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To ensure the feasibility of performance-based wind engineering (PBWE) frameworks, particularly when it involves
computationally expensive nonlinear dynamic analyses and estimation of small failure probabilities, there is a need
for efficient stochastic simulation schemes. To this end, an optimal stratified sampling-based Monte Carlo simulation
(OSMCS) scheme is proposed to simultaneously estimate failure probabilities associated with multiple limit states
including those which are implicitly defined. The scheme is based on the optimal allocation of Monte Carlo
simulation (MCS) samples among the strata which are partitions of the uncertain parameter space, defined using
one or more input random variables. The partitions enable simulation of rare events and the optimality guarantees
minimum estimator variance for a target failure probability. The optimality criterion is derived and some theoretical
aspects of the OSMCS estimator are discussed. To demonstrate the applicability and efficiency of the scheme a case
study is presented and the implementation issues are also critically discussed.

Keywords: Structural safety, Monte Carlo methods, Wind Engineering, Stratified sampling, Variance reduction,
Nonlinear modeling.

1. Introduction
In recent years, there has been rising interest in the
adoption of nonlinear structural design method-
ologies for wind actions, which necessitates the
development of efficient reliability assessment
frameworks for various performance evaluations.
One of the foremost challenges in such reliability
assessment problems concerns the simultaneous
estimation of small failure probabilities associ-
ated with rare events and multiple limit states.
The problem is exacerbated when the limit state
functions (LSFs) are not only nonlinear but cannot
be explicitly expressed in terms of the response
parameters. For example, the exceedance of the
limit state of system collapse may need to be eval-
uated through a combination of indicators such as
non-convergence of time history analysis, the de-
formed shape of the structure at the last converged
time step, and the peak roof drift. The implicitness
arises from the need to sufficiently validate the
onset of a failure mechanism that cannot be sim-
ply expressed as a response measure exceeding a
certain threshold. In the face of high-dimensional
uncertainties and complex LSFs, traditional re-
liability methods, such as the second-order reli-
ability method, are infeasible. With the use of
simulation methods, it is important to note that

each sample generated often involves the com-
putationally expensive evaluation of a numerical
model. Standard Monte Carlo Simulation (MCS)
methods, with their simple random sampling strat-
egy, require a large number of samples, roughly
inversely proportional to a small target probability
(e.g., ≤ 10−4), for achieving a specified accuracy.
However, its robustness to the type of LSFs and
dimensionality of the uncertain parameter space
is desirable for the applications of this work.

Importance sampling techniques (Melchers
(1989)) can explore a failure region efficiently by
sampling from a distribution biased towards the
failure region. However, it is infeasible to con-
struct an effective importance sampling density
function in the presence of a large number of
uncertainties and complex failure regions. Subset
simulation (Au and Beck (2001)) is extremely ef-
ficient in computing small probabilities associated
with a LSF that can be expressed as a combination
of response variables. The process of estimating a
sequence of conditional probabilities is, however,
unique to the LSF under consideration and hence,
the samples cannot be used to evaluate the ex-
ceedance probabilities of other limit states. Within
the context of performance-based wind engineer-
ing (PBWE) (Bernardini et al. (2015),Chuang
and Spence (2017),Ouyang and Spence (2021)),
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a stratified sampling-based Monte Carlo simula-
tion scheme was proposed by Ouyang and Spence
(2020) wherein the sample space of wind speeds
was partitioned to estimate various failure prob-
abilities. However, the MCS sample allocation
scheme was not discussed and the estimator vari-
ance was not computed.

In this work, an optimal stratified sampling-
based Monte Carlo simulation (OSMCS) scheme
is introduced to enable simultaneous estimation
of failure probabilities using limited sample sets
while minimizing the variance of a target failure
probability estimate. Some theoretical properties
of the OSMCS estimator as well as considerations
on implementation are discussed. The efficiency
of the scheme and its potential integration with
nonlinear structural modeling environments are
illustrated on a case study.

2. Stratified Sampling-based Monte
Carlo Simulation

2.1. Background
Stratified sampling involves partitioning the prob-
ability space into mutually exclusive and collec-
tively exhaustive subspaces called strata, to enable
an explicit way of ensuring samples are collected
from each of the user-defined strata in a preferred
manner. With simple random sampling performed
within each stratum, the estimator of the overall
failure probability, P̂f , is given according to the
total probability theorem as:

P̂f =

Ns∑
i=1

P̂f |Si
P (Si) (1)

where Ns = total number of strata; Si (i =
1, ..., Ns) are the strata partitioned based on a sin-
gle or multiple input random variables; and P̂f |Si

is the MCS estimator of the conditional failure
probability, Pf |Si

. Each of the partition probabil-
ities, P (Si), can be directly evaluated using the
joint conditional distribution function (CDF) of
the input random variables. In general, an analyst
is free to select the number of MCS samples to
be used in each of the strata and the division of
the probability space into the strata Si, ensuring
only that the strata are mutually exclusive and
collectively exhaustive partitions, so that Eq. (1)
holds true.

2.2. Optimal Sample Allocation
Important insights about the distribution of MCS
samples among the Ns strata are obtained when
the variance of P̂f is examined. From Eq. (1)
and the expression for the variance of an MCS
estimator, the variance of P̂f can be computed.

Subsequently, an optimization problem can be for-
mulated to minimize the estimator variance and
solved to obtain the optimal allocation of N MCS
samples among the Ns strata. Accordingly, the
ith stratum is allocated ñi MCS samples which
is given by:

ñi =
N
√
Pf |Si

(1− Pf |Si
)P (Si)∑Ns

j=1

√
Pf |Sj

(1− Pf |Sj
)P (Sj)

(2)

The tilde is used to indicate that the solution is op-
timal. The minimum Var(P̂f ) that can be attained
if the conditional failure probabilities, partitions
Si, and N are known in advance, is given by:

Var(P̂f ) =

(∑Ns

i=1

√
Pf |Si

(1− Pf |Si
)P (Si)

)2

N
(3)

The stratified sampling-based simulation scheme
based on the above-mentioned optimal sample al-
location is referred to as the OSMCS scheme in
this work. Other sample allocation strategies, such
as equal allocation (ni = N/Ns) and proportional
allocation (ni = NP (Si)) are suboptimal and in-
cur larger estimator variance. This optimal alloca-
tion problem is known in the theory of sample al-
location as Neyman allocation (Dalenius (1950)).

2.3. Statistical Properties
It is important to characterize the estimator with
its statistical properties. Firstly, it can be shown
that OSMCS provides an unbiased estimate of
the target failure probability. That is, IE

[
P̂f

]
=

Pf , which follows from the unbiased estimation
property of MCS estimators and the linearity of
the expectation operator, IE[·]. Secondly, similar
to MCS, the OSMCS estimator is itself a random
variable that converges to a normal distribution for
large N . That is, P̂f is governed by a normal dis-
tribution whose mean is Pf and variance is given
by Eq. (3). This is because the MCS estimators are
normal random variables and independent of one
another, and P̂f is a linear combination of these
independent normal random variables according
to Eq. (1).

3. Implementation Issues
The primary challenge in implementing the opti-
mal allocation scheme is that the optimal sample
sizes depend on the conditional failure probabil-
ities which are unknown and to be estimated.
However, approximate failure probabilities can be
computed based on some test samples (e.g., N/5)
to determine the optimal sample allocation for the
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remaining MCS samples. The preliminary estima-
tion may be carried out using equal allocation of
the test samples. It is useful to keep in mind that
the optimal allocation scheme essentially suggests
allocating a larger portion of the total samples to
partitions with a larger probability of occurrence
and those where the conditional failure probability
is neither too small nor too large. Mathematically,
this takes form ni ∝

√
Pf |Si

(1− Pf |Si
)P (Si),

as seen in Eq. (2). The preliminary estimation
followed by optimal sample allocation can be ju-
diciously executed without affecting the overall
efficiency significantly for real applications as dis-
cussed and demonstrated in the case study section.
The choice of the stratification variable and the
partitions should be motivated by the physics of
the problem and qualitative considerations of the
influence of the input random variables on the
LSFs of interest.

In applications to wind engineering, the ba-
sic idea of stratification in stochastic simulation
enables a direct means to investigate behavior
that only occurs in a local range of wind speeds,
for example, vortex shedding. Furthermore, the
OSMCS scheme permits the evaluation of condi-
tional probabilities involving multiple limit states,
such as the estimation of the fragility curve for
residual roof drift conditional on non-collapse in
a specified time period.

4. Case Study

4.1. Overview
The OSMCS scheme is demonstrated using a
probabilistic performance evaluation of a two-
story two-bay steel frame assumed to be located
in an urban region of Miami, USA, wherein fail-
ure probabilities associated with multiple limit
states of interest are simultaneously estimated.
The limit states considered in this example were
system collapse, system first yield, and component
fracture, which are referred to as LS1, LS2, and
LS3, respectively. This problem is representative
of performance-based reliability assessments in
wind engineering. Of particular interest to this
paper is the efficiency of the OSMCS scheme.

4.2. Problem Setup
4.2.1. Building Model

The building shown in Fig. 1 is a steel moment-
resisting frame that was modeled and analyzed
in the OpenSees simulation platform using fiber-
based inelastic elements. The preliminary design
for this building is based on satisfying the peak
roof displacement limit of H/300, with H = 10
m, under a wind load corresponding to a 25-year
return period and ensuring elastic response under
a 700-year return period wind load. The section
sizes following these design criteria were pro-
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Fig. 1.: Two-story two-bay wind excited structure

vided in Chuang and Spence (2020) and used in
this study. There are four unique structural section
sizes and the gravity loads were applied as shown
in Fig. 1. The floor diaphragms were assumed to
be rigid. Each member was modeled using two
force-based fiber elements, five integration points
were considered per element and 14 fibers were
used to discretize each section. Fiber damage due
to low-cycle fatigue (LCF) and potential fiber
fracture was modeled using the linear damage
accumulation rule along with the modified rain
flow cycle counting algorithm (Uriz (2005)). The
Menegotto-Pinto material model was adopted to
simulate the cyclic behavior of steel (Karamanci
and Lignos (2014)). Large displacement effects
were included through the use of corotational
formulation. To represent the inherent structural
damping, a Rayleigh damping model, as recom-
mended for use in nonlinear analysis (Charney
(2008)), was adopted.

The first two natural frequencies of the structure
were approximately f1 = 0.51 Hz and f2 = 1.22
Hz, ensuring a certain degree of dynamic exci-
tation by the wind forces. The structural uncer-
tainties listed in Table 1 will, however, affect the
modal frequencies, causing marginal deviations
from the above-mentioned values.

4.2.2. Wind Loads

The stochastic wind load modeling used in this
study follows the approach adopted in Chuang and
Spence (2020). The wind speed is modeled using
a local wind climate model to describe the mean
wind speed profile and a spectral representation
model to describe the fluctuating component. A
power law wind speed profile is assumed and the
target cross power spectral density matrix is based
on Kaimal spectrum (Kaimal et al. (1972)) and
coherence functions. The wind forces are assumed
to act laterally in the plane of the frame. The
spatio-temporally varying wind speeds are con-
verted to wind load histories acting at the two
floors using a quasi-steady model. The wind loads
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were generated for a duration of 10 minutes with
a sampling time of 0.01 s. The first and last two
minutes of the loads were ramped up and down,
respectively, to account for the initial conditions
when subjected to wind loads and mark the end
of the wind event. The structural responses are
recorded for the duration of the applied wind loads
as well as for two minutes of free vibration at the
end of 10 minutes.

4.2.3. Stochastic Simulation Environment

A wide range of uncertainties in the structural
system and wind loads were considered in this
study. The following structural random variables
were considered: seven material model parame-
ters, uniquely defined for each structural section
in the frame; damping ratio, ζ, of the first two
modes, which are considered to be equal; and the
initial camber, uniquely defined for each column
at mid-length. The material uncertainties include
the Young’s modulus E, strain hardening ratio b,
yield strength Fy , fatigue material parameter ε0,
elastic-to-plastic transition parameter R0, and two
hardening parameters a1 and a3 (Karamanci and
Lignos (2014)). The random initial camber is de-
scribed by a random scale factor, δ1, and a random
sign, (±1) based on the first buckling mode. The
load uncertainties consist of the mean hourly wind
speed at the building top v̄H , considered to follow
a Type-1 extreme value distribution, and the in-
dependent and uniformly distributed phase angles
used in the spectral representation model (Chen
and Kareem (2005)). The parameters of the Type-
1 distribution are estimated through calibration to
the site-specific wind speeds provided in ASCE
7-16 (2016). The aforementioned uncertainties,
except for the wind speed and those used in the
spectral representation model, are presented in
Table 1 along with their governing distributions.

Given the nature of the limit states of interest,
the wind speed was identified as the dominant
variable affecting them and hence selected as the
stratification variable. Clearly, the exceedance of
LS1 and LS3 are correlated and expected to oc-
cur only for extreme wind speeds. However, LS2
can be expected to be exceeded even under rela-
tively lower wind speeds, but typically larger than
the 700-year design wind speed. The partitioning
approach was based on enforcing equal squared
wind speed difference by recognizing that the load
effect is approximately proportional to the square
of the wind speed. A total of eight partitions and
1000 MCS samples were considered by taking
note of the intended resolution of the wind speed
intervals (WSI) and computational feasibility. To
ensure the collectively exhaustive nature of the
WSIs, the lower bound defining the first WSI
is taken as zero while the last WSI is taken as
unbounded from above. The lower bound of the

Table 1.: Summary of the basic random variables
(CV = coefficient of variation).

Parameter Mean CV Distribution
E 200 GPa 0.04 Lognormal
Fy 380 MPa 0.06 Lognormal
b 0.001 0.01 Lognormal
ε0 0.077 0.161 Lognormal
R0 20 0.166 Normal†
a1 0.01 2 Lognormal
a3 0.02 0.5 Lognormal
δ1/L

∗ 0.0556% 0.77 Normal
ζ 0.015 0.4 Lognormal

†Truncated normal with lower and upper bound
of 15 and 25, respectively.
∗L = Column length.

last wind speed interval (WSI) was chosen to
correspond to an annual exceedance probability
(AEP) of 7 × 10−7, a stipulated value in ASCE
7-16 (2016) corresponding to collapse for a risk
Category II structure. The partition scheme is il-
lustrated in Fig. 2. A preliminary estimation of the
failure probabilities for the limit state of collapse
(conditional and overall) was carried out using
20 MCS samples in each WSI, to implement the
OSMCS scheme according to Eq. (2). The sam-
ple allocation was further adjusted manually to
achieve a coefficient of variation (CV) of 10−15%
for the failure probabilities associated with both
LS1 and LS2, by evaluating Eq. (3) using the test
samples. The final sample allocation is shown in
Table 2 along with the lower and upper bound
wind speeds defining the partitions.
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Fig. 2.: Partitioned non-directional hazard curve
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Table 2.: Sample allocation.

WSI v̄lower
H [m/s] v̄

upper
H [m/s] ni

1 0.00 21.08 20
2 21.08 29.82 20
3 29.82 36.52 310
4 36.52 42.17 80
5 42.17 47.15 60
6 47.15 51.65 60
7 51.65 55.78 100
8 55.78 ∞ 350

4.3. Results
The results include the nonlinear responses re-
quired to describe the behavior of each random
frame, as well as statistical information on these
responses required to estimate the failure proba-
bilities. Fig. 3 illustrates a collapse scenario with
the use of roof drift ratio history, the deformed
shape at collapse due to along-wind loading, and
the stress-strain history of a fiber that witnessed
significant accumulated damage due to LCF, lead-
ing to fracture. Similarly, Fig. 4 illustrates a
non-collapse scenario highlighting the hysteretic
stress-strain response and residual roof drift ratio
when subjected to the reported wind loading. A
comparison with the linear elastic response is also
indicated.

The results of the probabilistic assessment are
summarized in Table 3 for the three limit states
of interest. In particular, the failure probabilities
are expressed as AEP, and the 50-year reliability
indices, β50 are also provided. The CV of the
OSMCS estimators are provided and, as intended,
they are approximately 15% for LS1 and LS2. The
high CV for LS3 can be attributed to the devia-
tion of the employed sample allocation from the
optimal allocation for LS3 as well as LS3 having
the smallest failure probability among the con-
sidered limit states. To emphasize the efficiency
of OSMCS, NMCS is presented, which equals
the total number of samples if a standard MCS
was used in lieu of OSMCS to achieve the same
CV as the latter. Further, it is demonstrated that
the stratified sampling-based Monte Carlo simu-
lation scheme using equal sample allocation is in-
deed suboptimal, especially, when multiple small
failure probabilities are to be estimated simul-
taneously. This is expressed using the quantity,
NSS†, which equals the total number of samples if
the suboptimal scheme was employed to achieve
the same CV as OSMCS. The salient inferences
concerning the OSMCS scheme are that: (1) the
proposed scheme is several orders of magnitude
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Fig. 3.: Sample illustrating collapse: (a) Roof drift
ratio history; (b) Deformed shape at collapse; (c)
Stress-strain history of a fractured fiber of the
indicated portion of column.

more efficient than a standard MCS scheme, es-
pecially so when the target probability is small;
(2) the sample allocation can be tuned to work
efficiently for the simultaneous estimation of mul-
tiple failure probabilities; (3) the scheme can be
used for estimating probabilities associated with
implicit LSFs, such as system collapse; (4) the
sample allocation and efficiency of the estimator is
dependent on the test sample set for a preliminary
estimation of the failure probabilities. The prelim-
inary assessment is partly subjective and needs to
encapsulate the dependence structure of the LSF
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Fig. 4.: Sample illustrating non-collapse: (a) Wind
load history; (b) Comparison of roof drift ratio
history with linear case; (c) Stress-strain history
of a critical fiber.

and the input random variables.

5. Conclusion
An efficient stochastic simulation scheme, driven
by stratified random sampling, was proposed in
this work for wind engineering applications. Some
theoretical properties and considerations on im-

Table 3.: Failure probabilities and OSMCS effi-
ciency.

LSF LS1 LS2 LS3

AEP 1.61×10−7 5.95×10−4 3.06×10−8

β50 4.31 1.89 4.67
CV 16.8% 11.3% 74.7%
NMCS 220,223,442 130,392 58,490,580
NSS† 1408 2713 1074

plementation were discussed. A practical illustra-
tion of the efficiency of the scheme was presented
by integrating it with a fiber-based nonlinear mod-
eling environment to solve a reliability assessment
problem in the context of PBWE.
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