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Abstract. For a planar graph G and a set Π of simple paths in G, we
define a metro-map embedding to be a planar embedding of G and an
ordering of the paths of Π along each edge of G. This definition of a
metro-map embedding is motivated by visual representations of hyper-
graphs using the metro-map metaphor. In a metro-map embedding, two
paths cross in a so-called vertex crossing if they pass through the vertex
and alternate in the circular ordering around it.

We study the problem of constructing metro-map embeddings with
the minimum number of crossing vertices, that is, vertices where paths
cross. We show that the corresponding decision problem is NP-complete
for general planar graphs but can be solved efficiently for trees or if the
number of crossing vertices is constant. All our results hold both in a
fixed and variable embedding settings.

Keywords: Metro-map metaphor · Hypergraph visualization ·
Crossing minimization · NP-hardness · Clustered planarity

1 Introduction

We consider a visualization style for hypergraphs that is inspired by schematic
metro maps. Such maps are common for urban citizens, who all know that the
stations traversed by the same colored curve belong to the same metro line.
This intuitive understanding of grouping has been employed to visualize other
abstract data forming hypergraphs. For example, Foo [8] turns personal mem-
ories into a metro map, Nesbitt [12] and Stott et al. [17] use the metro-map
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e1 = {1, 2, 3, 4}
e2 = {1, 2, 3, 5}
e3 = {1, 2, 3, 6}
e4 = {1, 2, 4, 5}
e5 = {1, 2, 4, 6}
e6 = {1, 2, 5, 6}
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Fig. 1. (a) The hypergraph H with vertex set {1, . . . , 6} whose hyperedges are all 4-
element subsets containing {1, 2}, (b) two supports of H, and (c) a metro-map drawing
of H.

metaphor to visualize relationships between PhD theses and items of a business
plan, Sandvad et al. [15] for building Web-based guided tour systems, and Shahaf
et al. [16] use it for visualizing historical events. A popular visualization shows
the 250 best movies according to a vote on IMDb.com [10].

Informally, the problem of constructing such a visualization for a given hyper-
graph is as follows. Let H = (V, E) be a hypergraph with vertex set V and edge
set E ⊆ 2V . A metro-map drawing of H is a graphical representation where each
node in V is depicted by a point in the plane and each hyperedge e ∈ E by
an open continuous curve, referred to as line, that passes through the points
corresponding to the vertices in e; see Fig. 4 below.

The problem of constructing a metro-map drawing of a hypergraph can be
broken down into several algorithmically challenging steps that are each worth of
independent investigation. The first step is to construct a so-called path-based
hypergraph support. Given a hypergraph H, a graph G with V (G) = V (H)
is a support of H if, for each hyperedge e of H, the graph G[e] induced by e

is connected. A support is path-based if, for every hyperedge e, G[e] contains a
Hamiltonian path. For example, Fig. 1 shows a hypergraph H with two supports;
the right one is path-based while the left one is not. The second step is to draw
the path-based support. The third and final step is to route the lines along the
edges of the support. All three steps strongly influence the readability of the
final metro-map drawing.

Even just the first step leads to two difficult problems. Constructing a path-
based support with the minimum number of edges—a natural optimization goal
for obtaining a readable final result—is NP-hard [5]. Assuming that a support G

is provided as part of the input, ordering the vertices within a hyperedge e is
NP-hard as this task implicitly tests whether the induced subgraph G[e] contains
a Hamiltonian path. In this paper, we study the algorithmic complexity of the
other two steps: embedding the support and routing the lines.

The input for our problem is a planar graph G (the support of H) and a
set Π of simple paths in G (the hyperedges). For example consider the metro-
map drawing in the right of Fig. 1. Here the path-based support is G ∼= K2,4,
and the set Π contains for example the path p1 = [2, 3, 1, 4] for hyperedge
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(a) (b) (c)

Fig. 2. The vertex crossing in (a) can be eliminated by reordering lines at v. Sometimes
(but not always) a vertex crossing (b) can be turned into a line crossings (c).

e1 = {1, 2, 3, 4}. In general, let u be a vertex of G, let u1, . . . , uk be the neighbors
of u in clockwise order, as determined by an embedding G of G, and let Πi ⊆ Π

be the set of paths that contain the edge (u, ui). A line ordering at vertex u

on the edge (u, ui), ordu(ui), is an ordering p1, . . . , ph of Πi such that ui−1

precedes p1 and ph precedes ui+1 in G. In Fig. 1 the line ordering ord1(3) on
edge (1, 3) of G is 〈p1, p4, p3〉, where pi denotes the path in Π for hyperedge ei

of H. Intuitively, a line ordering at vertex u on the edge (u, ui) is an extension
of the embedding G to the ordering of the paths passing through (u, ui). A line

ordering at vertex u is the concatenation ordu(u1) ⊕ · · · ⊕ ordu(uk). A vertex

crossing at u is a pair (p, q) of paths that appear in the line ordering at u

alternatingly, that is, p...q...p...q; see the crossing between the green line and the
orange line in vertex u in Fig. 2(a,b). A line crossing along an edge e = (v, w) is
a pair (p, q) of paths that appear in the line orderings at v and at w in the same
order; refer to Fig. 2(c).

Minimizing the number of line crossings has been studied extensively in the
context of drawing geographic metro maps [1,2,7,13,14]. We advocate that it is
also interesting to minimize vertex crossings. Graphic designers sometimes seem
to prefer them over line crossings; see Fig. 3.

Fig. 3. A crossing vertex in a clipping of the official bus & tram map of Würzburg [18].

In this paper, we focus on vertex crossings and forbid line crossings. When
representing abstract hypergraphs as metro maps, one has more freedom to place
vertices; this can be used to produce drawings that avoid both types of crossings.
For an example of such a drawing, see Fig. 4.
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Fig. 4. A visualization of the conference GD 2019 as a metro map: the stations corre-
spond to cities and the lines to papers. A line connects the cities where the authors of
the corresponding paper are affiliated. The drawing has no vertex crossings.

We formalize our problem, which has two variants, as follows. In the fixed-

embedding setting, an embedding G of G is given, and a metro-map embedding of
(G,Π) is a set {ordu(v), ordv(u) : (u, v) ∈ E} of line orderings. If the embedding
of G is not part of the input—the variable-embedding setting—a metro-map

embedding of (G,Π) is an embedding G of G and a metro-map embedding of
(G,Π). We then define the problem Crossing Vertex Minimization: Given a
pair (G,Π) or a pair (G,Π), we seek for a metro-map embedding that minimizes
the number of crossing vertices, that is, the number of vertices containing vertex
crossings—under the restriction that line crossings are not allowed.

Our contribution is as follows. We settle the complexity of Crossing Ver-

tex Minimization, which turns out to be NP-hard in general, but polynomial-
time solvable for trees. We also present an efficient algorithm for testing whether
an instance (G,Π) or (G,Π) admits a metro-map embedding without any ver-
tex crossings, for example as the one in Fig. 4. Table 1 gives an overview of our
results.
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We note that the problem of constructing a metro-map embedding in the
fixed-embedding setting with a slightly different optimization goal was studied
by Bast et al. [3]. The authors presented an ILP to minimize the total number
of vertex crossings (as opposed to our optimization goal of minimizing the total
number of crossing vertices).

Table 1. Our results for Crossing Vertex Minimization. Here k denotes the number
of crossing vertices.

Problem type Embedding Graph Result Ref.

k Part of input Fixed or Variable Planar NP-hard Theorem 1

k Fixed Fixed or Variable Planar Polynomial Corollary 1

Optimization Fixed or Variable Tree Polynomial Theorem 3

2 Complexity

Theorem 1. Crossing Vertex Minimization is NP-hard, both with fixed

and variable embedding.

Proof. We prove NP-hardness of the decision problem corresponding to Cross-

ing Vertex Minimization by reducing from Planar Vertex Cover, which
is defined as follows. Given a planar graph G = (V,E) and a number k, is there
a set S of k vertices such that, for every edge (u, v) in G, it holds that u ∈ S or
v ∈ S (or both)?

Given an instance (G, k) of Planar Vertex Cover, we construct a planar
graph G′ = (V ′, E′) and a set Π ′ of paths in G′ as follows (see Fig. 5):

V ′ = V ∪ {x1
e, x

2
e | e ∈ E}

E′ = E ∪ {(x1
e, u), (x2

e, u), (x1
e, v), (x2

e, v) | e = (u, v) ∈ E}

Π ′ = {P 1
e = [x1

e, u, v, x2
e], P

2
e = [x2

e, u, v, x1
e] | e = (u, v) ∈ E}

In Fig. 5(b) and (c), vertices in V ′ are white, edges in E′ are gray, and the two
paths in Π ′ for the specific edge e are yellow and green. Clearly G′ is planar.

We now claim that, for any embedding G′ of G′, there exists a metro-map
embedding of (G′,Π ′) with k crossing vertices if and only if G admits a vertex
cover of size k. Note that this implies NP-hardness for both fixed and variable
embeddings.

Given a metro-map embedding, for any edge e = (u, v) in G, paths P 1
e and P 2

e

necessarily cross, making at least one of u and v a crossing vertex. In other words,
the set S of all crossing vertices forms a vertex cover of G.

Conversely, if S is a vertex cover of G, we can choose for each vertex u ∈ V \S

and each edge e = (u, v) incident to u in G the line ordering ordu(v) such that
P 1

e and P 2
e do not cross at u (but at v). For i, j ∈ {1, 2} and for two different
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Fig. 5. Reduction from Planar Vertex Cover to Crossing Vertex Minimization:
(a) G with vertex cover (pink); (b) graph G′; (c) (G′, Π) with two crossing vertices.
(Color figure online)

edges e′ = (u, v′) and e′′ = (u, v′′) incident to u, paths P i
e′ and P

j
e′′ do not cross

since, due to planarity, the triangles [u, v′, xi
e′ ] and [u, v′′, x

j
e′′ ] do not alternate

along u. As crossings cannot occur at vertices in V ′ \V , the resulting metro-map
embedding has at most |S| = k crossing vertices. 	


3 Algorithms

We now turn to positive results, starting with metro-map embeddings without
any vertex crossings. We formulate the corresponding decision problem as an
instance of Clustered Planarity, which was introduced by Lengauer [11]
and independently by Feng et al. [6]. An instance of Clustered Planarity

consists of a planar graph H and a set C of subsets of vertices, called clusters.
Any pair C1, C2 ∈ C of clusters is either disjoint or comparable by inclusion,
i.e., C1 ∩ C2 ∈ {∅, C1, C2}. The task is to decide whether (H, C) admits a clus-
tered planar drawing, i.e., a crossing-free drawing of H together with a set of
crossing-free closed Jordan curves, one for each cluster, such that each curve γC

for cluster C contains exactly the vertices of C in its interior, and each curve
crosses each edge at most once. Only very recently, Fulek and Tóth [9] showed
that Clustered Planarity can be decided efficiently. Their algorithm runs
in O(n16) time, where n is the number of vertices of the given planar graph. In
the meantime, Bläsius et al. [4] came up with a simpler and faster algorithm,
running in quadratic time.

For convenience, we denote the size of an instance (G,Π) for our metro-map
embedding problems by ‖G,Π‖ and remark that ‖G,Π‖ = O(|V (G)| · |Π|).
While we state and prove the following theorem for the variable-embedding case,
it is simple to adjust it to a given fixed embedding; see the discussion in Sect. 4.

Theorem 2. Given a planar graph G and a set Π of paths in G, there is an

algorithm that decides efficiently whether (G,Π) admits a metro-map embedding

without vertex crossings. The algorithm runs in time O(f(‖G,Π‖)), where f

denotes the time needed to decide an instance of Clustered Planarity.

Proof. Given (G,Π), we construct in O(‖G,Π‖) time an equivalent instance
(H, C) of Clustered Planarity. First, by adding single-edge paths to Π, we
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ensure that every edge of G lies in some path in Π. Then for each edge e of G we
add a parallel1 edge ē to the graph and a new path P (ē) consisting just of ē to
the set of paths. The resulting instance (G′ = (V,E′),Π ′) admits a crossing-free
metro-map embedding if and only if (G,Π) does.

For the graph H, we take as vertex set the incidences between vertices of G′,
edges of G′, and paths in Π ′. Formally, a vertex–edge incidence is a pair (v, e) ∈
V × E′ with v ∈ e, a vertex–path incidence is a pair (v, P ) ∈ V × Π ′ with v ∈
V (P ), and a vertex–edge–path incidence is a triple (v, e, P ) ∈ V × E′ × Π ′ with
v ∈ e ∈ E(P ). (Note that there are no more than 2|E′|, |V | · |Π ′|, and 2|V | · |Π ′|
instances of each type, respectively.) For each path P = [v1, . . . , vp] in Π ′ with
vi ∈ V (i = 1, . . . , p), ei = vivi+1 ∈ E′ (i = 1, . . . , p − 1) graph H contains
a path [(v1, P ), (v1, e1, P ), (v2, e1, P ), (v2, e2, P ), . . . , (vp, ep−1, P ), (vp, P )] on all
incidences of P as they appear along the path. We call these paths the metro-line

paths. Additionally, for each edge e = uv of the original graph G with parallel
edge ē in G′, we put two paths [(u, e), (u, ē)] and [(v, e), (v, ē)] into H, which we
simply call the additional paths. Thus H is the vertex-disjoint union of paths.

For the clustering, we first define, for each vertex–edge incidence (v, e), a
cluster C(v, e) = {(v, e)} ∪ {(v, e, P ) ∈ V (H) | P ∈ Π ′}. Second, for each vertex
v in G′, we define an inner cluster Cin(v) = {(v, P ) ∈ V (H) | P ∈ Π ′} and
an outer cluster Cout(v) = Cin(v) ∪

⋃
(v,e)∈V (H) C(v, e). Let C be the set of all

these clusters. This completes the construction of the Clustered Planarity

instance (H, C). Clearly H is planar, and any pair of clusters in C is either
disjoint or in inclusion-relation. Moreover we have that the size of (H, C) is in
O(|V | · |Π ′|) = O(‖G,Π‖). See Fig. 6 for an illustration.

ē

(a)

(b) (c)

v

v

(a)

e

Γ(v, e)

(v, e) (v, ē)P

(v, e, P )

(v, P )

γin(v)

γout(v)Γ(v)

Fig. 6. Part of a crossing-free metro-map embedding of (G, Π) (a) and (G′, Π ′) (b),
and a corresponding clustered planar drawing of (H, C) (c).

1 To avoid parallel edges, paths of length two with the appropriate modifications would
do equally well.
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It remains to show that any clustered planar drawing of (H, C) can be trans-
formed into a metro-map embedding of the original instance (G,Π) without
crossings. (The other direction is easy; see Fig. 6.)

For any vertex v in G, we have Cin(v) � Cout(v) and hence the corresponding
closed curves γout(v) and γin(v) define an annulus-shaped region Γ(v) (light
yellow region in Fig. 6(c) in the plane that contains the region Γ(v, e) (one of the
gray regions in Fig. 6(c) for cluster C(v, e) for every incident edge e at v. For every
incidence (v, e, P ), the metro-line path for P enters Γ(v) from the outside, passes
through Γ(v, e), and leaves Γ(v) to the inside. This gives a circular ordering σv

of the incidence (v, e, P ) around v. As Γ(v, e) ∩ Γ(v, e′) = ∅ for any e, e′ at v,
it follows that all incidences (v, e, P ) for the same edge e appear consecutively
in σv. Moreover, the additional path between (v, e) and (v, ē) implies that in σv

the incidence for edge ē appears next to the block of incidences for edge e.
We construct a crossing-free metro-map embedding of (G,Π) by drawing

each vertex v inside its curve γin(v), drawing each edge e of G along the metro-
line path for P (ē) connecting the ends to v inside γin(v) in a crossing-free way,
and choosing the line ordering as the subordering of σv on incidences (v, e, P )
with P ∈ Π ′ − Π. The constructed embedding of G is clearly crossing-free.
Moreover, we have no vertex crossing at v as the metro-line paths do not cross
inside γin(v).

It remains to show that there are no line crossings, i.e., that for each edge
e = (u, v) in G, the line ordering at u on e is the reverse of the line ordering at
v on e. (This would not be guaranteed without the parallel edges and additional
paths, see Fig. 7.)

v u

ē

Fig. 7. Without the extra edge ē, a clustered planar drawing of (H, C) might give line
crossings if e is a bridge.

For the edge e = (u, v), the circular ordering of incidences (v, e, P ) around v

is the reverse of the circular ordering of incidences (u, e, P ) around u since the
corresponding metro-line paths in H are non-crossing. Moreover, both sets of
incidences appear as a consecutive block around the respective vertices. Finally,
since the metro-line path for ē starts and ends between (in the cyclic ordering at
the vertices) the same metro-line paths for e at vertex u and vertex v, the line
orderings ordu(v) and ordv(u) are indeed reversals of each other. In particular,
a situation as shown in Fig. 7 is prevented. 	
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Theorem 2 implies the following.

Corollary 1. For any fixed k, one can decide in polynomial time whether there

is a metro-map embedding with at most k crossing vertices.

Proof. We go through all O(nk) sets of k vertices for which we allow vertex
crossings. Given such a set S ⊆ V , we split each path P ∈ Π at every vertex
of S. That is, consider ΠS to be the set of all inclusion-maximal subpaths of
paths in Π with no inner vertex in S. By Theorem 2, we can test in polynomial
time whether there is a metro-map embedding of (G,ΠS) without crossings.
Clearly, such an embedding can be seen as a metro-map embedding of (G,Π)
where all vertex crossings occur at vertices in S, and vice versa. As k is fixed,
we obtain overall polynomial runtime. 	


We now improve the result above for the case of trees.

Theorem 3. There is an algorithm that solves Crossing Vertex Minimiza-

tion for trees efficiently, both for variable and fixed embedding. Given a tree T

and a set Π of paths, the algorithm runs in time O(|V (T )| · f(‖T,Π‖)), where

f denotes the time needed to decide an instance of Clustered Planarity.

Proof. Let (T0,Π0) denote a given instance with T0 being a tree and Π0 a set
of paths in T0. We need to efficiently find a smallest subset S such that (T0,Π0)
admits a metro-map embedding with every vertex crossing in S. Along with
the set S, we obtain the edge-partition T (S) of T0 into its inclusion-maximal
subtrees with the property that each vertex of S is either a leaf in the subtree
or not contained in it. To compute S, pick any vertex as the root in T0 and
process the vertices of the tree from the leaves towards the root, i.e., considering
each vertex only if all its children have already been considered. On the way, we
will remove vertices from tree, thereby removing or shortening some paths. We
always denote by T the current tree and by Π the current set of paths.

Let Tv denote the subtree of T rooted at the currently processed vertex v

and (if v is not the root) let w denote the parent of v. We consider the subtree
T+

v of T on Tv ∪ w, i.e., the tree Tv plus edge (w, v), and compute the set
Π|T+

v
= {P ∩ T+

v | P ∈ Π} of all paths in Π, each restricted to its maximal

(possibly empty) subpath in T+
v . We then use Theorem 2 to test in O(f(‖T,Π‖))

time whether (T+
v ,Π|T+

v
) admits a metro-map embedding without any crossing.

If it does, we consider v as successfully processed and continue with the next
vertex. Otherwise, if (T+

v ,Π|T+
v

) requires at least one vertex crossing, we add
v to the set S and remove from T all vertices in Tv except for v, i.e., continue
with the instance (T−

v = T − (Tv − v),Π|T −

v
). Observe that if u1, . . . , uk are the

children of v, then T is the edge-disjoint union of T+
u1

, . . . , T+
uk

and T−
v .

Once every vertex of T0 is processed, we have computed a set S ⊆ V (T0)
with corresponding edge-partition T (S) with the properties that

(i) for every tree T ′ ∈ T (S) the instance (T ′,Π0|T ′) admits a crossing-free
metro-map embedding, and
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Tv

v

u1 uk

T+
u1

w

T+
v

T−

v

Fig. 8. Illustration of the subtrees of T for v and its children u1, . . . , uk. Note that T

is the edge-disjoint union of T −

v = T − (Tv − v) and T+
u1

, . . . , T+
uk

.

(ii) if T1, . . . , Tk ∈ T (S) are the trees containing the edges of a vertex v ∈ S with
parent w (if existent) to its k children, then every metro-map embedding of
(T+

v = T1 ∪ · · · ∪ Tk ∪ {vw},Π0|T+
v

) has at least one vertex crossing.

Combining the metro-map embeddings of all trees in T (S) given by (i) gives a
metro-map embedding of (T0,Π0) with all vertex crossings in S, i.e., |S| crossing
vertices are sufficient. On the other hand, (ii) implies that every metro-map
embedding of T0 has at least one vertex crossing at a non-leaf vertex of T+

v . As
for distinct u, v ∈ S, trees T+

v and T+
u do not share non-leaf vertices, |S| crossing

vertices are necessary.
The runtime of our algorithm is in O(|V (T )|·f(‖T,Π‖)) since it is dominated

by the |V (T )| calls to Theorem 2. 	


4 Discussion

First, note that the algorithm in Theorem 2, and hence also those in Corollary 1
and Theorem 3, assume that G has variable embedding. Of course, we can handle
the fixed-embedding setting by triangulating the given embedded graph in a
preprocessing step. This also holds for the treatment of trees in Theorem 3 by
doing a separate triangulation for each call of Theorem 2 therein.

Second, we leave as an open problem whether Crossing Vertex Minimiza-

tion is fixed-parameter tractable.
Third, refer back to Fig. 1. Intuitively, the metro-map drawing on the right

could be improved by switching the order of paths p1 and p4 on edge (1, 4).
However, this improvement is not reflected by objective functions considered so
far since the drawing has neither vertex nor line crossings. Maybe there is a need
for a more fine-grained objective?
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