Implementing Flash-Cached Storage Systems Using
Computational Storage Drive with Built-in
Transparent Compression

Jingpeng Hao', Yifan Qiaof, Xubin Chenf, Ning Zheng?, Yang Liu}, Jiangpeng Li?,
Qi Wu!, Tong Zhang'*

T Rensselaer Polytechnic Institute, NY, USA
1 ScaleFlux Inc., CA, USA

Abstract—This paper studies utilizing the growing family of
solid-state drives (SSDs) with built-in transparent compression
to simplify the data structure of cache design. Such storage
hardware allows the user applications to intentionally under-
utilize logical storage space (i.e., sparse LBA utilization, and
sparse storage block content) without sacrificing the physical
storage space. Accordingly, this work proposed an index-less
cache management approach to largely simplify the flash-based
cache management by leveraging SSDs with built-in transparent
compression. We carried out various experiments to evaluate
the write amplification and read performance of the proposed
cache management, and the results show that our proposed index-
less cache management can achieve comparable or much better
performance than the conventional policies while consuming
much less host computing and memory resources.

I. INTRODUCTION

This paper studies how one could leverage the emerg-
ing computational storage drive (CSD) [1], [2] to innovate
the design of flash-cached data storage systems. The sim-
ple concept of empowering storage devices with computing
capability can trace back to over 20 years ago [3]-[5] and
lately received significant resurgent interest (e.g., see [6]-
[12]). As one special family of CSD products, CSD with
built-in transparent compression (referred to as TC-CSD)
internally performs hardware-based per-4KB data compres-
sion/decompression, which is transparent to the host operating
systems and user applications. Currently, TC-CSD is the only
type of CSD that has been successfully commercialized and
deployed in the production environment [13], [14].

In addition to its obvious benefit of lowering the storage cost
at zero CPU overhead, TC-CSD enables unique opportunities
for system-level innovations by supporting two types of spar-
sity: (1) Sparse LBA (logical block address) space: TC-CSD
can expose a sparse LBA space that is much larger than its
internal physical storage space. (2) Sparse sector content: Since
special data patterns (e.g., all-zeros) can be highly compressed,
we could leave one 4KB sector partially filled with valid user
data, without sacrificing the true physical storage cost. With
these two types of sparsity, TC-CSD decouples the logical stor-
age space utilization efficiency from the physical storage space

utilization efficiency [15]. This allows systems to purposely
under-utilize the logical storage space in order to employ
simpler data structures and algorithms, without compromising
the true physical storage cost. Simpler data structures and
algorithms may lead to higher system performance and/or
lower CPU/memory cost.

This work envisions flash-cached storage systems using TC-
CSD as the caching device. In particular, we focus on block-
level caching that manages the cached storage systems at
the block layer, being transparent to upper-level file systems
and user applications. Although block-level caching can be
conveniently deployed without any changes to the upper-level
software, its implementation is subject to two major issues: (1)
Cache management overhead: Conventional implementation of
a cached storage system uses a hash-based (or tree-based)
indexing data structure to maintain the mapping between a
cached HDD sector and its location on the caching device.
The management of such indexing data structure could incur
non-negligible CPU and memory overhead. (2) Impact of
HDD data compression: Because of the very low IOPS and
long access latency of HDDs, modern computing systems
can apply compression over HDDs without noticeable CPU
and performance overheads. HDD data compression typically
operates with a relatively large chunk size (e.g., 32KB, 64KB,
or even 256KB) to improve the total storage cost saving. As a
result, if the HDD data compression is handled by the upper-
level software (e.g., file system or user applications), data
will be cached in the unit of compressed data chunks. This
could degrade the caching device capacity usage efficiency,
especially under workloads dominated by small-size random
data access. Moreover, accessing compressed data chunk on
the caching device involves fetching a large data chunk and
carrying out CPU-based decompression. This could result
in significant under-utilization of the IOPS and bandwidth
performance of the flash-based caching device.

To address the above two issues, this paper presents a
design framework of block-level TC-CSD-cached storage sys-
tems with the following two features: (1) Index-less cache

management: Leveraging the sparse LBA space of TC-CSD,
we can manage the cache using a simple bitmap other than
conventional hash/tree-based indexing data structures. This
could largely reduce the cache management complexity and
CPU/memory cost. We also developed techniques that can
further reduce the bitmap memory footprint and leverage the
bitmap data structure to make cache eviction more HDD-
friendly. (2) Transparent compression over HDDs: Regarding
the second issue (i.e., impact of HDD data compression), the
most fundamental solution is to make HDD data compression
occur beneath the block-level caching layer. Hence, both HDD
data compression and caching are transparent to file systems
and user applications, and block-level caching operates over
the uncompressed storage space. As a result, HDD-resident
data are compressed with relatively large chunk size, while
data are cached in the unit of 4KB sectors. This will allow
systems to fully utilize the IOPS and bandwidth of the caching
device. Leveraging the sparse sector content enabled by TC-
CSD, we developed a simple data structure to manage the
realization of HDD data compression. It supports workload-
adaptive variable compression chunk size, and can completely
avoid read-modify-write operations in the presence random
updates on HDD-resident data.

II. BACKGROUND AND MOTIVATION

A. Basics of TC-CSD

Loosely speaking, any data storage device that can carry out
data processing tasks beyond its core storage function can be
called a computational storage drive. The simple concept of
empowering storage devices with additional computing capa-
bility can trace back to over 20 years ago [3]-[5]. Computa-
tional storage complements with CPU to form a heterogeneous
computing system. Compared with its CPU-only counterpart, a
heterogeneous computing system not surprisingly can achieve
higher performance and/or energy efficiency for many appli-
cations, as demonstrated by prior research (e.g., see [6], [9]-
[12]). This work focuses on computational storage drive with
built-in transparent compression (TC-CSD) [14], [15], which
can be seamlessly deployed in today’s computing infrastructure
without any changes to existing software stack.

Fig. 1 illustrates the structure of TC-CSD: Inside the
drive controller chip, data compression and decompression are
carried out directly on the IO path by dedicated hardware
engine, and the FTL (flash translation layer) manages the
mapping/indexing of all the variable-length compressed data
blocks. TC-CSD enables the following two types of sparsity:

LBA space sparsity: Let C'p denote the total physical capacity

of NAND flash memory inside the drive, and C, denote the
capacity of LBA storage space being exposed by the drive. To
enable host materialize the benefit of transparent compression,
as illustrated in Fig. 2(a), storage drive must be able to expose
a sparse LBA space, i.e., C, is much larger than Cp. This is
conceptually similar to the concept of thin provisioning.

User Apps

Compression &
decompression

ontroller

Flash NAND

Computational storage drive

& 0S

Fig. 1. Illustration of a CSD with built-in transparent compression.

Sector content sparsity: Since special data patterns such as all-

zero and all-one can be highly compressed, we can leave
one 4KB sector partially filled with valid user data without
sacrificing the true physical storage cost, as illustrated in
Fig. 2(b). This suggests that we can intentionally sparsify the
content of each 4KB sector without sacrificing the true physical
storage cost. This work aims to explore the above two types
of sparsity to improve the implementation efficiency of flash-
cached storage systems that use TC-CSD as the caching device.

B. Flash-Cached Storage Systems

Given the IO access locality in most real-world workloads
and the significant performance/cost difference between the
NAND flash memory and magnetic recording technologies,
integrating a flash-based cache into HDD storage systems is
a natural option to economically improve the storage system
performance. Meanwhile, because of the very low IOPS and
long access latency of HDDs, modern computing systems can
realize data compression over HDDs to reduce the total storage
cost without incurring noticeable CPU and performance over-
heads. Moreover, it is not uncommon that data compression
over HDDs can even improve the storage system performance.

This work is interested in deploying/managing the flash-
based cache at the block layer, being transparent to the
upper-level file systems and user applications. Such block-
level caching (e.g., Open CAS [16], FlashCache [17], and
Bcache [18]) can be conveniently deployed without demanding
any changes to the upper-level software stack. However, in
return for its deployment convenience, block-level caching is
subject to the following two implementation issues:

Cache indexing overhead: Let L, and L; denote the LBA space

of the caching device and the back-end hard HDDs, and
let }LZEC) C Lp denote the cached data set. In conventional
implementation of a cached storage system, one must use
an indexing data structure (e.g., hash-based or tree-based) to
maintain the mapping between ILI()C) and L.. Since block-level
caching manages cache in the unit of 4KB sectors, its indexing
data structure must maintain the mapping between each cached
sector LBA;, € IL,()C) and its location on the caching device
LBA. € L. As a result, the cache indexing complexity is
linearly proportional to the cache storage capacity. This can
lead to high indexing CPU/memory cost for large-scale storage
systems. For example, to deploy an 8TB flash-based cache
over 256TB HDDs, block-level caching needs to maintain

Co

A

| >> Exposed LBA space (e.g., 32TB) >>

[FTL with transparent compression]

NAND Flash (e.g.,4TB)

Cr
(@

4KB
r A \

l\ Valid user data | 0’s 1

N 1
\ 1

\ 4 -
< Transparent compression
¥

\
N -

73

\
\

\‘I Compressed data TI‘ -

(b)

Fig. 2. Illustration of (a) LBA space sparsity, and (b) intra-sector content sparsity, which are both enabled by TC-CSD.

all the indexes through an in-memory key-value store with
2 billion entries (i.e., 8TB/4KB). Assuming 16 bytes per
entry, the indexing could consume 32GB memory. Moreover,
management of 2 billion key-value pairs could incur non-
negligible CPU overhead.

Impact of HDD data compression: Because of the very low
IOPS and long access latency of HDDs, modern servers can
readily apply coarse-grained data compression over HDDs
(e.g., 32KB, 64KB, or even 256KB per compression chunk)
without noticeable CPU and performance overheads. In fact,
it is not uncommon that data compression over HDDs can
even improve the storage system performance. However, if
HDD data compression is handled at the upper level (e.g.,
file system and user applications), data will be cached in
the unit of compressed data chunks. This could degrade the
caching device capacity usage efficiency, especially under
workloads dominated by small-size random data access. More-
over, accessing compressed data chunk on the caching device
involves fetching a large data chunk and carrying out CPU-
based decompression. This could result in significant under-
utilization of the IOPS and bandwidth performance of the flash-
based caching device.

III. PROPOSED DESIGN SOLUTION

This section presents a TC-CSD-based block-level caching
design framework, where the key is to address the above two
implementation issues by leveraging the two types of sparsity
of TC-CSD (i.e., LBA sparsity, and sector content sparsity). We
will first introduce an index-less cache management approach
that leverages the sparse LBA space of TC-CSD to largely
simplify the cache management. Then we will present a data
structure to strongly simplify LBA-PBA address translation by
leveraging the sparsity of TC-CSD.

A. Index-less Cache Management

The key idea is to make TC-CSD caching device expose an
LBA space that is identical to the LBA space of the back-end
HDDs. As a result, for any cached sector, its LBA address on
the back-end HDDs is directly used as its LBA address on the
TC-CSD caching device. In conventional design practice, the
LBA space L. of the caching device is much smaller than the

LBA space L; of the back-end hard HDDs (i.e., |L.| << |Ly|.
As a result, we must deploy an indexing data structure (i.e.,
a tree/hash-based key-value store) to explicitly maintain the
mapping between the on-HDD LBA of a cached sector and
its location on the caching device. In contrast, the TC-CSD
caching device exposes an LBA space that is identical to the
LBA space of the back-end HDDs. For any cached sector with
on-HDD LBA L; € Ly, the LBA address of its cached version
on the TC-CSD caching device is also L;. This obviates the
implementation of an indexing data structure.

By leveraging the sparse LBA space of TC-CSD, we propose
a data structure based on bitmap that can largely simplify
the cache management compared with the conventional data
structure for cache management. The key idea to design the
cache bitmap is second-chance scan. In the bitmap, each entry
represents a sector. Each entry has four bits. The first bit
denotes whether this sector is in the cache (1) or not (0). The
second bit denotes whether this sector is clean (0) or dirty (1).
The third and fourth bits are used to denote whether the data
are hot (01,10,11) or cold (00). When a sector is accessed, its
last two bits add 1 unless they are 11. For example, if a sector
whose last bits are 01 is accessed, then its last bits become
10. When the amount of data in cache reaches a predefined
threshold, some data need to be evicted from cache. The bitmap
will be scanned to determine which sectors should be evicted.
After a sector is scanned, its last two bits subtract 1 unless
they are 00. These data have a higher priority to be evicted:
1) clean data; 2) cold data; 3) dirty data with good continuity.
The reason why we consider continuity as one of the factors
is that if data is compressed when written to disk, then data
would have to be written sequentially on disk rather than be
updated in place, data with poor continuity on disk would have
a poor compression rate, and cause long latency because disk
may need to fseek many locations to finish a read request with
large size.

To better illustrate our cache design, we assume the logic
capacity is 2TB and the cache capacity is 200GB. We also
assume that a certain amount of data (between 1GB and 2GB)
should be evicted from cache when the amount of data in
cache reaches a predefined threshold. Firstly, we need to evict
the cold and clean data from cache. And if the amount of

these cold and clean data is less than 1GB, then we need to
find and evict 1GB of cold and dirty data with relatively good
continuity. Thus the total amount of evicted data is between
1GB and 2GB. To be more specific, our design is illustrated
as follows:

We generate a table with 2000 entries. Each entry represents
100 MB dirty and cold data in cache, and they are ranked in
LBA. Each entry records two values: FirstLBAg.(the first
LBA of dirty and cold data) and Contg. (the continuity of
dirty and cold data)

Initialize each entry’s two values above as 0. We need to
scan the bitmap to determine what data should be evicted from
cache, and here are the steps:

1) Use Size,. to record the size of clean and cold data (i.e.,
data whose bits are 1000) and initialize it as 0. Use Sizeq.
to record the size of dirty and cold data (i.e., data whose bits
are 1100) and initialize it as 0. For the first entry, scanning
from the minimum LBA (sector), and use the first LBA whose
bits are 1100 (i.e., dirty and cold) as the value of the entry’s
FirstLBAg..

2) If the current sector’s bits are 1000, remove this sector’s
data from cache, change its bits to 0000, and add 4096B to
Sizeee. If Size.. is less than 1GB then move to the next sector.
Otherwise, stop scanning, skipped the following steps and the
data evicting work is over.

3) While if the current sector’s bits are 1100, add 4096B to
Sizeq.. If the current sector’s bits and its next sector’s bits are
both 1100, then add 1 to Conty.. And it’s easy to see that if
m continuous sectors’ bits are all 1100, then add m*4096B to
Sizegq. and add m-1 to Contge.

4) Do the same procedure for the next sectors until Sizegy,
equals to 100MB, then we get the table’s first entry’s two
values: FirstLBAy. and Contg.. Then set Sizey. as 0 again
and we move to the next sector and similarly we can get the
table’s other entries’ FirstLBAg. and Contg.. Assume the
last entry is the nth entry, n is generally much less than 2000
though the table is allocated up to 2000 entries, because the
100MB data that each entry represents are only dirty and cold
data.

5) Rank the n entries according to its value of C'ontg., then
we choose 10 entries with the largest C'onty.. We can find
these dirty and cold data by scanning the bitmap again via
each entry’s FlirstL BA,. and then find these data’s location in
cache by leveraging the sparse LBA space of TC-CSD, then we
evict and write these data to disk. Since each entry represents
100MB of dirty and cold data, finally we evict 1GB dirty and
cold data with good continuity and less than 1GB clean and
cold data from cache.

6) Usually the data evicting work could be done after the 5
steps above. But we need to consider the situation when the
amount of cold data (no matter clean or dirty) is less than 1 GB.
If this case happens, we can record the information of clean
and relatively cold data (bits are 1001) and the information of
dirty and relatively cold data (bits are 1101) during the second

scanning with the similar steps above. We can also always
record this information during the first scan to reduce the total
times of scanning.

What should be pointed out is that the evicted 1GB of
dirty and cold data have very good continuity but perhaps not
the best continuity. However, to find the 1GB dirty and cold
data with the best continuity, a complex data structure should
be maintained. We need to record each continuous dirty and
cold data including the single dirty and cold sector if both
of its previous and next sectors are not dirty and cold, and
finally rank them according to continuity to find the 1GB
dirty and cold data with the best continuity. This would no
doubt cost much higher storage and computational resources.
Furthermore, we design experiments to compare our algorithm
with this ideal algorithm in Section IV, and the results show
that the difference between the two algorithms’ performances
is negligible while our design costs much less storage and
negligible computational resources.

Since we use TC-CSD as cache and TC-CSD in-
ternally performs hardware-based per-4KB data compres-
sion/decompression, thus we can further compress our bitmap
in cache. Compared to the whole logic LBAs, only a small part
of LBAs is in cache. So most bits of the bitmap are continuous
zeros. That means our bitmap could be compressed to cost
negligible storage resources. We can separate bitmap to many
parts and then compress them. For each read or write operation,
we only need to decompress, update and compress the related
part. Since it’s done in cache, the latency it costs is negligible
compared read or write latency of disk.

For the system that only supports fixed-size compression,
our cache design also applies to it by adjusting the length of
the evicted data. For example, if the compression’s fixed-size is
16kB (4 sectors), and assuming LBAs from 7 to 101 is one of
the dirty data we choose to evict from the cache management
algorithm, instead of evicting all of these data, we just evict
totally 92 LBAs (from 8 to 99). That is, always make sure
the first LBA to evict is the multiple of 4 sectors and the last
LBA to evict is the multiple of 4 sectors minus 1. By doing
this, it could also strongly mitigate read-modify-write and write
amplification caused by fixed-size compression. We carried out
related experiments in Section IV to further discuss it.

B. LBA-PBA Address Translation

Apart from strongly simplifying the cache management
compared to the conventional ones, we also propose a trans-
lation design that strongly simplifies the data structure of
LBA-PBA address translation by further leveraging the fact
that TC-CSD internally performs hardware-based per-4KB data
compression/decompression. Conventional LBA-PBA address
translation maintains a Hash table or tree structure that costs
large storage resources. And it becomes even more complex
and costs more computational resources if data is compressed
when being written to disk. Data compression on the disk can
save space, but may cause long latency if the size of data

compression is fixed because fixed-size compression can cause
lots of read-modify-write when part of data in the compression
unit needs to be updated. We propose a translation design that
avoids read-modify-write by using a very flexible data structure
that allows data compression of any size. Our translation design
is illustrated as follows.

1) We use a 4kB sector to store the information of n LBA-
PBA mapping, n is fixed and these n LBAs are continuous.

2) If all of these n continuous LBAs are compressed together
and then written to disk, then we just record the first LBA
(assuming it is 1), the first related PBA (assuming it is 101)
and the length [(I is the length after compression).

In this case, except the 12 bytes of information, all of
the other bits of the 4kB sector are zeros. Because TC-CSD
internally performs hardware-based per-4KB data compres-
sion/decompression, we can compress the 4kB to only several
bytes. Thus the information of n LBA-PBA mapping costs
negligible storage resources in fact. If a segment of the LBAs
(from LBA m; to LBA mg) are updated and compressed to
a new location (assuming the new location’s first PBA is 999
and assuming the length of the new compressed data is 1),
Then the n LBAs’ mapping information is recorded as Table I
shows: In Table I, the first column records the first LBA of

TABLE I
MAPPING INFORMATION.

1 mi-1 1 101 l
m1 mo-m1+1 mi 999 | [
mo+l n-mso 1 101 l

the continuous LBAs that belong to one compressed data.
The second column records the length of continuous LBAs
that belong to one compressed data. The third column records
the first LBA of the compressed data. The fourth column
records the first PBA of the compressed data. And the fifth
column records the length of the compressed data. This table
is simple but supplies all information for the LBA-PBA address
mapping. For example, if we want to read data whose LBAs
are from mo+1 to n, by checking the table, we can find and
read the data whose first PBA is 101 with the length of [.
After decompressing the data, we can get the data from the
difference between the requested first LBA and the first LBA
of the compressed data.

3) In most cases, n continuous LBAs are compressed not
together but separately and are written down in many different
locations on disk, so we need to keep each compressed data’s
mapping and update information as step 2 introduces. Because
our cache management evicts dirty data with good continuity,
so the storage space to record the mapping information is
small. That means in the 4kB sector, there is much free space
whose bits are all zeros, resulting in negligible storage cost
after compression.

4) In the extreme case when each two adjacent LBAs’ PBAs
are not adjacent with each other, we need to record each LBA’s

PBA. Thus when we choose the value of n, we need to make
sure that 4kB can record all of the n LBA-PBA mapping
information in the worst case. However, our cache management
ensures that the dirty data written down to disk have very good
continuity, so this extreme situation hardly happens.

When a segment of LBA-continuous dirty data is chosen
to be evicted from cache, it is compressed as a whole and
then written to disk, and then we need to decompress, update
and compress its related 4kB sector that records its LBA-PBA
mapping information. Each time when data is updated, we also
update the garbage rate of the zone where the invalid PBAs
belong to, for the purpose of garbage collection.

IV. EVALUATION
A. Experimental Setup

We ran all the experiments on a server with a 24-core
2.6GHz Intel CPU, 64GB DDR4 DRAM, 10 2TB 7200rpm
SATA HDDs, and a 3.2TB SSD with built-in transparent
compression that was recently launched to the commercial
market by ScaleFlux [13]. The server runs Linux Kernel 4.10.0
in the Ubuntu 16.04.03 distribution. This SSD carries out
hardware-based zlib compression on each 4KB sector along
the 10 path. Operating with PCle Gen3 x4 interface, this SSD
can achieve 3.2GB/s sequential throughput, and 650K (520K)
random 4KB read (write) IOPS (IO per second) over 100%
LBA span, which is similar to leading-edge commodity NVMe
SSDs.

We used three traces (LUNO, LUN2 and LUN4) from
Systor’17 Traces [19] and five benchmarks (Bayes, Kmeans,
PageRank, Sort, and TeraSort) from the big data benchmark
suite HiBench 7.0 [20]. We set up one master node and three
slave nodes to run the benchmarks of HiBench 7.0, and each
slave node has a 2TB HDD. LUNO, LUN2 and LUN4 traces
have a relatively smaller average size of read and write request
compared to Bayes, Kmeans, PageRank, Sort and Terasort
traces.

B. Write Amplification

We first carried out experiments to evaluate how fixed-
size compression could affect write amplification directly (i.e.,
without any cache). Fig. 3 shows the write amplification under
different traces when the compression unit is 16kB, 32kB,
64kB and 128kB respectively. From the results, we can con-
clude that fixed-size compression unit can cause severe write
amplification especially when the compression unit is large. As
the compression unit increases from 16kB to 128kB, the write
amplification becomes more severe for all traces, especially for
LUNO, LUN2 and LUN4 traces because their requests’ average
size is relatively smaller. When the compression Unit is 128kB,
the write amplification of LUNO, LUN2 and LUN4 can reach
up to almost 7, which is a very severe problem. However, this
problem can be mitigated via our cache management.

To evaluate our cache design’s write amplification when
compression size is fixed, we used LRU (list recently used)

= 16kB Compression Unit 32kB Compression Unit 64kB Compression Unit 128kB Compression Unit

T

|

XXX
3
X

02
Qe

RILILKS

0960 % % %%
RRRKKS

3RKKS

o
O

XXX
3K
XX,

X

XX
S05%8
RS

<
X

XXX
3K
XX,

%

XX
5
o

X
53
XX

2
X
—
QR
oS
35S
XX
%3
X

%

...

QR
RS

35S

O

X
53
XX

<X

.
XX
K

%%
XX

KK
553
XXX

<X
X

9%
o
O

2
<K
RRKS

&S

QR
oS

35S

..
9%

o

o2

\

o

S
35

RILKIZS
8%
RRRKS

.,.
o
2o

S02020°0-0°0°9"
S
D00 0.9.9.9,

R

9%
o

2

%
o
O
X

N

7K

NN

XX

o9%
R

R

5L
%
XX

S
5
%

5
o
S

O

X X

<X
2
O

=NE E/NE =N EON N

LUN2 LUN4 Bayes

Kmeans Page‘Rank Sért TeraSort

Fig. 3. Measured average write amplification with different fixed-size compression unit

cache as the baseline. Furthermore, we implemented an im-
proved LRU algorithm that half of the evicted data are chosen
according to the conventional LRU cache algorithm, while the
other half of the evicted data are dirty and cold data that
have good continuity, chosen from the rest data in cache.
To get the dirty data with good continuity, we maintain
a tree data structure, which no doubt makes the improved
LRU cost more storage and computational resources. Also,
we implemented not only our proposed cache management,
but also implemented an ideal proposed cache management
mentioned in Subsection III-A from it by maintaining a tree
structure to get the dirty and cold data with the best continuity.

Fig. 4 shows measured average write amplification when
using different policies with the fixed 32kB compression unit.
The results show that the proposed cache management can
mitigate write amplification to almost 1(1 means no write
amplification), which is very close to the performance of
the improved LRU and the ideal version of the proposed.
Furthermore, the proposed cache management costs negligible
storage space to maintain a bitmap that could be compressed.
While the improved LRU and the ideal proposed cost much
more storage and computational resources.

C. Read Performance

When the compression unit is not fixed, data could be
compressed in any size and then are written on disk se-
quentially. This does not cause write amplification, but may
affect read performance because a read request may fseek
two or more times to get the complete data. We carried out
experiments to evaluate the read performance of our proposed
cache management when the size of the compression unit is
not fixed. Apart from the four policies mentioned above, we
added two more conventional policies: write through directly
and write back in order. Write through directly is a policy that
there is no buffer and when a request arrives, directly compress
and write it to disk to ensure that data would not be lost. Write
back in order is a policy to evict data from cache in the order

of entering the cache, which also considers data’s safety as a
very important factor.

Fig. 5 shows the average number of head seek per read
request when using different policies. The results tell that
the improved LRU, our proposed cache management and the
ideal proposed with the best continuity have the similar and
lower average number of head seek, compared to the other
policies. The reason is that these three policies evict data
with good continuity, while continuity means more continuous
LBAs could be compressed together and be written on the same
location of disk. Thus it is a high chance that only one head
seek is needed to get the complete data of the read request.

Fig. 6 and Fig. 7 show the average and 99-percentile tail read
latency when using different policies, under different traces.
From the results, we can conclude that the improved LRU,
our proposed cache management and the ideal proposed with
the best continuity have the very close read performance which
is much better than the other three policies. The results well
align with the number of head seek per read results shown in
Fig. 5.

From the results of write amplification and read perfor-
mance, we know that our proposed cache management is the
best choice among all of the policies mentioned above. Because
though the improved LRU policy and the ideal proposed policy
have higher performance, the results show that the difference
is negligible compared to our proposed cache management.
While our cache management costs much less or even negli-
gible resources.

V. RELATED WORK

SSD Caching Aiming to improve mass data storage sys-
tem performance at relatively small cost overhead, hybrid
storage system with SSD caching has been widely studied
(e.g., see [21]-[33]). A large body of prior work focused on
cache management and eviction policies. For example, Kgil
et al. [21] proposed to partition the cache into separate read
and write regions to improve both performance and reliability.
FlashTier [34] presented an integrated FTL and cache manage-
ment design approach to reduce the SSD caching implementa-

BZZ Proposed with Best Continuity

XY Proposed

) Improved LRU

ELRU

TeraSort

Sort

PageRank

T
Kmeans

Bayes

LUN4

LUN2

LUNO

I Ul

T
e
<

T
0
(o]

T T T T T T T T T
o v o uwaoun
M N N «~ «— O
uonesyijdwy ajlIM

e
°

Fig. 4. Measured average write amplification when using different policies (fixed-size compression unit is 32kB)

TeraSort

93959
OSSO IKIAIKKLKK
[REEEBEIEIBEIEE

Sort

PageRank

T
Kmeans

T
Bayes

LUN4

LUN2

LUNO

E=— Write Through Directly [/ Write Back in Order XYJ LRU [£%] Improved LRU Proposed [Proposed with Best Continuity

I L L L
T NSO IANOS
T OO0 O0O0o

eaH jo JaquinpN abesany

Fig. 5. Measured average number of head seek per read request when using different policies

E—] Write Through Directly Write Back in Order R LRU 2% Improved LRU Proposed [Proposed with Best Continuity

Kmeans PageRank Sort TeraSort

Bayes

LUN2 LUN4

LUNO

2500

(sw)Aouaje peay abelany

Fig. 6. Measured average read latency when using different policies

== Write Through Directly [/ Write Back in Order XYJ LRU Improved LRU [[[[[[[| Proposed [Proposed with Best Continuity

20000
’g |
= 16000 - -
3] e
g ’ =
+ 12000 - - =
J - = = 7 =
g o000y = N = - =
nc] = = = \ =
5 40001 = = = =
= | = = = =
g\: = I = 2 = ‘ AT = ‘
° LUN4 Bayes Kmeans PageRank Sort TeraSort

Fig. 7. Measured 99-percentile tail read latency when using different policies

tion complexity. Consistent write-back caching policies were
developed in [28], [35]. Cheng et al. [31] developed offline
algorithms that can simultaneously improve SSD cache hit ra-
tio and endurance. Ni et al. [30] presented SSD cache eviction
schemes geared towards data center workloads. ZoneTier [33]
presented SSD-based caching/tiering schemes optimized for
SMR drives. Huang et al. [32] developed an adaptive SSD
cache data replacement policy.

Transparent Data Reduction. Prior research has well studied
the implementation of storage data reduction (e.g., compres-
sion and deduplication) with complete transparency to user
applications. Transparent data reduction can be realized at
filesystem level [36]-[39], block level [40]-[42], and even
inside storage hardware [43]-[46]. Prior work [40], [47]-[50]
also well studied the potential of applying data reduction to
enlarge the effective SSD cache capacity and hence improve
cache hit rate. Providing block-level data compression and
deduplication support, Linux VDO [41] caries out compression
on the per-4KB basis in order to simplify the management at
the penalty of compression ratio. Klonatos et al. [40] presents
a block-level compression solution that allows coarse-grained
compression (e.g., per-64KB) and relies on read-modify-write
to handle random updates. Ajdari et al. [42] used FPGA-based
accelerator to assist block-level compression and deduplication
over large SSD arrays.

SSD Sparse Addressing. Prior work explored the innovation
opportunities enabled by making SSD FTL expose a sparse
logical address space. For example, FlashTier [34] utilizes
SSD sparse addressing to simplify SSD cache management.
FlashMap [51] integrates virtual address translation and SSD
FTL sparse address translation to efficiently support memory-
mapped SSD files. Das et al. [52] presented a solution that
leverage SSD sparse addressing to facilitate application-level
data compression. DFS filesystem [53] takes advantage of SSD
sparse addressing to largely simplify its data management.

VI. CONCLUSIONS

With the goal of simplifying the data structure of cache
design by leveraging the sparsity of TC-CSD, this paper

advocates a index-less cache management approach. The key
is to use a second-chance-scan bitmap to manage the data in
cache to simplify the cache design, and compress the bitmap
to save a lot of storage space by leveraging the property of
TC-CSD. From the results, we can conclude that the proposed
index-less cache has better performance than the conventional
cache policies, and has a good performance as the improved
cache policies that are much more complex and cost much
larger resources.

REFERENCES

[11 SNIA Technical ~Work Group on
https://www.snia.org/computational.

[2] T. Coughlin, “When Memory Starts to Think [The Art of Storage],” IEEE
Consumer Electronics Magazine, vol. 8, no. 3, pp. 90-91, 2019.

[3] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model,
algorithms and evaluation,” in Proc. of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1998, pp. 81-91.

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, vol. 17, no. 2, pp. 34-44, Mar 1997.

[5] E.Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-scale
data mining and multimedia,” in Proc. of the International Conference
on Very Large Data Bases (VLDB), 1998, pp. 62-73.

[6] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang, P. Wang,
Y. Wang, R. Kuan et al., “POLARDB meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational database,”
in USENIX Conference on File and Storage Technologies (FAST), 2020,
pp. 29-41.

[7]1 1. L. Picoli, P. Bonnet, and P. Toziin, “LSM management on computa-
tional storage,” in Proceedings of the International Workshop on Data
Management on New Hardware, 2019, pp. 1-3.

[8] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active disk
meets flash: A case for intelligent SSDs,” in Proc. of the International
ACM Conference on Supercomputing, 2013, pp. 91-102.

[9] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query

processing on smart SSDs: Opportunities and challenges,” in Proceedings

of the ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2013, pp. 1221-1230.

S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and

Arvind, “BlueDBM: An appliance for big data analytics,” in Proc. of

the International Symposium on Computer Architecture (ISCA), 2015,

pp. 1-13.

Y. Kang, Y.-S. Kee, E. Miller, and C. Park, “Enabling cost-effective

data processing with smart SSD,” in Proc. of IEEE Symposium on Mass

Storage Systems and Technologies (MSST), May 2013, pp. 1-12.

Computational Storage.

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]
(18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson, “Willow: A user-programmable SSD,” in Proc. of the
USENIX Conference on Operating Systems Design and Implementation
(0OSDI), 2014, pp. 67-80.

ScaleFlux Computational Storage. http://scaleflux.com.

E. F. Haratsch, “SSD with Compression: Implementation, Interface and
Use Case,” in Flash Memory Summit, 2019.

N. Zheng, X. Chen, J. Li, Q. Wu, Y. Liu, Y. Peng, F. Sun, H. Zhong, and
T. Zhang, “Re-think data management software design upon the arrival
of storage hardware with built-in transparent compression,” in USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 20),
2020.

Open Cache Acceleration Software (Open CAS).
cas.github.io.

FlashCache. https://github.com/facebookarchive/flashcache.

Bcache. https://bcache.evilpiepirate.org.

C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara, “Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure,” in Proceedings of the 10th ACM International
Systems and Storage Conference. ACM, 2017, p. 13.

HiBench 7.0. https://github.com/intel-hadoop/HiBench.

T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk
caches,” in Proceedings of the International Symposium on Computer
Architecture (ISCA). 1EEE, 2008, pp. 327-338.

T. Pritchett and M. Thottethodi, “Sievestore: a highly-selective,
ensemble-level disk cache for cost-performance,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2010, pp.
163-174.

Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Azor: Using two-level block selection to improve SSD-based I/O
caches,” in IEEE International Conference on Networking, Architecture,
and Storage. 1EEE, 2011, pp. 309-318.

S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching
for the data center,” in IEEE symposium on mass storage systems and
technologies (MSST). 1EEE, 2012, pp. 1-12.

D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash caching
on the storage client,” in USENIX Annual Technical Conference (ATC),
2013, pp. 127-138.

D. Arteaga and M. Zhao, “Client-side flash caching for cloud systems,” in
Proceedings of International Conference on Systems and Storage, 2014,
pp. 1-11.

Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Improving performance and
lifetime of the SSD RAID-based host cache through a log-structured
approach,” ACM SIGOPS Operating Systems Review, vol. 48, no. 1, pp.
90-97, 2014.

D. Qin, A. D. Brown, and A. Goel, “Reliable writeback for client-side
flash caches,” in USENIX Annual Technical Conference (ATC), 2014, pp.
451-462.

Y. Chai, Z. Du, X. Qin, and D. A. Bader, “Wec: Improving durability
of ssd cache drives by caching write-efficient data,” IEEE Transactions
on computers, vol. 64, no. 11, pp. 3304-3316, 2015.

Y. Ni, J. Jiang, D. Jiang, X. Ma, J. Xiong, and Y. Wang, “S-RAC: SSD
friendly caching for data center workloads,” in Proceedings of the ACM
International on Systems and Storage Conference, 2016, pp. 1-12.

Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li,
“Erasing belady’s limitations: In search of flash cache offline optimality,”
in USENIX Annual Technical Conference (ATC), 2016, pp. 379-392.

S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen, “Improving flash-
based disk cache with lazy adaptive replacement,” ACM Transactions on
Storage (TOS), vol. 12, no. 2, pp. 1-24, 2016.

X. Xie, L. Xiao, and D. H. Du, “Zonetier: A zone-based storage
tiering and caching co-design to integrate ssds with smr drives,” ACM
Transactions on Storage (TOS), vol. 15, no. 3, pp. 1-25, 2019.

M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: a lightweight,
consistent and durable storage cache,” in Proceedings of the ACM
European conference on Computer Systems, 2012, pp. 267-280.

R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,
and M. Zhao, “Write policies for host-side flash caches,” in Proceedings
of USENIX Conference on File and Storage Technologies (FAST), 2013,
pp. 45-58.

https://open-

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

[53]

M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line data
compression in a log-structured file system,” ACM SIGPLAN Notices,
vol. 27, no. 9, pp. 2-9, 1992.

J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum,
“The zettabyte file system,” in Proceedings of the Usenix Conference on
File and Storage Technologies (FAST), vol. 215, 2003.

K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “iDedup:
latency-aware, inline data deduplication for primary storage.” in USENIX
Conference on File and Storage Technologies (FAST), 2012, pp. 1-14.
0. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesys-
tem,” ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1-32, 2013.
Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Transparent online storage compression at the block-level,” ACM Trans-
actions on Storage (TOS), vol. 8, no. 2, pp. 1-33, 2012.

Virtual Data Optimizer (VDO). https://github.com/dm-vdo/vdo.

M. Ajdari, P. Park, J. Kim, D. Kwon, and J. Kim, “CIDR: A cost-effective
in-line data reduction system for terabit-per-second scale SSD arrays,”
in IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). 1EEE, 2019, pp. 28-41.

F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based solid
state drives.” in USENIX Conference on File and Storage Technologies
(FAST), 2011, pp. 77-90.

G. Wu and X. He, “Delta-FTL: improving SSD lifetime via exploiting
content locality,” in Proceedings of the ACM european conference on
Computer Systems, 2012, pp. 253-266.

A. Zuck, S. Toledo, D. Sotnikov, and D. Harnik, “Compression and
SSDs: Where and how?” in Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), 2014.

X. Chen, Y. Li, J. Hao, H. Shin, M. Suh, and T. Zhang, “Simultaneously
reducing cost and improving performance of NVM-based block devices
via transparent data compression,” in Proceedings of the International
Symposium on Memory Systems, 2019, pp. 331-341.

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Using transparent compression to improve ssd-based I/O caches,” in
Proceedings of the European conference on Computer systems, 2010,
pp. 1-14.

C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A capacity-optimized {SSD} cache for primary storage,” in
USENIX Annual Technical Conference (ATC), 2014, pp. 501-512.

Q. Wang, J. Li, W. Xia, E. Kruus, B. Debnath, and P. P. Lee, “Austere
flash caching with deduplication and compression,” in USENIX Annual
Technical Conference (ATC), 2020, pp. 713-726.

Y. Jia, Z. Shao, and F. Chen, “Slimcache: An efficient data compres-
sion scheme for flash-based key-value caching,” ACM Transactions on
Storage (TOS), vol. 16, no. 2, pp. 1-34, 2020.

J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified address
translation for memory-mapped SSDs with FlashMap,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), 2015,
pp. 580-591.

D. Das, D. Arteaga, N. Talagala, T. Mathiasen, and J. Lindstrom,
“NVM compression—hybrid flash-aware application level compression,”
in Workshop on Interactions of NVM/Flash with Operating Systems and
Workloads (INFLOW), 2014.

W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “Dfs: A file system
for virtualized flash storage,” ACM Transactions on Storage (TOS), vol. 6,
no. 3, pp. 1-25, 2010.

