
Visualizing The Intermediate Representation of

Just-in-Time Compilers

HeuiChan Lim and Stephen Kobourov

Department of Computer Science, University of Arizona

Abstract. Just-in-time (JIT) compilers are used by many modern pro-
gramming systems in order to improve performance. Bugs in JIT com-
pilers provide exploitable security vulnerabilities and debugging them is
difficult as they are large, complex, and dynamic. Current debugging and
visualization tools deal with static code and are not suitable in this do-
main. We describe a new approach for simplifying the large and complex
intermediate representation, generated by a JIT compiler and visualize
it with a metro map metaphor to aid developers in debugging.
Experiments using our prototype implementation on Google’s V8 JavaScript
interpreter and TurboFan JIT compiler demonstrate that it can help
identify and localize buggy code.

1 Introduction

Many modern programming systems, such as JavaScript engines that are run-
ning our web browsers, use just-in-time (JIT) compilers to improve performance.
The most well-known web browsers that we use every day are Google Chrome’s
V8 [22], which has 2.65 billion users [5], Microsoft Edge’s ChakraCore [2], which
has 600 million users [16], Mozilla Firefox’s SpiderMonkey [17], which has 222
million users [4], and Apple Safari’s WebKit [14], which has 446 million users [7],
etc., Additionally, programming languages such as Java, C#, and Ruby, also use
JIT compilers to improve performance.

Meanwhile, the JIT compiler bugs can lead to exploitable security vulner-
abilities [1, 9–11, 13]. For example, a JIT compiler bug in Google V8 was found
by the Microsoft Offensive Security Research team (CVE-2017-5121 [1]). For-
tunately, this was reported quickly and fixed by V8 team, but hackers could
have used it to hijack Chrome user data (i.e., passwords), and to navigate to
other sites and execute malicious programs. Therefore, it is important to an-
alyze and localize the bug quickly. However, existing work and available tools
focus on static code [23,24,32], so they are not suitable for developers in debug-
ging the JIT compiler, which generates code at run-time. Additionally, the size
and complexity of JIT-based systems [19] combined with the dynamic nature
of JIT compiler optimizations, make it challenging to analyze and locate bugs
quickly. For example, Google V8 has more than 2,000 source files and more than
1 million lines of code, and Apple’s Webkit has approximately 22,000 source files
and 500,000 lines of code.

a
rX

iv
:2

1
0
7
.0

0
0
6
3
v
1

[c

s.
P

L
]

 9
 J

u
n
 2

0
2
1

2 H. Lim and S. Kobourov

Traditional debuggers rely on text even though the main feature of a JIT
compiler is building a graph-like structure to translate bytecode into optimized
machine code. With this in mind, we propose a new debugging aid tool, which
visualizes the JIT compiler’s intermediate representation (IR) that it generates
and optimizes. Our approach uses IR identification and generation techniques
described by Lim and Debray [35], which discusses the compiler-related half of
the visualization tool’s pipeline. This paper focuses on the visualization half,
which includes: (1) merging multiple IR graphs into a single graph; (2) simplify-
ing the merged graph; (3) converting the simplified graph into a hypergraph; (4)
simplifying the hypergraph; and (5) visualizing the hypergraph using a metro
map metaphor [34].

The resulting visualization of the intermediate representation of the JIT com-
piler allows developers to answer questions such as:

1. What optimizations took place to generate the machine code?
2. What is the relationship among the optimization phases?
3. Which optimization phase was most active?
4. With a specific node that represents some operation, which optimization(s)

took place (e.g., what phase optimized an arithmetic operator node for a
subtraction)?

5. Which optimization phases are likely to be buggy?

2 Related Work

Although there is a considerable body of work on debugging approaches for
static code compilers and optimized code, there is very little work on using the
intermediate representation and visualizing it to show the explicit information
about the compilation and optimization processes.

Google V8’s Turbolizer [8, 20] is one of very few IR visualization tools. It
shows the final IR graph after each optimization process and provides interactive
features to view the control flow graphs for each optimization phase. Although
Turbolizer provides some information about the IR nodes and their relation-
ships, it does not provide enough information about the optimization process
and cannot answer several of our initial set of questions.

Dux et al. [30] introduced an approach to visualize dynamically modifying
code at run-time in call graph and control flow graphs. Their tool shows the
changes in graph with an animation of the underlying graph, allowing end-to-end
play, pause, and forward/backward step-by-step animation. Colberg et al. [25]
proposed GEVOL: a system that visualizes the evaluation of software. It uses
the CVS version control system to get the information about how a program
has been changed or evolved over time and visualizes it as a dynamic graph.
CFGExplorer [29] visualizes the control flow graph of a program to represent the
program structure for dynamic binary analysis. It provides interactive features
where users can find specific memory addresses, loops, and functions that they
are interested to analyze the system. CcNav [28] analyzes and visualizes a C++

Visualizing IR of JIT Compiler 3

compiler’s optimization process with a call graph, control flow graph, and loop
hierarchies.

Control flow graph and call graphs are popular in program analysis, espe-
cially, when analyzing static code, with a code-to-compiler-to-assembler pipeline.
However, these graphs are different from the intermediate representation gen-
erated dynamically from bytecode by JIT compilers. Tools for visualizing and
interacting with control flow graph and call graphs (such as those above) are
not sufficient for visualizing the IR graph as, e.g., they cannot capture the opti-
mization phases.

3 Background

Here we briefly introduce several concepts relevant to JIT compilers and to our
visualization.

Interpreter: An interpreter is a computer program that converts input
source code into bytecode and executes it without compiling it into a machine
code [31].

Just-in-Time (JIT) compiler: A just-in-time (JIT) compiler is a program
that turns bytecode into instructions that can be sent directly to a computer’s
processor, which is widely used to improve performance [33]. Google V8 is an
example of a JavaScript engine that has a JIT compiler in the pipeline; see Fig. 1
(a). Other systems, such as ChakraCore, JavaScriptCore, and Java Runtime
Environment, have similar pipelines.

Bytecode: Bytecode is an instruction generated from input source code
by an interpreter. Bytecode is portable, unlike compiled programs, so they are
widely used in modern languages and systems, such as JavaScript, Python, and
Java, etc. [26].

Optimized code: Optimized code is an instruction generated from bytecode
by a JIT compiler. Optimized code is machine code that can be directly executed
by a processor. Unlike bytecode, optimized code is system-specific, and much
faster in execution.

Intermediate Representation (IR): The IR is type of representation
known as sea-of-nodes [18,21,27]. Unlike other graphs used in the program anal-
ysis field, such as control-flow or data-flow graphs which have specific types of
nodes, nodes in the sea-of-nodes graph represent different types of nodes: from
scalar values and arithmetic operators to variables and control-flow nodes and
function entry nodes. Consider, for example, the expression var myVar = 100 ;
optimized at phase α. This generates 3 different types of nodes: a variable node
for myVar , an arithmetic operator node for Equal, and a scalar value node for
constant 100 . Other types of nodes in the IR include control-flow nodes (e.g.,
call , branch, switch) and function entry nodes (e.g., Start , Return, Checkpoint).

Optimization: In the context of JIT compilers, optimization means adding,
removing, and merging nodes and edges in the graph during the execution. In
a single JIT compilation, the JIT compiler executes several different phases of

Visualizing IR of JIT Compiler 5

first generating the abstract syntax tree for the original input code and then
randomly modifying nodes in the tree, with a set of allowable modifica-
tions as described in [35]. Consider, for example, an expression that adds
two numbers 2 + −1 . We can modify 2 or 1 to any other integer. We can
change the operation + to another arithmetic operation. All such allowable
modifications must pass semantic and syntax checks.

2. Run each program Pi and collect the instruction-level traces.
3. Analyze the traces to determine whether or not Pi manifested the bug and

to identify Pi’s IR within the JIT compiler, together with the optimization
phases executed while optimizing Pi.

4. Select candidate hyperedges, suspected to be buggy, from the information
gathered in step 3.

5. Merge all selected candidate hyperedges into the original IR from P0.
6. Simplify the merged IR as a graph by reducing the number of nodes and

edges.
7. Convert the simplified graph into a hypergraph by extracting the hyperedges

from step 4 and analyzing each node’s optimization status. Consider, for
example, a node A generated in hyperedge α and optimized in hyperedge φ

and γ; in this step A (which is in α from the start) is added to φ and γ.
8. Simplify the hypergraph by reducing the number of hyperedges and nodes.
9. Visualize the simplified hypergraph with MetroSets [34].

The compiler-related steps 1-4 above are covered in detail in [35] and details
for steps 5-9 are in the next section.

4.1 Intermediate Representation

Recall that the intermediate representation (IR) of a JIT compiler is a sea-of-
nodes graph that the compiler generates at the beginning of its execution by
parsing the bytecode and optimizing it with several optimization phases.

Formally, the IR is a simple, undirected graphG = (V,E), where V represents
the nodes optimized by the JIT compiler and E contains pairs of nodes connected
by different relationships (e.g., semantic and syntax relationships, such as math
expressions). By keeping track of the optimization information for each node we
construct the hypergraphH = (V, S) from G, where V is a set of nodes optimized
by the JIT compiler and each hyperedge in S represents an optimization phase.

Two important node features are phases and opcodes. Phases are the opti-
mization phases where a node was generated and optimized (and which later
correspond to hyperedges). Opcodes represent node operations (e.g., add, sub,
return). A node also has two different attribute groups: (1) basic, such as a node
id, address, list of neighbors, opcode, and IR ID (the ID of IR that the node be-
longs to); and (2) optimization, such as hyperedge (phase) ID, hyperedge name,
replace/kill/remove/append phase.

Recall that given one JavaScript code we generate N similar versions to see if
any of them trigger bugs. We generate the IRs for all of these versions (typically
about 20). In the real-world examples we work with, each such IR graph has
about 300-500 nodes and 30-40 optimization phase executions.

Visualizing IR of JIT Compiler 7

to use. Therefore, we simplify the graph (hopefully without losing much in-
formation), convert it into a hypergraph, and simplify the hypergraph (again,
hopefully without loosing much information). The main goal is to end up with an
interactive visualization that allows developers to debug. Our IR simplification
has two parts: (1) Reduce IR as a graph, (2) Reduce IR as a hypergraph.

Reducing the IR Graph We remove dead nodes (nodes with no adjacent
edges) as they are not translated into machine code and do not affect other
nodes. We then identify nodes that can be merged (reducing the total number of
nodes and edge) without losing important information. A pair of nodes is merged
if they have the same opcode, the same optimization information, belong to the
same IR (which can be identified by the IR id attribute), and share the same
neighbors; see Fig. 3. We first traverse each node in the graph and check for dead
nodes and removes them. We then re-traverse the graph and compare each node
to rest of the nodes, looking for pairs that can be merged. Algorithm 2 shows a
pseudo-code for how the graph simplification is implemented.

Fig. 3. Reducing the IR Graph: two red nodes that share the same neighbors are
merged (left) and a red dead node is removed (right).

Reducing the IR Hypergraph We first convert the simplified graph G =
(V,E) into a hypergraph H = (V, S), by extracting hyperedges based on the
optimization phases. Recall that a node A generated in phase/hyperedge α and
optimized in phase/hyperedge φ and γ now belongs to all three hyperedges.
We reduce the hypergraph by merging suitable pairs of hyperedges. Different
nodes can have the same hyperedge names as attribute, but different hyperedge
id, as this id is assigned based on the execution order. Therefore, we merge
hyperedges with the same name into a single-hyperedge while assigning a new
unique identifier generated from the original IDs. We use ID concatenation to
obtain unique identifiers. Fig. 2(b) illustrates hyperedge merging. Consider two
hyperedges A and B, which were executed twice in the order shown. The order
is used to create the unique IDs. We merge these 4 hyperedges into two larger
hyperedges and assign new IDs that were generated by concatenating two IDs

8 H. Lim and S. Kobourov

delimited with a special character ’@’. Algorithm 4 provides an overview of this
procedure.

This method significantly reduces the number of hyperedges that we have
to deal with but increases the number of nodes in each hyperedge. Next, we
traverse each hyperedge s in S, and we use the nodes opcodes to see if they can
be merged. Algorithm 5 shows the hypergraph simplification.

5 MetroSets

MetroSets [34] is a tool for visualizing hyepergraphs using the metro map metaphor.
It provides an clean way to show the relationships among the hyperedges, which
in our case represent the relationships among the optimizations. Further, Met-
roSets provides simple and intuitive interactions that make is possible to quickly
identify hyperedges that contain a suspicious (buggy) node, or hyperedges that
intersect with a particular suspicious (buggy) hyperedge. MetroSets is designed
for small-to-medium set systems with no more than 500 nodes and no more than
30 hyperedges. Additional internal requirements limit the number of nodes in
each hyperedge to at least 2 and require that all hyperedges must intersect at
least 1 other hyperedge. Since some of our hyperedges can be singletons, we add
a dummy node when needed (which is later ignored). If one or more of our hy-
peredges do not intersect any others, they can be treated separately and shown
next to the main hypergraph.

Each node in the MetroSet map is labeled with its unique id (representing
the timeline of node generation). The attributes shown when hovering over a
node are phase, opcode, address, graph id, and phase id. A phase attribute tells
the user where the node was generated, and it is useful for the node belongs to
multiple sets. The user can distinguish the phase that it was generated and the
phases where it was optimized. The phase id helps us analyze the order in which
nodes along a given line were generated.

6 Evaluation

The following experiments were done with our prototype system using a ma-
chine with 32 cores (@ 3.30 GHz) and 1TB of RAM, running Ubuntu 20.04.1
LTS. We used a dynamic analysis tool built on top of Intel’s Pin software [36]
for program instrumentation and collecting instruction-level execution traces,
XED [6] for instruction decoding [6]. Additionally, we used esprima-python [15]
to generate the syntax-tree for JavaScript code, and escodegen [3] to regenerate
the JavaScript code from the syntax-tree.

Our prototype targets Google’s JavaScript engine V8, focusing in particular
on TurboFan, V8’s JIT compiler.

We use data from the Chromium bug report site; details about the data, bug
descriptions, etc. can be found here [35]. We are able to localize the bugs in all
of the listed bug reports.

Table 1 shows the result of the simplification step on the bug report data.

10 H. Lim and S. Kobourov

graph shown in Fig. 2(a). Now, we apply our 7-step pipeline to obtain the final
metro map representation which shows 335 nodes and 18 sets; see Fig. 4.

We can now attempt to answer some of the questions from Section 1.

“What optimizations took place to generate the machine code?” By looking
at the set names in “Key to Lines” legend, we can identify which optimization
phases took place.

“What’s the relationships among the optimization phases?” and “With a spe-
cific node that represents some operation, which optimizations took place?” We
can answer these two questions by looking at the lines sharing the nodes. Hov-
ering over the nodes of interest highlights the names of phases in the “Key to
Lines” legend. We can also select the interactive intersection/union/etc. (explo-
ration modes) to see the relationships among the optimization phases. Fig. 10
shows an example of the relationships between TypedLowering, SimplifiedLow-
ering, and EarlyOptimization, with 3 nodes in their intersection. A developer can
investigate the relationship by examining the attributes of each node. The gen-
eration order and the hyperedge responsible for the generation can help identify
which hyperedge impacted others in the optimization.

“Which optimization phase was most active?” We can answer this question
by hovering over each line (which reports the number of nodes in the line). The
graph builder phase always has the largest number of nodes but it is not an op-
timization phase. Other lines with many nodes are the most active optimization
phases. Fig. 9 shows an example of a most active optimization phase.

“With a specific node that represents some operation, which optimization(s)
took place?” We can answer this question by hovering over the node of interest.
The lines that don’t contain the node are grayed out and the displayed node
attributes include the opcode, which represents the operation of a node.

“Which optimization phase is likely to be buggy?” One natural way to do this
is to find parts that differ in the IR graphs with the bug and those without [35]. In
other words, a program is buggy because either it has additional optimizations or
missing optimizations, and this information is captured in the IRs. For example,
let’s say there is program A, which is buggy and program B, which is non-
buggy. And, both programs were optimized at optimization phase γ. However,
the JIT compiler falsely evaluated the code in program A and omitted some
optimization resulting in missing nodes to be translated into machine codes.
These nodes are visible in the non-buggy program B’s IR as the JIT compiler
has correctly performed optimization. Therefore, any line in the metro map that
has a high density of nodes from non-original IRs represents that there was a
significant difference between the IRs from the buggy and non-buggy programs.
In this case study, we have found that the majority of nodes (9 out of 11) in
the EarlyOptimization phase line are from different IRs, which are all from non-
buggy IRs. This indicates that there was a significant difference in optimization
between buggy and non-buggy programs, so the developers are recommended to
begin debugging from the EarlyOptimization phase. Additionally, investigating
individual nodes in the suspicious line can be helpful. Figure 11 shows an example

Visualizing IR of JIT Compiler 11

of visualized node details that the user can use to learn about the node, such as
which bytecode the node corresponds to and which optimization took place, etc.

7 Discussion, Limitations, and Future Work

We described a new approach for visualizing the intermediate representation of
just-in-time compilers using the metro map metaphor and showed how it could
be used for debugging. The visualization approach described here is a functional
early prototype (available on https://github.com/hlim1/JITCompilerIRViz)
that provides some useful functionality for debugging JIT compilers. There are
many limitations and missing features.

To start with, we target a specific JIT compiler. Generalizing this approach to
other JIT compilers (e.g., ChakraCore, SpiderMonkey) can be done by modifying
the IR generation process to handle different IR graphs.

After a series of simplifications (of the IR graphs, the merged graph, and
the hypergraph) some useful information might be lost. A two-level visualization
which shows the simplified hypergraph as an overview but also provides all details
on demand will likely be useful.

Currently, we need to hover over each line to identify suspicious phases. This
can be improved by applying techniques to localize suspicious phases as described
in [35] and automatically highlight/bold such lines.

Along those lines, we might want to provide more detailed information about
each node: “why is this node connected to another?”, ”what optimization (i.e.,
removed, added) created this node?”, etc. The answers to several such questions
can be collected and provided via appropriate interactions.

8 Conclusion

In this paper, we have introduced a new implementation for visualizing the
intermediate representation of just-in-time compiler generates and optimizes at
run-time in a metro map. We have introduced algorithms for graph merging and
simplification to effectively reduce the size of a large and complex graph into
simpler sets while maintaining the important information to aid the developers
in debugging.

References

1. Browser security beyond sandboxing (2017). https://www.microsoft.com/
security/blog/2017/10/18/browser-security-beyond-sandboxing/, accessed
2021-01-22

2. Chakra-core (2016). https://github.com/chakra-core, accessed 2021-01-22
3. Estools/escodegen (2012). https://github.com/estools/escodegen, accessed

2021-02-03
4. Firefox public data report (2021).

https://data.firefox.com/dashboard/user-activity, accessed 2021-05-23

12 H. Lim and S. Kobourov

5. Google chrome statistics for 2021 (2021).
https://backlinko.com/chrome-users, accessed 2021-05-23

6. Intel xed (2019). https://intelxed.github.io/, accessed 2021-02-03

7. Internet browser market share 2012-2021 (2021).
https://www.statista.com/statistics/268254/

market-share-of-internet-browsers-worldwide-since-2009/, accessed
2021-05-23

8. Intro to chrome’s v8 from an exploit development angle (2020).
https://sensepost.com/blog/2020/

intro-to-chromes-v8-from-an-exploit-development-angle/, accessed
2021-02-21

9. Issue 1072171: Security: missing the -0 case when intersecting and computing the
type::range in numbermax (2020).
https://bugs.chromium.org/p/chromium/issues/detail?id=1072171, accessed
2021-02-01

10. Issue 5129: Turbofan changes x - y ¡ 0 to x ¡ y which is not equivalent when (x -
y) overflows (2016). https://bugs.chromium.org/p/v8/issues/detail?id=5129,
accessed 2021-02-01

11. Issue 8056: [turbofan] optimized array indexof and array includes ignore a
prototype that is not initial (2018).
https://bugs.chromium.org/p/v8/issues/detail?id=8056, accessed
2021-02-01

12. Issue 880207: Security: incorrect type information on math.expm1 (2018).
https://bugs.chromium.org/p/chromium/issues/detail?id=880207, accessed
2021-02-01

13. Issue 961237: Security: jit difference on comparison in d8 (2019).
https://bugs.chromium.org/p/chromium/issues/detail?id=961237, accessed
2021-02-01

14. Javascriptcore (2014). https://trac.webkit.org/wiki/JavaScriptCore,
accessed 2021-01-22

15. Kronuz/esprima-python (2017). https://github.com/Kronuz/esprima-python,
accessed 2021-02-03

16. Microsoft edge now has 600 million users (2021).
https://www.newsbreak.com/news/2138865000496/

after-expanding-support-microsoft-edge-now-has-600-million-users,
accessed 2021-05-23

17. Spidermonkey. https://spidermonkey.dev/, accessed 2021-02-22

18. Turbofan ir (2016). https://docs.google.com/presentation/d/
1Z9iIHojKDrXvZ27gRX51UxHD-bKf1QcPzSijntpMJBM/edit?usp=embed_facebook,
accessed 2021-01-21

19. Understanding v8’s bytecode (2017).
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775,
accessed 2021-01-21

20. Using turbolizer to inspect the v8 jit compiler (2019).
https://lukeolney.me/posts/v8-turbolier/, accessed 2021-02-22

21. V8: Behind the scenes (2016). https:
//benediktmeurer.de/2016/11/25/v8-behind-the-scenes-november-edition,
accessed 2021-01-21

22. V8 javascript engine. https://v8.dev/, accessed 2021-01-21

Visualizing IR of JIT Compiler 13

23. Adl-Tabatabai, A., Gross, T.R.: Source-level debugging of scalar optimized code.
In: Fischer, C.N. (ed.) Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation (PLDI), Philadephia,
Pennsylvania, USA, May 21-24, 1996. pp. 33–43. ACM (1996).
https://doi.org/10.1145/231379.231388

24. Brooks, G., Hansen, G.J., Simmons, S.: A new approach to debugging optimized
code. In: Feldman, S.I., Wexelblat, R.L. (eds.) Proceedings of the ACM
SIGPLAN’92 Conference on Programming Language Design and Implementation
(PLDI), San Francisco, California, USA, June 17-19, 1992. pp. 1–11. ACM
(1992). https://doi.org/10.1145/143095.143108

25. Collberg, C.S., Kobourov, S.G., Nagra, J., Pitts, J., Wampler, K.: A system for
graph-based visualization of the evolution of software. In: Diehl, S., Stasko, J.T.,
Spencer, S.N. (eds.) Proceedings ACM 2003 Symposium on Software
Visualization, San Diego, California, USA, June 11-13, 2003. pp. 77–86. ACM
(2003). https://doi.org/10.1145/774833.774844

26. Dahm, M.: Byte code engineering. In: Cap, C.H. (ed.) JIT ’99,
Java-Informations-Tage 1999, Düsseldorf 20./21. September 1999. pp. 267–277.
Informatik Aktuell, Springer (1999).
https://doi.org/10.1007/978-3-642-60247-4 25

27. Demange, D., Fernández de Retana, Y., Pichardie, D.: Semantic reasoning about
the sea of nodes. In: Proceedings of the 27th International Conference on
Compiler Construction. p. 163–173. CC 2018, Association for Computing
Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3178372.3179503

28. Devkota, S., Aschwanden, P., Kunen, A., LeGendre, M.P., Isaacs, K.E.: Ccnav:
Understanding compiler optimizations in binary code. IEEE Trans. Vis. Comput.
Graph. 27(2), 667–677 (2021). https://doi.org/10.1109/TVCG.2020.3030357

29. Devkota, S., Isaacs, K.E.: Cfgexplorer: Designing a visual control flow analytics
system around basic program analysis operations. Comput. Graph. Forum 37(3),
453–464 (2018). https://doi.org/10.1111/cgf.13433

30. Dux, B., Iyer, A., Debray, S.K., Forrester, D., Kobourov, S.G.: Visualizing the
behavior of dynamically modifiable code. In: 13th International Workshop on
Program Comprehension (IWPC 2005), 15-16 May 2005, St. Louis, MO, USA. pp.
337–340. IEEE Computer Society (2005). https://doi.org/10.1109/WPC.2005.45

31. Gregg, D., Ertl, M.A., Krall, A.: Implementing an efficient java interpreter. In:
Hertzberger, L.O., Hoekstra, A.G., Williams, R. (eds.) High-Performance
Computing and Networking, 9th International Conference, HPCN Europe 2001,
Amsterdam, The Netherlands, June 25-27, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2110, pp. 613–620. Springer (2001).
https://doi.org/10.1007/3-540-48228-8 70

32. Hölzle, U., Chambers, C., Ungar, D.M.: Debugging optimized code with dynamic
deoptimization. In: Feldman, S.I., Wexelblat, R.L. (eds.) Proceedings of the ACM
SIGPLAN’92 Conference on Programming Language Design and Implementation
(PLDI), San Francisco, California, USA, June 17-19, 1992. pp. 32–43. ACM
(1992). https://doi.org/10.1145/143095.143114

33. Ishizaki, K., Kawahito, M., Yasue, T., Takeuchi, M., Ogasawara, T., Suganuma,
T., Onodera, T., Komatsu, H., Nakatani, T.: Design, implementation, and
evaluation of optimizations in a javatm just-in-time compiler. Concurr. Pract.
Exp. 12(6), 457–475 (2000).
https://doi.org/10.1002/1096-9128(200005)12:6<457::AID-CPE485>3.0.CO;2-0

14 H. Lim and S. Kobourov

34. Jacobsen, B., Wallinger, M., Kobourov, S.G., Nöllenburg, M.: Metrosets:
Visualizing sets as metro maps. IEEE Trans. Vis. Comput. Graph. 27(2),
1257–1267 (2021). https://doi.org/10.1109/TVCG.2020.3030475

35. Lim, H., Debray, S.: Automated bug localization in JIT compilers. In: Titzer,
B.L., Xu, H., Zhang, I. (eds.) VEE ’21: 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, Virtual USA, April
16, 2021. pp. 153–164. ACM (2021). https://doi.org/10.1145/3453933.3454021

36. Luk, C., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S.,
Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: Sarkar, V., Hall, M.W. (eds.) Proceedings of
the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation, Chicago, IL, USA, June 12-15, 2005. pp. 190–200. ACM (2005).
https://doi.org/10.1145/1065010.1065034

Visualizing IR of JIT Compiler 15

Supplementary Materials

In this section, we provide the pseudocode for several of the non-trivial steps in
our pipeline, as well several additional examples of buggy code visualized with
our system.

1 Pseudocode

Algorithm 1: Intermediate Representation merging

Input: Original IR R0 = (V,E), Sub-IRs r′ = {r′1, ...r
′

n}
Result: Merged IR R∗

1 function merge nodes to original(R∗, r′i):

2 for j = 0 to size(r′i)− 1 do

3 if v′j .hyperedge exists in R∗.hyperedges then

4 add v′j to R∗.hyperedges to nodes

5 else

6 add v′j .hyperedge to R∗.hyperedges

7 add v′j to R∗.hyperedges to nodes

8 return R∗

9 begin

10 R∗ = R0

11 for i = 0 to size(r′)− 1 do

12 R∗ = merge nodes to original(R∗, r ′i)

Algorithm 1 shows how to merge several sub-IRs (each of which contains
candidate hyperedges) into the IR of the original JavaScript program. While
traversing the sub-IRs, we call a merge nodes to original function to update
the copy (R∗) of original IR R0. The function updates hyperedges, which holds
the list of hyperedge names, and hyperedges to nodes, which is a map between
hyperedges and the list of nodes.

16 H. Lim and S. Kobourov

Algorithm 2: IR Simplification as Graph

Input: Merged IR R∗ = (V ∗, E∗)
Result: Simplified IR R∗∗

1 function Remove Dead Nodes(R∗):

2 for i = 0 to size(V ∗)− 1 do

3 if v∗i has no edge or has only self looping edge then

4 remove v∗i from R∗

5 return R∗

6 function Remove Node Edges(R∗):

7 R∗∗ = copy of R∗

8 removed nodes = ∅
9 for i = 0 to size(V ∗)− 1 do

10 if v∗i not in removed nodes then

11 for j = i+ 1 to size(V ∗)− 1 do

12 if v∗j not in removed nodes and
v∗i .properties equal v∗j .properties then

13 add v∗j to removed nodes

14 remove v∗j from R∗∗

15 for i = 0 to size(V ∗∗)− 1 do

16 for j = 0 to size(v∗∗.edges)− 1 do

17 if v∗∗.edgesi in removed nodes then

18 remove v∗∗.edgesi from v∗.edges

19 return R∗∗

20 begin

21 R∗ = Remove Dead Nodes(R∗)
22 R∗∗ = Remove Node Edges(R∗)

Algorithm 2 shows how we simplify the merged IR as a graph, by removing
nodes and edges. Remove Dead Nodes seeks nodes with no adjacent edges (or
only with self-loop edges) and removes them from the IR. Then,
Remove Node Edge merges pairs of nodes if they have the same opcode, the
same optimization information, belong to the same IR (which can be identified
by the IR id attribute), and share the same neighbors.

Visualizing IR of JIT Compiler 17

Algorithm 3: Hypergraph Construction

Input: Simplified graph R∗∗ = (V ∗∗, E∗∗)
Result: Hypergraph H = (V, S)

1 function Construct HyperGraph(R∗∗, R∗∗.hyperedges):

2 V = ∅
3 S = {s1, s2, ..., sN} // Where N is a total number hyperedges in

R∗∗.hyperedges and each s represents hyperedges.
4 H = (V, S)
5 for i = 0 to size(V ∗∗)− 1 do

6 if v∗i .hyperedge in R∗∗.hyperedges then

7 v = v∗i // v stands for element.
8 identify the appropriate set s in S and add v to s

9 add v to V

10 while v∗i .optimized hyperedges do

11 w = v∗i
12 identify the appropriate set s in S and add v to s

13 add v to V

14 return H

15 begin

16 H = Construct HyperGraph(R∗∗, G∗∗.phases)

Algorithm 3 shows how we construct a hypergraph H = (V, S) from the
simplified graph G = (V,E). First, we extract hyperedges from the simplified
graph, which group nodes based on their generation, and add the nodes to V .
Then we add nodes to all their corresponding hyperedges.

18 H. Lim and S. Kobourov

Algorithm 4: Reducing the Hypergraph

Input: Hypergraph H = (V, S)
Result: Hyperedge reduced IR H∗ = (V ∗, S∗)

1 begin

2 V ∗ = V

3 S∗ = ∅
4 H∗ = (V ∗, S∗)
5 merged hyperedges = ∅
6 for i = 0 to size(S)− 1 do

7 if si is not in merged hyperedges then

8 concatenated id = si.id

9 merged node list[si.id] = si.nodes

10 add si.name to merged hyperedges

11 for j = i+ 1 to size(S)− 1 do

12 if si.name == sj .name then

13 jid = sj .id

14 add jid with @ symbol to concatenated id

15 add sj .nodes to merged node list[si.id]

16 add merged node list[si.id] to S∗[concatenated id]

Algorithm 4 shows the steps for reducing the hypergraph H = (V, S). This is
accomplished by merging hyperedges with the same name. Specifically, when
merging hyperedges, we generate a new ID by concatenating the IDs delimited
with a special character ‘@’ for the merged hyperedge. The corresponding
nodes in the hyperedges also get merged.

Visualizing IR of JIT Compiler 19

Algorithm 5: Hypergraph Simplification

Input: Hypergraph H∗ = (V ∗, S∗)
Result: Simplified hypergraph H∗∗ = (V ∗∗, S∗∗)

1 function Simplify Hyperedge(s∗):

2 s∗∗ = copy of s∗

3 simplified nodes = ∅
4 for i = 0 to size(s∗.nodes)− 1 do

5 if nodei not in simplified nodes then

6 for j = i+ 1 to size(s∗.nodes)− 1 do

7 if nodej not in simplified nodes then

8 if nodei.properties equal nodej .properties and
nodei.hyperedges equal nodej .hyperedges
then

9 add nodej to simplified nodes

10 remove nodej from s∗∗

11 return s∗∗

12 begin

13 V ∗∗ = ∅
14 S∗∗ = ∅
15 H∗∗ = (V ∗∗, S∗∗)
16 for i = 0 to size(S∗)− 1 do

17 s∗∗ = Simplify Hyperedge(s∗i)
18 add all elements in s∗∗ to V ∗∗

19 add s∗∗ to S∗∗

Algorithm 5 shows the steps for node reduction in the hypergraph. While
traversing all nodes in the hyperedge-simplified H∗, we compare each node to
the other nodes that belong to the same hyperedges. We compare the
properties (i.e., opcode) of the nodes, and we merge any nodes that are found
to be the same.

Visualizing IR of JIT Compiler 23

Fig. 8. Hovering on a line.

Fig. 9. Most active hyperedge.

	Visualizing The Intermediate Representation of Just-in-Time Compilers

