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Abstract
The connection between training deep neural net-
works (DNNs) and optimal control theory (OCT)
has attracted considerable attention as a principled
tool of algorithmic design. Despite few attempts
being made, they have been limited to architec-
tures where the layer propagation resembles a
Markovian dynamical system. This casts doubts
on their flexibility to modern networks that heav-
ily rely on non-Markovian dependencies between
layers (e.g. skip connections in residual networks).
In this work, we propose a novel dynamic game
perspective by viewing each layer as a player in
a dynamic game characterized by the DNN itself.
Through this lens, different classes of optimiz-
ers can be seen as matching different types of
Nash equilibria, depending on the implicit infor-
mation structure of each (p)layer. The resulting
method, called Dynamic Game Theoretic Neural
Optimizer (DGNOpt), not only generalizes OCT-
inspired optimizers to richer network class; it also
motivates a new training principle by solving a
multi-player cooperative game. DGNOpt shows
convergence improvements over existing methods
on image classification datasets with residual and
inception networks. Our work marries strengths
from both OCT and game theory, paving ways to
new algorithmic opportunities from robust opti-
mal control and bandit-based optimization.

1. Introduction
Attempts from different disciplines to provide a fundamental
understanding of deep learning have advanced rapidly in re-
cent years. Among those, interpretation of DNNs as discrete-
time nonlinear dynamical systems has received tremendous
focus. By viewing each layer as a distinct time step, it moti-
vates principled analysis from numerical equations (Weinan,
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Figure 1. Dynamic game perspective of generic DNN training pro-
cess, where we treat layer modules as players in a dynamic game
and solve for the related Nash equilibria (Best viewed in color).

2017; Lu et al., 2017) to physics (Greydanus et al., 2019).
For instance, casting residual networks (He et al., 2016) as a
discretization of ordinary differential equations enables fun-
damental reasoning on the loss landscape (Lu et al., 2020)
and inspires new architectures with numerical stability or
continuous limit (Chang et al., 2018; Chen et al., 2018).

This dynamical system viewpoint also motivates control-
theoretic analysis, which further recasts the network weight
as control. With that, the training process can be viewed as
an optimal control problem, as both methodologies aim to
optimize some variables (weights v.s. controls) subjected
to the chain structure (network v.s. dynamical system).
This connection has lead to theoretical characterization of
the learning process (Weinan et al., 2018; Hu et al., 2019;
Liu & Theodorou, 2019) and practical methods for hyper-
parameter adaptation (Li et al., 2017b) or computational
acceleration (Gunther et al., 2020; Zhang et al., 2019).

Development of algorithmic progress, however, remains
relatively limited. This is because OCT-inspired training
methods, by construction, are restricted to network class that
resembles Markovian state-space models (Liu et al., 2021;
Li & Hao, 2018; Li et al., 2017a). This raises questions of
their flexibility and scalability to training modern architec-
tures composed of complex dependencies between layers. It
is unclear whether this interpretation of dynamical system
and optimal control remains suitable, or how it should be
adapted, under those cases.

In this work, we address the aforementioned issues using
dynamic game theory, a discipline of interactive decision
making (Yeung & Petrosjan, 2006) built upon optimal con-
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trol and game theory. Specifically, we propose to treat each
layer as a player in a dynamic game connected through the
network propagation. The additional dimension gained from
multi-player allows us to generalize OCT-inspired methods
to accept a much richer network class. Further, introducing
game-theoretic analysis, e.g. information structure, provides
a novel algorithmic connection between different classes of
training methods from a Nash equilibria standpoint (Fig. 1).

Unlike prior game-related works, which typically cast the
whole network as a player competing over training iteration
(Goodfellow et al., 2014; Balduzzi et al., 2018), the (p)layers
in our dynamic game interact along the network propagation.
This naturally leads to a coalition game since all players
share the same objective. The resulting cooperative train-
ing scheme urges the network to yield group optimality, or
Pareto efficiency (Pardalos et al., 2008). As we will show
through experiments, this improves convergence of training
modern architectures, as richer information flows between
layers to compute the updates. We name our method Dy-
namic Game Theoretic Neural Optimizer (DGNOpt).

Notably, casting the network as a realization of the game has
appeared in analyzing the convergence of Back-propagation
(Balduzzi, 2016) or contribution of neurons (Stier et al.,
2018; Ghorbani & Zou, 2020). Our work instead focuses on
developing game-theoretic training methods and how they
can be connected to, or generalize, existing optimizers. In
summary, we present the following contributions.

• We draw a novel algorithmic characterization from the
Nash equilibria perspective by framing the training pro-
cess as solving a multi-player dynamic game.

• We propose DGNOpt, a game-theoretic optimizer that
generalizes OCT-inspired methods to richer network
class and encourages cooperative updates among layers
with an enlarged information structure.

• Our method achieves competitive results on image clas-
sification with residual and inception nets, enabling rich
applications from robust control and bandit analysis.

2. Preliminaries
Notation: Given a real-valued function Fs indexed by
s ∈ S, we shorthand its derivatives evaluated on (xs, θs)
as ∇xs

Fs≡Fsx, ∇2
xs
Fs≡Fsxx, and ∇xs

∇θsFs≡Fsxθ, etc.
Throughout this work, we will preserve n ∈ {1, · · ·, N}
as the player index and t ∈ {0, 1, · · ·, T−1} as the propa-
gation order along the network, or equivalently the stage
sequence of the game (see Fig. 1). We will abbreviate them
as n∈[N ] and t∈[T ] for brevity. Composition of functions
is denoted by f(g(·)) ≡ (f ◦ g)(·). We use †, � and ⊗ to
denote pseudo inversion, Hadamard and Kronecker product.
A complete notation table can be found in Appendix A.

2.1. Training Feedforward Nets with Optimal Control

Let the layer propagation rule in feedforward networks (e.g.
fully-connected and convolution networks) with depth T be

zt+1 =ft(zt, θt), t ∈ [T ], (1)

where zt and θt represent the vectorized hidden state and pa-
rameter at each layer t. For instance, θt := vec([Wt, bt]) for
a fully-connected layer, ft(zt, θt) := σ(Wtzt+bt), with
nonlinear activation σ(·). Equation (1) can be interpreted as
a discrete-time Markovian model propagating the state zt
with the tunable variable θt. With that, the training process,
i.e. finding optimal parameters {θt : t∈[T ]} for all layers,
can be described by Optimal Control Programming (OCP),

min
θt:t∈[T ]

L :=

[
φ(zT ) +

T−1∑
t=0

`t(θt)

]
s.t. (1). (2)

The objective L consists of a loss φ incurred by the network
prediction zT (e.g. cross-entropy in classification) and the
layer-wise regularization `t (e.g. weight decay). Despite
(2) considers only one data point z0, it can be easily modi-
fied to accept batch training (Weinan et al., 2018). Hence,
minimizing L sufficiently describes the training process.

Equation (2) provides an OCP characterization of training
feedforward networks. First, the optimality principles to
OCP, according to standard optimal control theory, typically
involve solving some time-dependent objectives recursively
from the terminal stage T . Previous works have shown that
these backward processes relate closely to the computation
of Back-propagation (Li et al., 2017a; Liu et al., 2021).
Further, the parameter update of each layer, θt←θt−δθt,
can be seen as solving these layer-wise OCP objectives
with certain approximations. To ease the notational burden,
we leave a thorough discussion in Appendix B. We stress
that this intriguing connection is, however, limited to the
particular network class described by (1).

2.2. Multi-Player Dynamic Game (MPDG)

Following the terminology in Yeung & Petrosjan (2006), in
a discrete-time N -player dynamic game, Player n commits
to the action θt,n at each stage t and seeks to minimize

Ln(θ̄n; θ̄¬n) :=

[
φn(xT ) +

T−1∑
t=0

`t,n(θt,1, · · ·, θt,N )

]
s.t. xt+1=Ft(xt, θt,1, · · ·, θt,N ), θt,n ≡ θt,n(ηt,n), (3)

where θ̄n := {θt,n : t ∈ [T ]} denotes the action sequence
for Player n throughout the game. The set ¬n := {i∈[N ] :
i 6=n} includes all players except Player n. The key compo-
nents that characterize an MPDG (3) are detailed as follows.

• Shared dynamics Ft. The stage-wise propagation rule
for xt, affected by actions across all players θt,n,∀n.
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• Payoff/Cost Ln. The objective for each player that
accumulates the costs (φn, `t,n) incurred at each stage.

• Information structure ηt,n. A set of information
available to Player n at t for making the decision θt,n.

The Nash equilibria {(θ̄∗1 , · · · , θ̄∗N )} to (3) is a set of sta-
tionary points where no player has the incentive to deviate
from the decision. Mathematically, this can be described by

Ln(θ̄∗n; θ̄∗¬n) ≤ Ln(θ̄n; θ̄∗¬n), ∀n ∈ [N ], ∀θ̄n ∈ Θ̄n,

where Θ̄n denotes the set of admissible actions for Player n.
When the players agree to cooperate upon an agreement
on a set of strategies and a mechanism to distribute the
payoff/cost, a cooperative game (CG) of (3) will be formed.
CG requires additional optimality principles to be satisfied.
This includes (i) group rationality (GR), which requires all
players to optimize their joint objective,

L∗ := min
θ̄1,··· ,θ̄N

∑N
n=1 Ln(θ̄n; θ̄¬n), (4)

and (ii) individual rationality (IR), which requires the cost
distributed to each player from L∗ be at most the cost he/she
will suffer if plays against others non-cooperatively. Intu-
itively, IR justifies the participation of each player in CG.

3. Dynamic Game Theoretic Perspective
3.1. Formulating DNNs as Dynamic Games

In this section, we draw a novel perspective between the
three components in MPDG (3) and the training process
of generic (i.e. non-Markovian) DNNs. Given a network
composed of the layer modules {fi(·, θi)}, where θi denotes
the trainable parameters of layer fi similar to (1), we treat
each layer as a player in MPDG. The network can be con-
verted into the form of Ft by indexing i := (t, n), where t
represents the sequential order from network input to predic-
tion, and n denotes the index of layers aligned at t. Fig. 2
demonstrates such an example for a residual block. When
the network propagation collapses from multiple paths to a
single one, we can consider either duplicated players shar-
ing the same path or dummy players with null action space.
Hence, w.l.o.g. we will treat N as fixed over t. Notice
that the assignment i := (t, n) may not be unique. We will
discuss its algorithmic implication later in §5.2.

Once the shared dynamics is constructed, the payoff Ln
can be readily linked to the training objective. Since `t,n
corresponds to the weight decay for layer ft,n, it follows that
`t,n := `t,n(θt,n). Also, we will have φn := φ whenever all
(p)layers share the same task,1 e.g. in classification. In short,
the network architecture and training objective respectively
characterize the structure of a dynamic game and its payoff.

1One of the examples for multi-task objective is the auxiliary
loss used in deep reinforcement learning (Jaderberg et al., 2016).

Figure 2. Example of representing a residual block as Ft. Note
that xt augments all hidden states across parallel paths.

3.2. Information Structure and Nash Optimality

We now turn into the role of information structure ηt,n. Stan-
dard game-theoretic analysis suggests that ηt,n determines
the type of Nash equilibria inherited in the MPDG (Petros-
jan, 2005). Below we introduce several variants that are of
our interests, starting from the one with the least structure.
Definition 1 (Open-loop Nash equilibrium (OLNE)). Let
ηO
t,n := {x0} be the open-loop information structure. Then

a set of action, {θ∗t,n : ∀t, n}, provides an OLNE to (3) if

θ∗t,n = arg min
θt,n

Ht,n(xt,pt+1,n, θt,n, θ
∗
t,¬n), (5)

where θ∗t,n ≡ θ∗t,n(ηO
t,n) and Ht,n := `t,n + FT

t pt+1,n

is the Hamiltonian for Player n at stage t. The co-state pt,n
is a vector of the same size as xt and can be simulated from
the backward adjoint process, (pt,n,pT,n):=(Ht,n

x , φnx).

The Hamiltonian objective Ht,n varies for each (t, n) and
depends on the proceeding stage via co-state pt+1,n. When
N=1, (5) degenerates to the celebrated Pontryagin princi-
ple (Pontryagin et al., 1962), which provides the necessary
condition to OCP (2). This motivates the following result.
Proposition 2. Solving θ∗t,n= arg minHt,n with the itera-
tive update, θt,n ← θt,n−M †Ht,n

θ , recovers the descent
direction of standard training methods. Specifically, setting

M :=


I

diag

(√
Ht,n
θ �Ht,n

θ

)
Ht,n
θ Ht,n

θ

T

yields

 SGD
RMSprop .
Gauss-Newton

Proposition 2 provides a similar OCP characterization (c.f.
§2.1) except for a more generic network class represented
by Ft. It also gives our first game-theoretic interpretation of
DNN training: standard training methods implicitly match
an OLNE defined upon the network propagation. The proof
(see Appendix C) relies on constructing a set of co-state
pt,n such that Ht,n

θ ≡∇θt,nHt,n gives the exact gradient
w.r.t. the parameter of layer ft,n. The degenerate infor-
mation structure ηO

t,n implies that optimizers of this class
utilize minimal knowledge available from the game (i.e. net-
work) structure. This is in contrast to the following Nash
equilibrium which relies on richer information.
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Table 1. Dynamic game theoretic perspective of DNN training.

Nash
Equilibria

Information
Structure

Optimality
Principle

Class of
Optimizer

OLNE ηO
t,n minHt,n in (5) Baselines

FNE ηC
t,n minQt,n in (6) DGNOpt (ours)

GR ηC-CG
t,n minPt in (7) DGNOpt (ours)

Definition 3 (Feedback Nash equilibrium (FNE)). Let
ηC
t,n:={xs : s≤ t} be the closed-loop information structure.

Then a set of strategy, {π∗t,n : ∀t, n}, is called a FNE to (3)
if it is the solution to the Isaacs-Bellman equation (6).

Vt,n(xt) = min
πt,n

Qt,n(xt, πt,n, π
∗
t,¬n),

VT,n = φn, where Qt,n := `t,n + Vt+1,n ◦ Ft
(6)

is the Isaacs-Bellman objective for Player n at stage t. Also,
πt,n ≡ θt,n(xt; η

C
t,n) denotes any arbitrary mapping from

xt to θt,n, conditioned on the closed-loop structure ηC
t,n.

For the closed-loop information structure ηC
t,n, each player

has complete access to all preceding states until the cur-
rent stage t. Consequently, it is preferable to solve for a
state-dependent, i.e. feedback, strategy π∗t,n rather than a
state-independent action θ∗t,n as in OLNE. Similar to (5), the
Isaacs-Bellman objective Qt,n is constructed for each (t, n),
except now carrying a function Vt,n(·) backward from the
terminal stage, rather than the co-state. This value func-
tion Vt,n summarizes the optimal cost-to-go for Player n
from each state xt, provided all afterward stages are mini-
mized accordingly. When N=1, (6) collapses to standard
Dynamic Programming (DP; Bellman (1954)), which is an
alternative optimality principle parallel to the Pontryagin.
For nontrivial N>1, solving the FNE optimality (6) pro-
vides a game-theoretic extension for previous DP-inspired
training methods, e.g. Liu et al. (2021), to generic (i.e.
non-Markovian) architectures.

3.3. Cooperative Game Optimality

Now, let us consider the CG formulation. When a cooper-
ative agreement is reached, each player will be aware of
how others react to the game. This can be mathematically
expressed by the following information structures,

ηO-CG
t,n := {x0, θ

∗
t,¬n} and ηC-CG

t,n := {xs, π∗t,¬n : s ≤ t},

which enlarge ηO
t,n and ηC

t,n with additional knowledge from
other players, ¬n. We can characterize the inherited opti-
mality principles similar to OLNE and FNE. Take ηC-CG

t,n for
instance, the joint optimization in GR (4) requires
Definition 4 (Cooperative feedback solution). A set of strat-
egy, {π∗t,n : ∀t, n}, provides an optimal feedback solution
to the joint optimization (4) if it solves
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Figure 3. (a) The cooperative-block network and (b) its training
performance on MNIST when the optimizer (EKFAC) is exposed
to different information structure ηt,n. Note that by Proposition 2,
the EKFAC baseline utilizes only the open-loop structure ηO

t,n.

Wt(xt) = min
πt,n:n∈[N ]

Pt(xt, πt,1, · · ·, πt,N ), (7)

WT =
∑N
n=1 φn, where Pt :=

∑N
n=1 `t,n +Wt+1 ◦ Ft

is the “group-rational” Bellman objective at stage t. πt,n ≡
θt,n(xt; η

C-CG
t,n ) denotes arbitrary mapping from xt to θt,n,

conditioned on the cooperative closed-loop structure ηC-CG
t,n .

Notice that (7) is the GR extension of (6). Both optimality
principles solve for a set of feedback strategies, except the
former considers a joint objective Pt summing over all play-
ers. Hence, it is sufficient to carry a joint value function Wt

backward. We leave the discussion on ηO-CG
t,n in Appendix C.

To emphasize the importance of information structure, con-
sider the architecture in Fig. 3a, where each pair of parallel
layers shares the same input and output; hence the network
resembles a two-player dynamic game with Ft := ft,1+ft,2.
As shown in Fig. 3b, providing different information struc-
tures to the same optimizer, EKFAC (George et al., 2018),
greatly affects the training. Having richer information tends
to achieve better performance. Additionally, the fact that

ηO
t,n ⊂ ηC

t,n ⊂ ηC-CG
t,n and ηO

t,n ⊂ ηO-CG
t,n ⊂ ηC-CG

t,n (8)

also implies an algorithmic connection between different
classes of optimizers, which we will explore in §4.3.

Table 1 summarizes our game-theoretic analysis. Each in-
formation structure suggests its own Nash equilibria and
optimality principle, which characterizes a distinct class of
training methods. We already established the connection
between baselines and Ht,n in Proposition 2. In the next
section, we will derive methods for solving (Qt,n, Pt).

4. Training DNN by Solving Dynamic Game
In this section, we derive a new second-order method, called
Dynamic Game Theoretic Neural Optimizer (DGNOpt),
that solves (6) and (7) as an alternative to training DNNs.
While we will focus on the residual network for its popu-
larity and algorithmic simplicity when deriving the analytic
update, we stress that our methodology applies to other
architectures. A full derivation is left in Appendix D.
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4.1. Iterative Update via Linearization

Computing the game-theoretic objectives (Qt,n, Pt) re-
quires knowing (Ft, `t,n, φn). Despite they are well-defined
from §3.1, carrying Qt,n or Pt as a stage-varying function
is computationally impractical even on a relatively low-
dimensional system (Tassa et al., 2012), let alone DNNs.
Since the goal is to derive an incremental update given par-
tial (e.g. mini-batch) data at each training iteration, we can
consider solving them approximately via linearization.

Iterative methods via linearization have been widely used
in real-time OCP (Pan et al., 2015; Tassa et al., 2014). We
adopt a similar methodology for its computational efficiency
and algorithmic connection to existing training methods
(shown later). First, consider solving the FNE recursion (6)
by π∗t,n≈ arg minQt,n. We begin by performing second-
order Taylor expansion on Qt,n w.r.t. to the variables that
are observable to Player n at stage t according to ηC

t,n.

Qt,n ≈
1

2

 1
δxt
δθt,n

T
 Qt,n Qt,nx

T
Qt,nθ

T

Qt,nx Qt,nxx Qt,nθx
T

Qt,nθ Qt,nθx Qt,nθθ


 1

δxt
δθt,n


Note that δθt,¬n does not appear in the above quadratic
expansion since it is unobservable according to ηC

t,n. The
derivatives of Qt,n w.r.t. different arguments follow stan-
dard chain rule (recall Qt,n := `t,n + Vt+1,n ◦Ft), with the
dynamics linearized at some fixed point (xt, θt,n), e.g.

Qt,nθ = `t,nθ + F tθ
T
V t+1,n
x , Qt,nθx = F tθ

T
V t+1,n
xx F tx.

The analytic solution to this quadratic expression is given by
π∗t,n=θt,n−δπ∗t,n, with the incremental update δπ∗t,n being

δπ∗t,n = kt,n + Kt,nδxt.

kt,n := (Qt,nθθ )†Qt,nθ and Kt,n := (Qt,nθθ )†Qt,nθx
(9)

are called the open and feedback gains. The superscript †

denotes the pseudo inversion. Note that δπ∗t,n is only locally
optimal around the region where the quadratic expansion re-
mains valid. Since xt augments preceding hidden states (e.g.
xt:=[zt, zt−1]T in Fig. 2), (9) implies that preceding hidden
states contribute to the update via linear superposition.

Substituting the incremental update δπ∗t,n back to the FNE
recursion (6) yields the local expression of the value func-
tion Vt,n, which will be used to compute the preceding up-
date δπ∗t−1,n. Since the computation depends on Vt,n only
through its local derivatives V t,nx and V t,nxx , it is sufficient
to propagate these quantities rather than the function itself.
The propagation formula is summarized in (10). This proce-
dure (line 4-7 in Alg. 1) repeats recursively backward from
the terminal to initial stage, similar to Back-propagation.

V t,nx = Qt,nx −Q
t,n
xθ kt,n, V T,nx = φnx,

V t,nxx = Qt,nxx−Q
t,n
xθKt,n, V T,nxx = φnxx.

(10)

Algorithm 1 Dynamic Game Theoretic Neural Optimizer

1: Input: dataset D, network F ≡ {Ft : t ∈ [T ]}
2: repeat
3: Compute xt by propagating x0 ∼ D through F
4: for t = T−1 to 0 do B Solve FNE or GR
5: Solve the update δπ∗t,n with (9) or (11)
6: Solve (V t,nx ,V t,nxx ) or (W t

x,W
t
xx) with (10) or (25)

7: end for
8: Set x′0 = x0

9: for t = 0 to T−1 do B Update parameter
10: Apply θt,n←θt,n−δπ∗t,n(δxt) with δxt=x′t−xt
11: Compute x′t+1 = Ft(x

′
t, θt,1, · · · , θt,N )

12: end for
13: until converges

Derivation for CG follows similar steps except we consider
solving the GR recursion (7) by π∗t,n≈ arg minPt. Since
all players’ actions are now observable from ηC-CG

t,n , we need
to expand Pt w.r.t. all arguments. For notational simplicity,
let us denote u ≡ θt,1,v ≡ θt,2 in Fig. 2. In the case when
each player minimizes Pt independently without knowing
the other, we know the non-cooperative update for Player 2
admits the form2 of δvt = It + Ltδxt. Now, the locally-
optimal cooperative update for Player 1 can be written as

δπ∗t,1 = k̃t + K̃tδxt, where (11)

k̃t := P̃ t †uu(P tu − P tuvIt), K̃t := P̃ t †uu(P tux − P tuvLt).

Similar equations can be derived for Player 2. We will refer
P̃ tuu:=P tuu−P tuvP

t †
vv P

t
vu as the cooperative precondition.

The update (11), despite seemly complex, exhibits intriguing
properties. For one, notice that computing the cooperative
open gain k̃t for Player 1 involves the non-cooperative open
gain It from Player 2. In other words, each player adjusts
the strategy after knowing the companion’s action. Similar
interpretation can be drawn for the feedbacks K̃t and Lt.
Propagation of (W t

x,W
t
xx) follows similarly as (10) once

all players’ updates are computed. We leave the complete
formula in (25) (see Appendix D.1) since it is rather tedious.

Let us discuss the role of δxt and how to compute them.
Conceptually, δxt can be any deviation away from the fixed
point xt where we expand the objectives, Qt,n or Pt. In
MPDG application, it is typically set to the state difference
when the parameter updates are applied until stage t,

δxt := (Ft−1◦ · · · ◦F0)(x0, {θ + δπ∗}<t,∀n)− xt, (12)

where {δπ∗}<t,∀n := {δπ∗s,n : s<t,∀n} collects all play-
ers’ updates until stage t. In this view, the feedback compen-
sates all changes, including those that may cause instability,
cascading from the preceding layers; hence it tends to ro-
bustify the training process (Pantoja, 1988; Liu et al., 2021).

2Similar to (9), we have It := P t †
vv P

t
v and Lt := P t †

vv P
t
vx.
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Figure 4. How δπ∗t,n is applied (c.f. line 8-12 in Alg. 1) to a resid-
ual block. We compute δxt with a forward propagation (12) and
simultaneously update the parameter. The solid yellow box denotes
the feedback dependent on the preceding hidden states zs≤t.

Alg. 1 presents the pseudo-code of DGNOpt, which consists
of (i) the same forward propagation through the network
(line 3), (ii) a distinct game-theoretic backward process that
solves either FNE or GR optimality (line 4-7), and (iii) an
additional forward pass that applies the feedback updates
δπ∗t,n (line 8-12; also Fig. 4). We stress that Alg. 1 accepts
any generic DNN so long as it can be represented by Ft.

4.2. Curvature Approximation

Naively inverting the parameter curvature, i.e. (Qt,nθθ )† and
P̃ t †uu , can be computationally inefficient and sometimes un-
stable for practical training. To mitigate the issue, we adopt
curvature amortizations (Kingma & Ba, 2014; Hinton et al.,
2012) used in DNN training. These methods naturally fit
into our framework by recalling Proposition 2 that different
baselines differ in how they estimate the curvature Ht,n

θθ for
the preconditioned update Ht.n †

θθ Ht,n
θ . With this in mind,

we can estimate the FNE parameter curvature Qt,nθθ with

Qt,nθθ ≈ Q
t,n
θ Qt,nθ

T
or diag(

√
Qt,nθ �Q

t,n
θ ), (13)

which resembles the Gauss-Newton (GN) matrix or its adap-
tive diagonal matrix (as appeared in RMSProp and Adam).

As for P̃ t †uu , which contains an inner inversion P t †vv inside
P̃ tuu, we propose a new approximation inspired by the Kro-
necker factorization (KFAC; Martens & Grosse (2015)).
KFAC factorizes the GN matrix with two smaller-size ma-
trices. We leave the complete discussion on KFAC, as well
as the proof of the following result, in Appendix D.2.
Proposition 5 (KFAC for P̃ tuu). Suppose P tuu and P tvv are
factorized with some vectors z1, z2, g1, g2 by

P tuu ≈ E[z1z
T
1 ]⊗ E[g1g

T
1 ] =: Auu ⊗Buu,

P tvv ≈ E[z2z
T
2 ]⊗ E[g2g

T
2 ] =: Avv ⊗Bvv,

where the expectation is taken over the mini-batch data. Let
Auv := E[z1z

T
2 ] and Buv := E[g1g

T
2 ], then the coopera-

tive precondition matrix in (11) can be factorized by

P̃ tuu ≈ Ãuu ⊗ B̃uu (14)

= (Auu −AuvA
†
vvA

T
uv)⊗ (Buu −BuvB

†
vvB

T
uv).

In practice, we set (z1, z2, g1, g2):=(zt, zt−1,W
t+1
zt

,W t+1
zt−1

)
for the residual block in Fig. 2 or 4. With Proposition 5, we
can compute the update, take k̃t for instance, by

k̃t = vec(B̃†uu(P tu −Buvvec†(It)A
T
uv)Ã−Tuu), (15)

where vec† is the inverse operation of vectorization (vec).

Another computation source comes from the curvature w.r.t.
the MPDG state, i.e. V t,nxx and W t

xx. Here, we approximate
them with low-rank matrices using either Gauss-Newton or
their top eigenspace. These are rather reasonable approx-
imations since it has been constantly observed that these
Hessians are highly degenerate for DNNs (Wu et al., 2020;
Papyan, 2019; Sagun et al., 2017). With all these, we are
able to train modern DNNs by solving their corresponding
dynamic games, (6) or (7), with a runtime comparable to
other first and second-order methods (see Fig. 7).

4.3. Algorithmic Connection

Finally, let us discuss an intriguing algorithmic equivalence.
Recall the subset relation among the information structures
in (8). Manipulating these structures allows one to traverse
between different game optimality principles. For instance,
masking π∗t,¬n in ηC-CG

t,n makes it degenerate to ηC
t,n, which

implies the FNE and GR optimality become equivalent.
Through this lens, one may wonder if a similar algorithmic
relation can be drawn for these iterative updates. This is in-
deed the case as shown below (proof left in Appendix D.3).
Theorem 6 (Algorithmic equivalence).

• (11) with P tuv := 0 gives (9)

• (9) with (Qt,nθx , Q
t,n
θθ ) := (0, I) gives SGD

• (11) with (P tuv, P
t
ux, P

t
uu) := (0,0, I) gives SGD

Setting Qt,nθθ and P tuu to other precondition matrices, simi-
lar to (13), recovers other baselines.

The intuition behind Theorem 6 is that when higher-order
(>2) expansions are discarded, setting P tuv := 0 completely
blocks the communication between two players; therefore
we effectively remove π∗t,¬n from ηC-CG

t,n . Similarly, forcing
Qt,nθx := 0 prevents Player n from observing how changing
xt may affect the payoff, hence one can at best achieve the
same OLNE optimality as baselines. Theorem 6 implies
that (9) and (11) generalize standard updates to richer infor-
mation structure; thereby creating more complex updates.

5. Experiment
5.1. Evaluation on Classification Datasets

Datasets and networks. We verify the performance of
DGNOpt on image classification datasets as they are suitable
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Table 2. Accuracy (%) of residual-based networks (averaged over 6 random seeds)

Dataset Baselines (i.e. minHt,n in OLNE) DGNOpt
(ours)SGD RMSProp Adam EKFAC EMSA

MNIST 98.65 98.61 98.49 98.77 98.25 98.76
SVHN 88.58 88.96 89.20 88.75 87.40 89.22
CIFAR10 82.94 83.75 85.66 85.65 75.60 85.85
CIFAR100 71.78 71.65 71.96 71.95 62.63 72.24

Table 3. Accuracy (%) of inception-based networks (averaged over 4 random seeds)

Dataset Baselines (i.e. minHt,n in OLNE) DGNOpt
(ours)SGD RMSProp Adam EKFAC EMSA

MNIST 97.96 97.75 97.72 97.90 97.39 98.03
SVHN 87.61 86.14 86.84 88.89 82.68 88.94
CIFAR10 76.66 74.38 75.38 77.54 70.17 77.72

SGD RMSprop Adam EKFAC
MNIST
SVHN

CIFAR10
CIFAR100

+0.05 -0.02 +0.05 -0.01

+1.32 +0.06 +0.02 +1.16

+0.35 +0.68 +0.19 +0.09

+0.28 +0.26 +0.23 +0.29

SGD RMSprop Adam EKFAC
MNIST

SVHN

CIFAR10

+0.07 +0.10 +0.05 +0.03

+0.26 +0.10 +0.19 +0.05

+0.42 +0.21 +0.25 +0.18

< -0.3

0

> 0.5

Figure 5. Accuracy (%) improvement (+) or degra-
dation (-) when richer information structure, i.e.
ηO
t,n→{ηC

t,n, η
C-CG
t,n }, is used for each best-tuned

baseline3 in Table 2 (upper) and Table 3 (bottom).
Color bar is scaled for best view.

Figure 6. Architecture of the inception block.

testbeds for modern networks that contain non-Markovian
dependencies. Specifically, we first consider residual-based
networks given their popularity and our thorough discus-
sions in §4. For larger datasets such as CIFAR10/100, we
train ResNet18 with multi-stepsize learning rate decay. For
MNIST and SVHN, we use residual networks composed of
3 residual blocks (see Fig. 2). Meanwhile, we also consider
inception-based networks, which composed of an inception
block (see Fig. 6) that resembles a 4-player dynamic game.
All networks use ReLU activation and are trained with 128
batch size. Other setups are detailed in Appendix E.

Baselines. Motivated by our discussion in §3, we compare
DGNOpt, which essentially solves FNE and GR, with meth-
ods involving OLNE either implicitly or explicitly. This
includes standard training methods such as SGD, RMSprop,
Adam, and EKFAC (George et al., 2018), which is an ex-
tension to the second-order method KFAC with eigenvalue-
correction. To also compare against OCT-inspired methods,
we include EMSA (Li et al., 2017a), which explicitly mini-
mizes a modified Hamiltonian. Other OCT-based training
methods mostly consider degenerate, e.g. discrete-weighted
(Li & Hao, 2018) or Markovian (Liu et al., 2021), networks.
In this view, DGNOpt generalizes those methods to both
larger network class and richer information structure.

Performance and ablation study. Table 2 and 3 summa-
rize the performance for the residual and inception networks.
On most datasets, DGNOpt achieves competitive results
against standard methods and outperforms EMSA by a large
margin. Despite both originates from the OCT methodol-
ogy, in practice EMSA often exhibits numerical instability
for larger networks. On the contrary, DGNOpt leverages

iteration-based linearization and amortized curvature, which
greatly stabilizes the training.

On the other hand, DGNOpt distinguishes itself from stan-
dard baselines by considering a larger information structure.
To validate the benefit of having this additional knowledge
during training, we conduct an ablation study using the al-
gorithmic connection built in Theorem 6. Specifically, we
measure the performance difference when the best-tuned
baselines, i.e. the ones we report in Table 2 and 3, are further
allowed to utilize higher-level information. Algorithmically,
this can be done by running DGNOpt with the parameter cur-
vature replaced by the precondition matrix of each baseline.
For instance, replacing all Qt,nθθ with identity matrices I
while keeping other computation unchanged is equivalent to
lifting SGD to accept the closed-loop structure ηC

t,n. From
Theorem 6, these two training procedures now differ only
in the presence of Qt,nθx , which allows SGD to adjust its
update based on the change of xt ∈ ηC

t,n. As shown in
Fig. 5, enlarging the information structure tends to enhance
the performance, or at least being innocuous. We highlight
these improvements as the benefit gained from introducing
dynamic game theory to the original OCT interpretation.

Overhead vs performance trade-offs. As shown in Fig. 7,
DGNOpt enjoys a comparable runtime and memory com-
plexity to standard methods on training ResNet18. Specif-
ically, its per-iteration runtime is around ±40% compared
to the second-order baseline, depending on the information
structures (DGNOpt-FNE v.s. DGNOpt-GR). In practice,
these gaps tend to vanish for smaller networks. The over-
head introduced by DGNOpt enables the computation of
feedback updates using a richer information structure. From
the OCT standpoint, the feedback is known to play a key
role in compensating the unstable disturbance along the
propagation. Particularly, when problems inherit chained

3The ablation analysis in Fig. 5 applies Theorem 6 to methods
that solve the exact Hamiltonian; hence excludes EMSA since it
instead considers a modified Hamiltonian (see Appendix E).
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Figure 7. Our second-order method DGNOpt exhibits similar run-
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Figure 8. Training inception-based networks using larger step
sizes, where MNIST (resp. SVHN) uses lr=1.0 (resp. lr=2.0).

constraints (e.g. DNNs), these feedback-enhanced meth-
ods often converge faster with superior numerical stability
against standard methods (Murray & Yakowitz, 1984).

To validate the role of feedback in training modern DNNs,
notice that one shall expect the effect of feedback becomes
significant when a larger step size is taken. This is because
(see (12)) larger δπ∗ increases δxt, which amplifies the
feedback Kδxt. Fig. 8 confirms our hypothesis, where we
train the inception-based networks on MNIST and SVHN
using relatively large learning rates. It is clear that utilizing
feedback updates greatly stabilizes the training. While the
SGD baseline struggles to make stable progress, DGNOpt
converges almost flawlessly (with negligible overhead). As
for well-tuned hyperparameter which often has a smaller
step size, our ablation analysis in Fig. 5 suggests that having
feedbacks throughout the stochastic training generally leads
to better local minima.

5.2. Game-Theoretic Applications

Cooperative training with fictitious agents. Despite all
the rigorous connection we have explored so far, it is perhaps
unsatisfactory to see our multi-agent analysis degenerates
when facing feedforward networks, since the number of
player N becomes trivially 1. We can remedy this scenario
by considering the following transformation.

Ft(zt, θt,1, · · ·, θt,N ) := ft(zt, θt),
∑N
n=1 θt,n=θt (16)

In other words, we can divide the layer’s weight (or player’s
action) into multiple parts, so that the MPDG framework
remains applicable. Interestingly, the transformation of this
kind resembles game-theoretic robust optimal control (Pan
et al., 2015; Sun et al., 2018), where the controller (or player
in our context) models external disturbances with fictitious
agents, in order to enhance the robustness or convergence

Table 4. Convergence speed w.r.t. N . Numerical values report the
training steps required to achieve certain accuracy on each dataset.

Achieved Number of Player (N ) in SGD
Performance 1 2 4 6

80% in SVHN 5.14k 2.31k 1.25k 0.8k
60% in CIFAR10 3.62k 2.97k 2.98k 5.83k

89

90
SVHN Final Accu.
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Figure 9. (a) Training curve and (b) final accuracy as we vary the
number of player (N ) as a hyperparameter of game-extended SGD.

of the optimization process.

Fig. 9 and Table 4 provide the training results when SGD
presumes different numbers of players interacting in a feed-
forward network consisting of 4 convolution and 2 fully-
connected layers (see Appendix E). Notice that N=1 cor-
responds to the original method. For N>1, we apply the
transformation (16) then solve for the cooperative update
as in DGNOpt. We stress that these fictitious agents only
appear during the training phase for computing the coopera-
tive updates. At inference, actions from all players collapse
back to θt by the summation in (16).

While it is clear that encouraging agents to cooperate during
training can achieve better minima at a faster rate, having
more agents, surprisingly, does not always imply better
performance. In practice, the improvement can slow down
or even degrade once N passes some critical values. This
implies that N shall be treated as a hyper-parameter of these
game-extended methods. Empirically, we find that N=2
provides a good trade-off between the final performance and
convergence speed. We observe a consistent result for this
setup on other optimizers (see Appendix E for EKFAC).

Adaptive alignment using multi-armed bandit. Finally,
let us discuss an application of the bandit algorithm in our
framework. In §3.1, we briefly mentioned that mapping
from modern networks to the shared dynamics Ft most
likely will not be unique. For instance (see Fig. 10a), plac-
ing the shortcut module of a residual block at different
locations leads to different Ft; hence results in different
DGNOpt updates. This is a distinct feature arising exclu-
sively from our MPDG framework, since these alignments
are unrecognizable to standard baselines. It naturally raises
the following questions: what is the optimal strategy to align
the (p)layers of the network in our dynamic game, and how
do different aligning strategies affect training?
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Table 5. Training result (accuracy %) of Fig. 10 on two datasets.

Dataset EKFAC DGNOpt + Aligning Strategy
fixed random adaptive

SVHN 87.49 88.20 88.12 88.33
CIFAR10 84.67 85.20 85.27 85.65

0 0.5k 1k 1.5k
Train Iteration

40

80
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cu
ra

cy
 (%

)
SVHN Training Curve (Early 25%)

EKFAC
DGNOpt-fixed
DGNOpt-random
DGNOpt-adaptive

(a) (b)
t− 1 t t+ 1

Figure 10. (a) Different alignments of the same residual block leads
to distinct DGNOpt updates, yet they are unrecognizable to base-
lines. (b) Early phase of training with different aligning strategies.

To answer these questions, we compare the performance be-
tween three strategies, including (i) using a fixed alignment
throughout training, (ii) random alignment at each iteration,
and (iii) adaptive alignment using a multi-armed bandit. For
the last case, we interpret pulling an arm as selecting one
of the alignments and associate the round-wise reward with
the validation accuracy at each iteration. Note that this is a
non-stationary bandit problem since the reward distribution
of each arm/alignment evolves as we train the network. We
provide the pseudo-code of this procedure in Appendix E.

Fig. 10b and Table 5 report the results of DGNOpt using dif-
ferent aligning strategies. We also include the baseline when
the information structure shrinks from ηC-CG

t,n to ηO
t,n, similar

to the ablation study in §5.1. In this case, all these DGNOpt
variants degenerate to EKFAC. For the non-stationary ban-
dit, we find EXP3++ (Seldin & Slivkins, 2014) to be suffi-
cient in this application. While DGNOpt with fixed align-
ment already achieves faster convergence compared with the
baseline, dynamic alignment using either random or adap-
tive strategy leads to further improvement (see Fig. 10b).
Notably, having the adaptation throughout training also en-
hances the final accuracy. For CIFAR10 with ResNet18, the
value is boost by 1% from baseline and 0.5% compared with
the other two strategies. This sheds light on new algorithmic
opportunities inspired by architecture-aware optimization.

6. Discussion
Comparison to Markovian-based OCT-inspired meth-
ods. As we briefly mentioned in §3.2, our DGNOpt (with
FNE) can be seen as a game-theoretic extension of Liu et al.
(2021), which is also an OCT-inspired method despite con-
cerning only Markovian networks. It is natural to wonder
whether these two methods are interchangeable since one
can always force a non-Markovian system to be Markovian
by lifting it into higher dimensions or aggregating the state.

Here, we stress that our DGNOpt differs from Liu et al.
(2021) in many significant ways. For one, forming a Marko-
vian chain by grouping the non-Markovian layers into higher
dimensions leads to a degenerate information structure. The
(p)layers inside each Markovian group, {ft,n : t−<t<t+},
only have access to xs≤t− rather than full latest information
xs≤t as in DGNOpt, since their dependencies are discarded.
From the Nash standpoint, this leads to degenerate backward
optimality and update rules. Indeed, in the limit when we
simply group the whole network as single-step dynamics, we
will recover ηO

t,n,{x0} in baselines. In contrast, DGNOpt
fully leverages the structural relation of the network, hence
enables rich game-based applications, e.g. bandit or robust
control, that are otherwise infeasible with Liu et al. (2021).

Degeneracy when partitioning parameters as players.
In §5.2, we demonstrate a specific transformation, i.e. (16),
that makes cooperative training possible for single-player
feedforward networks while respecting our layer-as-player
game formulation. This transformation may seem artificial
at first glance compared to a naive alternative that directly
partitions the parameters of each layer as distinct players.
Unfortunately, the latter strategy yields degenerate coop-
erative optimality. To see it, notice that treating the πt,n
appeared in the joint optimization (7) as the nth-partitioned
parameters of layer t is equivalent to solving the FNE opti-
mality (6) with N=1 (so that the πt,N=1 in (6) becomes the
intact parameters of layer t). Hence, it collapses to the prior
single-player non-cooperative method (Liu et al., 2021),

0 5k 10k
Train Iteration

40

80

Ac
cu

. (
%

)
SVHN Training Curve

Liu et al. 2021 baseline 
(params as players)
DGNOpt w/ N=2
(layers as players)

Figure 11. Convergence using dif-
ferent dynamic game formulations
with the same setup as Fig. 9a.

which converges much
slower than our DGNOpt
(Fig. 11). Our proposed
transformation (16) en-
ables collaborative con-
trol and may be naturally
extended to other robust
formulations, e.g. mini-
max adversarial training.

7. Conclusion
In this work, we introduce a novel game-theoretic characteri-
zation by bridging the training process of DNN with a multi-
agent dynamic game. The inspired optimizer, DGNOpt,
generalizes previous OCT-based methods to generic net-
work class and encourages cooperative updates to improve
the performance. Our work pushes forward principled algo-
rithmic design from OCT and game theory.
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Supplementary Material
A. Notation Summary

Table 6. Abbreviation.

OCT/OCP Optimal Control Theory/Programming
MPDG Multi-Player Dynamic Game
CG Cooperative Game
OLNE Open-loop Nash Equilibria
FNE Feedback Nash Equilibria
GR Group Rationality
IR Individual Rationality

Table 7. Terminology mapping.

MPDG Training generic (non-Markovian) DNNs

t

n

Stage order
Player index

Computation order from input to output
Index of parallel layers aligned at t

}
Layer index (t, n)

ft,n - Layer module indexed by (t, n)

Ft Shared dynamics Joint propagation rule of layers {ft,n : n ∈ [N ]}
θt,n Action committed at stage t by Player n Trainable parameter of layer ft,n
zt,n - Pre-activation vector of layer ft,n
xt State at stage t Augmentation of pre-activation vectors of layers {ft,n : n ∈ [N ]}
`t,n Cost incurred at stage t for Player n Weight decay for layer ft,n
φn Cost incurred at final stage T for Player n Lost w.r.t. network output (e.g. cross entropy in classification)

Table 8. Dynamic game theoretic terminology w.r.t. different optimality principles.

OLNE
ηO
t,n Open-loop information structure
Ht,n Optimality objective (Hamiltonian) for OLNE
pt,n Co-state at stage t for Player n

FNE

ηC
t,n Feedback information structure
Qt,n Optimality objective (Isaacs-Bellman objective) for FNE
Vt,n Value function for FNE
kt,n Open gain of the locally optimal update for FNE
Kt,n Feedback gain of the locally optimal update for FNE

GR

ηO-CG
t,n Cooperative open-loop information structure
ηC-CG
t,n Cooperative feedback information structure
Pt Optimality objective (group Bellman objective) for GR
Wt Value function for GR
k̃t Open gain of the locally optimal update for GR
K̃t Feedback gain of the locally optimal update for GR
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B. OCP Characterization of Training Feedforward Networks
The optimality principle to OCP (2), or equivalently the training process of feedforward networks, can be characterized by
Dynamic Programming (DP) or Pontryagin Principle (PP). We synthesize the related results below.

Theorem 7 (Bellman (1954); Pontryagin et al. (1962)).
(DP) Define a value function Vt computed recursively by the Bellman equation (17), starting from VT (zT ) = φ(zT ),

Vt(zt) = min
πt

Qt(zt, θt), where Qt(zt, θt) := `t(θt) + Vt+1(ft(zt, θt)) (17)

is called the Bellman objective. πt ≡ θt(zt) is an arbitrary mapping from zt to θt. Let π∗t be the minimizer to (17), then
{π∗t : t ∈ [T ]} is the optimal feedback policy to (2).

(PP) The optimal trajectory π∗t ≡ θ∗t (z∗t ) along (17) obeys

z∗t+1 = ∇pt+1
Ht

(
z∗t ,p

∗
t+1, θ

∗
t

)
, z∗0 = z0, (18a)

p∗t = ∇zt
Ht

(
z∗t ,p

∗
t+1, θ

∗
t

)
, p∗T = ∇zT

φ (z∗T ) , (18b)

θ∗t = arg min
θt

Ht

(
z∗t ,p

∗
t+1, θt

)
, (18c)

where (18b) is the adjoint equation for the co-state p∗t and

Ht (zt,pt+1, θt) := `t(θt) + pT
t+1ft(zt, θt)

is the discrete-time Hamiltonian.

Theorem 7 provides an OCP characterization of training feedforward networks. First, notice that the time-varying OCP
objectives (Qt, Ht) are constructed through some backward processes similar to the Back-propagation (BP). Indeed, one
can verify that the adjoint equation (18b) gives the exact BP dynamics. Similarly, the dynamics of Vt in (17) also relate
to BP under some conditions (Liu et al., 2021). The parameter update, θt ← θt − δθt, for standard training methods can
be seen as solving the discrete-time Hamiltonian Ht with different precondition matrices (Li et al., 2017a). On the other
hand, DDPNOpt (Liu et al., 2021) minimizes the time-dependent Bellman objective Qt with θt ← θt − δπt. This elegant
connection is, however, limited to the interpretation between feedforward networks and Markovian dynamical systems (1).

C. Missing Derivations in Section 3

Figure 12. Forward propagation (left) and Back-propagation (right) of a residual block and how each quantity connects to OLNE
optimality.

Proof of Proposition 2. Expand the expression of the Hamiltonian in OLNE:

Ht,n(xt,pt+1,n, θt,1, · · · , θt,N ) := `t,n(θt,1, · · · , θt,N ) + Ft(xt, θt,1, · · · , θt,N )Tpt+1,n,

where pt,n is the co-state whose dynamics obey

pt,n = ∇xt
Ht,n, pT,n = ∇xT

φn(xT ).

Recall §3.1 where we demonstrate that for training generic DNNs, one shall consider `t,n := `t,n(θt,n) and φn := φ. Hence,
the dynamics of pt,n become

pt,n = ∇xt
Ht,n, pT,n = ∇xT

φ(xT ), where Ht,n = `t,n(θt,n) + Ft(xt, θt,1, · · · , θt,N )Tpt+1,n. (19)
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Our goal is to show that (19) gives the exact Back-propagation dynamics. First, notice that the terminal condition of (19),
i.e. pT,n = ∇xT

φ, is already the gradient w.r.t. the network output without any manipulation. Next, to show that pt,n
corresponds to the Back-propagation at stage t, consider, for instance, the computation graphs of the residual block in
Fig. 12, where we replot Fig. 2 together with its Back-propagation dynamic and denote q as the gradient w.r.t. the activation
vector z. Then, it can be shown by induction that pt,n augments all “q”s aligned at stage t. Indeed, suppose pt+1,n is the
augmentation of the Back-propagation gradients at stage t+1, i.e. pt+1,n := [qt+1, qres]

T, then the co-state at the current
stage t can be expanded as

pt,n = ∇xtHt,n = ∇xtF
T
t pt+1,n =

[
∇ztft,1 ∇zt−1ft,1
∇ztft,2 ∇zt−1ft,2

]T [
qt+1

qres

]
=

[
∇ztft,1

Tqt+1

∇zt−1ft,2
Tqres

]
=

[
qt

qt−1

]
,

which augments all “q”s at stage t. Once we connect pt,n to the Back-propagation dynamics, it can be verified that

Ht,n
θ ≡ ∇θt,nHt,n = ∇θt,n`t,n +∇θt,nFT

t pt+1,n.

is indeed the gradient w.r.t. the parameter θt,n of each layer ft,n. Therefore, taking the iterative update θt,n ← θt,n −Ht,n
θ

is equivalent to descending along the SGD direction, up to a learning rate scaling. Similarly, setting different precondition
matrices M will recover other standard methods. Hence, we conclude the proof.

Optimality principle for ηO-CG
t,n . For the completeness, below we provide the optimality principle for the cooperative

open-loop information structure ηO-CG
t,n .

Definition 8 (Cooperative optimality principle by ηO-CG
t,n ). A set of strategy, {θ∗t,n : ∀t, n}, provides an open-loop optimal

solution to the joint optimization (4) if

θ∗t,1, · · ·, θ∗t,N = arg min
θt,n:n∈[N ]

H̃t(xt, p̃t+1, θt,1, · · ·, θt,N ),

where θ∗t,n ≡ θ∗t,n(ηO-CG
t,n ) and H̃t :=

∑N
n=1 `t,n + FT

t p̃t+1

is the “group” Hamiltonian at stage t. Similar to OLNE, the joint co-state p̃t can be simulated by

p̃t = ∇xt
H̃t, p̃T =

∑N
n=1∇xT

φn.

In this work, we focus on solving the optimality principle inherited in ηC-CG
t,n as a representative of the CG optimality. Since

ηO-CG
t,n ⊂ ηC-CG

t,n , the latter captures richer information and tends to perform better in practice, as evidenced by Fig. 3.

D. Missing Derivations in Section 4
D.1. Complete Derivation of the Iterative Updates

Derivation of FNE update. Our goal is to approximately solve the Isaacs-Bellman recursion (6) only up to second-order.
Recall that the second-order expansion of Qt,n at some fixed point (xt, θt,n) takes the form

Qt,n ≈
1

2


1

δxt

δθt,n


T 

Qt,n Qt,nx
T

Qt,nθ
T

Qt,nx Qt,nxx Qt,nθx
T

Qt,nθ Qt,nθx Qt,nθθ




1

δxt

δθt,n

 , where

Qt,nx =

Qt,nθ =

Qt,nθθ =

Qt,nθx =

Qt,nxx=

F tx
T
V t+1,n
x

F tθ
T
V t+1,n
x + `t,nθ

F tθ
T
V t+1,n
xx F tθ + `t,nθθ

F tθ
T
V t+1,n
xx F tx

F tx
T
V t+1,n
xx F tx

(20)

follow standard chain rule (recall Qt,n := `t,n +Vt+1,n ◦Ft) with the linearized dynamics F tθ ≡ ∇θt,nFt and F tx ≡ ∇xt
Ft.

The expansion (20) is a standard quadratic programming, and its analytic solution is given by

−δπ∗t,n ≡ −δθ∗t,n(δxt) = −(Qt,nθθ )†(Qt,nθ +Qt,nθx δxt) =: −(kt,n + Kt,nδxt).
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Substituting this solution back to the Isaacs-Bellman recursion gives us the local expression of Vt,n,

Vt,n ≈ Qt,n −
1

2
(Qt,nθ )T(Qt,nθθ )†Qt,nθ . (21)

Therefore, the local derivatives of Vt,n can be computed by

V t,nx = Qt,nx −Q
t,n
xθ (Qt,nθθ )†Qt,nθ = Qt,nx −Q

t,n
xθ kt,n

V t,nxx = Qt,nxx −Q
t,n
xθ (Qt,nθθ )†Qt,nθx = Qt,nxx −Q

t,n
xθKt,n.

Derivation of GR update. We will adopt the same terminology u ≡ θt,1,v ≡ θt,2. Following the procedure as in the
FNE case, we can perform the second-order expansion of Pt at some fixed point (xt,u,v). The analytic solution to the
corresponding quadratic programming is given by

−
[
δπ∗t,1
δπ∗t,2

]
= −

[
P tuu P tuv

P tvu P tvv

]†([
P tu
P tv

]
+

[
P tux

P tvx

]
δxt

)
, (22)

where the block-matrices inversion can be expanded using the Schur complement.

[
P tuu P tuv

P tvu P tvv

]†
=

[
(

P̃ t
uu︷ ︸︸ ︷

P tuu − P tuvP
t †
vv P

t
vu)† −P̃ t †uuP

t
uvP

t †
vv

−P̃ t †vv P
t
vuP

t †
uu (︸ ︷︷ ︸

P̃ t
vv

P tvv − P tvuP t †uuP
t
uv)†

]
. (23)

Hence, (22) becomes[
δπ∗t,1
δπ∗t,2

]
=

[
P̃ t †uu(P tu − P tuvP

t †
vv P

t
v)

P̃ t †vv (P tv − P tvuP t †uuP
t
u)

]
+

[
P̃ t †uu(P tux − P tuvP

t †
vv P

t
vx)

P̃ t †vv (P tvx − P tvuP t †uuP
t
ux)

]
δxt

=

[
P̃ t †uu(P tu − P tuvIt)

P̃ t †vv (P tv − P tvukt)

]
+

[
P̃ t †uu(P tux − P tuvLt)

P̃ t †vv (P tvx − P tvuKt)

]
δxt

=:

[
k̃t
Ĩt

]
+

[
K̃t

L̃t

]
δxt,

where we denote the non-cooperative iterative update for Player 1 and 2 respectively by

δut(δxt) = kt + Ktδxt, where kt := P t †uuP
t
u and Kt := P t †uuP

t
ux,

δvt(δxt) = It + Ltδxt, where It := P t †vv P
t
v and Lt := P t †vv P

t
vx.

Substituting this solution back to the GR Bellman equation gives the local expression of Wt,

Wt ≈ Pt −
1

2

[
P tu
P tv

]T [
P tuu P tuv

P tvu P tvv

]† [
P tu
P tv

]
. (24)

Finally, taking the derivatives yields the formula for updating the derivatives of Wt,

W t
x = P tx −

1

2

(
P txuk̃t + P txv Ĩt + K̃T

t P
t
u + L̃T

t P
t
v

)
and W t

xx = P t,nxx − P txuK̃t − P txvL̃t, (25)

which is much complex than (10).

D.2. Kronecker Factorization and Proof of Proposition 5

We first provide some backgrounds for the Kronecker factorization (KFAC; Martens & Grosse (2015)). KFAC relies on the
fact that for an affine mapping layer, i.e. zt+1 = ft(zt, θt) := Wtzt + bt, θt := vec([Wt, bt]), the gradient of the training
objective L w.r.t. the parameter θt admits a compact factorization,

∇θtL = ∇θtfTt ∇zt+1
L = zt ⊗∇zt+1

L,
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where ⊗ denotes the Kronecker product. With this, the layer-wise Fisher information matrix, or equivalently the Gauss-
Newton (GN) matrix, for classification can be approximated with

E[∇θtL∇θtLT] = E[(zt ⊗∇zt+1
L)(zt ⊗∇zt+1

L)T] ≈ E[ztz
T
t ]⊗ E[∇zt+1

L∇zt+1
LT].

We can adopt this factorization to our setup by first recalling from our proof of Proposition 2 (see Appendix C) that
(∇θtL,∇zt+1

L) are interchangeable with (Ht
θ,pt+1), or equivalently (Ht

θ, H
t+1
z ). Hence, the GN approximation of

E[Ht
θθ] can be factorized by

E[Ht
θH

t
θ
T

] ≈ E[ztz
T
t ]⊗ E[pt+1p

T
t+1] = E[ztz

T
t ]⊗ E[Ht+1

z Ht+1 T
z ]. (26)

Equation (26) suggests that KFAC factorizes the parameter curvature with two smaller matrices using the activation state zt
and the derivative of some optimality (in this case the Hamiltonian H) w.r.t. zt+1. The main advantage of this factorization
is to exploit the following formula,

(A⊗B)†vec(W ) = (A† ⊗B†)vec(W ) = vec(B†WA−T), (27)

which allows one to efficiently inverse the parameter curvature with two smaller matrices.

Now, let us proceed to the proof of Proposition 5. First notice that for the shared dynamics considered in Fig. 2, we have

Ft(xt,u,v) :=

[
ft,1(z1,u)
ft,2(z2,v)

]
=

[
ft,1(·,u) 0

0 ft,2(·,v)

] [
z1

z2

]
,

which resembles the affine mapping concerned by KFAC. This motivates the following approximation,

E[P tθP
t
θ
T

] ≈ E[xtx
T
t ]⊗ E[W t+1

x W t+1
x

T
]. (28)

Similar to (26), this approximation (28) factorizes the GN matrix with the MPDG state xt and the derivative of an optimality
(in this case it becomes the GR value function Wt+1) w.r.t. xt+1.

If we denote the derivatives w.r.t. the outputs of ft,1 and ft,2 by g1 and g2, i.e. W t+1
x := [g1, g2]T, and rewrite

xt := [z1, z2]T, then (28) can be expanded by

E[xtxt
T] =

[
E[z1z1

T] E[z1z2
T]

E[z2z1
T] E[z2z2

T]

]
=:

[
Auu Auv

Avu Avv

]
E[W t+1

x W t+1
x

T
] =

[
E[g1g1

T] E[g1g2
T]

E[g2g1
T] E[g2g2

T]

]
=:

[
Buu Buv

Bvu Bvv

]
.

Their inverse matrices are given by the Schur component.[
Auu Auv

Avu Avv

]†
=

[
Ã†uu −Ã†uuAuvA

†
vv

−Ã†vvAvuA
†
uu Ã†vv

]
, where

{
Ãuu := Auu −AuvA

†
vvA

T
uv

Ãvv := Avv −AvuA
†
uuA

T
vu[

Buu Buv

Bvu Bvv

]†
=

[
B̃†uu −B̃†uuBuvB

†
vv

−B̃†vvBvuB
†
uu B̃†vv

]
, where

{
B̃uu := Buu −BuvB

†
vvB

T
uv

B̃vv := Bvv −BvuB
†
uuB

T
vu

(29)

With all these, the cooperative open gain can be computed with the formula (27),(
E[xtx

T
t ]⊗ E[W t+1

x W t+1
x

T
]
)†

vec(

[
P tu 0
0 P tv

]
) = vec

([
Buu Buv

Bvu Bvv

]† [
P tu 0
0 P tv

] [
Auu Auv

Avu Avv

]−T)
. (30)

Substituting (29) into (30), after some algebra we will arrive at the KFAC of the cooperative open gain suggested in (15).

k̃t ≈vec(B̃†uuP
t
uÃ
−T
uu + B̃†uuBuvB

†
vvP

t
v(Ã†uuAuvA

†
vv)T)

=vec(B̃†uu(P tu +BuvB
†
vvP

t
vA
−T
vv A

T
uv)Ã−Tuu)

=vec(B̃†uu(P tu +Buvvec†(It)A
T
uv)Ã−Tuu), (31)
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where the last equality follows by another KFAC approximation It ≈ (Avv ⊗Bvv)†vec(P tv) = vec(B†vvP
t
vA
−T
vv ). Finally,

recalling the expression, k̃t := P̃ t †uu(P tu − P tuvIt), from (11) and rewriting (31) by

k̃t ≈vec(B̃†uu(P tu +Buvvec†(It)A
T
uv)Ã−Tuu)

=(Ãuu ⊗ B̃uu)†vec(P tu +Buvvec†(It)A
T
uv)

imply the KFAC representation P̃ tuu ≈ Ãuu ⊗ B̃uu in (14). Hence we conclude the proof.

D.3. Proof of Theorem 6

We first show that setting P tuv := 0 in the update (11) yields (9). To begin, observe that when P tuv vanishes, the cooperative
gains (k̃t, K̃t) appearing in (11) degenerate to k̃t = P t †uuP

t
u and K̃t = P t †uuP

t
ux. Therefore, it is sufficient to prove the

following result.4

Lemma 9. Suppose Qt,n in (6) and Pt in (7) are expanded up to second-order along the same local trajectory
{(xt, θt,n, · · · , θt,N ) : ∀t ∈ [T ]}, then we will have the following relations when P tuv := 0 at all stages.

∀t, Qt,1θ = P tu, Qt,1θθ = P tuu, Qt,1θx = P tux, Qt,2θ = P tv, Qt,2θθ = P tvv, Qt,2θx = P tvx, (32)

where (ut,vt) ≡ (θt,1, θt,2) denotes the actions for Player 1 and 2. Furthermore, we have

∀t, Wt =
∑N
n=1 Vt,n. (33)

Proof. We will proceed the proof by induction. At the terminal stage T − 1, we have

PT−1 =

2∑
n=1

`T−1,n +WT ◦ FT−1 =

2∑
n=1

(`T−1,n + φn ◦ FT−1) =

2∑
n=1

QT−1,n,

since φn = VT,n. This implies that when solving the second-order expansion for πT−1,1 and πT−1,2, we will have

min
πT−1,1,πT−1,2

PT−1 = min
πT−1,1

QT−1,1 + min
πT−1,2

QT−1,2

since the cross-correlation matrix PT−1
uv is discarded. Therefore, all equalities in (32) hold at this stage. Furthermore,

substituting PT−1
uv := 0 into (24) yields the following GR value function

WT−1 = PT−1 −
1

2

(
(PT−1

u )T(PT−1
uu )†PT−1

u + (PT−1
v )T(PT−1

vv )†PT−1
v

)
=

2∑
n=1

(
QT−1,n −

1

2
(QT−1,n

θ )T(QT−1,n
θθ )†QT−1,n

θ

)
=

2∑
n=1

VT−1,n.

So (33) also holds. Now, suppose (32, 33) hold at t+ 1, then

Pt =

2∑
n=1

`t,n +Wt+1 ◦ Ft =

2∑
n=1

(`t,n + Vt+1,n ◦ Ft) =

2∑
n=1

Qt,n.

Together with P tuv := 0, we can see that all equalities in (32) hold. Furthermore, it implies that

Wt = Pt −
1

2

(
P tu

T
P t †uuP

t
u + P tv

T
P t †vv P

t
v

)
=

2∑
n=1

(
Qt,n −

1

2
(Qt,nθ )T(Qt,nθθ )†Qt,nθ

)
=

2∑
n=1

Vt,n.

Hence we conclude the proof.

Next, we proceed to the second case, which suggests that running (9) with (Qt,nθx , Q
t,n
θθ ) := (0, I) yields SGD. Since the

FNE update in this case degenerates to δπ∗t,n = Qt,nθ , it is sufficient to prove the following lemma.

4We consider the two-player setup for simplicity, yet the methodology applies to the multi-player setup.
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Lemma 10. Suppose Ht,n in (5) and Qt,n in (6) are expanded up to second-order along the same local trajectory
{(xt, θt,n, · · · , θt,N ) : ∀t ∈ [T ]}, then we will have the following relations when (Qt,nθx , Q

t,n
θθ ) := (0, I) for all stages.

∀t, Qt,nθ = Ht,n
θ , V t,nx = pt,n. (34)

Proof. Again, we will proceed the proof by induction. First, notice that V T,nx = φnx = pT,n no matter whether or not Qt,nθx
and Qt,nθθ degenerate. At the terminal stage T − 1, we have

QT−1,n
θ = `T−1,n

θ + (FT−1
θ )TV T,nx = `T−1,n

θ + (FT−1
θ )TpT,n = HT−1,n

θ .

Also, when QT−1,n
θx := 0, (10) becomes

V T−1,n
x = QT−1,n

x = (FT−1
x )TV T,nx = (FT−1

x )TpT,n = HT−1,n
x = pT−1,n.

Hence, (34) holds at T − 1. Now, suppose these relations hold at t+ 1, then

Qt,nθ = `t,nθ + (F tθ)TV t+1,n
x = `t,nθ + (F tθ)Tpt+1,n = Ht,n

θ

and similarly

V t,nx = Qt,nx = (F tx)TV t+1,n
x = (F tx)Tpt+1,n = Ht,n

x = pt,n.

Hence, we conclude the proof.

Finally, the last case follows readily by combining Lemma 9 and 10, so we conclude all proofs.

E. More on the Experiments
All experiments are run with Pytorch on the GPU machines, including GTX 1080 TI, GTX 2070, and TITAN RTX. We
preprocessed all datasets with standardization. We also perform data augmentation when training CIFAR100. Below we
detail the setup for each experiment.

Table 9. Hyper-parameter search in Table 2

Standard Baselines Learning Rate (LR)

SGD (7e-2, 5e-1)
Adam & RMSprop (7e-4, 1e-2)

EKFAC (1e-2, 3e-1)

Classification (Table 2 and 3). For CIFAR10 and CIFAR100, we use stan-
dard implementation of ResNet18 from https://pytorch.org/hub/
pytorch_vision_resnet/. As for SVHN and MNIST, the residual
network consists of 3 residual blocks. The residual block shares a sim-
ilar architecture in Fig. 2 except with the identity shortcut mapping and
without BN. We use 3×3 kernels for all convolution filters. The number
of feature maps in the convolution filters is set to 12 and 16 respectively
for MNIST and SVHN. Meanwhile, the inception network consists of a convolution layer followed by an inception
block (see Fig. 6), another convolution layer, and two fully-connected layers. Regarding the hyper-parameters used
in baselines, we select them from an appropriate search space detailed in Table 9. We use the implementation in
https://github.com/Thrandis/EKFAC-pytorch for EKFAC and implement our own EMSA in PyTorch since
the official code released from Li et al. (2017a) does not support GPU parallelization.

Ablation study (Fig. 5) Each grid in Fig. 5 corresponds to a distinct combination of baseline and dataset. Its numerical
value reports the performance difference between the following two training processes.

• Accuracy of the baseline run with the best-tuned configuration which we report in Table 2 and 3.
• Accuracy of DGNOpt with its parameter curvature set to the precondition matrix implied by the above best-tuned setup.

For instance, suppose the learning rate of EKFAC on MNIST is best-tuned to 0.01, then we simply set Qt,nθθ ≈ 0.01 ×
Qt,nθ Qt,nθ

T
for all t. From Theorem 6, these two training procedures only differ in the presence of Qt,nθx , which allows

EKFAC to adjust its update based on the change of xt ∈ ηC
t,n.

Runtime and memory complexity (Fig. 7). The numerical values are measured on the GTX 2070.

Feedback analysis (Fig. 8). We use the same inception-based network in Table 3.

https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/Thrandis/EKFAC-pytorch
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Remark for EMSA (Footnote 3). Extended Method of Successive Approximations (EMSA) was originally proposed by
Li et al. (2017a) as an OCP-inspired method for training feedforward networks. It considers the following minimization,

θ∗t = arg minHρ
t (zt, zt+1,pt,pt+1, θt) ,

where Hρ
t (zt, zt+1,pt,pt+1, θt) :=Ht (zt,pt+1, θt) +

1

2
ρ ‖zt+1 − ft(zt, θt)‖2 +

1

2
ρ ‖pt −∇ztHt‖2

(35)

essentially augments the original Hamiltonian Ht with the feasibility constraints on both forward states and backward
co-states. EMSA solves the minimization (35) with L-BFGS per layer at each training iteration. In Table 2 and 3, we
extend their formula to accept Ht,n. Due to the feasibility constraints, the resulting modified Hamiltonian Hρ

t,n depends
additionally on xt+1 and pt,n; hence being different from the original Hamiltonian Ht,n. As a result, the ablation analysis
using Theorem 6 is not applicable for EMSA.

Cooperative training (Fig. 9, Fig. 11, and Table 4). The network consists of 4 convolutions followed by 2 fully-connected
layers, and is activated by ReLU. We use 3×3 kernels with 32 feature maps for all convolutions and set the batch size to 128.

Adaptive alignment with bandit (Fig. 10 and Table 5). We use the same ResNet18 as in classification for CIFAR10, and a
smaller residual network with 1 residual block for SVHN. The residual block shares the same architecture as in Fig. 2 except
without BN. All convolution layers use 3×3 kernels with 12 feature maps. Again, the batch size is set to 128. Note that in
this experiment we use a slightly larger learning rate compared with the one used in Table 2. While DGNOpt achieves better
final accuracies for both setups, in practice, the former tends to amplify the stabilization when we enlarge the information
structure during training. Hence, it differentiates DGNOpt from other baselines.

Alg. 2 presents the pseudo-code of how DGNOpt can be integrated with any generic bandit-based algorithm (marked as
blue). For completeness, we also provide the pseudo-code of EXP3++ in Alg. 3. We refer readers to Seldin & Slivkins
(2014) for the definition of ξk(m) and ηk (do not confuse with ηt,n in the main context).

Algorithm 2 DGNOpt with Multi-Armed Bandit (MAB)

Input: dataset D, network {fi(·, θi)}, number of alignments M
Initialize the multi-armed bandit MAB.init(M)
repeat

Draw an alignment m← MAB.sample().
Construct F ≡ {Ft : t ∈ [T ]} according to m.
Compute xt by propagating x0 ∼ D through F
for t = T−1 to 0 do B Solve FNE or GR

Solve the update δπ∗t,n with (9) or (11)
Solve (V t,nx ,V t,nxx ) or (W t

x,W
t
xx) with (10) or (25)

end for
Set x′0 = x0

for t = 0 to T−1 do B Update parameter
Apply θt,n←θt,n−δπ∗t,n(δxt) with δxt=x′t−xt
Compute x′t+1 = Ft(x

′
t, θt,1, · · · , θt,N )

end for
Compute the accuracy r on validation set.
Run MAB.update(r).

until converges

Algorithm 3 EXP3++ (Seldin & Slivkins, 2014)

function init(M)
(k,M)← (1,M)
∀m,Lk(m) = 0

end function

function sample()
∀m, εk(m) = min{ 1

2M , 1
2

√
lnM
kM , ξk(m)}

∀m, ρk(m) = e−ηkLk(m)/
∑
m′ e

−ηkLk(m′)

∀m, ρ̃k(m) = (1−
∑
m′ εk(m′))ρk(m) + εk(m)

Sample action according to ρ̃k(m)
end function

function update(rmk )
`mk = (1− rmk )/ρ̃k(m)
Lk+1(m) = Lk(m) + `mk
k ← k + 1

end function

Additional Experiments.
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Figure 13. (a) Training curve and (b) final accuracy as we vary the number of player
(N ) as a hyper-parameter of game-extended EKFAC. Similar to Fig. 9, we also
observe that N=2 gives the best final accuracy on both datasets.


