
Multi-level Weighted Additive Spanners∗

Reyan Ahmed
University of Arizona, Tucson, United States

abureyanahmed@email.arizona.edu

Greg Bodwin
University of Michigan, Ann Arbor, United States

bodwin@umich.edu

Faryad Darabi Sahneh
University of Arizona, Tucson, United States

faryad@email.arizona.edu

Keaton Hamm
University of Texas at Arlington, Arlington, United States

keaton.hamm@uta.edu

Stephen Kobourov
University of Arizona, Tucson, United States

kobourov@cs.arizona.edu

Richard Spence
University of Arizona, Tucson, United States

rcspence@email.arizona.edu

Abstract

Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β

for all u, v ∈ V . A pairwise spanner is a spanner for which the above inequality only must hold for

specific pairs P ⊆ V × V given on input, and when the pairs have the structure P = S × S for

some subset S ⊆ V , it is specifically called a subsetwise spanner. Spanners in unweighted graphs

have been studied extensively in the literature, but have only recently been generalized to weighted

graphs.

In this paper, we consider a multi-level version of the subsetwise spanner in weighted graphs,

where the vertices in S possess varying level, priority, or quality of service (QoS) requirements, and

the goal is to compute a nested sequence of spanners with the minimum total number of edges. We

first generalize the +2 subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting.

We experimentally measure the performance of this and several other algorithms for weighted additive

spanners, both in terms of runtime and sparsity of output spanner, when applied at each level of the

multi-level problem. Spanner sparsity is compared to the sparsest possible spanner satisfying the

given error budget, obtained using an integer programming formulation of the problem. We run our

experiments with respect to input graphs generated by several different random graph generators:

Erdős–Rényi, Watts–Strogatz, Barabási–Albert, and random geometric models. By analyzing our

experimental results we developed a new technique of changing an initialization parameter value

that provides better performance in practice.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases multi-level, graph spanner, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs...

Supplement Material All algorithms, implementations, the ILP solver, experimental data and

analysis are available on Github at https://github.com/abureyanahmed/multi_level_weighted_

additive_spanners.

∗ This paper has been accepted in the 19th Symposium on Experimental Algorithms, SEA 2021.

© Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and
Richard Spence;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

a
rX

iv
:2

1
0
2
.0

5
8
3
1
v
3

[c

s.
D

M
]

 2
9
 M

a
r

2
0
2
1

XX:2 Multi-level Weighted Additive Spanners

Acknowledgements The research for this paper was partially supported by NSF grants CCF-1740858,

CCF1712119, and DMS-1839274.

R. Ahmed, et al. XX:1

1 Introduction

This paper studies spanners of undirected input graphs with edge weights. Given an input

graph, a spanner is a sparse subgraph with approximately the same distance metric as the

original graph. Spanners are used as a primitive for many algorithmic tasks involving the

analysis of distances or shortest paths in enormous input graphs; it is often advantageous to

first replace the graph with a spanner, which can be analyzed much more quickly and stored

in much smaller space, at the price of a small amount of error. See the recent survey [5] for

more details on these applications.

Spanners were first studied in the setting of multiplicative error, where for an input graph

G and an error (“stretch”) parameter k, the spanner H must satisfy distH(s, t) ≤ k ·distG(s, t)

for all vertices s, t. This setting was quickly resolved in a seminal paper by Althöfer, Das,

Dobkin, Joseph, and Soares [8], where the authors proved that for all positive integers k, all

n-vertex graphs have spanners on O(n1+1/k) edges with stretch 2k − 1, and that this tradeoff

is best possible. Thus, as expected, one can trade off error for spanner sparsity, increasing

the stretch k to pay more and more error for sparser and sparser spanners.

For very large graphs, purely additive error is arguably a much more appealing paradigm.

For a constant c > 0, a +c spanner of an n-vertex graph G is a subgraph H such that

distH(s, t) ≤ distG(s, t) + c for all vertices s, t. Thus, for additive error the excess distance

in H is independent of the graph size and of distG(s, t), which can be large when n is large.

Additive spanners were introduced by Liestman and Shermer [28], and followed by three

landmark theoretical results on the sparsity of additive spanners in unweighted graphs:

Aingworth, Chekuri, Indyk, and Motwani [7] showed that all graphs have +2 spanners on

O(n3/2) edges, Chechik [17, 13] showed that all graphs have +4 spanners on O(n7/5) edges,

and Baswana, Kavitha, Mehlhorn, and Pettie [11] showed that all graphs have +6 spanners

on O(n4/3) edges.

Despite the inherent appeal of additive error, spanners with multiplicative error remain

much more commonly used in practice. There are two reasons for this.

1. First, while the multiplicative spanner of Althöfer et al [8] works without issue for weighted

graphs, the previous additive spanner constructions hold only for unweighted graphs,

whereas the metrics that arise in applications often require edge weights. Addressing this,

recent work of the authors [3] and in two papers of Elkin, Gitlitz, and Neiman [22, 23]

gave natural extensions of the classic additive spanner constructions to weighted graphs.

For example, the +2 spanner bound becomes the following statement: for all n-vertex

weighted graphs G, there is a subgraph H satisfying distH(s, t) ≤ distG(s, t) + 2W (s, t),

where W (s, t) denotes the maximum edge weight along an arbitrary s t shortest path

in G. The +4 spanner generalizes similarly, and the +6 spanner does as well with the

small exception that the error increases to +(6 + ε)W (s, t), for ε > 0 arbitrarily small

which trades off with the implicit constant in the spanner size.

2. Second, poly(n) factors in spanner size can be quite serious in large graphs, and so

applications often require spanners of near-linear size, say O(n1.01) edges for an n-vertex

input graph. The worst-case spanner sizes of O(n4/3) or greater for additive spanner

constructions are thus undesirable, and unfortunately, there is a theoretical barrier to

improving them: Abboud and Bodwin [1] proved that one cannot generally trade off more

additive error for sparser spanners, as one can in the multiplicative setting. Specifically,

for any constant c > 0, there is no general construction of +c spanners for n-node

input graphs on O(n4/3−0.001) edges. However, the lower bound construction is rather

pathological, and it is not likely to arise in practice. It is known that for many practical

XX:2 Multi-level Weighted Additive Spanners

graph classes, e.g., those with good expansion, near-linear additive spanners always exist

[11]. Thus, towards applications of additive error, it is currently an important open

question whether modern additive spanner constructions on practical graphs of interest

tend to exhibit performance closer to the worst-case bounds from [1], or bounds closer

to the best ones available for the given input graphs. (We remark here that there are

strong computational barriers to designing algorithms that achieve the sparsest possible

+c spanners directly, or which even closely approximate this quantity in general [18]).

The goal of this work is to address the second point, by measuring the experimental

performance of the state-of-the-art constructions for weighted additive spanners on graphs

generated from various popular random models and measuring their performance. We

consider both +cW spanners (where W = maxuv∈E w(uv) is the maximum edge weight)

and +cW (·, ·) spanners, whose additive error is +cW (s, t) for each pair s, t ∈ V . We are

interested both in runtime and in the ratio of output spanner size to the size of the sparsest

possible spanner (which we obtain using an ILP, discussed in Section 5). We specifically

consider generalizations of the three staple constructions for weighted additive spanners

mentioned above, in which the spanner distance constraint only needs to be satisfied for

given pairs of vertices.

In particular, the following extensions are considered. A pairwise spanner is a subgraph

that must satisfy the spanner error inequality for a given set of vertex pairs P taken on input,

and a subsetwise spanner is a pairwise spanner with the additional structure P = S × S for

some vertex subset S. See [31, 21, 27, 26, 12, 20, 14, 15] for recent prior work on pairwise

and subsetwise spanners. We also discuss a multi-level version of the subsetwise additive

spanner problem where we have an edge-weighted graph G = (V, E), a nested sequence

of terminals S` ⊆ S`−1 ⊆ · · · ⊆ S1 ⊆ V and a real number c ≥ 0 as input. We want to

compute a nested sequence of subgraphs G` ⊆ G`−1 ⊆ · · · ⊆ G1 such that Gi is a +cW

subsetwise spanner of G over Si. The objective is to minimize the total number of edges in

all subgraphs. Similar generalizations have been studied for the Steiner tree problem under

various names including Multi-level Network Design [9], Quality of Service Multicast Tree

(QoSMT) [16, 25], Priority Steiner Tree [19], Multi-Tier Tree [29], and Multi-level Steiner

Tree [2, 6]. However, multi-level or QoS generalizations of spanner problems appear to have

been much less studied in literature. Section 2 generalizes the +2 subsetwise construction [21],

and Section 4 generalizes to the multi-level setting.

2 Subsetwise spanners

All unweighted graphs have polynomially constructible +2 subsetwise spanners over S ⊆ V

on O(n
√

|S|) edges [31, 21]. For weighted graphs, Ahmed et al. [3] recently give a +4W

subsetwise spanner construction, also using O(n
√

|S|) edges. In this section we show how

to generalize the +2 subsetwise construction [31, 21] to the weighted setting by giving a

construction which produces a subsetwise +2W spanner of a weighted graph (with integer

edge weights in [1, W]) on O(nW
√

|S|) edges. Due to space, we omit most proof details here

but describe the construction instead.

A clustering C = {C1, C2, . . . , Cq} is a set of disjoint subsets of vertices. Initially, every

vertex is unclustered. The subsetwise +2W construction has two steps: the clustering phase

and the path buying phase. The clustering phase is exactly the same as that of [31, 21] in

which we construct a cluster subgraph GC as follows: set β = logn

√

|S|W , and while there

is a vertex v with at least dnβe unclustered neighbors, we add a cluster C to C containing

exactly dnβe unclustered neighbors of v (note that v 6∈ C). We add to GC all edges vx

R. Ahmed, et al. XX:3

(x ∈ C) and xy (x, y ∈ C). When there are no more vertices with at least dnβe unclustered

neighbors, we add all the unclustered vertices and their incident edges to GC .

In the second (path-buying) phase, we start with a clustering C and a cluster subgraph

G0 := GC. There are z :=
(

|S|
2

)

unordered pairs of vertices in S; let π1, π2, . . . , πz denote

the shortest paths between these vertex pairs where πi = π(ui, vi) has endpoints {ui, vi}. As

in [21], we iterate from i = 1 to i = z and determine whether to add path πi to the spanner.

Define the cost and value of a path πi as follows:

cost(πi) := # edges of πi which are absent in Gi−1

value(πi) := # pairs (x, C) where x ∈ {ui, vi}, C ∈ C,

C contains at least one vertex in πi,

and distπi
(x, C) < distGi−1

(x, C)

If cost(πi) ≤ (2W + 1)value(πi), then we add (“buy”) πi to the spanner by letting Gi =

Gi−1 ∪ πi. Otherwise, we do not add πi, and let Gi = Gi−1. The final spanner returned is

H = Gz.

I Lemma 1. For any ui, vi ∈ S, we have distH(ui, vi) ≤ distG(ui, vi) + 2W .

Proof sketch. The proof is largely the same as in [21] except with one main difference: in

the unweighted case, the distance between any two points within the same cluster is at most

2, and it is shown in [21] that using this property, if there are t edges in π(u, v) missing

from GC , then there are at least t
2 clusters containing at least one vertex on π(u, v). In the

weighted case, assuming W is constant, there are Ω(t) clusters of C which contain at least

one vertex on π(u, v). J

I Corollary 2. Let G be a weighted graph with integer edge weights in [1, W]. Then G has a

+6W pairwise spanner on O(Wn|P |1/4) edges.

This follows from applying the +8W construction of Ahmed et al. [3] (Appendix 3, Al-

gorithm 3), except we use the above +2W subsetwise spanner instead of the +4W subsetwise

spanner construction given in [3] as a subroutine.

3 Pairwise spanner constructions [3]

Here, we provide pseudocode (Algorithms 1–3) describing the +2W , +4W , and +8W pairwise

spanner constructions1 by Ahmed et al. [3]. These spanner constructions have a similar

theme: first, construct a d-light initialization, which is a subgraph H obtained by adding

the d lightest edges incident to each vertex (or all edges if the degree is at most d). Then for

each pair (s, t) ∈ P , consider the number of edges in π(s, t) which are absent in the current

subgraph H. Add π(s, t) to H if the number of missing edges is at most some threshold `,

or otherwise randomly sample vertices and either add a shortest path tree rooted at these

vertices, or construct a subsetwise spanner among them.

1 Using a tighter analysis or the above +2W subsetwise construction in place of the +4W construction in
Algorithm 3, the additive error can be improved to +2W (·, ·), +4W (·, ·), and +6W for integer edge
weights.

XX:4 Multi-level Weighted Additive Spanners

Algorithm 1 +2W pairwise spanner [3]

1: d = |P |1/3, ` = n/|P |2/3

2: H = d-light initialization

3: let m′ be the number of missing edges needed for a valid construction

4: while m′ > nd do

5: for (s, t) ∈ P do

6: x = |E(π(s, t)) \ E(H)|

7: if x ≤ ` then

8: add π(s, t) to H

9: R = random sample of vertices, each with probability 1/(`d)

10: for r ∈ R do

11: add a shortest path tree rooted at r to each vertex

12: add the m′ missing edges

13: return H

Algorithm 2 +4W pairwise spanner [3]

1: d = |P |2/7, ` = n/|P |5/7

2: H = d-light initialization

3: let m′ be the number of missing edges needed for a valid construction

4: while m′ > nd do

5: for (s, t) ∈ P do

6: x = |E(π(s, t)) \ E(H)|

7: if x ≤ ` then

8: add π(s, t) to H

9: else if x ≥ n/d2 then

10: R1 = random sample of vertices, each w.p. d2/n

11: add a shortest path tree rooted at each r ∈ R1

12: else

13: add first ` and last ` missing edges of π(s, t) to H

14: R2 = i.i.d. sample of vertices, w.p. 1/(`d)

15: for each r, r′ ∈ R2 do

16: if exists r → r′ path missing ≤ n/d2 edges then

17: add to H a shortest r → r′ path among paths missing ≤ n/d2 edges

18: add the m′ missing edges

19: return H

4 Multi-level spanners

Here we study a multi-level variant of graph spanners. We first define the problem:

I Definition 3 (Multi-level weighted additive spanner). Given a weighted graph G(V, E) with

maximum weight W , a nested sequence of subsets of vertices S` ⊆ S`−1 ⊆ . . . ⊆ S1 ⊆ V , and

c ≥ 0, a multi-level additive spanner is a nested sequence of subgraphs G` ⊆ G`−1 ⊆ . . . ⊆

G1 ⊆ G, where Gi is a subsetwise +cW spanner over Si.

Observe that Definition 3 generalizes the subsetwise spanner, which is a special case

where ` = 1. We measure the size of a multi-level spanner by its sparsity, defined by

sparsity({Gi}
`
i=1) :=

∑`
i=1 |E(Gi)|.

R. Ahmed, et al. XX:5

Algorithm 3 +8W pairwise spanner [3]

1: d = |P |1/4, ` = n/|P |3/4

2: H = d-light initialization

3: let m′ be the number of missing edges needed for a valid construction

4: while m′ > nd do

5: for (s, t) ∈ P do

6: x = |E(π(s, t)) \ E(H)|

7: if x ≤ ` then

8: add π(s, t) to H

9: else

10: add first ` and last ` missing edges of π(s, t) to H

11: R = random sample of vertices, each w.p. 1/(`d)

12: H ′ = +4W subsetwise (R × R)-spanner [3]

13: add H ′ to H

14: add the m′ missing edges

15: return H

The problem can equivalently be phrased in terms of priorities and rates: each vertex

v ∈ S1 has a priority P (v) between 1 and ` (namely, P (v) = max{i : v ∈ Si}), and we wish

to compute a single subgraph containing edges of different rates such that for all u, v ∈ S1,

there is a +cW spanner path consisting of edges of rate at least min{P (u), P (v)}. With this,

we will typically refer to the priority of v to denote the highest i such that v ∈ Si, or 0 if

v 6∈ S1. In this section, we show that the multi-level version is not significantly harder than

the ordinary “single-level” version: a subroutine which can compute an additive spanner

can be used to compute a multi-level spanner whose sparsity is comparably good. Let OPT

denote the minimum sparsity over all candidate multi-level additive spanners.

We first describe a simple rounding-up approach based on an algorithm by Charikar et

al. [16] for the QoSMT problem, a similar generalization of the Steiner tree problem. For this

approach, assume we have a subroutine which computes an exact or approximate single-level

subsetwise spanner. Given v ∈ S1, let P (v) ∈ [1, `] denote the priority of v. The rounding-up

approach is as follows: for each v, round P (v) up to the nearest power of 2. This effectively

constructs a “rounded-up” instance where all vertices in S1 have priority either 1, 2, 4, . . . ,

2dlog
2

`e. The sparsity of the optimum solution in the rounded-up instance is at most 2OPT;

given the optimum solution to the original instance with sparsity OPT, a feasible solution to

the rounded-up instance with sparsity at most 2OPT can be obtained by rounding up the

rate of each edge to the nearest power of 2.

For each i ∈ {1, 2, 4, . . . , 2dlog
2

`e}, use the subroutine to compute a level-i subsetwise

spanner over all vertices whose rounded-up priority is at least i. The final multi-level additive

spanner is obtained by taking the union of these computed spanners, by keeping an edge at

the highest level it appears in.

I Theorem 4. Assuming an exact subsetwise spanner subroutine, the solution computed by

the rounding-up approach has sparsity at most 4 · OPT.

This is proved using the same ideas as the 4ρ-approximation for QoSMT [16]. As

mentioned earlier, in practice we use an approximation algorithm to compute the subsetwise

spanner instead of computing the minimum spanner.

R. Ahmed, et al. XX:7

Proof. This follows by using the +2 construction by Cygan et al. [21] on O(n
√

|S|) edges as

the subroutine. J

5 Exact algorithm

To compute a minimum size additive spanner, we utilize a slight modification of the ILP in [5,

Section 9], wherein we choose the specific distortion function f(t) = t + cW and minimize the

sparsity rather than total weight of the spanner. For completeness, we present the full ILP

for computing a single-level additive subsetwise spanner below along with a brief description

of the multi-level extension. Here E′ represents the bidirected edge set, obtained by adding

directed edges (u, v) and (v, u) for each edge uv ∈ E. The binary variable xuv
(i,j) is 1 if edge

(i, j) is included on the selected u-v path and 0 otherwise, and w(e) is the weight of edge e.

Minimize
∑

e∈E

xe subject to (1)

∑

(i,j)∈E′

xuv
(i,j)w(e) ≤ distG(u, v) + cW ∀(u, v) ∈ S; e = ij (2)

∑

(i,j)∈Out(i)

xuv
(i,j) −

∑

(j,i)∈In(i)

xuv
(j,i) =















1 i = u

−1 i = v

0 else

∀(u, v) ∈ S; ∀i ∈ V (3)

∑

(i,j)∈Out(i)

xuv
(i,j) ≤ 1 ∀(u, v) ∈ S; ∀i ∈ V (4)

xuv
(i,j) + xuv

(j,i) ≤ xe ∀(u, v) ∈ S; ∀e = {i, j} ∈ E (5)

xe, xuv
(i,j) ∈ {0, 1} (6)

Inequalities (3)–(4) enforce that for each u, v ∈ S, the selected edges corresponding to u,

v form a path; inequality (2) enforces that the length of this path is at most distG(u, v) + cW

(note that W may be replaced with W (u, v)). Inequality (5) ensures that if xuv
(i,j) = 1 or

xuv
(i,j) = 1, then edge ij is taken.

To generalize the ILP formulation to the multi-level problem, we take a similar set of

variables for every level. The rest of the constraints are similar, except we define xk
e = 1 if

edge e is present on level k and the variables xuv
(i,j) are also indexed by level. We add the

constraint xk
e ≤ xk−1

e for all k ∈ {2, . . . , `} which enforces that if edge e is present on level

k, it is also present on all lower levels. Finally, the objective is to minimize the sparsity
∑`

k=1

∑

e∈E xk
e .

6 Experiments

In this section, we provide experimental results involving the rounding-up framework described

in Section 4. This framework needs a single level subroutine; we use the +2W subsetwise

construction in Section 2 and the three pairwise +2W (·, ·), +4W (·, ·), +6W constructions

provided in [3]2 (see Appendix 3). We generate multi-level instances and solve the instances

2 Note that, one can show that the +2W , +4W , +8W spanners in [3] are actually +2W (., .), +4W (., .)
and +6W spanners respectively by using a tighter analysis [4].

XX:8 Multi-level Weighted Additive Spanners

using our exact algorithm and the four approximation algorithms. We consider natural

questions about how the number of levels `, number of vertices n, and decay rate of terminals

with respect to levels affect the running times and (experimental) approximation ratios,

defined as the sparsity of the returned multi-level spanner divided by OPT.

We used CPLEX 12.6.2 as an ILP solver in a high-performance computer for all exper-

iments (Lenovo NeXtScale nx360 M5 system with 400 nodes). Each node has 192 GB of

memory. We have used Python for implementing the algorithms and spanner constructions.

Since we have run the experiment on a couple of thousand instances, we run the solver for

four hours.

6.1 Experiment Parameters

We run experiments first to test experimental approximation ratio vs. the parameters, and

then to test running time vs. parameters. Each set of experiments has several parameters:

the graph generator, the number of levels `, the number of vertices n, and how the size of

the terminal sets Si (vertices requiring level or priority at least i) decrease as i decreases.

In what follows, we use the Erdős–Rényi (ER) [24], Watts–Strogatz (WS) [32], Barabási–

Albert (BA) [10], and random geometric (GE) [30] models. Let p be the edge selection

probability. If we set p = (1+ε) ln n
n , then the generated Erdős–Rényi graph is connected with

high probability for ε > 0 [24]). For our experiments we use ε = 1. In the Watts-Strogatz

model, we initially create a ring lattice of constant degree K. For our experiments we use

K = 6 and p = 0.2. In the Barabási–Albert model, a new node is connected to m existing

nodes. For our experiments we use m = 5. In the random geometric graph model, two nodes

are connected to each other if their Euclidean distance is not larger than a threshold rc. For

rc =
√

(1+ε) ln n
πn with ε > 0, the synthesized graph is connected with a high probability[30].

We generate a set of small graphs (10 ≤ n ≤ 40) and a set of large graphs (50 ≤ n ≤ 500).

We only compute the exact solutions for the small graphs since the ILP has an exponential

running time. In this paper, we provide the results of Erdős–Rényi graphs since it is the

most popular model. However, the radius3 of Erdős–Rényi graphs is relatively small. In our

dataset, the range of the radius is 2-4. Hence, we also provide the results of random geometric

graphs which have larger radius (4-12). The remaining results and the radius distribution

of different generators are available at the supplement Github link. We consider number of

levels ` ∈ {1, 2, 3} for small graphs, ` ∈ {1, . . . , 10} for large graphs, and adopt two methods

for selecting terminal sets: linear and exponential. A terminal set S1 with lowest priority

of size n(1 − 1
`+1) in the linear case and n

2 in the exponential case is chosen uniformly at

random. For each subsequent level, 1
`+1 vertices are deleted at random in the linear case,

whereas half the remaining vertices are deleted in the exponential case. Levels/priorities

and terminal sets are related via Si = {v ∈ S1 : P (v) ≥ i}. We choose edge weights w(e)

randomly, independently, and uniformly from {1, 2, 3 . . . , 10}.

An experimental instance of the multi-level problem here is thus characterized by four

parameters: graph generator, number of vertices n, number of levels `, and terminal selection

method TSM ∈ {Linear,Exponential}. As there is randomness involved, we generated

five instances for every choice of parameters (e.g., ER, n = 30, ` = 2, Linear). For each

instance of the small graphs, we compute the approximate solution using either the +2W ,

+2W (·, ·), +4W , or +6W spanner subroutine, and the exact solution using the ILP described

3 The minimum over all v ∈ V of maxw∈V dG(v, w) where dG(v, w) is the graph distance (by number of
edges, not total weight) between v and w

XX:18 Multi-level Weighted Additive Spanners

9 Anantaram Balakrishnan, Thomas L. Magnanti, and Prakash Mirchandani. Modeling and

heuristic worst-case performance analysis of the two-level network design problem. Management

Sci., 40(7):846–867, 1994. doi:10.1287/mnsc.40.7.846.

10 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,

286(5439):509–512, 1999.

11 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners

and (α, β)-spanners. ACM Transactions on Algorithms (TALG), 7(1):5, 2010.

12 Greg Bodwin. Linear size distance preservers. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 600–615. Society for Industrial

and Applied Mathematics, 2017.

13 Greg Bodwin. A note on distance-preserving graph sparsification. arXiv preprint

arXiv:2001.07741, 2020.

14 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive

spanners. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 855–872. Society for Industrial and Applied Mathematics, 2016.

URL: http://dl.acm.org/citation.cfm?id=2884435.2884496.

15 Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Near-Optimal

Distance Emulator for Planar Graphs. In Proceedings of 26th Annual European Symposium

on Algorithms (ESA 2018), volume 112, pages 16:1–16:17, 2018.

16 M. Charikar, J. Naor, and B. Schieber. Resource optimization in QoS multicast routing of

real-time multimedia. IEEE/ACM Transactions on Networking, 12(2):340–348, April 2004.

doi:10.1109/TNET.2004.826288.

17 Shiri Chechik. New additive spanners. In Proceedings of the twenty-fourth annual ACM-SIAM

symposium on Discrete algorithms (SODA), pages 498–512. Society for Industrial and Applied

Mathematics, 2013.

18 Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating span-

ners and directed steiner forest: Upper and lower bounds. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 534–553. SIAM, 2017.

19 Julia Chuzhoy, Anupam Gupta, Joseph (Seffi) Naor, and Amitabh Sinha. On the approx-

imability of some network design problems. ACM Trans. Algorithms, 4(2):23:1–23:17, 2008.

doi:10.1145/1361192.1361200.

20 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.

SIAM Journal on Discrete Mathematics, 20(2):463–501, 2006.

21 Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. On pairwise spanners. In

Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science

(STACS 2013), volume 20, pages 209–220, 2013. URL: http://drops.dagstuhl.de/opus/

volltexte/2013/3935, doi:10.4230/LIPIcs.STACS.2013.209.

22 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and PRAM distance

oracles in weighted graphs. arXiv preprint arXiv:1907.11422, 2019.

23 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. arXiv

preprint arXiv:2008.09877, 2020.

24 Paul Erdős and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),

6:290–297, 1959.

25 Marek Karpinski, Ion I. Mandoiu, Alexander Olshevsky, and Alexander Zelikovsky. Improved

approximation algorithms for the quality of service multicast tree problem. Algorithmica,

42(2):109–120, 2005. doi:10.1007/s00453-004-1133-y.

26 Telikepalli Kavitha. New pairwise spanners. Theory of Computing Systems, 61(4):1011–

1036, Nov 2017. URL: https://doi.org/10.1007/s00224-016-9736-7, doi:10.1007/

s00224-016-9736-7.

27 Telikepalli Kavitha and Nithin M. Varma. Small stretch pairwise spanners and ap-

proximate d-preservers. SIAM Journal on Discrete Mathematics, 29(4):2239–2254, 2015.

R. Ahmed, et al. XX:19

URL: https://doi.org/10.1137/140953927, arXiv:https://doi.org/10.1137/140953927,

doi:10.1137/140953927.

28 Arthur Liestman and Thomas Shermer. Additive graph spanners. Networks, 23:343 – 363, 07

1993. doi:10.1002/net.3230230417.

29 Prakash Mirchandani. The multi-tier tree problem. INFORMS J. Comput., 8(3):202–218,

1996.

30 Mathew Penrose. Random geometric graphs. Number 5. Oxford university press, 2003.

31 Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6(1):7,

2009.

32 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. Nature,

393(6684):440, 1998.

	1 Introduction
	2 Subsetwise spanners
	3 Pairwise spanner constructions ahmed2020weighted
	4 Multi-level spanners
	5 Exact algorithm
	6 Experiments
	6.1 Experiment Parameters
	6.2 Results
	6.2.1 The +2W Subsetwise Construction-based Approximation
	6.2.2 The +2W(,) Pairwise Construction-based Approximation
	6.2.3 Comparison between Global and Local Setups
	6.2.4 The +4W(,) Pairwise Construction-based Approximation
	6.2.5 Comparison between +2W(,) and +4W(,) Setups
	6.2.6 The +6W Pairwise Construction-based Approximation
	6.2.7 Comparison between +2W and +6W Setups
	6.2.8 Experiment on Large Graphs
	6.2.9 Impact of Initial Parameters

	6.3 Running Time

	7 Conclusion

