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Abstract. In the Priority Steiner Tree (PST) problem, we are given an
undirected graph G = (V, E) with a source s € V and terminals T' C
V' \ {s}, where each terminal v € T requires a nonnegative priority P(v).
The goal is to compute a minimum weight Steiner tree containing edges
of varying rates such that the path from s to each terminal v consists
of edges of rate greater than or equal to P(v). The PST problem with k
priorities admits a min{21n |T'| 4+ 2, kp}-approximation [Charikar et al.,
2004], and is hard to approximate with ratio cloglogn for some constant
¢ [Chuzhoy et al., 2008]. In this paper, we first strengthen the analysis
provided by [Charikar et al., 2004] for the (21In|T’| 4+ 2)-approximation
to show an approximation ratio of [log, |T|] +1 < 1.443In |T'| 4 2, then
provide a very simple, parallelizable algorithm which achieves the same
approximation ratio. We then consider a more difficult node-weighted
version of the PST problem, and provide a (21n|T'| + 2)-approximation
using extensions of the spider decomposition by [Klein & Ravi, 1995].
This is the first result for the PST problem in node-weighted graphs.
Moreover, the approximation ratios for all above algorithms are tight.

Keywords: priority Steiner tree - approximation algorithms - network
design

1 Introduction

We consider generalizations of the Steiner tree and node-weighted Steiner tree
(NWST) problems in graphs where the terminals 7' possess varying priority or
quality of service (QoS) requirements, in which we seek to connect the terminals
using edges of the appropriate rate or better. These problems have applications
in multimedia and electric power distribution [4,21,27], multi-level graph visu-
alization [1], and other network design problems where a source or root is to be
connected to a set of heterogeneous receivers possessing different bandwidth or
priority requests. We define a Priority Steiner Tree (PST) as follows:

Definition 1 (Priority Steiner Tree (PST)). Given an undirected graph
G = (V,E), a source s € V, and terminals T C V' \ {s}, where each terminal
v € T requires a nonnegative priority P(v), a PST is a tree T C G rooted at s
containing edges of varying rates such that for all terminals v € T, the s—v path
in T consists of edges of rate P(v) or higher.
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We denote by k the number of distinct priorities. Vertices in V' \ (T'U {s}) have
zero priority but may be included in 7. Let w(e, r) denote the weight of edge e
at rate r. We assume w(e,0) = 0 and w(e,r1) < w(e,ry) for all 0 < r; < rg and
edges e (i.e., higher-rate edges weigh at least as much as lower-rate edges). The
weight of a PST 7T is the sum of the weights of the edges in 7 at their respective
rates, namely w(7T) 1= >_ ¢ g w(e, R(e)).

Problem 1 (PRIORITY STEINER TREE problem). Given a graph G = (V, E),
source s, terminals T' C V', priorities P(-), and edge weights w : E xR>¢ — R0,
compute a PST T with minimum weight.

While Problem 1 in the case where edge weights are proportional to rate (i.e.,
w(e,r) =r-w(e, 1) foralle € E and r > 0) admits O(1)-approximations [1,6,18],
the best known approximation ratio for PRIORITY STEINER TREE with arbi-
trary weights is min{21In |T'| + 2, kp} by Charikar et al. [6] (see Section 2). On
the other hand, Chuzhoy et al. [9] show that PRIORITY STEINER TREE can-
not be approximated with ratio cloglogn for some constant ¢ unless NP C
DTIME(nCUogloglogn)) " eyen with unit edge weights!.

In Section 3, we introduce a node-weighted variant of PRIORITY STEINER
TREE, called PRIORITY NWST (Definition 2). Here we assume edges have zero
weight, as an instance with edge and vertex weights can be converted to an
instance with only vertex weights by subdividing each edge uv into two edges
uw, wv and assigning the weight of edge uv to vertex w.

Definition 2 (Priority Node-Weighted Steiner Tree (PNWST)). Given
an undirected graph G = (V, E), source s, and terminals T C V' \ {s}, where each
terminal v € T requires a nonnegative priority P(v), a priority node-weighted
Steiner tree (PNWST) is a tree T rooted at s containing vertices of varying rates
R(v) such that for all terminals v € T, the s—v path in T consists of vertices of
rate P(v) or higher.

In particular, we require R(v) > P(v) for all v € T. Further, we can assume
w.l.o.g. that the path from s to each terminal uses vertices of non-increasing
rate (see Definition 3). As in the NWST problem, it is conventional to also
assume terminals have zero weight, as they must be included in any feasible
solution; thus, we assume w(v,r) =0 for 0 < r < P(v) and w(v,r1) < w(v,r2)
for all 0 < r; < ro. The weight of a PNWST T with vertex rates R() is
w(T) =3, ey w(v, R(v)).

Problem 2 (PRIORITY NWST problem). Given a graph G = (V, E), source s,
terminals T C V' \ {s}, vertex priorities P(-), and vertex weights w : V x R>¢ —
R>q, compute a PNWST 7 with minimum weight.

! We remark that the formulation of PRIORITY STEINER TREE given in [9] is slightly
more specific; each edge has a single weight c. as well as a quality of service (priority)
Q(e) on input, and the goal is to compute a Steiner tree such that the path from
root to each terminal v uses edges of quality of service greater than or equal to P(v).
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The PrIiORITY NWST problem generalizes the NWST problem, and hence
cannot be approximated with ratio (1—o(1))In|T| unless P = NP [12,13,19], via
a reduction from the set cover problem. In Section 3, we show that the PRIORITY
NWST problem admits a 2 In(|T|+ 1)-approximation (Theorem 2) using exten-
sions of the spider decomposition given by Klein and Ravi [19] to accommodate
the priority constraints of the PRIORITY NWST problem. The generalization is
not immediately obvious; in particular it is not immediate whether an instance of
PrIORITY NWST can be formulated as an instance of NWST. However, NWST

and PRIORITY NWST can be easily reduced to Steiner arborescence (or directed
log® |T|

Tog log [T ) -approximation [14].

Steiner tree), which admits a quasi-polynomial O (

Notation. A graph G = (V, E) with n = |V| and m = |E| is undirected and con-
nected, unless stated otherwise. Given terminals u,v € T for the PST problem,
denote by o(u,v) the weight of a minimum weight u—v path in G using edges of
rate min{P(u), P(v)}, and let p,, denote such a path. For terminals u,v € T in
the PRIORITY NWST problem, we define o(u, v) to be the weight of a minimum
u—v path using vertices of rate min{P(u), P(v)} not including the endpoints u
and v, and similarly define o} (u, v) to be the weight of a minimum weight vertex-
weighted path using vertices of rate b, so that o(u,v) = Owmin{P(u),P(v)} (1, v). In
particular, we have op(v,v) = 0. Note that o is symmetric but does not satisfy
the triangle inequality, and is not a metric. Let p denote an approximation ratio
for the (edge-weighted) Steiner tree problem, and let STEINER(n) denote the
running time of such an approximation algorithm on an n-vertex graph. We de-
note by OPT the weight of a min-weight PST or PNWST. Lastly, for n € Z*,
we denote by [n] the set {1,2,...,n}.

1.1 Related work

The Steiner tree problem in graphs has been studied in a wide variety of contexts;
see the compendium [16]. The (edge-weighted) Steiner tree problem admits a

folklore 2 (1 — ‘_71“‘ —approximation, and is approximable with ratio p = In4 +

e ~ 1.387 [5], but NP-hard to approximate with ratio 22 ~ 1.01 [8]. As stated
previously, NWST cannot be approximated with ratio (1 — o(1))In|T'| unless
P = NP [12,13,19], but algorithms with logarithmic approximation ratio exist.
Klein and Ravi [19] give a 2 In|T'|-approximation for NWST, which was improved
to 1.611n|7T| and a less practical (1.35 + €)In|T'| by Guha and Khuller [15].
Demaine et al. [11] give an O(1)—approximation for NWST when the input graph
G is H—minor free, and a 6-approximation when G is planar. Naor et al. [23] give
a randomized O(logn log? |T'|)-approximation algorithm for the online version.
The (edge-weighted) PRIORITY STEINER TREE problem and variants thereof
have been studied under various other names including Hierarchical Network
Design [10], Multi-Level (or k-Level) Network Design [4], Multi-Tier Tree [22],
Grade of Service Steiner Tree [28], Quality of Service Multicast Tree [6,18], and
Multi-Level Steiner Tree [1,2]. Earlier results on this problem typically consider
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a small number of priorities or restricted definition of weight [4,10]. In the spe-
cial case where edge weights are proportional to rate, Charikar et al. [6] give the
first O(1)—approximations with approximation ratios 4p and ep ~ 4.214 (with
p ~ 1.55 [25]) independent of the number of priorities k. Karpinski et al. [18] give
a slightly stronger variant of the ep—approximation [6] which achieves approxima-
tion ratio 3.802. Ahmed et al. [1] give an approximation ratio of 2.351p ~ 3.268
for k < 100. Xue et al. [28] consider this problem where the terminals are embed-

ded in the Euclidean plane, and give %p (resp. M,ﬂ ~ 1.522p)—approximations
for two (resp. three) different priorities. Integer programming formulations have
been proposed and evaluated over realistic problem instances [1,24].

If edge weights are not necessarily proportional to rate, Charikar et al. [6]
give a simple min{21n |T| 4 2, kp}-approximation (see Section 2), which remains
the best known to date. Recently, Ahmed et al. [2] proposed an approximation
based on Kruskal’s MST algorithm which achieves the same approximation ra-
tio, and provided an experimental study comparing the two methods. Chuzhoy
et al. [9] show that PRIORITY STEINER TREE cannot be approximated with ratio
cloglogn for some constant ¢ unless NP C DTIME(nC(ogloglogn)) - Angelopou-
los [3] showed that every deterministic online algorithm for online PRIORITY
STEINER TREE has ratio £2(min{k log %, |T|}). Interestingly, no node-weighted
variant of PRIORITY STEINER TREE has been studied in existing literature. How-
ever, a related problem is the (single-source) node-weighted buy-at-bulk prob-
lem (NSS-BB) studied by Chekuri et al. [7], who show a 3H|p| = O(log|T'|)-
approximation for NSS-BB by giving a randomized algorithm then derandomiz-
ing it using an LP relaxation, where H,, = % + % +...+ % is the n'® harmonic
number.

1.2 Our results

In Section 2, we strengthen the analysis of the simple (2 1n |T'|+2)-approximation
(Algorithm 1) by Charikar et al. [6] to show that it is a [log, |T|] +1 <
(1.4431n |T'| 4+ 2)-approximation. We then give a parallelizable algorithm (Algo-
rithm 2) with the same approximation ratio that does not require that terminals
be connected sequentially or in a particular order. This contrasts with the inher-
ently serial Algorithm 1 [6], where the shortest path for each terminal depends
on the partial PST computed at the previous iteration.

Theorem 1. Algorithm 1 [6] is a ([logy |T'|] + 1)-approzimation for PRIORITY
STEINER TREE with running time O(nm +n?logn), and there is a parallelizable
algorithm for PRIORITY STEINER TREE with the same approximation ratio.

Moreover, the approximation ratio is tight up to a factor of 2, as there exists an
input graph in which Algorithms 1-2 may output a PST with weight % log, |T'|+1
times the optimum [17]. In Section 3, we show the following result for PRIORITY
NWST:

Theorem 2. There exists a 21n(|T|4+1)—approxzimation algorithm for PRIORITY
NWST with running time O(n*klogn).
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This is the first known approximation algorithm for PrRIORITY NWST, and is
the main technical contribution of this paper. The analysis extends the spider
decomposition of Klein and Ravi [19] in their greedy (2In|7'|)—approximation
for the NWST problem, to accommodate priority constraints in the PRIORITY
NWST problem. Note the additional +1 arises as we do not consider the source
s a terminal. Proofs omitted for space are in the arXiv version [26].

2 Priority Steiner Tree: Two logarithmic approximations

We first review the greedy min{21In|7T| + 2,kp} approximation for PRIORITY
STEINER TREE given by Charikar et al. [6]. This returns the better solution of
two sub-algorithms; we focus primarily on the (21n|T'| + 2)-approximation (Al-
gorithm 1). This algorithm sorts the terminals 7" from highest to lowest priority.
Then for i = 1, ..., |T, the i*® terminal v; in the sorted list is connected to
the existing tree (containing the source s) using a minimum weight path of rate
P(v;). The weight of this path is the connection cost of v;. Cycles can be removed
in the end by removing an edge from each cycle with the lowest rate.

Algorithm 1 R(-) = QoSMT(graph G, priorities P, edge weights w, source s)
[6]

: Sort terminals 7" by decreasing priority P(+)

: Initialize V' = {s}, R(e) =0 fore € F

:fori=1,2,...,|T| do

Connect i™ terminal v; to V' using minimum weight path p; of rate P(v;)
R(e) = P(v;) for e € p;

Vi=VvV'u V(pi)

: Remove lowest-rate edge from each cycle

return edge rates R(-)

Algorithm 1 is based on a (log, |T'|)-approximation for an online Steiner tree
problem analyzed by Imase and Waxman [17]; however, Charikar et al. [6] give a
simpler analysis which proves a weaker approximation ratio of 21n |T'| + 2, based
on the following lemma:

Lemma 1 ([6]). For 1 < x < |T|, the ' most expensive connection cost in-
curred by Algorithm 1 is at most @.

Lemma 1 implies the weight of the PST is at most 20PT (% + % + ...+ ﬁ) =

20PTHp; < (2In|T'| 4 2)OPT. Line 4 can be executed by running Dijkstra’s
algorithm from v; with edge weights w(-, P(v;)) until reaching a vertex in V’;
hence Algorithm 1 runs in O(nm + n?logn) time.

We strengthen the analysis by Charikar et al. [6] to prove an approxima-
tion ratio of [logy |T|] + 1, thus matching the result for the online Steiner tree
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problem [17]. Instead of an upper bound on the z'" most expensive connection
cost, we establish a bound on the @ least expensive connection costs; a simi-
lar technique was used in [20] for a bicriteria diameter-constrained Steiner tree
problem. For simplicity, we assume w.l.o.g. |T'| is a power of 2; this can be done
by adding up to one dummy terminal of priority 1 to each terminal, connected
with a zero-weight edge.

Lemma 2. The sum of the @ least expensive connection costs incurred by Al-
gorithm 1 is at most OPT.

Theorem 3. Algorithm 1 is a ([logy |T|] + 1)-approxzimation for PRIORITY
STEINER TREE.

Lemma 2 is proved by considering pairs of consecutive terminals in a depth-
first traversal of the optimum PST 7%, and Theorem 3 is proved by applying
Lemma 2 [log, |T'|] + 1 times.

In the following, we give a simpler, parallelizable algorithm for PRIORITY
STEINER TREE which achieves the same approximation ratio of [log, |T'|]+1. For
simplicity we assume P(s) = oo and every (non-source) terminal has a different
priority; ties between terminals of the same priority can be broken arbitrarily.
The idea is to connect each terminal v to the “closest” terminal or source with
a greater priority than v. Specifically, for v € T, find a vertex u € T U {s} with
P(u) > P(v) which minimizes o(u,v), and connect v to u with edges of rate
P(v). This can be done by executing Dijkstra’s algorithm from v using edge
weights w(-, P(v)) and stopping once we find a vertex with a greater priority
than v. Moreover, this algorithm is parallelizable as the corresponding path for
each terminal can be found in parallel. The weight of connecting v to its parent
u is the connection cost of v. As before, cycles can be removed in the end by
removing an edge from each cycle with the lowest rate.

Algorithm 2 R(-) = PST(graph G, priorities P, edge weights w, source s)

1: Initialize R(e) =0 for e € E

2: forveT do

3 Find v € TU{s} with P(u) > P(v) such that o(u,v) is minimized
4: R(e) = max{R(e), P(v)} for e € pyu
5
6

: Remove lowest-rate edge from each cycle
: return edge rates R(-)

Algorithm 2 produces a valid PST which spans all terminals, since there is
a path from each terminal v to the source using edges of rate P(v) or higher.
Moreover, Lemma 1 and Theorem 3 extend easily:

Lemma 3. The sum of the @ least expensive connection costs incurred by Al-

gorithm 2 is at most OPT.
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Theorem 4. Algorithm 2 is a ([logy |T|] + 1)-approxzimation for PRIORITY
STEINER TREE.

One main difference compared to Algorithm 1 [6] is that Algorithm 2 is not re-
quired to connect the terminals sequentially, or even by order of priority. Further,
unlike Algorithm 1, Algorithm 2 is not dependent on the solution computed at
the previous iteration. If k < |T|, a simple kp-approximation given by Charikar
et al. [6] is to compute a p-approximate Steiner tree over the terminals of each
priority separately, taking O(k-STEINER(n)) time. Executing both approxima-
tions and taking the better of the two solutions yields a min{[log, |T|] + 1, kp}-
approximation as desired.

3 An O(log|T|)-approximation for Priority NWST

We remark that the analysis of Algorithms 1-2 does not extend to PRIORITY
NWST; one can construct an example input graph in which Algorithm 1 or 2
(considering minimum weight node-weighted paths) returns a poor NWST with
weight 2(]T])OPT. In this section, we extend the (21n |T'|)-approximation by
Klein and Ravi [19] which maintains a collection of trees, and greedily merges
a subset of these trees at each iteration to minimize a cost-to-connectivity ratio
(Algorithm 3). For PrIOrRITY NWST, we need to ensure that the priority con-
straint is always maintained throughout the construction process. To this end,
we first define a rate tree:

Definition 3 (Rate tree). Let G = (V, E), and let T, be a subtree of G (not
necessarily a Steiner or spanning tree of G) which includes vertex r. Let R :
V = Rx>¢ be a function which assigns rates to the vertices in G. We say that Ty
is a rate tree rooted at r if, for allv € V(T;) \ {r}, the path from r to v in T,
consists of vertices of non-increasing rate.

The main idea of Algorithm 3 is to maintain a set (not necessarily a forest)
of rate trees. By simply connecting the roots of the rate trees with paths of
appropriate vertex rates, we can satisfy the priority constraints.

Another challenge to tackle involves properly devising a definition of weight
when greedily merging rate trees at each iteration. The greedy NWST algorithm
by Klein and Ravi [19] simply sums the weights from a root vertex to each
terminal. In our algorithm, we cannot simply connect the root of a rate tree to
other roots of other rate trees of lower or equal priority and compute the weight
similarly. This is due to a technical challenge needed for the analysis of the
algorithm (see Section 3.2) that it is not possible, in general, to perform a spider
decomposition (similar to [19]) on a rate tree such that paths from the center to
leaves have non-increasing rates. To overcome this challenge, we introduce the
notion of rate spiders and prove the existence of a rate spider decomposition,
which further guides us to properly define weight computations at each iterative
step.
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3.1 Algorithm description

In the following, let p; < p2 < ... < pi denote the k vertex priorities. Initialize a
set F (not necessarily a forest) of |T'| + 1 rate trees so that each terminal v € T,
including the source s, is a singleton rate tree whose root is itself. Initialize vertex
rates R(v) = P(v) for v € T, R(s) = pg, and R(v) = 0 for v € T U {s}. While
|F| > 1, the construction proceeds iteratively as follows. Each iteration consists
of greedily selecting the following:

— arate tree T, € F rooted at r, called the root tree

— a special vertex v € V called the center (note v could equal r)

— a real number b < P(r) representing the rate which v is “upgraded” to

— a nonempty subset S = {7,,,...,Tr 5} C F of rate trees where 7, ¢ S, and
P(r;) <b for all roots r; associated with the rate trees in S

By connecting r to the center v using vertices of rate b, upgrading R(v) to b,
then connecting v to the root of each rate tree 7., € S using vertices of rate
P(r;), we can replace the |S|+1 rate trees in F with a new rate tree 7,"" rooted
at r (see Figure 1).

2

Fig. 1: Tllustration of an iteration step in Algorithm 3 with P(r) = 2, b = 2,
P(r1) = P(rz) = 2, and P(r3) = 1. Vertices with larger circles (not necessarily
terminals) have rate 2; vertices with smaller circles have rate 1.

The root tree, center, b, and S are greedily chosen to minimize a cost-to-
connectivity ratio -y, defined as follows:
S|
O‘b(’l“,’l}) +W(U,b) +ZUP(7'j)(U7Tj) (1)

j=1

1

TS+

where r; denotes the root of the 4t rate tree Tr; in 8. The second expression
op(r,v) + w(v,b) + leszll op(r;)(v,7;) gives an upper bound on the weight of
connecting 7 to v, upgrading R(v) to b, then connecting v to |S| roots, and the
denominator |S| + 1 represents the “connectivity”, or the number of connected
rate trees. Lemma 6 shows how to execute this iteration step in polynomial time.

Once 7, v, b, and S are chosen, we “upgrade” the vertex rates R(-) along a
shortest r—v path to b, then upgrade the vertex rates along each shortest v—r;
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path to P(r;). In the case that some vertex u is on multiple v—r; paths, then
R(u) is upgraded to the maximum over all root priorities P(r;) for which u
appears on the corresponding path. Pseudocode is shown in Algorithm 3.

Algorithm 3 R(-) = PNWST(G, terminals T, priorities P, vertex weights w)

1: Initialize F, R(v) = P(v) if v € TU{s} and R(v) =0if v € T U {s}
2: while |F| > 1 do
3: Find 7, v, b, S which minimize v (Lemma 6)
R(u) = max{R(u), b} for u on r—v path
R(v) = max{R(v), b}
for j=1,...,|S| do
R(u) = max{R(u), P(r;)} for u on v—r; path
F=F\({T}us)
9: F=FU{T7"}

10: return vertex rates R(+)

3.2 Analysis of Algorithm 3

We show Theorem 2 by asserting that Algorithm 3 is a 2 In(|7'|+1)—approximation
for PRIORITY NWST. We extend the spider decomposition given by Klein and
Ravi [19] to account for the priority constraints in the PRIORITY NWST prob-
lem.

Definition 4 (Spider). A spider is a tree where at most one vertex has degree
greater than 2. A nontrivial spider is a spider with at least 2 leaves.

A spider is identified by its center, a vertex from which all paths from the center
to the leaves of the spider are vertex-disjoint. A foot of a spider is a leaf; if the
spider has at least three leaves, then its center is unique and is also a foot. Klein
and Ravi [19] show that given a graph G and subset M C V of vertices, G can
be decomposed into vertex-disjoint nontrivial spiders such that the union of the
feet of the nontrivial spiders contains M. We extend the notions of spider and
spider decomposition to the PRIORITY NWST problem.

Definition 5 (Rate spider). A rate spider is a rate tree X which is also a
nontrivial spider. It is identified by a root r as well as a center v such that:

— The root r is either the center or a leaf of X, and the path from r to every
vertex in X uses vertices of non-increasing rate R(-)

— The paths from the center v to each non-root leaf of X are vertex-disjoint
and use vertices of non-increasing rate R(-).

In Figure 2, right, rate spiders X5 and X5 have centers distinct from their roots
ro, 3 while X has center v = r;. In Definition 6, we supply a notion of a
“minimal” weight tree with respect to a subset M of vertices.
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Definition 6 (M—optimized rate tree). Let T, be a rate tree rooted at r with
vertex rates R. Let M C V(T,.) withr € M. Then T, is M—optimized if every leaf
of Tr is in M, and if for every vertex v € V(T,)\ M, we have R(v) = max R(w)
over all vertices w € M in the subtree of T, rooted at v.

We show any M-optimized rate tree has a rate spider decomposition.

Lemma 4 (Rate spider decomposition). Let M C V(7;) with |M| > 2, and
let T, be an M —optimized rate tree where r € M. Then T, can be decomposed
into vertex-disjoint rate spiders X1, ..., X4 rooted at ry, ..., rq such that:

— the leaves and roots of the rate spiders are contained in M
— every vertex in M is a either a leaf, Toot, or center of some rate spider

Figure 2, right, shows an example of an M—-optimized rate tree 7, for |M| = 10
and a rate spider decomposition X7, Xo, X3 over M.

Fig.2: Left: A rate tree rooted at r with rates R(-) indicated and vertices in M
shown in black. Right: An M-optimized rate tree 7, and a rate spider decom-
position Xy, Xy, X3 with roots rq, ro, 73.

For ¢ > 1, let F; denote the set of rate trees at the beginning of iteration
1 of Algorithm 3, and let h; > 2 denote the number of rate trees in J; which
are connected on iteration ¢ (i.e., h; = |S| + 1). Let AC; denote the actual
weight incurred on iteration ¢ by upgrading vertex rates in line 7. Let v; denote
the minimum cost-to-connectivity ratio (Eq. (1)) computed by Algorithm 3 on
iteration . Lemma 4 (rate spider decomposition) yields the following lemma:

AC; OoPT
< .
h;, — |]:Z‘

Lemma 5. For each iteration i of Algorithm 3, we have

Using Lemma 5, we can prove Theorem 2, by asserting that Algorithm 3 is a
2In(|T'| + 1)—approximation for PRIORITY NWST. The remainder of the proof
can be completed by following the analysis by Klein and Ravi [19].

It is worth noting that the extension of the (21n|7T'|)-approximation by Klein
and Ravi [19] to the PrRIORITY NWST problem is not immediately obvious,
as we must be careful when merging multiple rate trees while simultaneously
satisfying the priority and rate requirements.

Lemma 6. On iteration i of Algorithm 8, a choice of T, v, b, and S which
minimizes vy can be found in O(nklogn) time.
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Algorithm 3 runs for I < |T| iterations, as the size of |F| decreases by at least 1
at each iteration. By Lemma 6, the running time of Algorithm 3 is O(n*klogn).
The approximation ratio is tight as is the case for the Ravi-Klein algorithm [19].

4 Conclusions and future work

By strengthening the analysis of [6], we showed that PRIORITY STEINER TREE is
approximable with ratio min{[log, |T'|]1+1, kp} < min{1.4431n|7T'|+2, kp}, then
provided a simple, parallelizable algorithm with the same approximation ratio.
Second, we showed that a natural node-weighted generalization of PRIORITY
STEINER TREE admits a O(log |T'|)-approximation using a generalization of the
Ravi-Klein algorithm [19] and spider decomposition. It remains open whether the
approximability gap between cloglogn [9] and O(logn) for PRIORITY STEINER
TREE can be tightened, or whether a more efficient approximation algorithm for
PrIORITY NWST can be formed. As both problems can be reduced to directed
Steiner tree, this suggests a hierarchy in terms of hardness of approximation.

Acknowledgments The authors wish to thank Alon Efrat and Spencer Krieger
for their discussions related to the PRIORITY NWST problem.
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