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Abstract

Therapeutics machine learning is an emerging field with incredible opportunities for innovatiaon
and impact. However, advancement in this field requires formulation of meaningful learning tasks
and careful curation of datasets. Here, we introduce Therapeutics Data Commons (TDC), the first
unifying platform to systematically access and evaluate machine learning across the entire range
of therapeutics. To date, TDC includes 66 AI-ready datasets spread across 22 learning tasks and
spanning the discovery and development of safe and effective medicines. TDC also provides an
ecosystem of tools and community resources, including 33 data functions and types of meaningful
data splits, 23 strategies for systematic model evaluation, 17 molecule generation oracles, and 29
public leaderboards. All resources are integrated and accessible via an open Python library. We carry
out extensive experiments on selected datasets, demonstrating that even the strongest algorithms
fall short of solving key therapeutics challenges, including real dataset distributional shifts, multi-
scale modeling of heterogeneous data, and robust generalization to novel data points. We envision
that TDC can facilitate algorithmic and scientific advances and considerably accelerate machine-
learning model development, validation and transition into biomedical and clinical implementation.
TDC is an open-science initiative available at https://tdcommons.ai.
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1 Introduction

The overarching goal of scientific research is to find ways to cure, prevent, and manage all diseases. With the
proliferation of high-throughput biotechnological techniques (Karczewski & Snyder 2018) and advances in
the digitization of health information (Abul-Husn & Kenny 2019), machine learning provides a promising
approach to expedite the discovery and development of safe and effective treatments. Getting a drug to
market currently takes 13-15 years and between US$2 billion and $3 billion on average, and the costs are going
up (Pushpakom et al. 2019). Further, the number of drugs approved every year per dollar spent on development
has remained flat or decreased for most of the past decade (Pushpakom et al. 2019, Nosengo 2016). Faced
with skyrocketing costs for developing new drugs and long, expensive processes with a high risk of failure,
researchers are looking at ways to accelerate all aspects of drug development. Machine learning has already
proved useful in the search of antibiotics (Stokes et al. 2020), polypharmacy (Zitnik, Agrawal & Leskovec 2018),
drug repurposing for emerging diseases (Gysi et al. 2020), protein folding and design (Jumper et al. 2020, Gao
et al. 2020), and biomolecular interactions (Zitnik et al. 2015, Agrawal et al. 2018, Huang, Xiao, Glass, Zitnik &
Sun 2020, Gainza et al. 2020).
Despite the initial success, the attention of the machine learning scientists to therapeutics remains relatively
limited, compared to areas such as natural language processing and computer vision, even though therapeutics
offer many hard algorithmic problems and applications of immense impact. We posit that is due to the
following key challenges: (1) The lack of AI-ready datasets and standardized knowledge representations
prevent scientists from formulating relevant therapeutic questions as solvable machine-learning tasks—the
challenge is how to computationally operationalize these data to make them amenable to learning; (2) Datasets
are of many different types, including experimental readouts, curated annotations and metadata, and are
scattered around the biorepositories—the challenge for non-domain experts is how to identify, process, and
curate datasets relevant to a task of interest; and (3) Despite promising performance of models, their use in
practice, such as for rare diseases and novel drugs in development, is hindered—the challenge is how to assess
algorithmic advances in a manner that allows for robust and fair model comparison and represents what one
would expect in a real-world deployment or clinical implementation.

Present work. To address the above challenges, we introduce Therapeutics Data Commons (TDC), a first of
its kind platform to systematically access and evaluate machine learning across the entire range of therapeutics
(Figure 1). TDC provides AI-ready datasets and learning tasks, together with an ecosystem of tools, libraries,
leaderboards, and community resources. To date, TDC contains 66 datasets (Table 2) spread across 22 learning
tasks, 23 strategies for systematic model evaluation and comparison, 17 molecule generation oracles, and 33
data processors, including 5 types of data splits. Datasets in TDC are diverse and cover a range of therapeutic
products (e.g., small molecules, biologics, and gene editing) across the entire range of drug development (i.e.,
target identification, hit discovery, lead optimization, and manufacturing). We develop a Python package that
implements all functionality and can efficiently retrieve any TDC dataset. Finally, TDC has 29 leaderboards,
each with carefully designed train, validation, and test split to support systematic model comparison and
evaluation and test the extent to which model performance indicate utility in the real-world.
Datasets and tasks in TDC are challenging for prevailing machine learning methods. To this end, we rigorously
evaluate 21 domain-specific and state-of-the-art methods across 24 TDC benchmarks (Section 10): (1) a group
of 22 ADMET benchmarks are designed to predict properties of small molecules—it is a graph representation
learning problem; (2) the DTI-DG benchmark is designed to predict drug-target binding affinity using a patent
temporal split—it is a domain generalization problem; (3) the docking benchmark is designed to generate
novel molecules with high docking scores in limited resources—it is a low-resource generative modeling
problem. We find that theoretic domain-specific methods often have better or comparable performance with
state-of-the-art models, indicating urgent need for rigorous model evaluation and an ample opportunity for
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Figure 1: Overview of Therapeutics Data Commons (TDC). TDC is a platform with AI-ready datasets
and learning tasks for therapeutics, spanning the discovery and development of safe and effective medicines.
TDC provides an ecosystem of tools and data functions, including strategies for systematic model evaluation,
meaningful data splits, data processors, and molecule generation oracles. All resources are integrated and
accessible via a Python package. TDC also provides community resources with extensive documentation and
tutorials, and leaderboards for systematic model comparison and evaluation.

algorithmic innovation.
Finally, datasets and benchmarks in TDC lend themselves to the study of the following open questions in
machine learning and can serve as a testbed for a variety of algorithmic approaches:

• Low-resource learning: Prevailing methods require abundant label information. However, labeled
examples are typically scarce in drug development and discovery, considerably limiting the methods’
use for problems that require reasoning about new phenomena, such as novel drugs in development,
emerging pathogens, and therapies for rare-disease patients.

• Multi-modal and knowledge graph learning: Objects in TDC have diverse representations and
assume various data modalities, including graphs, tensors/grids, sequences, and spatiotemporal objects.

• Distribution shifts: Objects (e.g., compounds, proteins) can change their behavior quickly across
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Figure 2: Therapeutics Machine Learning. Therapeutics machine learning offers incredible opportunities
for expansion, innovation, and impact. Datasets and benchmarks in TDC provide a systematic model develop-
ment and evaluation framework. We envision that TDC can considerably accelerate development, validation,
and transition of machine learning into production and clinical implementation.

biological context (e.g., patients, tissues, cells), meaning that models need accommodate underlying
distribution shifts and have robust generalizable performance on previously unseen data points.

• Causal inference: TDC contains datasets that quantify response of patients, molecules and cells to
different kinds of perturbations, such as treatment, CRISPR gene over-expression, and knockdown
perturbations. Observing how and when a cellular, molecular or patient phenotype is altered can
provide clues about the underlying mechanisms involved in perturbation and, ultimately, disease. Such
datasets represent a natural testbed for causal inference methods.

Facilitating algorithmic and scientific advance in the broad area of therapeutics. We envision TDC
to be the meeting point between domain scientists and ML scientists (Figure 2). Domain scientists can
pose learning tasks and identify relevant datasets that are carefully processed and integrated into the TDC
and formulated as a scientifically valid learning tasks. ML scientists can then rapidly obtain these tasks
and ML-ready datasets through the TDC programming framework and use them to design powerful ML
methods. Predictions and other outputs produced by ML models can then facilitate algorithmic and scientific
advances in therapeutics. To this end, we strive to make datasets and tasks in TDC representative of real-world
therapeutics discovery and development. We further provide realistic data splits, evaluation metrics, and
performance leaderboards.

Organization of this manuscript. This manuscript is organized as follows. We proceed with a brief review
of biomedical and chemical data repositories, machine learning benchmarks and infrastructure (Section 2).
We then give an overview of TDC (Section 3) and describe its tiered structure and modular design (Section 4).
In Sections 5-7, we provide details for each task in TDC, including the formulation, the level of generalization
required for transition into production and clinical implementation, description of therapeutic products and
pipeline, and the broader impact of each task. For each task, we also describe a collection of datasets included
in TDC. Next, in Sections 8-9, we overview TDC’s ecosystem of tools, libraries, leaderboards, and community
resources. Finally, we conclude with a discussion and directions for future work (Section 11).
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2 Related Work

TDC is the first unifying platform of datasets and learning tasks for drug discovery and development. We
briefly review how TDC relates to data collections, benchmarks, and toolboxes in other areas.

Relation to biomedical and chemical data repositories. There is a myriad of databases with thera-
peutically relevant information. For example, BindingDB (Liu et al. 2007) curates binding affinity data,
ChEMBL (Mendez et al. 2019) curates bioassay data, THPdb (Usmani et al. 2017) and TTD (Wang et al. 2020)
record information on therapeutic targets, and BioSNAP Datasets (Zitnik, Sosic & Leskovec 2018) contains
biological networks. While these biorepositories are important for data deposition and re-use, they do not
contain AI-ready datasets (e.g., well-annotated metadata, requisite sample size, and granularity, provenance,
multimodal data dynamics, and curation needs), meaning that extensive domain expertise is needed to process
the them and construct datasets that can be used for machine learning.

Relation to ML benchmarks. Benchmarks have a critical role in facilitating progress in machine learning
(e.g., ImageNet (Deng et al. 2009), Open Graph Benchmark (Hu, Fey, Zitnik, Dong, Ren, Liu, Catasta & Leskovec
2020), SuperGLUE (Wang et al. 2019)). More related to us, MoleculeNet (Wu et al. 2018) provides datasets for
molecular modeling and TAPE (Rao et al. 2019) provides five tasks for protein transfer learning. In contrast,
TDC broadly covers modalities relevant to therapeutics, including compounds, proteins, biomolecular inter-
actions, genomic sequences, disease taxonomies, regulatory and clinical datasets. Further, while MoleculeNet
and TAPE aim to advance representation learning for compounds and proteins, TDC focuses on drug discovery
and development.

Relation to therapeuticsML tools.Many open-science tools exist for biomedicalmachine learning. Notably,
DeepChem (Ramsundar et al. 2019) implements models for molecular machine learning; DeepPurpose (Huang,
Fu, Glass, Zitnik, Xiao & Sun 2020) is a framework for compound and protein modeling; OpenChem (Kor-
shunova et al. 2021) and ChemML (Haghighatlari et al. 2020) also provide models for drug discovery tasks. In
contrast, TDC is not a model-driven framework; instead, it provides datasets and formulates learning tasks.
Further, TDC provides tools and resources (Section 8) for model development, evaluation, and comparison.

3 Overview of TDC

TDC has three major components: a collection of datasets each with a formulations of a meaningful learning
task; a comprehensive set of tools and community resources to support data processing, model development,
validation, and evaluation; and a collection of leaderboards to support fair model comparison and benchmark-
ing. The programmatic access is provided through the TDC Python package (Section 9). We proceed with a
brief overview of each TDC’s component.

1) AI-ready datasets and learning tasks. At its core, TDC collects ML tasks and associated datasets spread
across therapeutic domains. These tasks and datasets have the following properties:
• Instrumenting disease treatment from bench to bedside with ML: TDC covers a variety of learning tasks going
from wet-lab target identification to biomedical product manufacturing.

• Building off the latest biotechnological platforms: TDC is regularly updated with novel datasets and tasks, such
as antibody therapeutics and gene editing.

• Providing ML-ready datasets: TDC datasets provide rich representations of biomedical entities. The feature
information is carefully curated and processed.
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2) Tools and community resources. TDC includes numerous data functions that can be readily used with
any TDC dataset. To date, TDC’s programmatic functionality can be organized into the following categories:
• 23 strategies for model evaluation: TDC implements a series of metrics and performance functions to
debug models, evaluate model performance for any task in TDC, and assess whether model predictions
generalize to out-of-distribution datasets.

• 5 types of dataset splits: TDC implements data splits that reflect real-world learning settings, including
random split, scaffold split, cold-start split, temporal split, and combination split.

• 17 molecule generation oracles: Molecular design tasks require oracle functions to measure the quality of
generated entities. TDC implements 17 molecule generation oracles, representing the most comprehensive
collection of molecule oracles, each tailored to measure the quality of generated molecules in a specific
dimension.

• 11 data processing functions: Datasets cover a range of modalities, each requiring distinct data process-
ing. TDC provides functions for data format conversion, visualization, binarization, data balancing, unit
conversion, database querying, molecule filtering, and more.

3) Leaderboards. TDC provides leaderboards for systematic model evaluation and comparison. For a model
to be useful for a particular therapeutic question, it needs to perform well across multiple related datasets and
tasks. For this reason, we group individual benchmarks in TDC into meaningful groups, which we refer to
as benchmark groups. Datasets and tasks in a benchmark group are carefully selected and centered around a
particular therapeutic question. Dataset splits and evaluation metrics are also carefully selected to indicate
challenges of real-world implementation. The current release of TDC has 29 leaderboards (29 = 22 + 5 + 1 + 1;
see Figure 1). Section 10 describes a subset of 24 selected leaderboards and presents extensive empirical results.

4 Organization of TDC

Next, we describe the modular design and organization of datasets and learning tasks in TDC.

4.1 Tiered and Modular Design

TDChas a unique three-tier hierarchical structure, which to our knowledge, is the first attempt at systematically
organizing machine learning for therapeutics (Figure 3). We organize TDC into three distinct problems. For
each problem, we provide a collection of learning tasks. Finally, for each task, we provide a series of datasets.
In the first tier, we identify three broad machine learning problems:

• Single-instance prediction single_pred: Predictions about individual biomedical entities.

• Multi-instance prediction multi_pred: Predictions about multiple biomedical entities.

• Generation generation: Generation of biomedical entities with desirable properties.

In the second tier, TDC is organized into learning tasks. TDC currently includes 22 learning tasks, covering a
range of therapeutic products. The tasks spans small molecules and biologics, including antibodies, peptides,
microRNAs, and gene editing. Further, TDC tasks can be mapped to the following drug discovery pipelines:

7
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Figure 3: Tiered design of Therapeutics Data Commons. We organize TDC into three distinct problems.
For each problem, we give a collection of learning tasks. Finally, for each task, we provide a collection of
datasets. In the first tier, we have three broad machine learning problems: (a) single-instance prediction
is concerned with predicting properties of individual entities; (b) multi-instance prediction is concerned
predicting properties of groups of entities; and (c) generation is concerned with the automatic generation of
new entities. For each problem, we have a set of learning tasks. For example, the ADME learning task aims to
predict experimental properties of individual compounds; it falls under single-instance prediction. At last,
for each task, we have a collection of datasets. For example, TDC.Caco2_Wang is a dataset under the ADME
learning task, which, in turn, is under the single-instance prediction problem. This unique three-tier structure
is, to the best of our knowledge, the first attempt at systematically organizing therapeutics ML.

• Target discovery: Tasks to identify candidate drug targets.

• Activity modeling: Tasks to screen and generate individual or combinatorial candidates with high
binding activity towards targets.

• Efficacy and safety: Tasks to optimize therapeutic signatures indicative of drug safety and efficacy.

• Manufacturing: Tasks to synthesize therapeutics.

Finally, in the third tier of TDC, each task is instantiated via multiple datasets. For each dataset, we provide
several splits of the dataset into training, validation, and test sets to simulate the type of understanding and
generalization needed for transition into production and clinical implementation (e.g., the model’s ability to
generalize to entirely unseen compounds or to granularly resolve patient response to a polytherapy).

4.2 Diverse Learning Tasks

Table 1 lists 22 learning tasks included in TDC to date. For each task, TDC provides multiple datasets that vary
in size between 200 and 2 million data points. We provide the following information for each learning task in
TDC:
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Table 1: List of 22 learning tasks in Therapeutics Data Commons. SM, small molecules; MM, macro-
molecules; CGT, cell and gene therapy; TD, target discovery; A, bioactivity modeling; ES, efficacy and safety;
M, manufacturing. See also Section 4.2.

Learning Task Section Therapeutic Products Development Pipelines
SM MM CGT TD A ES M

single_pred.ADME Sec. 5.1 " "

single_pred.Tox Sec. 5.2 " "

single_pred.HTS Sec. 5.3 " " "

single_pred.QM Sec. 5.4 " "

single_pred.Yields Sec. 5.5 " "

single_pred.Paratope Sec. 5.6 " "

single_pred.Epitope Sec. 5.7 " " "

single_pred.Develop Sec. 5.8 " "

single_pred.CRISPROutcome Sec. 5.9 " "

multi_pred.DTI Sec. 6.1 " " "

multi_pred.DDI Sec. 6.2 " "

multi_pred.PPI Sec. 6.3 " " " "

multi_pred.GDA Sec. 6.4 " " " "

multi_pred.DrugRes Sec. 6.5 " "

multi_pred.DrugSyn Sec. 6.6 " "

multi_pred.PeptideMHC Sec. 6.7 " "

multi_pred.AntibodyAff Sec. 6.8 " "

multi_pred.MTI Sec. 6.9 " " "

multi_pred.Catalyst Sec. 6.10 " "

generation.MolGen Sec. 7.1 " " "

generation.RetroSyn Sec. 7.2 " "

generation.Reaction Sec. 7.3 " "

Definition. Background and a formal definition of the learning task.

Impact. The broader impact of advancing research on the task.

Generalization. Understanding needed for transition into production and clinical implementation.

Product. The type of therapeutic product examined in the task.

Pipeline. The therapeutics discovery and development pipeline the task belongs to.

4.3 Machine-Learning Ready Datasets

Table 2 gives an overview of 66 datasets included in TDC to date.
Next, we give detailed information on learning tasks in Sections 5-7. Following the task description, we briefly
describe each dataset for the task. For each dataset, we provide a data description and statistics, together with
the recommended dataset splits and evaluation metrics and units in the case of numeric labels.
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Table 2: List of 66 datasets in Therapeutics Data Commons. Size is the number of data points; Feature
is the type of data features; Task is the type of prediction task; Metric is the suggested performance metric;
Split is the recommended dataset split. For units, ’—’ is used when the dataset is either a classification
task that does not have units or is a regression task where the numeric label units are not meaningful. For
generation.MolGen, the metrics do not apply as it is defined by the task of interest.

Dataset Learning Task Size Unit Feature Task Rec. Metric Rec. Split

TDC.Caco2_Wang single_pred.ADME 906 cm/s Seq/Graph Regression MAE Scaffold
TDC.HIA_Hou single_pred.ADME 578 — Seq/Graph Binary AUROC Scaffold
TDC.Pgp_Broccatelli single_pred.ADME 1,212 — Seq/Graph Binary AUROC Scaffold
TDC.Bioavailability_Ma single_pred.ADME 640 — Seq/Graph Binary AUROC Scaffold
TDC.Lipophilicity_AstraZeneca single_pred.ADME 4,200 log-ratio Seq/Graph Regression MAE Scaffold
TDC.Solubility_AqSolDB single_pred.ADME 9,982 log-mol/L Seq/Graph Regression MAE Scaffold
TDC.BBB_Martins single_pred.ADME 1,975 — Seq/Graph Binary AUROC Scaffold
TDC.PPBR_AZ single_pred.ADME 1,797 % Seq/Graph Regression MAE Scaffold
TDC.VDss_Lombardo single_pred.ADME 1,130 L/kg Seq/Graph Regression Spearman Scaffold
TDC.CYP2C19_Veith single_pred.ADME 12,092 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2D6_Veith single_pred.ADME 13,130 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP3A4_Veith single_pred.ADME 12,328 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP1A2_Veith single_pred.ADME 12,579 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2C9_Veith single_pred.ADME 12,092 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2C9_Substrate single_pred.ADME 666 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2D6_Substrate single_pred.ADME 664 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP3A4_Substrate single_pred.ADME 667 — Seq/Graph Binary AUROC Scaffold
TDC.Half_Life_Obach single_pred.ADME 667 hr Seq/Graph Regression Spearman Scaffold
TDC.Clearance_Hepatocyte_AZ single_pred.ADME 1,020 uL.min−1.(106cells)−1 Seq/Graph Regression Spearman Scaffold
TDC.Clearance_Microsome_AZ single_pred.ADME 1,102 mL.min−1.g−1 Seq/Graph Regression Spearman Scaffold
TDC.LD50_Zhu single_pred.Tox 7,385 log(1/(mol/kg)) Seq/Graph Regression MAE Scaffold
TDC.hERG single_pred.Tox 648 — Seq/Graph Binary AUROC Scaffold
TDC.AMES single_pred.Tox 7,255 — Seq/Graph Binary AUROC Scaffold
TDC.DILI single_pred.Tox 475 — Seq/Graph Binary AUROC Scaffold
TDC.Skin_Reaction single_pred.Tox 404 — Seq/Graph Binary AUROC Scaffold
TDC.Carcinogens_Lagunin single_pred.Tox 278 — Seq/Graph Binary AUROC Scaffold
TDC.Tox21 single_pred.Tox 7,831 — Seq/Graph Binary AUROC Scaffold
TDC.ClinTox single_pred.Tox 1,484 — Seq/Graph Binary AUROC Scaffold
TDC.SARSCoV2_Vitro_Touret single_pred.HTS 1,480 — Seq/Graph Binary AUPRC Scaffold
TDC.SARSCoV2_3CLPro_Diamond single_pred.HTS 879 — Seq/Graph Binary AUPRC Scaffold
TDC.HIV single_pred.HTS 41,127 — Seq/Graph Binary AUPRC Scaffold
TDC.QM7b single_pred.QM 7,211 eV/Å3 Coulomb Regression MAE Random
TDC.QM8 single_pred.QM 21,786 eV Coulomb Regression MAE Random
TDC.QM9 single_pred.QM 133,885 GHz/D/å2

0/å3
0 Coulomb Regression MAE Random

TDC.USPTO_Yields single_pred.Yields 853,638 % Seq/Graph Regression MAE Random
TDC.Buchwald-Hartwig single_pred.Yields 55,370 % Seq/Graph Regression MAE Random
TDC.SAbDab_Liberis single_pred.Paratope 1,023 — Seq Token-Binary Avg-AUROC Random
TDC.IEDB_Jespersen single_pred.Epitope 3,159 — Seq Token-Binary Avg-AUROC Random
TDC.PDB_Jespersen single_pred.Epitope 447 — Seq Token-Binary Avg-AUROC Random
TDC.TAP single_pred.Develop 242 — Seq Regression MAE Random
TDC.SAbDab_Chen single_pred.Develop 2,409 — Seq Regression MAE Random
TDC.Leenay single_pred.CRISPROutcome 1,521 #/%/bits Seq Regression MAE Random
TDC.BindingDB_Kd multi_pred.DTI 52,284 nM Seq/Graph Regression MAE Cold-start
TDC.BindingDB_IC50 multi_pred.DTI 991,486 nM Seq/Graph Regression MAE Cold-start
TDC.BindingDB_Ki multi_pred.DTI 375,032 nM Seq/Graph Regression MAE Cold-start
TDC.DAVIS multi_pred.DTI 27,621 nM Seq/Graph Regression MAE Cold-start
TDC.KIBA multi_pred.DTI 118,036 — Seq/Graph Regression MAE Cold-start
TDC.DrugBank_DDI multi_pred.DDI 191,808 — Seq/Graph Multi-class Macro-F1 Random
TDC.TWOSIDES multi_pred.DDI 4,649,441 — Seq/Graph Multi-label Avg-AUROC Random
TDC.HuRI multi_pred.PPI 51,813 — Seq Binary AUROC Random
TDC.DisGeNET multi_pred.GDA 52,476 — Numeric/Text Regression MAE Random
TDC.GDSC1 multi_pred.DrugRes 177,310 µM Seq/Graph/Numeric Regression MAE Random
TDC.GDSC2 multi_pred.DrugRes 92,703 µM Seq/Graph/Numeric Regression MAE Random
TDC.DrugComb multi_pred.DrugSyn 297,098 — Seq/Graph/Numeric Regression MAE Combination
TDC.OncoPolyPharmacology multi_pred.DrugSyn 23,052 — Seq/Graph/Numeric Regression MAE Combination
TDC.MHC1_IEDB-IMGT_Nielsen multi_pred.PeptideMHC 185,985 log-ratio Seq/Numeric Regression MAE Random
TDC.MHC2_IEDB_Jensen multi_pred.PeptideMHC 134,281 log-ratio Seq/Numeric Regression MAE Random
TDC.Protein_SAbDab multi_pred.AntibodyAff 493 KD(M) Seq/Numeric Regression MAE Random
TDC.miRTarBase multi_pred.MTI 400,082 — Seq/Numeric Regression MAE Random
TDC.USPTO_Catalyst multi_pred.Catalyst 721,799 — Seq/Graph Multi-class Macro-F1 Random
TDC.MOSES generation.MolGen 1,936,962 — Seq/Graph Generation — —
TDC.ZINC generation.MolGen 249,455 — Seq/Graph Generation — —
TDC.ChEMBL generation.MolGen 1,961,462 — Seq/Graph Generation — —
TDC.USPTO-50K generation.RetroSyn 50,036 — Seq/Graph Generation Top-K Acc Random
TDC.USPTO_RetroSyn generation.RetroSyn 1,939,253 — Seq/Graph Generation Top-K Acc Random
TDC.USPTO_Reaction generation.Reaction 1,939,253 — Seq/Graph Generation Top-K Acc Random
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5 Single-Instance Learning Tasks in TDC

In this section, we describe single-instance learning tasks and the associated datasets in TDC.

5.1 single_pred.ADME: ADME Property Prediction

Definition. A small-molecule drug is a chemical and it needs to travel from the site of administration
(e.g., oral) to the site of action (e.g., a tissue) and then decomposes, exits the body. To do that safely and
efficaciously, the chemical is required to have numerous ideal absorption, distribution, metabolism, and
excretion (ADME) properties. This task aims to predict various kinds of ADME properties accurately
given a drug candidate’s structural information.
Impact. Poor ADME profile is the most prominent reason of failure in clinical trials (Kennedy 1997). Thus,
an early and accurate ADME profiling during the discovery stage is a necessary condition for successful
development of small-molecule candidate.
Generalization. In real-world discovery, the drug structures of interest evolve over time (Sheridan 2013).
Thus, ADME prediction requires a model to generalize to a set of unseen drugs that are structurally
distant to the known drug set. While time information is usually unavailable for many datasets, one way
to approximate the similar effect is via scaffold split, where it forces training and test set have distant
molecular structures (Bemis & Murcko 1996).
Product. Small-molecule.
Pipeline. Efficacy and safety - lead development and optimization.

5.1.1 Datasets for single_pred.ADME

TDC.Caco2_Wang: The human colon epithelial cancer cell line, Caco-2, is used as an in vitro model to
simulate the human intestinal tissue. The experimental result on the rate of drug passing through the Caco-2
cells can approximate the rate at which the drug permeates through the human intestinal tissue (Sambuy et al.
2005). This dataset contains experimental values of Caco-2 permeability of 906 drugs (Wang, Dong, Deng, Zhu,
Wen, Yao, Lu, Wang & Cao 2016).
Suggested data split: scaffold split; Evaluation: MAE; Unit: cm/s.
TDC.HIA_Hou: When a drug is orally administered, it needs to be absorbed from the human gastrointestinal
system into the bloodstream of the human body. This ability of absorption is called human intestinal absorption
(HIA) and it is crucial for a drug to be delivered to the target (Wessel et al. 1998). This dataset contains 578
drugs with the HIA index (Hou et al. 2007).
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Pgp_Broccatelli: P-glycoprotein (Pgp) is an ABC transporter protein involved in intestinal absorption,
drug metabolism, and brain penetration, and its inhibition can seriously alter a drug’s bioavailability and
safety (Amin 2013). In addition, inhibitors of Pgp can be used to overcome multidrug resistance (Shen et al.
2013). This dataset is from Broccatelli et al. (2011) and contains 1,212 drugs with their activities of the Pgp
inhibition.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Bioavailability_Ma: Oral bioavailability is measured by the ability to which the active ingredient in the
drug is absorbed to systemic circulation and becomes available at the site of action (Toutain & BOUSQUET-
MÉLOU 2004a). This dataset contains 640 drugs with bioavailability activity from Ma et al. (2008).
Suggested data split: scaffold split; Evaluation: AUROC.
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TDC.Lipophilicity_AstraZeneca: Lipophilicity measures the ability of a drug to dissolve in a lipid (e.g.
fats, oils) environment. High lipophilicity often leads to high rate of metabolism, poor solubility, high turn-
over, and low absorption (Waring 2010). This dataset contains 4,200 experimental values of lipophilicity
from AstraZeneca (2016). We obtained it via MoleculeNet (Wu et al. 2018).
Suggested data split: scaffold split; Evaluation: MAE; Unit: log-ratio.
TDC.Solubility_AqSolDB: Aqeuous solubility measures a drug’s ability to dissolve in water. Poor water
solubility could lead to slow drug absorptions, inadequate bioavailablity and even induce toxicity. More than
40% of new chemical entities are not soluble (Savjani et al. 2012). This dataset is collected fromAqSolDb (Sorkun
et al. 2019), which contains 9,982 drugs curated from 9 different publicly available datasets.
Suggested data split: scaffold split; Evaluation: MAE; Unit: log mol/L.
TDC.BBB_Martins: As a membrane separating circulating blood and brain extracellular fluid, the blood-
brain barrier (BBB) is the protection layer that blocks most foreign drugs. Thus the ability of a drug to
penetrate the barrier to deliver to the site of action forms a crucial challenge in development of drugs for
central nervous system (Abbott et al. 2010). This dataset fromMartins et al. (2012) contains 1,975 drugs with
information on drugs’ penetration ability. We obtained this dataset from MoleculeNet (Wu et al. 2018).
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.PPBR_AZ: The human plasma protein binding rate (PPBR) is expressed as the percentage of a drug
bound to plasma proteins in the blood. This rate strongly affect a drug’s efficiency of delivery. The less bound
a drug is, the more efficiently it can traverse and diffuse to the site of actions (Lindup & Orme 1981). This
dataset contains 1,797 drugs with experimental PPBRs (AstraZeneca 2016).
Suggested data split: scaffold split; Evaluation: MAE; Unit: % (binding rate).
TDC.VDss_Lombardo: The volume of distribution at steady state (VDss) measures the degree of a drug’s
concentration in body tissue compared to concentration in blood. Higher VD indicates a higher distribution in
the tissue and usually indicates the drug with high lipid solubility, low plasma protein binidng rate (Sjöstrand
1953). This dataset is curated by Lombardo & Jing (2016) and contains 1,130 drugs.
Suggested data split: scaffold split; Evaluation: Spearman Coefficient; Unit: L/kg.
TDC.CYP2C19_Veith: The CYP P450 genes are essential in the breakdown (metabolism) of various molecules
and chemicals within cells (McDonnell & Dang 2013). A drug that can inhibit these enzymes would mean
poor metabolism to this drug and other drugs, which could lead to drug-drug interactions and adverse
effects (McDonnell & Dang 2013). Specifically, the CYP2C19 gene provides instructions for making an enzyme
called the endoplasmic reticulum, which is involved in protein processing and transport. This dataset is
from Veith et al. (2009), consisting of 12,665 drugs with their ability to inhibit CYP2C19.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP2D6_Veith: The role and mechanism of general CYP 450 system to metabolism can be found in
CYP2C19 Inhibitor. CYP2D6 is responsible for metabolism of around 25% of clinically used drugs via addition
or removal of certain functional groups in the drugs (Teh & Bertilsson 2011). This dataset is from Veith et al.
(2009), consisting of 13,130 drugs with their ability to inhibit CYP2D6.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP3A4_Veith: The role and mechanism of general CYP 450 system to metabolism can be found in
CYP2C19 Inhibitor. CYP3A4 oxidizes the foreign organic molecules and is responsible for metabolism of half
of all the prescribed drugs (Zanger & Schwab 2013). This dataset is from Veith et al. (2009), consisting of 12,328
drugs with their ability to inhibit CYP3A4.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP1A2_Veith: The role and mechanism of general CYP 450 system to metabolism can be found in
CYP2C19 Inhibitor. CYP1A2 is induced by some polycyclic aromatic hydrocarbons (PAHs) and it is able
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to metabolize some PAHs to carcinogenic intermediates. It can also metabolize caffeine, aflatoxin B1, and
acetaminophen. This dataset is from Veith et al. (2009), consisting of 12,579 drugs with their ability to inhibit
CYP1A2.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP2C9_Veith: The role and mechanism of general CYP 450 system to metabolism can be found in
CYP2C19 Inhibitor. Around 100 drugs are metabolized by CYP2C9 enzymes. This dataset is from Veith et al.
(2009), consisting of 12,092 drugs with their ability to inhibit CYP2C9.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP2C9_Substrate_CarbonMangels: In contrast to CYP inhibitors where we want to see if a drug
can inhibit the CYP enzymes, substrates measure if a drug can be metabolized by CYP enzymes. See CYP2C9
Inhibitor about description of CYP2C9. This dataset is collected from Carbon-Mangels & Hutter (2011)
consisting of 666 drugs experimental values.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP2D6_Substrate_CarbonMangels: See CYP2C9 Substrate for a description of substrate and see
CYP2D6 Inhibitor for CYP2D6 information. This dataset is collected from Carbon-Mangels & Hutter (2011)
consisting of 664 drugs experimental values.
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.CYP3A4_Substrate_CarbonMangels: See CYP2C9 Substrate for a description of substrate and see
CYP3A4 Inhibitor for CYP3A4 information. This dataset is collected from Carbon-Mangels & Hutter (2011)
consisting of 667 drugs experimental values.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Half_Life_Obach: Half life of a drug is the duration for the concentration of the drug in the body to
be reduced by half. It measures the duration of actions of a drug (Benet & Zia-Amirhosseini 1995). This dataset
is from Obach et al. (2008) and it consists of 667 drugs and their half life duration.
Suggested data split: scaffold split; Evaluation: Spearman Coefficient; Unit: hr.
TDC.Clearance_AZ: Drug clearance is defined as the volume of plasma cleared of a drug over a specified time
period and it measures the rate at which the active drug is removed from the body (Toutain & Bousquet-Mélou
2004b). This dataset is from AstraZeneca (2016) and it contains clearance measures from two experiments
types, hepatocyte (TDC.Clearance_Hepatocyte_AZ) and microsomes (TDC.Clearance_Microsome_AZ).
As studies (Di et al. 2012) have shown various clearance outcomes given these two different types, we separate
them. It has 1,102 drugs for microsome clearance and 1,020 drugs for hepatocyte clearance.
Suggested data split: scaffold split; Evaluation: Spearman Coefficient; Unit: uL.min−1.(106cells)−1 for Hepatocyte
and mL.min−1.g−1 for Microsome.

5.2 single_pred.Tox: Toxicity Prediction

Definition. Majority of the drugs have some extents of toxicity to the human organisms. This learning
task aims to predict accurately various types of toxicity of a drug molecule towards human organisms.
Impact. Toxicity is one of the primary causes of compound attrition. Study shows that approximately
70% of all toxicity-related attrition occurs preclinically (i.e., in cells, animals) while they are strongly
predictive of toxicities in humans (Kramer et al. 2007). This suggests that an early but accurate prediction
of toxicity can significantly reduce the compound attribution and boost the likelihood of being marketed.
Generalization. Similar to theADMEprediction, as the drug structures of interest evolve over time (Sheri-
dan 2013), toxicity prediction requires a model to generalize to a set of novel drugs with small structural

13



similarity to the existing drug set.
Product. Small-molecule.
Pipeline. Efficacy and safety - lead development and optimization.

5.2.1 Datasets for single_pred.Tox

TDC.LD50_Zhu: Acute toxicity LD50 measures the most conservative dose that can lead to lethal adverse
effects. The higher the dose, the more lethal of a drug. This dataset is from Zhu et al. (2009), consisting of 7,385
drugs with experimental LD50 values.
Suggested data split: scaffold split; Evaluation: MAE; Unit: log(1/(mol/kg)).
TDC.hERG: Human ether-à-go-go related gene (hERG) is crucial for the coordination of the heart’s beating.
Thus, if a drug blocks the hERG, it could lead to severe adverse effects. This dataset is from Wang, Sun, Liu, Li,
Li & Hou (2016), which has 648 drugs and their blocking status.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.AMES: Mutagenicity means the ability of a drug to induce genetic alterations. Drugs that can cause
damage to the DNA can result in cell death or other severe adverse effects. This dataset is from Xu et al. (2012),
which contains experimental values in Ames mutation assay of 7,255 drugs.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.DILI: Drug-induced liver injury (DILI) is fatal liver disease caused by drugs and it has been the single
most frequent cause of safety-related drug marketing withdrawals for the past 50 years (e.g. iproniazid,
ticrynafen, benoxaprofen) (Assis & Navarro 2009). This dataset is aggregated from U.S. FDA’s National Center
for Toxicological Research and is collected from Xu et al. (2015). It has 475 drugs with labels about their ability
to cause liver injury.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Skin_Reaction: Exposure to chemicals on skins can cause reactions, which should be circumvented
for dermatology therapeutics products. This dataset from Alves et al. (2015) contains 404 drugs with their skin
reaction outcome.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Carcinogens_Lagunin: A drug is a carcinogen if it can cause cancer to tissues by damaging the genome
or cellular metabolic process. This dataset from Lagunin et al. (2009) contains 278 drugs with their abilities to
cause cancer.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.Tox21 Tox21 is a data challenge which contains qualitative toxicity measurements for 7,831 compounds
on 12 different targets, such as nuclear receptors and stree response pathways (Mayr et al. 2016). Depending on
different assay, we have different number of drugs. They usually range around 6,000 drugs.
Suggested data split: scaffold split; Evaluation: AUROC.
TDC.ClinTox: The clinical toxicity measures if a drug has fail the clinical trials for toxicity reason. It contains
1,484 drugs from clinical trials records (Gayvert et al. 2016).
Suggested data split: scaffold split; Evaluation: AUROC.

5.3 single_pred.HTS: High-Throughput Screening

Definition. High-throughput screening (HTS) is the rapid automated testing of thousands to millions of
samples for biological activity at the model organism, cellular, pathway, or molecular level. The assay
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readout can vary from target binding affinity to fluorescence microscopy of cells treated with drug.
HTS can be applied to different kinds of therapeutics however most available data is from testing of
small-molecule libraries. In this task, a machine learning model is asked to predict the experimental assay
values given a small-molecule compound structure.
Impact. High throughput screening is a critical component of small-molecule drug discovery in both
industrial and academic research settings. Increasingly more complex assays are now being automated
to gain biological insights on compound activity at a large scale. However, there are still limitations on
the time and cost for screening a large library that limit experimental throughput. Machine learning
models that can predict experimental outcomes can alleviate these effects and save many times and costs
by looking at a larger chemical space and narrowing down a small set of highly likely candidates for
further smaller-scale HTS.
Generalization. The model should be able to generalize over structurally diverse drugs. It is also
important for methods to generalize across cell lines. Drug dosage and measurement time points are also
very important factors in determining the efficacy of the drug.
Product. Small-molecule.
Pipeline. Activity - hit identification.

5.3.1 Datasets for single_pred.HTS

TDC.SARSCoV2_Vitro_Touret: An in-vitro screen of the Prestwick chemical library composed of 1,480
approved drugs in an infected cell-based assay. Given the SMILES string for a drug, the task is to predict its
activity against SARSCoV2 (Touret et al. 2020, MIT 2020).
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.SARSCoV2_3CLPro_Diamond: A large XChem crystallographic fragment screen of 879 drugs against
SARS-CoV-2 main protease at high resolution. Given the SMILES string for a drug, the task is to predict its
activity against SARSCoV2 3CL Protease (Diamond Light Source 2020, MIT 2020).
Suggested data split: scaffold split; Evaluation: AUPRC.
TDC.HIV: The HIV dataset consists of 41,127 drugs and the task is to predict their ability to inhibit HIV
replication. It was introduced by the Drug Therapeutics Program AIDS Antiviral Screen (NIH 2015, Wu et al.
2018).
Suggested data split: scaffold split; Evaluation: AUPRC.

5.4 single_pred.QM: QuantumMechanics

Definition. The motion of molecules and protein targets can be described accurately with quantum
theory, i.e., Quantum Mechanics (QM). However, ab initio quantum calculation of many-body system
suffers from large computational overhead that is impractical for most applications. Various approxima-
tions have been applied to solve energy from electronic structure but all of them have a trade-off between
accuracy and computational speed. Machine learning models raise a hope to break this bottleneck by
leveraging the knowledge of existing chemical data. This task aims to predict the QM results given a
drug’s structural information.
Impact. A well-trained model can describe the potential energy surface accurately and quickly, so that
more accurate and longer simulation of molecular systems are possible. The result of simulation can
reveal the biological processes in molecular level and help study the function of protein targets and drug
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molecules.
Generalization. A machine learning model trained on a set of QM calculations require to extrapolate to
unseen or structurally diverse set of compounds.
Product. Small-molecule.
Pipeline. Activity - lead development.

5.4.1 Datasets for single_pred.QM

TDC.QM7b: QM7 is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible
organic molecules) composed of all molecules of up to 23 atoms, where 14 properties (e.g. polarizability,
HOMO and LUMO eigenvalues, excitation energies) using different calculation (ZINDO, SCS, PBE0, GW) are
provided. This dataset is from Blum & Reymond (2009), Montavon et al. (2013) and contains 7,211 drugs with
their 3D coulomb matrix format.
Suggested data split: random split; Evaluation: MAE; Units: eV for energy, Å3 for polarizability, and intensity is
dimensionless.
TDC.QM8: QM8 consists of electronic spectra and excited state energy of small molecules calculated by
multiple quantum mechanic methods. Consisting of low-lying singlet-singlet vertical electronic spectra of
over 20,000 synthetically feasible small organic molecules with up to eight CONF atom. This dataset is
from Ruddigkeit et al. (2012), Ramakrishnan et al. (2015) and contains 21,786 drugs with their 3D coulomb matrix
format.
Suggested data split: random split; Evaluation: MAE; Units: eV.
TDC.QM9: QM9 is a dataset of geometric, energetic, electronic, and thermodynamic properties for 134k
stable small organic molecules made up of CHONF. The labels consist of geometries minimal in energy,
corresponding harmonic frequencies, dipole moments, polarizabilities, along with energies, enthalpies, and
free energies of atomization. This dataset is from Ruddigkeit et al. (2012), Ramakrishnan et al. (2014) and
contains 133,885 drugs with their 3D coulomb matrix format.
Suggested data split: random split; Evaluation: MAE; Units: GHz for rotational constant, D for dipole moment, å3

0
for polarizabily, Ha for energy, å2

0 for spatial extent, cal/molK for heat capacity.

5.5 single_pred.Yields: Yields Outcome Prediction

Definition. Vast majority of small-molecule drugs are synthesized through chemical reactions. Many
factors during reactions could lead to suboptimal reactants-products conversion rate, i.e. yields. Formally,
it is defined as the percentage of the reactants successfully converted to the target product. This learning
task aims to predict the yield of a given single chemical reaction (Schwaller et al. 2020).
Impact. Tomaximize the synthesis efficiency of interested products, an accurate prediction of the reaction
yield could help chemists to plan ahead and switch to alternate reaction routes, bywhich avoiding investing
hours and materials in wet-lab experiments and reducing the number of attempts.
Generalization. The models are expected to extrapolate to unseen reactions with diverse chemical
structures and reaction types.
Product. Small-molecule.
Pipeline. Manufacturing - Synthesis planning.
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5.5.1 Datasets for single_pred.Yields

TDC.USPTO_Yields: USPTO dataset is derived from the United States Patent and Trademark Office patent
database (Lowe 2017) using a refined extraction pipeline from NextMove software. We selected a subset of
USPTO that have “TextMinedYield” label. It contains 853,638 reactions with reactants and products.
Suggested data split: random split; Evaluation: MAE; Unit: % (yield rate).
TDC.Buchwald-Hartwig: Ahneman et al. (2018) performed high-throughput experiments on Pd-catalysed
Buchwald–Hartwig C-N cross coupling reactions, measuring the yields for each reaction. This dataset is
included as recent study (Schwaller et al. 2020) shows USPTO has limited applicability. It contains 55,370
reactions (reactants and products).
Suggested data split: random split; Evaluation: MAE; Unit: % (yield rate).

5.6 single_pred.Paratope: Paratope Prediction

Definition. Antibodies, also known as immunoglobulins, are large, Y-shaped proteins that can identify
and neutralize a pathogen’s unique molecule, usually called an antigen. They play essential roles in the
immune system and are powerful tools in research and diagnostics. A paratope, also called an antigen-
binding site, is the region that selectively binds the epitope. Although we roughly know the hypervariable
regions that are responsible for binding, it is still challenging to pinpoint the interacting amino acids. This
task is to predict which amino acids are in the active position of antibody that can bind to the antigen.
Impact. Identifying the amino acids at critical positions can accelerate the engineering processes of novel
antibodies.
Generalization. The models are expected to be generalized to unseen antibodies with distinct structures
and functions.
Product. Antibody.
Pipeline. Activity, efficacy and safety.

5.6.1 Datasets for single_pred.Paratope

TDC.SAbDab_Liberis: Liberis et al. (2018)’s data set is a subset of Structural AntibodyDatabase (SAbDab) (Dun-
bar et al. 2014) filtered by quality such as resolution and sequence identity. There are in total 1023 antibody
chain sequence, covering both heavy and light chains.
Suggested data split: random split; Evaluation: Average-AUROC.

5.7 single_pred.Epitope: Epitope Prediction

Definition. An epitope, also known as antigenic determinant, is the region of a pathogen that can be
recognized by antibody and cause adaptive immune response. This task is to classify the active and
non-active sites from the antigen protein sequences.
Impact. Identifying the potential epitope is of primary importance in many clinical and biotechnologies,
such as vaccine design and antibody development, and for our general understanding of the immune
system.
Generalization. The models are expected to be generalized to unseen pathogens antigens amino acid
sequences with diverse set of structures and functions.
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Product. Immunotherapy.
Pipeline. Target discovery.

5.7.1 Datasets for single_pred.Epitope

TDC.IEDB_Jespersen: This dataset collects B-cell epitopes and non-epitope amino acids determined from
crystal structures. It is from Jespersen et al. (2017), curates a dataset from IEDB (Vita et al. 2019), containing
3159 antigens.
Suggested data split: random split; Evaluation: Average-AUROC.
TDC.PDB_Jespersen: This dataset collects B-cell epitopes and non-epitope amino acids determined from
crystal structures. It is from Jespersen et al. (2017), curates a dataset from PDB (Berman et al. 2000), containing
447 antigens.
Suggested data split: random split; Evaluation: Average-AUROC.

5.8 single_pred.Develop: Antibody Developability Prediction

Definition. Immunogenicity, instability, self-association, high viscosity, polyspecificity, or poor expres-
sion can all preclude an antibody from becoming a therapeutic. Early identification of these negative
characteristics is essential. This task is to predict the developability from the amino acid sequences.
Impact. A fast and reliable developability predictor can accelerate the antibody development by reducing
wet-lab experiments. They can also alert the chemists to foresee potential efficacy and safety concerns
and provide signals for modifications. Previous works have devised accurate developability index based
on 3D structures of antibody (Lauer et al. 2012). However, 3D information are expensive to acquire. A
machine learning that can calculate developability based on sequence information is thus highly ideal.
Generalization. The model is expected to be generalized to unseen classes of antibodies with various
structural and functional characteristics.
Product. Antibody.
Pipeline. Efficacy and safety.

5.8.1 Datasets for single_pred.Develop

TDC.TAP: This data set is from Raybould et al. (2019). Akin to the Lipinski guidelines, which measure
druglikeness in small-molecules, Therapeutic Antibody Profiler (TAP) highlights antibodies that possess
characteristics that are rare/unseen in clinical-stage mAb therapeutics. In this dataset, TDC includes five
metrics measuring developability of an antibody: CDR length, patches of surface hydrophobicity (PSH),
patches of positive charge (PPC), patches of negative charge (PNC), structural Fv charge symmetry parameter
(SFvCSP). This data set contains 242 antibodies.
Suggested data split: random split; Evaluation: MAE.
TDC.SAbDab_Chen: This data set is from Chen et al. (2020), containing 2,409 antibodies processed from
SAbDab (Dunbar et al. 2014). The label is calculated through an accurate heuristics algorithm based on
antibody’s 3D structures, from BIOVIA’s proprietary Pipeline Pilot (Biovia 2017).
Suggested data split: random split; Evaluation: AUPRC.
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5.9 single_pred.CRISPROutcome: CRISPR Repair Outcome Prediction

Definition. CRISPR-Cas9 is a gene editing technology that allows targeted deletion or modification
of specific regions of the DNA within an organism. This is achieved through designing a guide RNA
sequence that binds upstream of the target site which is then cleaved through a Cas9-mediated double
stranded DNA break. The cell responds by employing DNA repair mechanisms (such as non-homologous
end joining) that result in heterogeneous outcomes including gene insertion or deletion mutations (indels)
of varying lengths and frequencies. This task aims to predict the repair outcome given a DNA sequence.
Impact. Gene editing offers a powerful new avenue of research for tackling intractable illnesses that are
infeasible to treat using conventional approaches. For example, the FDA recently approved engineering of
T-cells using gene editing to treat patients with acute lymphoblastic leukemia (Lim & June 2017). However,
since many human genetic variants associated with disease arise from insertions and deletions (Landrum
2013), it is critical to be able to better predict gene editing outcomes to ensure efficacy and avoid unwanted
pathogenic mutations.
Generalization. van Overbeek et al. (2016) showed that the distribution of Cas9-mediated editing
products at a given target site is reproducible and dependent on local sequence context. Thus, it is
expected that repair outcomes predicted using well-trained models should be able to generalize across
cell lines and reagent delivery methods.
Product. Cell and gene therapy.
Pipeline. Efficacy and safety.

5.9.1 Datasets for single_pred.CRISPROutcome

TDC.Leenay: Primary T cells are a promising cell type for therapeutic genome editing, as they can be
engineered efficiently ex vivo and then transferred to patients. This dataset consists of the DNA repair
outcomes of CRISPR-CAS9 knockout experiments on primary CD4+ T cells drawn from 15 donors (Leenay
et al. 2019). For each of the 1,521 unique genomic locations from 553 genes, the 20-nucleotide guide sequence is
provided along with the 3-nucletoide PAM sequence. 5 repair outcomes are included for prediction: fraction
of indel reads with an insertion, average insertion length, average deletion length, indel diversity, fraction of
repair outcomes with a frameshift.
Suggested data split: random split; Evaluation: MAE; Units: # for lengths, % for fractions, bits for diversity.

6 Multi-Instance Learning Tasks in TDC

In this section, we describe multi-instance learning tasks and the associated datasets in TDC.

6.1 multi_pred.DTI: Drug-Target Interaction Prediction

Definition. The activity of a small-molecule drug is measured by its binding affinity with the target
protein. Given a new target protein, the very first step is to screen a set of potential compounds to
find their activity. Traditional method to gauge the affinities are through high-throughput screening
wet-lab experiments (Hughes et al. 2011). However, they are very expensive and are thus restricted by their
abilities to search over a large set of candidates. Drug-target interaction prediction task aims to predict
the interaction activity score in silico given only the accessible compound structural information and

19



protein amino acid sequence.
Impact. Machine learning models that can accurately predict affinities can not only save pharmaceutical
research costs on reducing the amount of high-throughput screening, but also to enlarge the search space
and avoid missing potential candidates.
Generalization. Models require extrapolation on unseen compounds, unseen proteins, and unseen
compound-protein pairs. Models also are expected to have consistent performance across a diverse set of
disease and target groups.
Product. Small-molecule.
Pipeline. Activity - hit identification.

6.1.1 Datasets for multi_pred.DTI

TDC.BindingDB: BindingDB is a public, web-accessible database that aggregates drug-target binding affinities
fromvarious sources such as patents, journals, and assays (Liu et al. 2007). We partitioned the BindingDBdataset
into three sub-datasets, eachwith different units (Kd, IC50, Ki). There are 52,284 pairs forTDC.BindingDB_Kd,
991,486 pairs forTDC.BindingDB_IC50, and 375,032 pairs forTDC.BindingDB_Ki. Alternatively, a negative
log10 transformation to pIC50, pKi, pKd can be conducted for easier regression. The current version is 2020m2.
Suggested data split: cold drug split, cold target split; Evaluation: MAE, Pearson Correlation; Unit: nM.
TDC.DAVIS: This dataset is a large-scale assay of DTI of 72 kinase inhibitors with 442 kinases covering >80%
of the human catalytic protein kinome. It is from Davis et al. (2011) and consists of 27,621 pairs.
Suggested data split: cold drug split, cold target split; Evaluation: MAE, Pearson Correlation; Unit: nM.
TDC.KIBA: As various experimental assays have different units during experiments, Tang et al. (2014) propose
KIBA score to aggregate the IC50, Kd, and Ki scores. This dataset contains KIBA score for 118,036 DTI pairs.
Suggested data split: cold drug split, cold target split; Evaluation: MAE, Pearson Correlation; Unit: dimensionless.

6.2 multi_pred.DDI: Drug-Drug Interaction Prediction

Definition. Drug-drug interactions occur when two or more drugs interact with each other. These could
result in a range of outcomes from reducing the efficacy of one or both drugs to dangerous side effects
such as increased blood pressure or drowsiness. Polypharmacy side-effects are associated with drug pairs
(or higher-order drug combinations) and cannot be attributed to either individual drug in the pair. This
task is to predict the interaction between two drugs.
Impact. Increasing co-morbidities with age often results in the prescription of multiple drugs simultane-
ously. Meta analyses of patient records showed that drug-drug interactions were the cause of admission
for prolonged hospital stays in 7% of the cases (Thomsen et al. 2007, Lazarou et al. 1998). Predicting
possible drug-drug interactions before they are prescribed is thus an important step in preventing these
adverse outcomes. In addition, as the number of combinations or even higher-order drugs is astronomical,
wet-lab experiments or real-world evidence are insufficient. Machine learning can provide an alternative
way to inform drug interactions.
Generalization. As there is a very large space of possible drug-drug interactions that have not been
explored, the model needs to extrapolate from known interactions to new drug combinations that have
not been prescribed together in the past. Models should also taken into account dosage as that can have a
significant impact on the effect of the drugs.
Product. Small-molecule.
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Pipeline. Efficacy and safety - adverse event detection.

6.2.1 Datasets for multi_pred.DDI

TDC.DrugBank_DDI: This dataset is manually sourced from FDA and Health Canada drug labels as well as
from the primary literature. Given the SMILES strings of two drugs, the goal is to predict their interaction
type. It contains 191,808 drug-drug interaction pairs between 1,706 drugs and 86 interaction types (Wishart
et al. 2018).
Suggested data split: random split; Evaluation: Macro-F1, Micro-F1.
TDC.TWOSIDES: This dataset contains 4,649,441 drug-drug interaction pairs between 645 drugs (Tatonetti
et al. 2012). Given the SMILES strings of two drugs, the goal is to predict the side effect caused as a result of an
interaction.
Suggested data split: random split; Evaluation: Average-AUROC.

6.3 multi_pred.PPI: Protein-Protein Interaction Prediction

Definition. Proteins are the fundamental function units of human biology. However, they rarely act
alone but usually interact with each other to carry out functions. Protein-protein interactions (PPI)
are very important to discover new putative therapeutic targets to cure disease (Szklarczyk et al. 2015).
Expensive and time-consuming wet-lab results are usually required to obtain PPI activity. PPI prediction
aims to predict the PPI activity given a pair of proteins’ amino acid sequences.
Impact. Vast amounts of human PPIs are unknown and untested. Filling in the missing parts of the PPI
network can improve human’s understanding of diseases and potential disease target. With the aid of
an accurate machine learning model, we can greatly facilitate this process. As protein 3D structure is
expensive to acquire, prediction based on sequence data is desirable.
Generalization. As the majority of PPIs are unknown, the model needs to extrapolate from a given
gold-label training set to a diverse of unseen proteins from various tissues and organisms.
Product. Small-molecule, macromolecule.
Pipeline. Basic biomedical research, target discovery, macromolecule discovery.

6.3.1 Datasets for multi_pred.PPI

TDC.HuRI: The human reference map of the human binary protein interactome interrogates all pairwise
combinations of human protein-coding genes. This is an ongoing effort and we retrieved the third phase
release of the project (HuRI (Luck et al. 2020)), which contains 51,813 positive PPI pairs from 8,248 proteins.
Suggested data split: random split; Evaluation: AUPRC with Negative Samples.

6.4 multi_pred.GDA: Gene-Disease Association Prediction

Definition. Many diseases are driven by genes aberrations. Gene-disease associations (GDA) quantify
the relation among a pair of gene and disease. The GDA is usually constructed as a network where we
can probe the gene-disease mechanisms by taking into account multiple genes and diseases factors. This
task is to predict the association of any gene and disease from both a biochemical modeling and network
edge classification perspectives.
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Impact. A high association between a gene and disease could hint at a potential therapeutics target for
the disease. Thus, to fill in the vastly incomplete GDA using machine learning accurately could bring
numerous therapeutic opportunities.
Generalization. Extrapolating to unseen gene and disease pairs with accurate association prediction.
Product. Any therapeutics.
Pipeline. Basic biomedical research, target discovery.

6.4.1 Datasets for multi_pred.GDA

TDC.DisGeNET: DisGeNET integrates gene-disease association data from expert curated repositories,
GWAS catalogues, animal models and the scientific literature (Piñero et al. 2020). This dataset is the curated
subset of DisGeNET. We map disease ID to disease definition and maps Gene ID to amino acid sequence.
Suggested data split: random split; Evaluation: MAE; Unit: dimensionless.

6.5 multi_pred.DrugRes: Drug Response Prediction

Definition. The same drug compound could have various levels of responses in different patients. To
design drug for individual or a group with certain characteristics is the central goal of precision medicine.
For example, the same anti-cancer drug could have various responses to different cancer cell lines (Baptista
et al. 2020). This task aims to predict the drug response rate given a pair of drug and the cell line genomics
profile.
Impact. The combinations of available drugs and all types of cell line genomics profiles are very large
while to test each combination in the wet lab is prohibitively expensive. A machine learning model that
can accurately predict a drug’s response given various cell lines in silico can thus make the combination
search feasible and greatly reduce the burdens on experiments. The fast prediction speed also allows us to
screen a large set of drugs to circumvent the potential missing potent drugs.
Generalization. A model trained on existing drug cell-line pair should be able to predict accurately on
new set of drugs and cell-lines. This requires a model to learn the biochemical knowledge instead of
memorizing the training pairs.
Product. Small-molecule.
Pipeline. Activity.

6.5.1 Datasets for multi_pred.DrugRes

TDC.GDSC: Genomics in Drug Sensitivity in Cancer (GDSC) is a public database that curates experimental
values (IC50) of drug response in various cancer cell lines (Yang et al. 2012). We include two versions of GDSC,
with the second one uses improved experimental procedures. The first dataset (TDC.GDSC1) contains 177,310
measurements across 958 cancer cells and 208 drugs. The second dataset (TDC.GDSC2) contains 92,703 pairs,
805 cell lines, and 137 drugs.
Suggested data split: random split; Evaluation: MAE; Unit: µM.

6.6 multi_pred.DrugSyn: Drug Synergy Prediction
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Definition. Synergy is a dimensionless measure of deviation of an observed drug combination response
from the expected effect of non-interaction. Synergy can be calculated using different models such as the
Bliss model, Highest Single Agent (HSA), Loewe additivity model and Zero Interaction Potency (ZIP).
Another relevant metric is CSS which measures the drug combination sensitivity and is derived using
relative IC50 values of compounds and the area under their dose-response curves.
Impact. Drug combination therapy offers enormous potential for expanding the use of existing drugs and
in improving their efficacy. For instance, the simultaneous modulation of multiple targets can address the
common mechanisms of drug resistance in the treatment of cancers. However, experimentally exploring
the entire space of possible drug combinations is not a feasible task. Computational models that can
predict the therapeutic potential of drug combinations can thus be immensely valuable in guiding this
exploration.
Generalization. It is important for model predictions to be able to adapt to varying underlying biology
as captured through different cell lines drawn from multiple tissues of origin. Dosage is also an important
factor that can impact model generalizability.
Product. Small-molecule.
Pipeline. Activity.

6.6.1 Datasets for multi_pred.DrugSyn

TDC.DrugComb: This dataset contains the summarized results of drug combination screening studies for
the NCI-60 cancer cell lines (excluding the MDA-N cell line). A total of 129 drugs are tested across 59 cell lines
resulting in a total of 297,098 unique drug combination-cell line pairs. For each of the combination drugs, its
canonical SMILES string is queried from PubChem (Zagidullin et al. 2019). For each cell line, the following
features are downloaded from NCI’s CellMiner interface: 25,723 gene features capturing transcript expression
levels averaged from five microarray platforms, 627 microRNA expression features and 3171 proteomic features
that capture the abundance levels of a subset of proteins (Reinhold et al. 2012). The labels included are CSS
and four different synergy scores.
Suggested data split: drug combination split; Evaluation: MAE; Unit: dimensionless.
TDC.OncoPolyPharmacology: A large-scale oncology screen produced byMerck & Co., where each sample
consists of two compounds and a cell line. The dataset covers 583 distinct combinations, each tested against
39 human cancer cell lines derived from 7 different tissue types. Pairwise combinations were constructed
from 38 diverse anticancer drugs (14 experimental and 24 approved). The synergy score is calculated by
Loewe Additivity values using the batch processing mode of Combenefit. The genomic features are from
ArrayExpress database (accession number: E-MTAB-3610), and are quantile-normalized and summarized by
Preuer, Lewis, Hochreiter, Bender, Bulusu & Klambauer (2018) using a factor analysis algorithm for robust
microarray summarization (FARMS (Hochreiter et al. 2006)).
Suggested data split: drug combination split; Evaluation: MAE; Unit: dimensionless.

6.7 multi_pred.PeptideMHC: Peptide-MHC Binding Affinity Prediction

Definition. In the human body, T cells monitor the existing peptides and trigger an immune response if
the peptide is foreign. To decide whether or not if the peptide is not foreign, it must bound to a major
histocompatibility complex (MHC) molecule. Therefore, predicting peptide-MHC binding affinity is
pivotal for determining immunogenicity. There are two classes of MHC molecules: MHC Class I and
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MHC Class II. They are closely related in overall structure but differ in their subunit composition. This
task is to predict the binding affinity between the peptide and the pseudo sequence in contact with the
peptide representing MHC molecules.
Impact. Identifying the peptide that can bind to MHC can allow us to engineer peptides-based therapeu-
tics such vaccines and cancer-specific peptides.
Generalization. The models are expected to be generalized to unseen peptide-MHC pairs.
Product. Immunotherapy.
Pipeline. Activity - peptide design.

6.7.1 Datasets for multi_pred.PeptideMHC

TDC.MHC1_IEDB-IMGT_Nielsen: This MHC Class I data set has been used in training NetMHCpan-
3.0 (Nielsen & Andreatta 2016). The label unit is log-transformed via 1-log(IC50)/log(50,000), where IC50 is in
nM units. This data set was collected from the IEDB (Vita et al. 2019) and consists of 185,985 pairs, covering
43,018 peptides and 150 MHC classes.
Suggested data split: random split; Evaluation: MAE; Unit: log-ratio.
TDC.MHC2_IEDB_Jensen: This MHC Class II data set was used to train the NetMHCIIpan (Jensen et al.
2018). The label unit is log-transformed via 1-log(IC50)/log(50,000), where IC50 is in nM units. This data ste
was collected from the IEDB (Vita et al. 2019) and consists of 134,281 pairs, covering 17,003 peptides and 75 MHC
classes.
Suggested data split: random split; Evaluation: MAE; Unit: log-ratio.

6.8 multi_pred.AntibodyAff: Antibody-Antigen Binding Affinity Prediction

Definition. Antibodies recognize pathogen antigens and destroy them. The activity is measured by their
binding affinities. This task is to predict the affinity from the amino acid sequences of both antigen and
antibodies.
Impact. Compared to small-molecule drugs, antibodies have numerous ideal properties such as minimal
adverse effect and also can bind to many "undruggable" targets due to different biochemical mechanisms.
Besides, a reliable affinity predictor can help accelerate the antibody development processes by reducing
the amount of wet-lab experiments.
Generalization. The models are expected to extrapolate to unseen classes of antigen and antibody pairs.
Product. Antibody, immunotherapy.
Pipeline. Activity.

6.8.1 Datasets for multi_pred.AntibodyAff

TDC.Protein_SAbDab: This data set is processed from the SAbDab dataset (Dunbar et al. 2014), consisting
of 493 pairs of antibody-antigen pairs with their affinities.
Suggested data split: random split; Evaluation: MAE; Unit: KD(M).

6.9 multi_pred.MTI: miRNA-Target Interaction Prediction
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Definition. MicroRNA (miRNA) is small noncoding RNA that plays an important role in regulating
biological processes such as cell proliferation, cell differentiation and so on (Chen et al. 2006). They usually
function to downregulate gene targets. This task is to predict the interaction activity between miRNA
and the gene target.
Impact. Accurately predicting the unknown interaction between miRNA and target can lead to a more
complete knowledge about disease mechanism and also could result in potential disease target biomarkers.
They can also help identify miRNA hits for miRNA therapeutics candidates (Hanna et al. 2019).
Generalization. The model needs to learn the biochemicals of miRNA and target proteins so that it can
extrapolate to new set of novel miRNAs and targets in various disease groups and tissues.
Product. Small-molecule, miRNA therapeutic.
Pipeline. Basic biomedical research, target discovery, activity.

6.9.1 Datasets for multi_pred.MTI

TDC.miRTarBase: miRTarBase is a large public database that containsMTIs that are validated experimentally
after manually surveying literature related to functional studies of miRNAs (Chou et al. 2018). It contains
400,082 MTI pairs with 3,465 miRNAs and 21,242 targets. We use miRBase (Kozomara et al. 2019) to obtain
miRNA mature sequence as the feature representation for miRNAs.
Suggested data split: random split; Evaluation: AUROC.

6.10 multi_pred.Catalyst: Reaction Catalyst Prediction

Definition. During chemical reaction, catalyst is able to increase the rate of the reaction. Catalysts are
not consumed in the catalyzed reaction but can act repeatedly. This learning task aims to predict the
catalyst for a reaction given both reactant molecules and product molecules (Zahrt et al. 2019).
Impact. Conventionally, chemists design and synthesize catalysts by trial and error with chemical
intuition, which is usually time-consuming and costly. Machine learning model and automate and
accelerate the process, understand the catalytic mechanism, and providing an insight into novel catalytic
design (Zahrt et al. 2019, Coley et al. 2019).
Generalization. In real-world discovery, as discussed, the molecule structures in reaction of interest
evolve over time (Sheridan 2013). We expect model to generalize to the unseen molecules and reaction.
Product. Small-molecule.
Pipeline. Manufacturing - synthesis planning.

6.10.1 Datasets for multi_pred.Catalyst

TDC.USPTO_Catalyst: USPTO dataset is derived from the United States Patent and Trademark Office
patent database (Lowe 2017) using a refined extraction pipeline from NextMove software. TDC selects the
most common catalysts that have occurences higher than 100 times. It contains 721,799 reactions with 10
reaction types, 712,757 reactants and 702,940 products with 888 common catalyst types.
Suggested data split: random split; Evaluation: Micro-F1, Macro-F1.
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7 Generative Learning Tasks in TDC

In this section, we describe generative learning tasks and the associated datasets in TDC.

7.1 generation.MolGen: Molecule Generation

Definition. Molecule Generation is to generate diverse, novel molecules that has desirable chemical
properties (Gómez-Bombarelli et al. 2018, Kusner et al. 2017, Polykovskiy et al. 2018, Brown et al. 2019).
These properties are measured by oracle functions. A machine learning task first learns the molecular
characteristics from a large set of molecules where each is evaluated through the oracles. Then, from the
learned distribution, we can obtain novel candidates.
Impact. As the entire chemical space is far too large to screen for each target, high through screening can
only be restricted to a set of existingmolecule library. Many novel drug candidates are thus usually omitted.
A machine learning that can generate novel molecule obeying some pre-defined optimal properties can
circumvent this problem and obtain novel class of candidates.
Generalization. The generated molecules have to obtain superior properties given a range of struc-
turally diverse drugs. Besides, the generated molecules have to suffice other basic properties, such as
synthesizablility and low off-target effects.
Product. Small-molecule.
Pipeline. Efficacy and safety - lead development and optimization, activity - hit identification.

7.1.1 Datasets for generation.MolGen

TDC.MOSES: Molecular Sets (MOSES) is a benchmark platform for distribution learning based molecule
generation (Polykovskiy et al. 2018). Within this benchmark, MOSES provides a cleaned dataset of molecules
that are ideal of optimization. It is processed from the ZINC Clean Leads dataset (Sterling & Irwin 2015). It
contains 1,936,962 molecules.
TDC.ZINC: ZINC is a free database of commercially-available compounds for virtual screening. TDC uses a
version from the original Mol-VAE paper (Gómez-Bombarelli et al. 2018), which extracted randomly a set of
249,455 molecules from the 2012 version of ZINC (Irwin et al. 2012).
TDC.ChEMBL: ChEMBL is a manually curated database of bioactive molecules with drug-like proper-
ties (Mendez et al. 2019, Davies et al. 2015). It brings together chemical, bioactivity and genomic data to aid the
translation of genomic information into effective new drugs. It contains 1,961,462 molecules.

7.2 generation.RetroSyn: Retrosynthesis Prediction

Definition. Retrosynthesis is the process of finding a set of reactants that can synthesize a target molecule,
i.e., product, which is a fundamental task in drug manufacturing (Liu et al. 2017, Zheng et al. 2019). The
target is recursively transformed into simpler precursor molecules until commercially available “starting”
molecules are identified. In a data sample, there is only one product molecule, reactants can be one
or multiple molecules. Retrosynthesis prediction can be seen as reverse process of Reaction outcome
prediction.
Impact. Retrosynthesis planning is useful for chemists to design synthetic routes to target molecules.
Computational retrosynthetic analysis tools can potentially greatly assist chemists in designing synthetic
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routes to novel molecules. Machine learning based methods will significantly save the time and cost.
Generalization. The model is expected to accurately generate reactant sets for novel drug candidates
with distinct structures from the training set across reaction types with varying reaction conditions.
Product. Small-molecule.
Pipeline. Manufacturing - Synthesis planning.

7.2.1 Datasets for generation.RetroSyn

TDC.USPTO-50K: USPTO (United States Patent and Trademark Office) 50K consists of 50K extracted atom-
mapped reactions with 10 reaction types (Schneider et al. 2015). It contains 50,036 reactions.
Suggested data split: random split; Evaluation: Top-K accuracy.
TDC.USPTO: USPTOdataset is derived from theUnited States Patent andTrademarkOffice patent database (Lowe
2017) using a refined extraction pipeline from NextMove software. It contains 1,939,253 reactions.
Suggested data split: random split; Evaluation: Top-K accuracy.

7.3 generation.Reaction: Reaction Outcome Prediction

Definition. Reaction outcome prediction is to predict the reaction products given a set of reactants (Jin
et al. 2017). Reaction outcome prediction can be seen as reverse process of retrosynthesis prediction, as
described above.
Impact. Predicting the products as a result of a chemical reaction is a fundamental problem in organic
chemistry. It is quite challenging for many complex organic reactions. Conventional empirical methods
that relies on experimentation requires intensive manual label of an experienced chemist, and are always
time-consuming and expensive. Reaction Outcome Prediction aims at automating the process.
Generalization. The model is expected to accurately generate product for novel set of reactants across
reaction types with varying reaction conditions.
Product. Small-molecule.
Pipeline. Manufacturing - Synthesis planning.

7.3.1 Datasets for generation.Reaction

TDC.USPTO: USPTOdataset is derived from theUnited States Patent andTrademarkOffice patent database (Lowe
2017) using a refined extraction pipeline from NextMove software. It contains 1,939,253 reactions.
Suggested data split: random split; Evaluation: Top-K accuracy.

8 TDC Data Functions

TDC implements a comprehensive suite of auxiliary functions frequently used in therapeutics ML. This
functionality is wrapped in an easy-to-use interface. Broadly, we provide functions for a) evaluating model
performance, b) generating realistic dataset splits, c) constructing oracle generators for molecules, and d)
processing, formatting, and mapping of datasets. Next, we describe these functions; note that detailed
documentation and examples of usage can be found at https://tdcommons.ai.
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8.1 Machine Learning Model Evaluation

To evaluate predictive prowess of ML models built on the TDC datasets, we provide model evaluators. The
evaluators implement established performance measures and additional metrics used in biology and chemistry.
• Regression: TDC includes common regression metrics, including the mean squared error (MSE), mean
absolute error (MAE), coefficient of determination (R2), Pearson’s correlation (PCC), and Spearman’s
correlation (Spearman’s ρ).

• Binary Classification: TDC includes common metrics, including the area under the receiver operating
characteristic curve (AUROC), area under the precision-recall curve (AUPRC), accuracy, precision, recall,
precision at recall of K (PR@K), and recall at precision of K (RP@K).

• Multi-Class and Multi-label Classification: TDC includes Micro-F1, Macro-F1, and Cohen’s Kappa.

• Token-Level Classification conducts binary classification for each token in a sequence. TDC provides
Avg-AUROC, which calculates the AUROC score between the sequence of 1/0 true labels and the sequence
of predicted labels for every instance. Then, it averages AUROC scores across all instances.

• Molecule Generation Metrics evaluate distributional properties of generated molecules. TDC supports
the following metrics:

– Diversity of a set of molecules is defined as average pairwise Tanimoto distance between Morgan
fingerprints of the molecules (Benhenda 2017).

– KL divergence (Kullback-Leibler Divergence) between probability distribution of a particular physic-
ochemical descriptor on the training set and probability distribution of the same descriptor on the
set of generated molecules (Brown et al. 2019). Models that capture distribution of molecules in the
training set achieve a small KL divergence score. To increase the diversity of generated molecules, we
want high KL divergence scores.

– FCD Score (Fréchet ChemNet Distance) first takes the means and covariances of activations of
the penultimate layer of ChemNet as calculated for the reference set and for the set of generated
molecules (Brown et al. 2019, Preuer, Renz, Unterthiner, Hochreiter & Klambauer 2018). The FCD
score is then calculated as pairwise Fréchet distance between the reference set and the set of generated
molecules. Similar molecular distributions are characterized by low FCD values.

– Novelty is the fraction of generated molecules that are not present in the training set (Polykovskiy
et al. 2018).

– Validity is calculated using the RDKit’s molecular structure parser that checks atoms’ valency and
consistency of bonds in aromatic rings (Polykovskiy et al. 2018).

– Uniquenessmeasures how often a model generates duplicate molecules (Polykovskiy et al. 2018). When
that happens often, the uniqueness score is low.

8.2 Realistic Dataset Splits

A data split specifies a partitioning of the dataset into training, validation and test sets to train, tune and
evaluate ML models. To date, TDC provides the following types of data splits:
• Random Splits represent the simplest strategy that can be used with any dataset. The random split selects
data instances at random and partitions them into train, validation, and test sets.
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• Scaffold Splits partitions molecules into bins based on their Murcko scaffolds (Wu et al. 2018, Yang et al.
2019). These bins are then assigned to construct structurally diverse train, validation, and test sets. The
scaffold split is more challenging than the random split and is also more realistic.

• Cold-Start Splits are implemented for multi-instance prediction problems (e.g., DTI, GDA, DrugRes, and
MTI tasks that involve predicting properties of heterogeneous tuples consisting of object of different types,
such as proteins and drugs). The cold-start split first splits the dataset into train, validation and test set on
one entity type (e.g., drugs) and then it moves all pairs associated with a given entity in each set to produce
the final split.

• Combinatorial Splits are used for combinatorial and polytherapy tasks. This split produces disjoint sets
of drug combinations in train, validation, and test sets so that the generalizability of model predictions to
unseen drug combinations can be tested.

8.3 Molecule Generation Oracles

Molecule generation aims to produce novel molecule with desired properties. The extent to which the
generated molecules have properties of interest is quantified by a variety of scoring functions, referred to as
oracles. To date, TDC provides a wrapper to easily access and process 17 oracles.
Specifically, we include popular oracles from the GuacaMol Benchmark (Brown et al. 2019), including re-
discovery, similarity, median, isomers, scaffold hops, and others. We also include heuristics oracles, includ-
ing synthetic accessibility (SA) score (Ertl & Schuffenhauer 2009), quantitative estimate of drug-likeness
(QED) (Bickerton et al. 2012), and penalized LogP (Landrum 2013). A major limitation of de novo molecule
generation oracles is that they focus on overly simplistic oracles mentioned above. As such, the oracles are
either too easy to optimize or can produce unrealistic molecules. This issue was pointed out by Coley et al.
(2020) who found that current evaluations for generative models do not reflect the complexity of real discovery
problems. Because of that, TDC collects novel oracles that are more appropriate for realistic de novomolecule
generation. Next, we describe the details.
• Docking Score: Docking is a theoretical evaluation of affinity (i.e., free energy change of the binding
process) between a small molecule and a target (Kitchen et al. 2004). A docking evaluation usually includes
the conformational sampling of the ligand and the calculation of change of free energy. A molecule with
higher affinity usually has a higher potential to pose higher bioactivity. Recently, Cieplinski et al. (2020)
showed the importance of docking in molecule generation. For this reason, TDC includes a meta oracle for
molecular docking where we adopted a Python wrapper from pyscreener (Graff et al. 2020) to allow easy
access to various docking software, including AutoDock Vina (Trott & Olson 2010), smina (Koes et al. 2013),
Quick Vina 2 (Alhossary et al. 2015), PSOVina (Ng et al. 2015), and DOCK6 (Allen et al. 2015).

• ASKCOS: Gao & Coley (2020) found that surrogate scoring models cannot sufficiently determine the level
of difficulty to synthesize a compound. Following this observation, we provide a score derived from the
analysis of full retrosynthetic pathway. To this end, TDC leverages ASKCOS (Coley et al. 2019), an open-
source framework that integrates efforts to generalize known chemistry to new substrates by applying
retrosynthetic transformations, identifying suitable reaction conditions, and evaluating what reactions are
likely to be successful. The data-driven models are trained with USPTO and Reaxys databases.

• Molecule.one: Molecule.one API estimates synthetic accessibility (Liu et al. 2020) of a molecule based on a
number of factors, including the number of steps in the predicted synthetic pathway (Sacha et al. 2020) and
the cost of the starting materials. Currently, the API token can be requested from the Molecule.one website
and is provided on a one-to-one basis for research use. We are working with Molecule.one to provide a
more open access from within TDC in the near future.
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• IBMRXN: IBM RXNChemistry is an AI platform that integrates forward reaction prediction and retrosyn-
thetic analysis. The backend of IBMRXNretrosynthetic analysis is amolecular transformermodel (Schwaller
et al. 2019). The model was trained using USPTO and Pistachio databases. Because of the licensing of the
retrosynthetic analysis software, TDC requires the API token as input to the oracle function, along with the
input drug SMILES strings.

• GSK3β: Glycogen synthase kinase 3 beta (GSK3β) is an enzyme in humans that is encoded by GSK3β
gene. Abnormal regulation and expression of GSK3β is associated with an increased susceptibility towards
bipolar disorder. The oracle is a random forest classifer using ECFP6 fingerprints using the ExCAPE-DB
dataset (Sun et al. 2017, Jin et al. 2020).

• JNK3: c-Jun N-terminal Kinases-3 ( JNK3) belong to the mitogen-activated protein kinase family. The
kinases are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic
shock. The oracle is a random forest classifer using ECFP6 fingerprints using the ExCAPE-DB dataset (Sun
et al. 2017, Jin et al. 2020).

• DRD2: DRD2 is a dopamine type 2 receptor. The oracle is constructed by Olivecrona et al. (2017) using
a support vector machine classifier with a Gaussian kernel and ECFP6 fingerprints on the ExCAPE-DB
dataset (Sun et al. 2017).

8.4 Data Processing

Finally, TDC supports several utility functions for data processing, such as visualization of label distribution,
data binarization, conversion of label units, summary of data statistics, data balancing, graph transformations,
negative sampling, and database queries.

8.4.1 Data Processing Example: Data Formatting

Biochemical entities can be represented in various machine learning formats. One of the challenges that
hinders machine learning researchers with limited biomedical training is to transform across various formats.
TDC provides a MolConvert class that enables format transformation in a few lines of code. Specifically,
for 2D molecules, it takes in SMILES, SELFIES (Krenn et al. 2020), and transform them to molecular graph
objects in Deep Graph Library1, Pytorch Geometric Library2, and various molecular features such as ECFP2-6,
MACCS, Daylight, RDKit2D, Morgan and PubChem. For 3D molecules, it takes in XYZ file, SDF file and
transform them to 3D molecular graphs objects, Coulomb matrix and any 2D formats. New formats for more
entities will also be included in the future.

9 TDC’s Tools, Libraries, and Resources

TDC has a flexible ecosystem of tools, libraries, and community resources to let researchers push the state-of-
the-art in ML and go from model building and training to deployment much more easily.
To boost the accessibility of the project, TDC can be installed through Python Package Index (PyPI) via:

pip install PyTDC

1https://docs.dgl.ai
2https://pytorch-geometric.readthedocs.io
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TDC provides a collection of workflows with intuitive, high-level APIs for both beginners and experts to
create machine learning models in Python. Building off the modularized “Problem–Learning Task–Data Set”
structure (see Section 4) in TDC, we provide a three-layer API to access any learning task and dataset. This
hierarchical API design allows us to easily incorporate new tasks and datasets.
Suppose you want to retrieve dataset “DILI” to study learning task “Tox” that belongs to a class of problems
“single_pred”. To obtain the dataset and its associated data split, use the following:

from tdc.single_pred import Tox
data = Tox(name = 'DILI')
df = data.get_data()

The user only needs to specify these three variables and TDC automatically retrieve the processed machine
learning-ready dataset fromTDC server and generate a data object, which contains numerous utility functions
that can be directly applied on the dataset. For example, to get the various training, validation, and test splits,
type the following:

from tdc.single_pred import Tox
data = Tox(name = 'DILI')
split = data.get_split(method = 'random', seed = 42, frac = [0.7, 0.1, 0.2])

For other data functions, TDC provides one-liners. For example, to access the “MSE” evaluator:

from tdc import Evaluator
evaluator = Evaluator(name = 'MSE')
score = evaluator(y_true, y_pred)

To access any of the 17 oracles currently implemented in TDC, specify the oracle name to obtain the oracle
function and provide SMILES fingerprints as inputs:

from tdc import Oracle
oracle = Oracle(name = 'JNK3')
oracle(['C[C@@H]1CCN(C(=O)CCCc2ccccc2)C[C@@H]1O'])

Further, TDC allows user to access each dataset in a benchmark group (see Section 3). For example, we want
to access the “ADMET_Group”:

from tdc import BenchmarkGroup
group = BenchmarkGroup(name = 'ADMET_Group')
predictions = {}

for benchmark in group:
name = benchmark['name']
train_val, test = benchmark['train_val'], benchmark['test']
## --- train your model --- ##
predictions[name] = y_pred

group.evaluate(predictions)

Documentation, Examples, and Tutorials. Comprehensive documentation and examples are provided on
the project website3, along with a set of tutorial Jupyter notebooks4.

3https://tdcommons.ai
4https://github.com/mims-harvard/TDC/tree/master/tutorials
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Project Host, Accessibility, and Collaboration. To foster development and community collaboration,
TDC is publicly host on GitHub5, where developers leverage source control to track the history of the project
and collaborate on bug fix and new functionality development.

Library Dependency and Compatible Environments. TDC is designed for Python 3.5+, and mainly relies
on major scientific computing and machine learning libraries including numpy, pandas, and scikit-learn,
where additional libraries, such as networkx and PyTorch may be required for specific functionalities. It is
tested and designed to work under various operating systems, including MacOS, Linux, and Windows.

Project Sustainability. Many open-source design techniques are leveraged to ensure the robustness and
sustainability of TDC. Continuous integration (CI) tools, including Travis-CI6 and CircleCI7, are enabled for
conducting daily test execution. All branches are actively monitored by the CI tools, and all commits and
pull requests are covered by unit test. For quality assurance, TDC follows PEP8 standard, and we follow the
Python programming guidelines for maintainbility.

10 TDC Leaderboards and Experiments on Selected Datasets

TDC benchmarks and leaderboards enable systematic model development and evaluation. We illustrate them
through three examples. All datasets, code, and evaluation procedures to reproduce these experiments are
accessible from https://github.com/mims-harvard/TDC/tree/master/examples.

10.1 Twenty-Two Datasets in the ADMET Benchmark Group

Motivation. A small-molecule drug needs to travel from the site of administration (e.g., oral) to the site of
action (e.g., a tissue) and then decomposes, exits the body. Therefore, the chemical is required to have numerous
ideal absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties (Van De Waterbeemd
& Gifford 2003). Thus, an early and accurate ADMET profiling during the discovery stage is an essential
condition for the successful development of a small-molecule candidate. An accurate ML model that can
predict various ADMET endpoints are thus highly sought-after.

Experimental setup. We leverage 22 ADMET datasets included in TDC – the largest public ADMET
benchmark. The included endpoints are widely used in the pharmaceutical companies, such as metabolism
with various CYP enzymes, half-life, clearance, and off-target effects. In real-world discovery, the drug
structures of interest evolve. Thus, ADMET prediction requires a model to generalize to a set of unseen
drugs that are structurally distant to the known drug set. We adopt scaffold split to simulate this distant effect.
Data are split into 7:1:2 train:validation:test where train and validation set are shuffled five times to create
five random runs. For binary classification, AUROC is used for balanced data and AUPRC when the number
of positives are smaller than negatives and for regression task, MAE is used and Spearman correlation for
benchmarks where a trend is more important than the absolute error.

Baselines. The focus in this task is representation learning. We include (1) multi-layer perceptron (MLP)
with expert-curated fingerprint (Morgan fingerprint (Rogers & Hahn 2010) with 1,024 bits) or descriptor
(RDKit2D (Landrum 2013), 200-dim); (2) convolutional neural network (CNN) on SMILES strings, which
applies 1D convolution over a string representation of the molecule (Huang, Fu, Glass, Zitnik, Xiao & Sun

5https://github.com/mims-harvard/TDC
6https://travis-ci.org/github/mims-harvard/TDC
7https://app.circleci.com/pipelines/github/mims-harvard/TDC

32

https://github.com/mims-harvard/TDC/tree/master/examples
https://github.com/mims-harvard/TDC
https://travis-ci.org/github/mims-harvard/TDC
https://app.circleci.com/pipelines/github/mims-harvard/TDC


2020); (3) state-of-the-art (SOTA) ML models use graph neural network based models on molecular 2D graphs,
including neural fingerprint (NeuralFP) (Duvenaud et al. 2015), graph convolutional network (GCN) (Kipf &
Welling 2017), and attentive fingerprint (AttentiveFP) (Xiong et al. 2019), three powerful Graph neural network
(GNN) models. In addition, recently, (Hu, Liu, Gomes, Zitnik, Liang, Pande & Leskovec 2020) has adapted
a pretraining strategy to molecule graph, where we include two strategies attribute masking (AttMasking)
and context prediction (ContextPred). Methods follow the default hyperparameters described in the original
papers.

Results. Results are shown in Table 3. Overall, we find that pretraining GIN (Graph Isomorphism Net-
work) (Xu et al. 2018) with context prediction has the best performances in 8 endpoints, attribute masking has
the best ones in 5 endpoints, with 13 combined for pretraining strategies, especially in CYP enzyme predictions.
Expert-curated descriptor RDKit2D also has five endpoints that achieve the best results, while SMILES-based
CNN has one best-performing one. Our systematic evaluation yield three key findings. First, the ML SOTA
models do not work well consistently for these novel realistic endpoints. In some cases, methods based on
learned features are worse than the efficient domain features. This gap highlights the necessity for realistic
benchmarking Second, performances vary across feature types given different endpoints. For example, in
TDC.CYP3A4-S, the SMILES-based CNN is 8.7%-14.9% better than the graph-based methods. We suspect
this is due to that different feature types contain different signals (e.g. GNN focuses on a local aggregation of
substructures whereas descriptors are global biochemical features). Thus, future integration of these signals
could potentially improve the performance. Third, the best performing methods use pretraining strategies,
highlighting an exciting avenue in recent advances in self-supervised learning to the biomedical setting.

Table 3: Leaderboard on the TDC ADMET Benchmark Group. Average and standard deviation across
five runs are reported. Arrows (↑, ↓) indicate the direction of better performance. The best method is bolded
and the second best is underlined.

Raw Feature Type Expert-Curated Methods SMILES Molecular Graph-Based Methods (state-of-the-Art in ML)

Dataset Metric Morgan RDKit2D CNN NeuralFP GCN AttentiveFP AttrMasking ContextPred

# Params. 1477K 633K 227K 480K 192K 301K 2067K 2067K

TDC.Caco2 (↓) MAE 0.908±0.060 0.393±0.024 0.446±0.036 0.530±0.102 0.599±0.104 0.401±0.032 0.546±0.052 0.502±0.036

TDC.HIA (↑) AUROC 0.807±0.072 0.972±0.008 0.869±0.026 0.943±0.014 0.936±0.024 0.974±0.007 0.978±0.006 0.975±0.004

TDC.Pgp (↑) AUROC 0.880±0.006 0.918±0.007 0.908±0.012 0.902±0.020 0.895±0.021 0.892±0.012 0.929±0.006 0.923±0.005

TDC.Bioav (↑) AUROC 0.581±0.086 0.672±0.021 0.613±0.013 0.632±0.036 0.566±0.115 0.632±0.039 0.577±0.087 0.671±0.026

TDC.Lipo (↓) MAE 0.701±0.009 0.574±0.017 0.743±0.020 0.563±0.023 0.541±0.011 0.572±0.007 0.547±0.024 0.535±0.012

TDC.AqSol (↓) MAE 1.203±0.019 0.827±0.047 1.023±0.023 0.947±0.016 0.907±0.020 0.776±0.008 1.026±0.020 1.040±0.045

TDC.BBB (↑) AUROC 0.823±0.015 0.889±0.016 0.781±0.030 0.836±0.009 0.842±0.016 0.855±0.011 0.892±0.012 0.897±0.004

TDC.PPBR (↓) MAE 12.848±0.362 9.994±0.319 11.106±0.358 9.292±0.384 10.194±0.373 9.373±0.335 10.075±0.202 9.445±0.224

TDC.VD (↑) Spearman 0.493±0.011 0.561±0.025 0.226±0.114 0.258±0.162 0.457±0.050 0.241±0.145 0.559±0.019 0.485±0.092

TDC.CYP2D6-I (↑) AUPRC 0.587±0.011 0.616±0.007 0.544±0.053 0.627±0.009 0.616±0.020 0.646±0.014 0.721±0.009 0.739±0.005

TDC.CYP3A4-I (↑) AUPRC 0.827±0.009 0.829±0.007 0.821±0.003 0.849±0.004 0.840±0.010 0.851±0.006 0.902±0.002 0.904±0.002

TDC.CYP2C9-I (↑) AUPRC 0.715±0.004 0.742±0.006 0.713±0.006 0.739±0.010 0.735±0.004 0.749±0.004 0.829±0.003 0.839±0.003

TDC.CYP2D6-S (↑) AUPRC 0.671±0.066 0.677±0.047 0.485±0.037 0.572±0.062 0.617±0.039 0.574±0.030 0.704±0.028 0.736±0.024

TDC.CYP3A4-S (↑) AUROC 0.633±0.013 0.639±0.012 0.662±0.031 0.578±0.020 0.590±0.023 0.576±0.025 0.582±0.021 0.609±0.025

TDC.CYP2C9-S (↑) AUPRC 0.380±0.015 0.360±0.040 0.367±0.059 0.359±0.059 0.344±0.051 0.375±0.032 0.381±0.045 0.392±0.026

TDC.Half_Life (↑) Spearman 0.329±0.083 0.184±0.111 0.038±0.138 0.177±0.165 0.239±0.100 0.085±0.068 0.151±0.068 0.129±0.114

TDC.CL-Micro (↑) Spearman 0.492±0.020 0.586±0.014 0.252±0.116 0.529±0.015 0.532±0.033 0.365±0.055 0.585±0.034 0.578±0.007

TDC.CL-Hepa (↑) Spearman 0.272±0.068 0.382±0.007 0.235±0.021 0.401±0.037 0.366±0.063 0.289±0.022 0.413±0.028 0.439±0.026

TDC.hERG (↑) AUROC 0.736±0.023 0.841±0.020 0.754±0.037 0.722±0.034 0.738±0.038 0.825±0.007 0.778±0.046 0.756±0.023

TDC.AMES (↑) AUROC 0.794±0.008 0.823±0.011 0.776±0.015 0.823±0.006 0.818±0.010 0.814±0.008 0.842±0.008 0.837±0.009

TDC.DILI (↑) AUROC 0.832±0.021 0.875±0.019 0.792±0.016 0.851±0.026 0.859±0.033 0.886±0.015 0.919±0.008 0.861±0.018

TDC.LD50 (↓) MAE 0.649±0.019 0.678±0.003 0.675±0.011 0.667±0.020 0.649±0.026 0.678±0.012 0.685±0.025 0.669±0.030
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10.2 Domain Generalization in the Drug-target Interaction Benchmark

Motivation. Drug-target interactions (DTI) characterize the binding of compounds to disease targets. Iden-
tifying high-affinity compounds is the first crucial step for drug discovery. Recent ML models have shown
strong performances in DTI prediction (Huang, Fu, Glass, Zitnik, Xiao & Sun 2020), but they adopt a random
dataset splitting where testing sets contain unseen pair of compound-target, but both of the compounds and
targets are seen. However, pharmaceutical companies develop compound screening campaigns for novel
targets or screen a novel class of compounds for known targets. These novel compounds and targets shift over
the years. Thus, it requires a DTI ML model to achieve consistent performances to the subtle domain shifts
along the temporal dimension. Recently, numerous domain generalization methods have been developed in
the context of images and languages (Koh et al. 2021) but merely in biomedical space.

Experimental setup. In this benchmark, we use DTIs in TDC.BindingDB that have patent information.
Specifically, we formulate each domain consisting of DTIs that are patented in a specific year. We test various
domain generalization methods to predict out-of-distribution DTIs in 2019-2021 after training on 2013-2018
DTIs, simulating the realistic scenario. Note that time information for specific targets and compounds are
usually private data. Thus, we solicit the patent year of the DTI as a reasonable proxy to simulate this realistic
challenge. We use the popular deep learning based DTI model DeepDTA (Öztürk et al. 2018) as the backbone
of any domain generalization algorithms. The evaluation metric is pearson correlation coefficient (PCC).
Validation set selection is crucial for a fair domain generalization methods comparison. Following the strategy
of "Training-domain validation set" in Gulrajani & Lopez-Paz (2021), from the 2013-2018 DTIs, we randomly set
20% of them as the validation set and use them as the in-distribution performance calculations as they follow
the same as the training set and 2018-2021 are only used during testing, which we called out-of-distribution.

Baselines. ERM (Empirical Risk Minimization) (Vapnik 1999) is the standard training strategy where errors
across all domains and data are minimized. We then include various types of SOTA domain generalization
algorithms: MMD (MaximumMean Discrepancy) (Li et al. 2018) optimizes the similarities of maximum mean
discrepancy across domains, CORAL (Correlation Alignment) (Sun & Saenko 2016) matches the mean and
covariance of features across domains; IRM (Invariant Risk Minimization) (Ahuja et al. 2020) obtains features
where a linear classifier is optimal across domains; GroupDRO (distributionally robust neural networks for
group shifts) (Sagawa et al. 2020) optimizes ERM and adjusts the weights of domains with larger errors; MTL
(Marginal Transfer Learning) (Blanchard et al. 2021) concatenates the original featureswith an augmented vector
using the marginal distribution of feature vectors, which practically is the mean of the feature embedding;
ANDMask (Parascandolo et al. 2021) masks gradients that have inconsistent signs in the corresponding weights
across domains. Note that majority of the methods are developed for classification tasks, we modify the
objective functions to regression and keep the rest the same. Methods follow the default hyperparameters
described in the paper.

Results. Results are shown in Table 4 and Figure 4. We observe that in-distribution reaches 0.7 PCC and are
very stable across the years, suggesting the high predictive power of ML models in the unrealistic but widely
adopted ML settings. However, out-of-distribution performance significantly degrades from 33.9% to 43.6%
across methods, suggesting that domain shift exists and realistic constraint breaks usual training strategies.
Second, although the best performedmethods areMMDandCORAL, the standard training strategy has similar
performances as current ML SOTA domain generalization algorithms, which confirms with the systematic
study conducted by Gulrajani & Lopez-Paz (2021), highlighting a demand for robust domain generalization
methods that are specialized in biomedical problems.
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In-Distribution Out-of-Distribution

Figure 4: Heatmap visualization of domain generalization
methods performance across each domain in the TDC DTI-
DG benchmark using TDC.BindingDB. We observe a signifi-
cant gap between the in-distribution and out-of-distribution perfor-
mance and highlight the demand for algorithmic innovation.

Table 4: Leaderboard on TDC
DTI-DG benchmark using
TDC.BindingDB. In-Dist. aggre-
gates the in-split validation set and
follows the same data distribution
as the training set (2013-2018).
Out-Dist. aggregates the testing
domains (2019-2021). The goal
is to maximize the test domain
performance. Reported results
include the average and standard
deviation of Pearson Correlation
Coefficient across five random
runs. The best method is bolded
and the second best is underlined.

Method In-Dist. Out-Dist.

ERM 0.703±0.005 0.427±0.012

MMD 0.700±0.002 0.433±0.010

CORAL 0.704±0.003 0.432±0.010

IRM 0.420±0.008 0.284±0.021

GroupDRO 0.681±0.010 0.384±0.006

MTL 0.685±0.009 0.425±0.010

ANDMask 0.436±0.014 0.288±0.019

10.3 Molecule Generation in the Docking Generation Benchmark

Motivation. AI-assisted drug design aims to generate novel molecular structures with desired pharmaceutical
properties. Recent progress in generative modeling has shown great promising results in this area. However,
the current experiments focus on optimizing simple heuristic oracles, such as QED (quantitative estimate
of drug-likeness) and LogP (Octanol-water partition coefficient) (Jin et al. 2019, You et al. 2018, Zhou et al.
2019), while an experimental evaluation, such as a bioassay, or a high-fidelity simulation, is much more costly
in terms of resources that require a more data-efficient strategy. Further, as generative models can explore
chemical space beyond a predefined one, the structure of the generated molecular might be valid but not
synthesizable (Gao &Coley 2020). Therefore, we leverage docking simulation (Cieplinski et al. 2020, Steinmann
& Jensen 2021) as an oracle and build up benchmark groups. Docking evaluates the affinity between a ligand (a
small molecular drug) and a target (a protein involved in the disease), and is widely used in drug discovery in
practice (Lyu et al. 2019). In addition to the objective function value, we add a quality filter and a synthetic
accessibility score to evaluate the generation quality within a limited number of oracle calls.

Experimental setup. We leverage TDC.ZINC dataset as the molecule library and TDC.Docking oracle
function as the molecule docking score evaluator against the target DRD3, which is a crucial disease target for
neurology diseases such as tremor and schizophrenia. To imitate a low-data scenario, we limit the number of
oracle callings available to four levels: 100, 500, 1000, 5000. In addition to typical oracle scores, we investigate
additional metrics to evaluate the quality of generated molecules, including (1) Top100/Top10/Top1: Average
docking score of top-100/10/1 generated molecules for a given target; (2) Diversity: Average pairwise Tanimoto
distance of Morgan fingerprints for Top 100 generated molecules; (3) Novelty: Fraction of generated molecules
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that are not present in the training set; (4) m1: Synthesizability score of molecules obtained via molecule.one
retrosynthesis model (Sacha et al. 2020); (5) %pass: Fraction of generated molecules that successfully pass
through apriori defined filters; (6) Top1 %pass: The lowest docking score for molecules that pass the filter.
Each model is run three times with different random seeds.

Baselines. We compare domain SOTA methods including Screening (Lyu et al. 2019) (simulated as random
sampling), Graph-GA (graph-based genetic algorithm) (Jensen 2019), and ML SOTA methods including string-
based LSTM (Segler et al. 2018), GCPN (Graph Convolutional Policy Network) (You et al. 2018), MolDQN
(Deep Q-Network) (Zhou et al. 2019) and MARS (Markov molecular Sampling) (Xie et al. 2021). We also
include best-in-data, which choose 100 molecules with the highest docking score from ZINC 250K database as
reference. Methods follow the default hyperparameters described in the paper.

Results. Results are shown in Table 5. Overall, we observe that almost all models cannot perform well under a
limited oracle setting. The majority of the methods cannot surpass the best-in-data docking scores under 100,
500, 1,000 allowable oracle callings. In the 5,000 oracle callings setting, Graph-GA (-14.811) and LSTM (-13.017)
finally surpass the best-in-data result. Graph-GA dominates the leaderboard with 0 learnable parameters
in terms of optimization ability, while a simple SMILES LSTM ranked behind. The SOATML models that
reported excellent performances in unlimited trivial oracles cannot beat virtual screening when allowing
less than 5,000 oracle calls. This result questions the utility of the current ML SOTA methods and calls for a
shift of focus on the current ML molecular generation communities to consider realistic constraints during
evaluation.
As for the synthesizability, as the number of allowable oracles calls increases, the more significant fraction
generates undesired molecular structures despite the increasing affinity. We observe a monotonous increment
in the m1 score of the best performing Graph GA method when we allow more oracle calls. In the 5,000 calls
category, only 2.3% - 52.7% of the generatedmolecules pass themolecule filters, and within the passedmolecules,
the best docking score drops significantly compared to before the filter. By contrast, LSTM keeps a relatively
good generated quality in all categories, showing ML generative models have an advantage in learning the
distribution of training sets and producing “normal” molecules. Also, the recent synthesizable constrained
generation (Korovina et al. 2020, Gottipati et al. 2020, Bradshaw et al. 2020) is a promising approach to tackle
this problem. We expect to see more ML models explicitly considering synthesizability.

11 Conclusion and Future Directions

Therapeutics machine learning is an emerging field with many hard algorithmic challenges and applications
with immense opportunities for expansion, innovation, and impact.
To this end, our Therapeutics Data Commons (TDC) is a platform of AI-ready datasets and learning tasks
for drug discovery and development. Curated datasets, strategies for systematic model development and
evaluation, and an ecosystem of tools, leaderboards and community resources in TDC serve as a meeting
point for domain and machine learning scientists. We envision that TDC can considerably accelerate machine
learning model development, validation and transition into production and clinical implementation.
To facilitate algorithmic and scientific innovation in therapeutics, we will support the continued development
of TDC to provide AI-ready datasets and enhance outreach to build an inclusive research community:
• New Learning Tasks and Datasets: We are actively working to include new learning tasks and datasets
and keep abreast with the state-of-the-art. We now work on tasks related to emerging therapeutic products,
including antibody-drug conjugates (ADCs) and proteolysis targeting chimera (PROTACs), and new pipelines,
including clinical trial design, drug delivery, and postmarketing safety.
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Table 5: Leaderboard on TDCDRD3 docking benchmark using TDC.ZINC and TDC.Docking. Mean
and standard deviation across three runs are reported. Arrows (↑, ↓) indicate the direction of better perfor-
mance. The best method is bolded and the second best is underlined.

Method Category Domain-Specific Methods State-of-the-Art Methods in ML

Metric Best-in-data # Calls Screening Graph-GA LSTM GCPN MolDQN MARS

# Params. - - 0 0 3149K 18K 2694K 153K

Top100 (↓) -12.080

100

-7.554±0.065 -7.222±0.013 -7.594±0.182 3.860±0.102 -5.178±0.341 -5.928±0.298

Top10 (↓) -12.590 -9.727±0.276 -10.177±0.158 -10.033±0.186 -5.617±0.413 -6.438±0.176 -8.133±0.328

Top1 (↓) -12.800 -10.367±0.464 -11.767±1.087 -11.133±0.634 -11.633±2.217 -7.020±0.194 -9.100±0.712

Diversity (↑) 0.864 0.881±0.002 0.885±0.001 0.884±0.002 0.909±0.001 0.907±0.001 0.873±0.010

Novelty (↑) - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

%Pass (↑) 0.780 0.717±0.005 0.693±0.037 0.763±0.019 0.093±0.009 0.017±0.012 0.807±0.033

Top1 Pass (↓) -11.700 -2.467±2.229 0.000±0.000 -1.100±1.417 7.667±0.262 -3.630±2.588 -3.633±0.946

m1 (↓) 5.100 4.845±0.235 5.223±0.256 5.219±0.247 10.000±0.000 10.000±0.000 4.470±1.047

Top100 (↓) -12.080

500

-9.341±0.039 -10.036±0.221 -9.419±0.173 -8.119±0.104 -6.357±0.084 -7.278±0.198

Top10 (↓) -12.590 -10.517±0.135 -11.527±0.533 -10.687±0.335 -10.230±0.354 -7.173±0.166 -9.067±0.377

Top1 (↓) -12.800 -11.167±0.309 -12.500±0.748 -11.367±0.579 -11.967±0.680 -7.620±0.185 -9.833±0.309

Diversity (↑) 0.864 0.870±0.003 0.857±0.005 0.875±0.005 0.914±0.001 0.903±0.002 0.866±0.005

Novelty (↑) - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

%Pass (↑) 0.780 0.770±0.029 0.710±0.080 0.727±0.012 0.127±0.005 0.030±0.016 0.660±0.050

Top1 Pass (↓) -11.700 -8.767±0.047 -9.300±0.163 -8.767±0.170 -7.200±0.141 -6.030±0.073 -6.100±0.141

m1 (↓) 5.100 5.672±1.211 6.493±0.341 5.787±0.934 10.000±0.000 10.000±0.000 5.827±0.937

Top100 (↓) -12.080

1000

-9.693±0.019 -11.224±0.484 -9.971±0.115 -9.053±0.080 -6.738±0.042 -8.224±0.196

Top10 (↓) -12.590 -10.777±0.189 -12.400±0.782 -11.163±0.141 -11.027±0.273 -7.506±0.085 -9.843±0.068

Top1 (↓) -12.800 -11.500±0.432 -13.233±0.713 -11.967±0.205 -12.033±0.618 -7.800±0.042 -11.100±0.141

Diversity (↑) 0.864 0.873±0.003 0.815±0.046 0.871±0.004 0.913±0.001 0.904±0.001 0.871±0.004

Novelty (↑) - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

%Pass (↑) 0.780 0.757±0.026 0.777±0.096 0.777±0.026 0.170±0.022 0.033±0.005 0.563±0.052

Top1 Pass (↓) -11.700 -9.167±0.047 -10.600±0.374 -9.367±0.094 -8.167±0.047 -6.450±0.085 -7.367±0.205

m1 (↓) 5.100 5.527±0.780 7.695±0.909 4.818±0.541 10.000±0.000 10.000±0.000 6.037±0.137

Top100 (↓) -12.080

5000

-10.542±0.035 -14.811±0.413 -13.017±0.385 -10.045±0.226 -8.236±0.089 -9.509±0.035

Top10 (↓) -12.590 -11.483±0.056 -15.930±0.336 -14.030±0.421 -11.483±0.581 -9.348±0.188 -10.693±0.172

Top1 (↓) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450

Diversity (↑) 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002

Novelty (↑) - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

%Pass (↑) 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087

Top1 Pass (↓) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082

m1 (↓) 5.100 5.610±0.805 9.669±0.468 5.826±1.908 10.000±0.000 10.000±0.000 7.073±0.798

• NewML Tools: We plan to implement additional data functions and provide additional tools, libraries,
and community resources.

• New Leaderboards and Competitions: We plan to design new leaderboards for tasks that are of interest
to the therapeutics community and have great potential to benefit from advanced machine learning.

Lastly, TDC is an open science initiative. We welcome contributions from the research community.
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