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Abstract

We present a general framework for optimizing the Conditional Value-at-Risk for dynamical systems
using stochastic search. The framework is capable of handling the uncertainty from the initial
condition, stochastic dynamics, and uncertain parameters in the model. The algorithm is compared
against a risk-sensitive distributional reinforcement learning framework and demonstrates improved
performance on a simulated pendulum and cartpole with stochastic dynamics. We also showcase
the applicability of the framework to robotics as an adaptive risk-sensitive controller by optimizing
with respect to the fully nonlinear belief provided by a particle filter on a pendulum, cartpole, and
quadcopter in simulation.
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1. Introduction

The majority of Stochastic Optimal Control (SOC) and Reinforcement Learning (RL) literature han-
dles uncertainty in dynamical optimization problems by simply optimizing the expected cost/reward.
In many applications, however, it is desirable to consider the risk associated with the long tail events
with high cost or low reward related to a policy instead of its performance on average. A simple but
practical risk measure is the variance or mean-plus-variance (Gosavi, 2014; Di Castro et al., 2012). A
major problem with variance is that it is a symmetric risk measure. The undesired high cost scenario
is penalized the same way as the desired low cost outcome. Common asymmetric risk measures
include exponential utility (Howard and Matheson, 1972; Fleming and McEneaney, 1995), which
quantifies the exponential growth of risk as the cost increases, and Value-at-Risk (VaR) (Jorion, 2000),
VaR7(X) = inf{t : P(X < t) > 7}, which quantifies statistically the y-quantile of the uncertain
cost distribution with v € (0, 1) being the risk level. While exponential utility and VaR penalize one
side of the cost distribution as desired, they are not coherent risk measures (see Wang et al. (2020)
Appendix A for definition) (Artzner et al., 1999). Conditional Value-at-Risk (CVaR) (Rockafellar
et al., 2000) is a natural extension to VaR defined as CVaR” (X ) = ﬁ le VaR" (X )dr, which is
equivalent to the conditional expectation beyond VaR, E[X|X > VaR"(X)], if X has continuous
distribution. The main advantages of CVaR as a risk measure are that it is coherent, measures only
the worst cases compared to exponential utility, but takes into account the entire tail instead of only
the y-quantile compared to VaR. Figure 1 illustrates the difference between risk measures on three
distributions. Comparing the top and middle distributions, it is clear that symmetric risk measures
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cannot capture the risk associated with a heavy tail. From the middle and bottom distributions, it can
be observed that CVaR is more sensitive to the tail distribution than VaR.

CVaR has been used as a risk metric extensively in the field of finance (Agarwal and Naik, 2004;
Krokhmal et al., 2002; Zhu and Fukushima, 2009), power utility (Conejo et al., 2010; Morales et al.,
2010), supply chain management (Chen et al., 2007), etc. In recent years, it is also seeing a rise in
popularity in robotics research. However, CVaR optimization for dynamical systems suffers from
the problem of time inconsistency (Bjork and Murgoci, 2010), meaning that the optimal policy at a
particular timestep might be suboptimal at a future time. We encourage the readers to refer to Shapiro
et al. (2014) Section 6.8.5 for the mathematical definition of time consistency and Chow and Pavone
(2015) Example 2 for an intuitive example on the time inconsistency of CVaR. The time inconsistency
makes directly applying popular methods in SOC and RL that originated from dynamic programming
to the CVaR optimization problem hard. Several methods have been proposed to overcome this
problem by lifting the state space of the problem. In Pflug and Pichler (2016) and Chow et al.
(2015), the CVaR decomposition theorem is introduced to obtain a dual representation of CVaR
and optimizes the associated Bellman equation over a space of probability densities. Alternatively,
the convex extremal formulation of CVaR (Rockafellar et al., 2000) can be used to alleviate the
time-inconsistency problem (Bduerle and Ott, 2011). Both approaches, however, require some
form of state space augmentation and require solving an additional optimization problem. On the
other hand, algorithms that directly optimize the policy (Tamar et al., 2014) are not affected by the
time-inconsistency problem since they do not rely on the dynamic programming principle.

A promising sampling-based

approach that directly optimizes ~

the policy for solving general

nonlinear optimization problems e
is stochastic search. Stochas-
tic search is a general class of T T —
.. . . —— Mean -—— VaR_0.9 Exponential Utility (eps=2.5)
optimization methods that opti-  — Mean + 0.1*variance — cvaR 0.9

mizes the objective function by

randomly sampling and updating Figure 1: Comparison of different risk measures across three
candidate solutions. Many well- different distributions of costs.

known algorithms, such as the

Cross Entropy Method (CEM) (Rubinstein and Kroese, 2013), the genetic algorithm (Zames et al.,
1981), and simulated annealing (Kirkpatrick et al., 1983) fall into this category. Recently, a Gradient-
based Adaptive Stochastic Search (GASS) algorithm was proposed by Zhou and Hu (2014). GASS
updates the candidate solution by taking the gradient with respect to the sampling distribution param-
eters of solutions and approximating the gradient with Monte Carlo sampling. Boutselis et al. (2019)
extended GASS to constrained dynamic optimization problems, and Wang et al. (2019) showed that
the Information Theoretic Model Predictive Path Integral (MPPI) (Williams et al., 2017) emerges as
a special case of dynamic GASS in the case of Gaussian and Poisson sampling distributions.

In this paper, we extend the risk-sensitive formulation of GASS (Zhu et al., 2018) and present
Risk-Sensitive Stochastic Search (RS3), a general framework for solving CVaR optimization for
dynamical systems. The resulting algorithm bypasses the problem of time-inconsistency by directly
performing stochastic gradient descent on the sampling distribution parameters. The framework is
capable of handling uncertain initial states, parameters, and system stochasticity. We demonstrate
the applicability of our framework to robotics by combining it with a particle filter to perform
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risk-sensitive belief space control on a pendulum, cartpole and quadcopter in simulation. In addition,
we show that our framework outperforms in terms of final average cost and under other risk measures
compared to a risk-sensitive distributional RL algorithm, the Sample-based Distributional Policy
Gradients (SDPG) (Singh et al., 2020b) on a pendulum and cartpole system in simulation.

The rest of this paper is organized as follows: in Section 2 we formulate the problem and
derive the stochastic search framework. We present the algorithm and its application to belief space
optimization in Section 3. The simulation results are included in Section 4. Finally, we conclude the
paper in Section 5.

2. Stochastic Search

2.1. Notation, Mathematical Preliminaries, and Problem Formulation

Note that hereon we use E,,(,,y[f ()] to denote the integral fﬂz f(x)p(x)dz and p(z) is dropped from
the expectation for simplicity when it is clear which distribution the expectation is taken with respect
to. We consider the problem of minimizing the CVaR of cost function .J : R *(T+1) » 1/ — R+

U* = argmin CVaR"[J (X, U)], (D)
veu

subject to nonlinear stochastic dynamics

Tpp1 ~ D(Tiq1|xe, ug; @). ()

Here we have U = {ug, -+ ,ur—_1} € U as the control path and X = {zg, -+ , 27} € R X (T+1)
as the state path where T € [0, 00) is the optimization horizon. &/ C R™«*T is the set of admissible
control sequences, and ¢ is the system parameters. This formulation is capable of handling uncer-
tainties in state transition, p(z;41|x¢, u;), parameters, p(¢), and initial condition, p(xp). The CVaR
is computed with respect to the uncertainty distributions. Assuming that p(x¢41|x¢, us; @), p(xo) and
p(¢) are independent continuous density functions and J is continuous, the minimization problem
(1) can be rewritten as

U* = argminE,,[J(X,U)|J > VaR"(J)]. 3)
Ueld

where p(x) = p(xo)p(o) HtT:o (41|, ue) is the joint pdf of all uncertainty distributions. We
parameterize the control u with a policy m,, characterized by its parameters 7). The policy can be of
any functional form, i.e. open-loop (u; = vy, n; = vy), linear feedback (u; = kg +v, e = {ki, ve})
or a deep neural network. We then define a sampling distribution for the policy parameters from the
exponential family with a pdf of the form

pm3 00) = hme) exp (07T (m) — A(61)), )

where 6 are the natural parameters of the distribution and 7'(n) are the sufficient statistics of 7. The
minimization is now performed with respect to the natural parameters

0" = argmin E,, y[J(X,U)[J > VaR"(J)]. 5)
0cO

The expectation is now taken with respect to the joint distribution of uncertainty and sampling
distribution. It is easy to show that the expected cost in (5) is an upper bound for optimal cost in (3).
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2.2. Update Law Derivation

In this section we derive the gradient descent update rule for the optimization problem defined in
(5). To be consistent with GASS, we turn the minimization problem into a maximization one by
optimizing with respect to —.J. We then introduce a shape function S : R — R™ which allows for
different weighing schemes of the cost levels, leading to different optimization behaviors (Ollivier
et al., 2017). The problem is then transformed into

0* = argg(laax Ep(ﬂ) [S(_EP(X) [J(X, U)|J > VaR“’(J)])]

= argmax E,(,)[S(—CVaR[J (X, U)])].
0O

(6)

The shape function needs to satisfy the following conditions:

i) S(y) is nondecreasing in y and bounded from above and below for bounded y, with the lower
bound being away from zero.

ii) The set of optimal solutions {argmax,cy, S(H (y))} after the transform is a non-empty subset
of the solutions {argmax,cy, H(y)} of the original problem.

Common shape functions include: 1) the exponential function, S(y; x) = exp(ky), which leads
to the Information Theoretic MPPI update law (Williams et al., 2017); 2) the sigmoid function,
S(y; ky ) = (y — ylb)m, where yy, is a lower bound for the cost and ¢ is the (1 — p)-
quantile, which results in an update law similar to CEM but with soft elite threshold p.

Finally, we apply another log transformation to obtain a gradient invariant to the scale of the
objective function. The optimization problem becomes

0 = argmax In E[S(—CVaR"[J(X,U)])] = argmax(6). (7)
0cO 0cO

Since the natural logarithm function In : R™ — R is a strictly increasing function, it does not change
the maximization objective. We can now take its gradient with respect to the parameters. Writing the
expectation as an integral with respect to the path probability p(X, U; ) we get

E[S(—CVaRW[J(X, U)])} - /Q S(— /Q J(X,U)p(X,U:; G)dx)dn, )

where (2, is defined such that J > VaR"(J) if and only if x € €, and §,, is defined such that
. (x) € Uy, Vt. The path probability distribution can be decomposed as

p(X,U;0) = p(er|er—1, m(zr-1); ®)p(nr—1; 07-1) - - - P(X0)P(P) 9)
-1 -1
= p(z0)p(¢) [ [ plwerilze, my(ze); ¢) T pmes 62) (10)
t=0 t=0
p(x) p(n)

Note that since the uncertainty and sampling distribution are independent, their joint distribution can
be broken into the product of the two. The gradient of the objective function (7) with respect to the
parameters can be taken as

E[S(~CVaR"[J(X, U))Ve( X1y np(n: b))
E[S(—CVaR[J(X, U)])]

Vol(6) = (11)

4
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The detailed derivation can be found in Wang et al. (2020) Appendix B . The gradient of the log
parameter distribution at each time step can be calculated as

Vo, Inp(ns: ) = Vo, In () exp (67T (m) — A1) ) (12)
= Vo, (07 T () — A(61) (13)
= T(n) — Vo, A(Or). (14)

Plugging it back into the gradient of the cost function, we get

E[S(~CVaR[J(X, U))(T (ne) — Vo, A(01))]

Vi, l(0) = 15
ol(6) E[S(—CVaR [ (X, U)])] 1>
With this, we have a gradient ascent update law for the parameters as
OF L = TI{0F + oFVy,1(6%)}. (16)

where I1 is the projection operator ensuring the control constraints and the step size sequence a*

satisfies the typical assumptions in Stochastic Approximation (SA):

oF >0 VE, hm % Zak = (17

2.3. Practical Considerations

Numerical Approximation: The CVaR of the cost can be approximated Kolla et al. (2019) with

S

« A 1 N
Cl=V) 4+ —--— Inm —V,] (18)
WG ) 2 )
1 M
Vr;’:inf{x: M;ﬂw’“mgz} 2’7} (19)

The outer expectation can be approximated as E[S(—CVaR"[J(X,U)])] = # Z S(=Cy). Note
the expectation and CVaR in (15) are computed as averages over costs defined on entlre trajectories.
Model Predictive Control Formulation: The parameter update in Equation (16) can be used for
trajectory optimization as well as in a receding horizon or Model Predictive Control (MPC) fashion.
MPC is a powerful algorithmic approach for nonlinear feedback control which is essential in tasks
that involve risk measures or high order statistical characteristics of cost functions. In this paper we
will leverage parallelization using GPUs to implement Equation (16) in MPC fashion.

Adaptive Stochastic Search: The MPC formulation allows online interaction with the stochastic
system dynamics. Data from this online interaction can be used to feed adaptive or state estimation
schemes that update the probability distribution p(y) in an online fashion. In this work, we make use
of a nonlinear state estimator, namely a particle filter, to propagate and update distribution p(x) over
time. The resulting control architecture is a sampling-based risk-sensitive adaptive MPC scheme
that optimizes CVaR while adapting the probability distribution over parametric uncertainties. The
details of this approach are further explained in the next section.
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Algorithm 1 Stochastic Search for CVaR Optimization

Given:

F': Transition Model; K: Optimization Iterations; N: Number of Control Samples; M: Number
of CVaR Optimization Samples; T": Number of timesteps; ¢: System parameters vector; ag: Initial
step size; ovy: Step size decay rate; m,: Policy; v: Risk level;

Initialize:
6°: natural parameters for policy; S: Shape function; -
while task not completed do Algorithm 2 Parameter Update
{20 }in=1,... .M « StateEstimator() Given:
{6™ }m=1.... 1 < SampleSystemParameters() N: Number of Control Samples;
for k «+ 1 to K do ok Stepsize; 6%: Policy parameters;
af o {n*}: Policy samples; {C'}: CVaR
kY~ p(n; 6%) values; IT: Projection operator for con-
for n < 1to N in parallel do trol constraints;
for m < 1 to M in parallel do B« min(C)
for ¢ En() toT — lnch} N+ Z;::l exp (—(C™ — B))
Upp ™ Tk (™) for n < 1 to N in parallel do
IZ:_? ~ p(:::ﬁ'ﬂ:r;?‘m, u:':,‘zn; @) W — %exp (—(CA?'”“ —f))
end for n_ n_ 1N
endci«‘:::lputc cost: Jn,,m (Xn‘m, Ui?) endYgr_ n N Znil n o
k+1 _ ko kN WV
Cn ComputeCVaR(S(—J™"™),~) 0 =IH{0" +a% 30 n }
end for N
Ok +1 « UpdateParameters({C" }, o* {n™*})
end for

Perform Polyak averaging: # < % Zi{:l '
Sample policy parameters 77 ~ p(n; é)
Apply policy: m; for T timesteps
Recede horizon: §° = w(6%,7)

end while

3. Algorithm

In this section we present the RS3 algorithm implemented in MPC fashion, as shown in Algorithm
1. At initial time, the policy parameter distribution’s natural parameters are initialized. Given an
initial state and parameter distribution provided by an estimator, M i.i.d. samples are obtained. N
policies are sampled from the policy parameter distribution and each copy of the policy is applied
to all M samples of the initial states. In the case of stochastic dynamics, the states of each of the
M samples are propagated with an independent realization of the stochastic dynamics. A cost is
then calculated for each of the total N x M trajectories. For each policy sample, its associated
CVaR cost is approximated with the M cost samples using (18) and (19). Using the CVaR values,
the policy parameter distributions’ natural parameters can be updated using (15) and (16). In our
simulations, we use Gaussian distributions with fixed variance to sample policy parameters, for
which the sufficient statistics are 7'(1;) = n; and Vg, A(6;) = E[T'(1;)]. The parameter update step
is detailed in algorithm 2. In this work, the projection step is done via clamping. As is common in
SA algorithms, Polyak averaging is performed on the natural parameters to improve the convergence
rate (Polyak and Juditsky, 1992). With the Polyak averaged natural parameters 7, an optimal policy
can be sampled and applied to the system for 7 timesteps. Finally, we apply a shift operator w(6, 7)
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that recedes the optimization horizon and outputs ét = 0¢y. The last 7 timesteps of the natural
parameters are re-initialized.

Note that the RS3 algorithm can handle any or all uncertainties from initial state distribution,
uncertain parameters and stochastic dynamics provided that i.i.d. samples can be generated from the
uncertain distribution.

In our simulation examples of belief space control, we use a particle filter to provide the initial
state distribution. To handle uncertain model parameters, we augment the states by the uncertain
parameters and use a particle filter to learn its distribution (detailed in Wang et al. (2020) Appendix
C) . In both cases, i.i.d. particles from non-Gaussian distributions can be directly used in the RS3
algorithm. However, we want to stress that any filter can be used together with the RS3 algorithm.

4. Simulation Results

In this section, we showcase the general applicability of RS3 in dealing various types of uncertainty.
1) External noise: Comparing its performance against the SDPG algorithm for CVaR optimization.
2) Uncertain system parameters: combining it with a particle filter to perform risk sensitive control
in belief space. 3) Uncertain initial condition: This can be found in Wang et al. (2020) Appendix D.

All simulations were performed with a risk level of 0.9. The open loop policy 7, (z) = 7 is used
for all simulations, where 7 directly maps to the controls. The multivariate normal distribution is
chosen as the sampling distribution, and we use the method proposed in Boutselis et al. (2019) to
handle the box control constraints in the simulation tasks by sampling from a truncated multivariate
normal distribution. The tuning parameters of all simulations are included in the Appendix of Wang
et al. (2020).

4.1. Comparison Against Sample-based Distributional Policy Gradients

The Sample-based Distributional Policy Gradients algorithm Singh et al. (2020a,b) is one of the
most recent work on optimizing CVaR for dynamical systems. SDPG Singh et al. (2020a) and the
risk-sensitive version of SDPG Singh et al. (2020b) are actor-critic type policy gradient algorithms
in the distributional RL Bellemare et al. (2017) setting.

The actor network parameterizes the policy and the critic network learns the return distribution
by reparameterizing simple Gaussian noise samples. The risk-sensitive version of SDPG Singh et al.
(2020b) is an extension of the naive SDPG Singh et al. (2020a) algorithm by using CVaR as a loss
function to train the actor network to learn a risk-sensitive policy. In this paper, We compare RS3
and the risk-sensitive SDPG on two classic control systems in OpenAl Gym Brockman et al. (2016),
a pendulum and a cartpole.

Typical RL algorithms always receive some state feedback either fully or partially from environ-
ments. Thus, to fairly compare against SDPG, we exploited an MPC scheme in RS3 to implicitly
receive the state feedback and perform a receding-horizon optimization. In addition, as SDPG is
unable to handle uncertainty in the initial states and controls, we consider deterministic initial states
and system dynamics with additive noise h the control channels. To match the RS3 framework, the
Gym environment’s controls were modified to be continuous and use a quadratic cost function instead
of the typical RL reward function -1, 0, or +1 implemented in Gym. The cost function used in the
simulation can be found in Wang et al. (2020) Appendix D.1.1. All other training parameters for
risk-sensitive SDPG were the same as the parameters used in the original work Singh et al. (2020b).
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Table 1: Reward comparison results between RS3 (ours) vs. risk-sensitive SDPG Singh et al. (2020b)

System Pendulum Cartpole

Noise Variance | 0.3 1.0 2.0 3.0 0.3 1.0 2.0

Mean | 169.2 | 172.0 | 177.0 | 183.1 | 291.0 | 299.3 | 311.9
RS3 VaR | 170.3 | 1759 | 185.1 | 196.1 | 291.9 | 302.5 | 320.1
CVaR | 170.7 | 177.6 | 189.3 | 203.7 | 292.3 | 304.2 | 326.9
Mean | 171.1 | 173.4 | 178.4 | 185.2 | 302.1 | 4304 | 591.3
SDPG | VaR | 172.4 | 1779 | 188.3 | 201.1 | 302.6 | 607.9 | 650.8
CVaR | 1729 | 179.5 | 191.6 | 206.8 | 302.8 | 617.8 | 659.6

Histogram of final costs Histogram of final costs

mm RS3 0.35 E RS3
= SDPG = SDPG
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Figure 2: The histograms of the final cost in the case of injected control noise sampled from A/(0, 1).
Left: Pendulum, Right: Cartpole.

Under the aforementioned conditions, RS3 is shown to outperform SDPG overall by converging
to a lower CVaR value, especially in the case of larger noise levels. The mean, VaR, and CVaR
values of the final costs obtained from both algorithms for the pendulum and cartpole simulation are
shown in Table 1 and a comparison of the histogram of the final costs are shown in Figure 2. The
state, control, and cost histograms for all the simulation in Table 1 can be found in Wang et al. (2020)
Appendix D.1.

It is clearly shown in Figure 2 that the distribution of the final cost has sharper tail on the high
cost region in RS3’s results compared to SDPG’s. As a result, the mean, VaR, and CVaR of RS3’s
final costs are smaller than SDPG’s.

The reason why our method outperforms the RL framework is that we perform online update of
our policy whereas the RL policy is fixed after training. This disadvantage of RL algorithms comes
from the nature of RL. Once a model is trained on a specific dataset or with a specific noise profile,
the model fails to output correct predictions under a new environment or given unseen inputs or noise.
Our online optimization scheme solves this issue and fits better in risk-sensitive control.

4.2. Belief Space Optimization

We next show results for the uncertain parameter case from the pendulum, cartpole and quadcopter
systems. In each trajectory plot, the dotted lines represent estimates from the particle filter with the
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error bars showing the +3¢ uncertainties of the nonlinear belief. The solid line represents the ground
truth states.

Pendulum: —— Parameter Estimation No Parameter Estimation ~—— Target

We first apply RS3 to a pendulum
for a swingup task with unknown pen- 3
dulum mass. We assume determinis-
tic initial condition and state transition
model. The pendulum’s true mass is o e
set to 2 kg. The prior for pendulum
mass is set to be (5.0, 4.0). The ini- o0 02 04 06 0B o0 02 o4 06 03B
tial states x = [0, 0] are drawn from
a normal distribution with mean [, 0]
and covariance matrix diag([0.1,0.1]).
We assume full-state observability
with additive measurement noise £ ~ \u Llids,
N(0,1). From Figure 3, we can ob- LIS R
serve that RS3 is able to correctly es- 00 01 0z 03 o4 = 05 06 07 08
timate the mass of the pendulum in
the parameter estimation case. With-
out parameter estimation, RS3 overes-
timates the control effort required and
overshoots the target angle.

Cartpole:

N

Angle (rad)

Angular Velocity (rad/s)

Pendulum Mass (kg)

= N W & U o N

Figure 3: Nonlinear belief space optimization with uncertain
pendulum mass in the Pendulum problem.

We apply the proposed algorithm —— Parameter Estimation No Trameter Estimation —— Target
to the task of cartpole swingup with ¢ W £,
with unknown pole mass. The prior £-2 \ g ™ e il
over the mass of the pole is a normal -4 \’\ww $-s \y’
distribution N/(5.0,5.0) and the true T s 0005 G0 15

value is 0.1 kg. Our algorithm is able
to learn the true mass of the pole and i
successfully perform a swing up (Fig- e ¢ w
ure 4). We compare this with the case \\‘-‘-‘ ‘ -5 e
of not estimating the mass of the pole, 0 T 0 R e
where the algorithm does not sample
from the correct dynamics and is un-
able to correctly optimize for a trajec-
tory that successfully swings up.
Quadcopter:  Finally, we ap-
ply our algorithm to the quadcopter Figure 4: Nonlinear belief space optimization with uncertain
system (dynamics can be found in pole mass in the Cartpole problem.
ElKholy (2014)), where the task is to
fly a quadcopter with states [z, y, z, &, 9, 2, 7, p, y, T, P, y] from position [0, 0, 0] to [2, 2, 2]. The drag
coefficient of the system is unknown, the prior over the drag is a normal distribution N'(0.5,0.5)
and the true value is 0.1. The algorithm is once again able to learn the correct drag coefficient and
manages to pilot the quadcopter to the target position without significant overshoot despite the drag
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=
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Figure 5: Nonlinear belief space optimization with uncertain drag coefficient in the Quadcopter
problem. RS3 with parameter estimation is able to converge much closer in roll, pitch and
pitch velocity compared to without parameter estimation.

coefficient being 500% larger than the mean of the prior (Figure 5). For the case where we do not
perform parameter estimation, since the prior of the drag coefficient is greater than the actual value,
the control policy found by the RS3 framework results in overshooting behavior before convergence,
although it still manages to converge to the target state due to the robustness from optimizing for
CVaR.

5. Conclusion

In this paper we introduced a general framework for CVaR optimization for dynamical systems. The
resulting algorithm, RS3, is capable of handling uncertainties arising from uncertain initial conditions,
model parameters and system stochasticity. The algorithm can be readily combined with a particle
filter for belief space risk sensitive control. We compared RS3 against the distributional RL algorithm
SDPG on the simulated systems of a pendulum and cartpole and demonstrated outperformance
in terms of final CVaR cost. In addition, we combined RS3 with a particle filter for adaptive
risk-sensitive control on non-Gaussian belief under different sources of uncertainty.
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