.7+:0.8 64.7+£0.8 64.7£0.8
0% 957404 954+0.2 | 954402 95.8+0.3 95.8+0.3 95.8+0.3 95.8+0.3
5% 73.1£0.8 83.7£1.5 | 82.840.3 78.7+0.6 78.7+0.7 82.8+0.4 83.0+0.3
Polblogs 10% 70.7£1.1 76.3£0.9 | 73.7£0.3 752404 75.34+0.7 81.5+0.2 81.6+0.3
15% 65.0£1.9 68.8£1.1 | 68.9+09 72.1+£09 71.5+1.1 77.8£0.9 78.7+0.5
20% 51.3+1.2 51.5£1.6 | 65.5+0.7 68.1+£0.6 68.7+£0.7 77.4+0.2 77.5+£0.2
0% 87.2+£0.1 83.7+0.4 | 88.1£0.1 86.7+0.1 87.3£0.1 88.1+0.1 88.1+0.1
5% 83.1£0.1 78.0+0.4 | 87.1£0.2 86.2+0.1 87.0£0.1 87.1+0.2 87.1£0.2
Pubmed 10% 81.2+0.1 749404 | 86.6+0.1 86.0+0.2 86.9+0.2 86.3+0.1 87.0+0.1
15% 78.7£0.1 71.1£0.5 | 85.7£0.2 85.44+0.2 86.4+0.2 85.5+0.1 86.4+0.2
20% 774+0.2 68.2£1.0 | 85.84£0.1 85.440.1 86.4+0.1 854+0.1 86.4+0.1

we compute the average adjacent node differences (based
on node features in the last layer) along wrong and correct
edges separately, and use the ratio between these two av-
erages to measure the smoothness adaptivity. The results
are summarized in Table 3. It is clearly observed that for
all datasets, the ratio for ElasticGNN is significantly higher
than ¢5 based method such as APPNP, which validates its
better local smoothness adaptivity.

Sparsity pattern. To validate the piecewise constant prop-
erty enforced by EMP, we also investigate the sparsity pat-
tern in the adjacent node differences, i.e., AF, based on
node features in the last layer. Node difference along edge
e; is defined as sparse if |[(AF);||s < 0.1. The sparsity
ratios for /o-based method such as APPNP and /;-based
method such as Elastic GNN are summarized in Table 4. It
can be observed that in Elastic GNN, a significant portion
of AF are sparse for all datasets. While in APPNP, this
portion is much smaller. This sparsity pattern validates the
piecewise constant prior as designed.

Table 3. Ratio between average node differences along wrong and
correct edges.

Model | Cora CiteSeer PubMed
{5 (APPNP) 1.57 1.35 1.43
l21+{5 (ElasticGNN) | 2.03 1.94 1.79

Table 4. Sparsity ratio (i.e., || (AF);||2 < 0.1) in node differences
AF.

Model ‘ Cora CiteSeer PubMed
{5 (APPNP) 2% 16% 11%
lo1+L5 (ElasticGNN) 37% 74% 42%

Convergence of EMP. We provide two additional experi-
ments to demonstrate the impact of propagation step K on
classification performance and the convergence of message
passing scheme. Figure 2 shows that the increase of classifi-
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cation accuracy when the propagation step K increases. It
verifies the effectiveness of EMP in improving graph rep-
resentation learning. It also shows that a small number of
propagation step can achieve very good performance, and
therefore the computation cost for EMP can be small. Fig-
ure 3 shows the decreasing of the objective value defined in
Eq. (8) during the forward message passing process, and it
verifies the convergence of the proposed EMP as suggested
by Theorem 1.

L X ]
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Figure 2. Classification accuracy under different propagation steps.
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Figure 3. Convergence of the objective value for the problem in
Eq. (8) during message passing.

5. Related Work

The design of GNN architectures can be majorly motivated
in spectral domain (Kipf & Welling, 2016; Defferrard et al.,
2016) and spatial domain (Hamilton et al., 2017; Velickovié¢
et al., 2017; Scarselli et al., 2008; Gilmer et al., 2017). The
message passing scheme (Gilmer et al., 2017; Ma & Tang,
2020) for feature aggregation is one central component of
GNNs. Recent works have proven that the message passing
in GNNs can be regarded as low-pass graph filters (Nt &
Maehara, 2019; Zhao & Akoglu, 2019). Generally, it is
recently proved that message passing in many GNNs can

be unified in the graph signal denosing framework (Ma
et al., 2020; Pan et al., 2020; Zhu et al., 2021; Chen et al.,
2020). We point out that they intrinsically perform £>-based
graph smoothing and typically can be represented as linear
smoothers.

£,-based graph signal denoising has been explored in graph
trend filtering (Wang et al., 2016; Varma et al., 2019) which
tends to provide estimators with k-th order piecewise poly-
nomials over graphs. Graph total variation has also been
utilized in semi-supervised learning (Nie et al., 2011; Jung
et al., 2016; Jung et al., 2019; Aviles-Rivero et al., 2019),
spectral clustering (Biihler & Hein, 2009; Bresson et al.,
2013b) and graph cut problems (Szlam & Bresson, 2010;
Bresson et al., 2013a). However, it is unclear whether these
algorithms can be used to design GNNs. To the best of our
knowledge, we make first such investigation in this work.

6. Conclusion

In this work, we propose to enhance the smoothness adaptiv-
ity of GNNs via ¢; and £>-based graph smoothing. Through
the proposed elastic graph signal estimator, we derive a
novel, efficient and general message passing scheme, i.e.,
elastic message passing (EMP). Integrating the proposed
message passing scheme and deep neural networks leads
to a family of GNNss, i.e., Elastic GNNs. Extensitve exper-
iments on benchmark datasets and adversarially attacked
graphs demonstrate the benefits of introducing £;-based
graph smoothing in the design of GNNs. The empirical
study suggests that £; and £5-based graph smoothing is com-
plementary to each other, and the proposed Elastic GNNs
has better smoothnesss adaptivity owning to the integration
of £1 and £2-based graph smoothing. We hope the proposed
elastic message passing scheme can inspire more powerful
GNN architecture design in the future.
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Appendix for Elastic Graph Neural Networks

A. Data Statistics

The data statistics for the benchmark datasets used in Section 4.2 are summarized in Table 5. The data statistics for the
adversarially attacked graph used in Section 4.3 are summarized in Table 6.

Table 5. Statistics of benchmark datasets.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes
Cora 7 2708 5278 1433 20 per class 500 1000
CiteSeer 6 3327 4552 3703 20 per class 500 1000
PubMed 3 19717 44324 500 20 per class 500 1000
Coauthor CS 15 18333 81894 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 745 20 per class 30 per class Rest nodes

Table 6. Dataset Statistics for adversarially attacked graph.

‘ NLC C ELCC Classes Features

Cora 2,485 5,069 7 1,433
CiteSeer | 2,110 3,668 6 3,703
Polblogs | 1,222 16,714 2 /
PubMed | 19,717 44,338 3 500

B. Convergence Guarantee

We provide Theorem 1 to show the convergence guarantee of the proposed elastic messsage passing scheme and the practical
guidance for parameter settings in EMP.

Theorem 1 (Convergence of EMP). Under the stepsize setting v < , the elastic message

— 2 __ and B < _ 4
14+X2||L2 = 3[[AAT2
passing scheme (EMP) in Figure I converges to the optimal solution of the elastic graph signal estimator defined in (7)

(Option 1) or (8) (Option II). It is sufficient to choose any v < ﬁ and B < % since ||I:H2 = ||ATA||2 = ||AAT||2 <2

Proof. We first consider the general problem
min /(F) + g(BF) (22)

where f and g are convex functions and B is a bounded linear operator. It is proved in (Loris & Verhoeven, 2011; Chen
et al., 2013) that the iterations in (10)—(12) guarantee the convergence of FF to the optimal solution of the minimization
problem (22) if the parameters satisfy v < % and 8 < m, where L is the Lipschitz constant of V f(F). These

conditions are further relaxed to v < % and 8 < W in (Li & Yan, 2017).

For the specific problems defined in (7) and (8), the two function components f and g are both convex, and the linear
operator A is bounded. The Lipschitz constant of V f(F') can be computed by the largest eigenvalue of the Hessian matrix
of f(F):

L = Aax(V2f(F)) = Amax(I+ AoL) = 1 + Ao|[L] 2.

Therefore, the elastic message passing scheme derived from iterations (10)—(12) is guaranteed to converge to the optimal

solution of problem (7) (Option I) or problem (8) (Option II) if the stepsizes satisfy v < ﬁ and 8 < m.
2 2 2
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Let A = UXVT be the singular value decomposition of A and we derive
IAAT]|z = [[USVTVEU |2 = [US?UT 2 = [VE?VT |, = [VEUTUSV |5 = [ATA],.
The equivalence L = ATA in (6) further gives

L2 = |ATA]2 = |[AAT,.

and -2 < —% __ Therefore, v < —2—

Since ||Lfl2 < 2 (Chung & Graham, 1997), we have =35 < i

2
— 1+X|Lll2 37 = 3v|AAT"

8 < % are sufficient for the convergence of EMP.

O



