
  

  

Abstract— In this paper, we propose a novel online algorithm 

for motion similarity measurements during human-robot 

interaction (HRI). Specifically, we formulate a Segment-based 

Online Dynamic Time Warping (SODTW) algorithm that can be 

used for understanding of repeated and cyclic human motions, 

in the context of rehabilitation or social interaction. The 

algorithm can estimate both the human-robot motion similarity 

and the time delay to initiate motion and combine these values 

as a metric to adaptively select appropriate robot imitation 

repertoires. We validated the algorithm offline by post-

processing experimental data collected from a cohort of 55 

subjects during imitation episodes with our social robot Zeno. 

Furthermore, we implemented the algorithm online on Zeno and 

collected further experimental results with 13 human subjects. 

These results show that the algorithm can reveal important 

features of human movement including the quality of motion and 

human reaction time to robot stimuli. Moreover, the robot can 

adapt to appropriate human motion speeds based on similarity 

measurements calculated using this algorithm, enabling future 

adaptive rehabilitation interventions for conditions such as 

Autism Spectrum Disorders (ASD).  

I. INTRODUCTION 

Human motion assessment is an important part of many 

clinical evaluations and rehabilitation therapies for conditions 

such as stroke [1], cerebral palsy [2], spinal cord injuries 

(SCI) [3], Parkinson’s disease [4], and many others. 

Technology for analyzing human motion has advanced 

dramatically in recent years, enabling researchers and 

engineers to develop tools and methods to support patients 

and clinicians for both diagnostic and treatment purposes [5].  

For example, Wei and colleagues [6] created a system to 

prevent Parkinson’s disease patients from performing 

incorrect repetition grading exercises at home. Their system 

includes a Microsoft Kinect V2 for motion performance 

capturing paired with a machine learning-based task 

recommender model to enable on-demand and personalized 

task recommendations for patients. Zunino and colleagues [7] 

proposed an autism diagnosis method using video sequences 

of grasping gestures of individuals with Autism Spectrum 

Disorder (ASD). They report that the grasping behavior of 

ASD children is significantly different by analyzing data from 

40 subjects. These results support the hypothesis that the 

motion performance can be used to quantify autism severity 

and evaluate interventions. 
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Robotic devices also have the capability to assist patients 

and clinicians in various rehabilitation protocols [8]. Methods 

and algorithms have been developed for humanoid robots to 

imitate their human teachers [9, 10]. These robots can be used 

as socially assistive robots to encourage patients to imitate a 

motion and learn specific motor skills. Fitter and colleagues 

[11] demonstrated that the humanoid robot Nao can 

encourage infants to perform a motion like kicking a ball 

through imitation. This system can help an infant with motor 

delay to practice a motion at early age which can be a 

preventative measure from later developmental impairment. 

To understand human motions, biomechanical factors such 

as limb kinematic variables are captured and analyzed by 

using both inertial and biological signal tracking systems. The 

outputs of these systems are usually in the form of time series. 

Mathematical and statistical analysis of sequence similarities 

of these time series data can be useful to understand 

movements, detect abnormalities in motions, and reveal 

specific patterns [12]. There are several algorithms available 

to measure the similarity between two time sequences, such 

as: the Euclidean distance [13], longest common subsequence 

[14], nearest neighbor distance [15], Frechet distance [16], 

SpADe [17], and Dynamic Time Warping (DTW) [18]. The 

DTW algorithm for signal similarity measurements was first 

introduced by Berndt and Clifford [18]. It is a dynamic 

programming algorithm that iteratively calculates the 

similarity of time series data. The advantage of DTW over 

other methods includes good accuracy for two sequences with 

different lengths, high computer calculation speed, and not 

being sensitive to time delays and uneven sampling time. 

Wang and colleagues [19] proposed a method based on DTW 

for monitoring gait joint angle trajectories in patients with 

Parkinson's disease.  

Another factor reported in the literature related to the motor 

performance of patients with disabilities, is the reaction time 

of these individuals to stimuli such as visual cues [20].  

Studies by Inui and colleagues [21] showed that subjects with 

Down syndrome and ASD have longer simple reaction times 

than neurotypical subjects.  

For rehabilitation purposes, real-time feedback to the 

patient about their motion performance is an important factor. 

Lieberman and colleagues [22] developed a system that 
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featured a wearable vibrotactile suit. A student wearing the 

suit, received feedback based upon the quality of their motion 

performance when mimicking a teacher. The input to the 

system is optically tracked trajectories of the student and their 

teacher recorded by a VICON vision system. The trajectories 

are compared to generate feedback for the student in real-

time.  

In our previous work, Wijayasinghe and colleagues [23] 

recorded sequences from hand joint angles of autistic and 

non-autistic subjects while they imitated the upper arm 

motions of social robot Zeno. They calculated the DTW cost 

to compare the similarity of motions between the subject and 

the humanoid robot. They showed that the DTW cost was 

higher for interaction with ASD children and concluded that 

this algorithm could be used to design robotic autism 

intervention. One of the drawbacks of this work was that the 

data was collected and processed off-line, and that the time-

series had to be truncated in length and shifted in time by a 

human researcher based on visualized waveform similarity.  

The contribution of this paper is to develop an online 

algorithm that does not require the subjective visual 

inspection of collected waveforms in order to measure the 

similarity between a subject’s imitation motion performance 

and a reference trajectory of a robot. The resulting online 

SODTW algorithm is also able to measure the reaction time 

of the subject and consolidate both numbers into a weighed 

metric. The metric was validated using off-line interaction 

data collected from a cohort of 55 subjects interacting with 

Zeno. It was then used to provide on-line feedback during 

interaction and design adaptive human-robot imitation 

sessions that encourage a subject to perform upper limb 

imitation motions with higher precision and speed. A second 

set of experiments was conducted with 13 human subjects to 

validate Zeno’s adaptive behavior. 

The paper is organized as follows: in section II we present 

the SODTW algorithm; in section III we use data collected 

from human subjects to validate the algorithm and collect HRI 

statistics; in section IV we implement SODTW on social 

robot Zeno along with adaptive behaviors and discuss our 

experimental results. Finally, section V presents our 

conclusions and discusses future work. 

II. SEGMENT-BASED ONLINE DYNAMIC TIME-WARPING 

ALGORITHM 

Our proposed method works for calculating a similarity 

measurement of any two time sequences when the reference 

trajectory is cyclic. Fig. 1 shows a sample model for a 

representative wave pattern from the robot and human joints 

during HRI, consisting of a cyclic reference trajectory and a 

time sequence that is measured in real time. The measured 

time sequence looks dissimilar to the cyclic reference at first, 

but after approximately 250 seconds, as marked by the 

circular dot in Fig. 1, the measured trajectory becomes cyclic 

and appears similar to the reference trajectory. The goal of our 

SODTW algorithm is to detect the starting point, where the 

most similarity occurs between our data-streamed time 

sequence and the reference trajectory. SODTW cost to 

compare the interaction performance will then be calculated 

only based on the similar part of the sequence, which in this 

case is one cycle.  

In this algorithm, one cycle of the reference trajectory 

initiated by a robot limb can be divided into several segment 

sequences with predefined length, as well as a segment 

interval that is the distance between start and end points of 

two consecutive segments. In Fig. 1, two sample segments on 

the reference trajectory from the robot and one segment on the 

measured trajectory from the human have been highlighted. 

The algorithm selects segments on the measured trajectory 

with the same length as reference trajectory segments. Each 

segment of the measured trajectory is compared with all 

segments of the reference trajectory by calculating a DTW 

cost between two segments. 

 
Figure 1. An example of a reference (from robot joint) and measured (from 

human joint) time sequences indicating the point where the two start 

looking similar.   

The DTW cost for any two sequences X=x1, x2, …, xm and 

Y=y1, y2, …, yn, with lengths m and n respectively, can be 

calculated from the following dynamic program:  

D(i, j) = d (xi, yj) + min {D(i-1, j-1), D(i-1, j), D(i, j-1)}    (1) 

where d (x, y) is Euclidean distance between x and y, i = 1,…, 

m, j = 1,…,n and  D(m, n) is the DTW cost. 

When the smallest DTW cost is found, the algorithm saves 

the segment index on the reference and sequence index on the 

measured trajectories and calculates the DTW cost for the 

sequences on reference and measured trajectories with the 

length of one cycle starting from those indices on both 

trajectories. Next, the calculated DTW cost is compared with 

the DTW calculated from the previous cycles. If the new 

DTW cost is smaller than the previous cost (with an added 

error tolerance), the algorithm substitutes this new DTW as 

the total DTW for one cycle and saves the sequence index on 

the measured trajectory when the cycle started. This index is 

in fact the time in Fig. 1, where the best cycle on measured 

trajectory has started. The error tolerance can be determined 

for each specific application to cover normal inaccuracy in 

human motions. The process of searching and updating the 

DTW cost is continued until the end of the data measurement 

and the DTW cost for the most similar cycle which is the 

SODTW cost of measured sequence is calculated.  

The SODTW algorithm finds the best similarity cost for 



  

one cycle for any measured sequence. If the measured 

trajectory is completely dissimilar, the algorithm still finds the 

most similar part of the sequence, however, it reports a large 

number for SODTW cost which shows the dissimilarity. The 

algorithm is independent of the length of measured sequence. 

The SODTW algorithm is summarized below. 

Algorithm 1. SODTW algorithm 

Part 1: Initialization 

1. Nseg  Number of segments for one cycle 

2. segLen   Length of each segment 

3. segInter  Segment interval 

4. Time  Elapsed time/measured sequence indices 

5. Q  One dimensional reference trajectory with fixed  

             length 

6. S  One dimensional measured streaming data sequence  

            (of changing length)    

7.  cycleLen  Length of one cycle sequence calculated as        

                         (Nseg-1)*segInter+segLen  

8. DTW_O  A large default number 

9. DTW_N  0 

10. Error_Tolerance  Error tolerance for SODTW cost                                    

Part 2: Dividing one cycle of reference trajectory into 

segments 

11. Seg  Segments created from Q 

                 (Seg is a matrix with Nseg row and segLen           

                  column) 

Part 3: Finding the segment index and DTW cost 

between segments on reference and measured sequences 

12.     SWindow  Segment on measured trajectory, S, with    

                                the same length of the segLen 

13. for i  1 to Nseg 

14.      SEG  Seg(i,:) 

15.      DTW_S_W(i)  D(SEG, SWindow) (Equation (1)) 

16. end for 

17. I  Index of the segment on reference trajectory for the  

             minimum of DTW_S_W  

18. D  Minimum DTW cost in DTW_S_W  

19. T  Time/index on the measured trajectory 

Part 4: DTW cost calculation for one cycle 

20. Scycle  Cycle on S started from T and included 

                       Nseg segments  

21. Qcycle  Cycle on Q started from I and included 

                       Nseg segments  

22. DTW_N  D(Qcycle, Scycle) (Equation (1)) 

23. if DTW_N <= DTW_O – Error_Tolerance 

24.      DTW_O  DTW_N 

25.      Reaction_Time  T 

26. end if 

III. VALIDATION WITH HUMAN SUBJECTS 

In this section, we discuss our methods and experiments to 
validate the SODTW algorithm during HRI. All the 
participants in this study were physically healthy adults over 
the age 18, who signed an IRB-approved consent form prior to 
admission.  

A. Offline Validation from HRI data with Zeno 

For validation of the SODTW algorithm, we set up a series 

of imitation experiments with social robot named Zeno and 

adult human subjects. Zeno (Fig. 2) is a two foot tall 

humanoid robot originally developed by Hanson Robotics and 

Robokind. The robot has an expressive face with movable eye 

lids and lips. It has four degrees of freedom in each arm, one 

degree of freedom for torso movement, and rigid legs attached 

to a base. Dynamixel® RX-28 servo motors are present at 

each joint of the robot. Unlike the original Robokind unit, our 

laboratory version has been upgraded to be controlled 

externally using a Dell Quad core laptop, and a MyRIO 

controller running LabVIEW ®. 

During experiments depicted in Fig. 2, Zeno was used to 

perform a waving hand motion, while subjects were asked to 

imitate the performed Zeno gestures under two different 

conditions. For the first condition, 55 healthy adults without 

previous experience with the robot performed imitation trials 

without holding a weight. In the second condition, 44 of the 

same subjects performed imitation trials while holding a 15 

pounds weight in their hand. Carrying a weight makes motion 

performance difficult and simulates conditions similar to 

neuro-motor impairments. In each trial, three cycles of motion 

separately recorded. Using a Kinect® motion capture system, 

the hand motion of the subject mimicking the hand 

movements of the robot were recorded and saved for further 

numerical investigation offline. 

The SODTW algorithm was implemented offline using 

MATLAB®. Fifty five subjects completed the first condition 

trials. Forty four of these subjects successfully completed the 

second condition trials as well. We recorded hand motions of 

all the subjects and produced time series for cyclic elbow joint 

angles with the sequence length of n=279. Then we compared 

these time sequences with a pre-recorded sequence applied to 

the elbow joint angle of Zeno using the SODTW algorithm.  

 

 
Figure 2. Experimental setup for offline validation of SODTW algorithm.   

There are two important notes in our measurements and 

calculations. First, the pre-recorded motion was sent to the 

Zeno as input which was used for our similarity calculations. 

There is a time delay between the sent input and performance 

of Zeno which is seen and imitated by the subject. Second, the 

Kinect sensor sampling also suffers from measurement time 



  

delays. These delays combine to affect the accuracy of the 

reaction times that our algorithm measures. In our 

experiments, we find the sequence index in the measured time 

series where the best performance of the subject starts, which 

we call Reaction Sequence Index (RSI), instead of reaction 

time. This helps in investigating the effects of a human 

learning a task and impairment on reaction time indirectly by 

comparing RSIs calculated for two mentioned conditions 

while not confusing readers about human reaction time, which 

has a specific medical and physical meaning. 

Table 1 lists all the initial values and tuned parameters for the 

calculation of the SODTW cost and RSI for our experiments.  

TABLE I.    LIST OF SODTW ALGORITHM TUNED PARAMETRS 

AND THEIR VALUES  

SODTW Parameters Values 

Nseg 52 

segLen 6 

segInter 1 

cycleLen 57 

 

Fig. 3 shows the SODTW costs for 55 adult subjects when 

they imitate the robot without carrying weights. The costs 

were calculated with an error tolerance of 0. By visualizing 

the statistics in Fig. 3, the average SODTW cost for these 55 

subjects is µ=5.85 with minimum  m=2.03, maximum 

M=27.1 and standard deviation σ=4.7. 

 

Figure 3. SODTW cost across 55 subjects. 

 
Figure 4. Reaction Sequence Indices (RSI) for 55 subjects. 

Since the standard deviation is around 5, we have selected 

an error tolerance of 5 to calculate the RSIs. Even 

neurotypical subjects cannot imitate the robot perfectly 

without some errors after they react to the robot motions. The 

tolerance of 5 covers these inaccuracies and gives a smaller 

average RSI for 55 subjects in comparison with 0 tolerance 

RSI calculations. Fig. 4 shows the RSIs for 55 subjects and 

error tolerance of 5. The average of these numbers is 

approximately 50. Fig. 5 shows the histogram plot for RSIs of 

these 55 subjects. Thirty of these 55 subjects (more than half 

of them), have RSI less than 40. We call this normal RSI since 

subjects did not carry any weights. 

 

Figure 5. Reaction Sequence Indices (RSI)  histogram for 55 normal 

subjects. 

 

(a) 

 
(b) 

Figure 6. Measured sequence for a normal subject in comparison with 

Zeno input sequence a) first condition: first trial without carrying weight b) 

second condition: second trial with subjects carrying 15 pound weights. 

Fig. 6 Shows the Z-normalized measured sequences from a 

subject for both experimental conditions. The circle dot shows 

the RSI. When the subject does not carry a weight, their 

performance is similar to the robot motion with a small RSI= 

38 (Fig. 6 (a)). The SODTW cost with zero tolerance, which 

is the similarity cost for the best performance of the subject, 

was calculated as SODTW=3.22 using our SODTW 

algorithm. When subject carries 15-pound weight, (Fig. 6 

(b)), it affects the normal performance of the subject, 

increases the cost to SODTW=9.98 and RSI =131.We 

calculated SODTW cost and RSI for 44 subjects for the 

second condition when subject carries weight. SODTW cost 

for 22 of these subjects were higher than average SODTW 

cost for the normal subjects calculated for the first condition. 

The average SODTW cost for these 22 subjects is 

SODTW=10.49 and the average RSI for these subjects are 

RSI= 66, which is significantly higher than the average RSI 

for 55 subjects in the normal model condition. These results 

show that carrying a 15-pound weight affects the physical 



  

performance of these subjects to imitate the gestures of Zeno. 

This can be immediately detected by SODTW cost. However, 

carrying a weight also affects the RSI of the subjects which is 

detected by the SODTW algorithm. 

For the other 22 subjects, carrying a weight did not affect 

the quality of their motion performance which shows the 

strong physical ability of these subjects that they are capable 

of easily imitating the robot while they carried the 15-pound 

weight. Because of their physical abilities, the average 

SODTW cost for these subjects is SODTW=3.98 and the 

average RSI =39. By comparing these numbers with the 

average SODTW cost and RSI we found from the 55 subjects, 

we conclude that practicing a motion performance increased 

the performance quality of these subjects caused a decrease in 

both average SODTW cost and RSI for these subjects. 

Our simulation and experimental results show that our 

SODTW algorithm can determine two important motion 

features. The first feature is the quality of the motion 

imitation, which can be assessed by calculating SODTW cost, 

and the second one is the reaction time of the subject. These 

two features can help diagnose or monitor neuromuscular 

impairments including tracking the improvements of the 

patients after physiotherapy. A metric for evaluation of these 

patients can be proposed based on the following formulation: 

           M = c1 (SODTW/SODTWav) + c2 (RSIr/RSIrav)        (2) 

in which SODTW is the SODTW cost of the subject, and RSIr 

is the reaction sequence index. The SODTWav is the average 

of SODTW cost obtained from control subject, RSIrav is the 

average reaction sequence index for these control subjects. c1 

and c2 are gain constants, that can be tuned for each specific 

application.  

B. Online Validation of SODTW on Zeno Robot  

To prove the effectiveness of the SODTW algorithm in real 

time systems, we developed an experimental setup to 

implement the SODTW algorithm in our social robot, Zeno. 

We programmed the robot using the LabVIEW environment 

to evaluate the subject performance and calculate SODTW 

cost and RSI in real time. The procedure is as follow: 

1. The robot performs a special hand motion, a hammer, 

by sending the pre-recorded joint angle commands to 

the robot joint motors. 

2. Time series from hand joint angles of the subject 

imitating the robot hand motion is obtained using the 

Kinect sensor and data is streamed into the robot 

system for real-time calculation of similarity using the 

SODTW algorithm. 

3. Using the SODTW algorithm, the robot system 

calculates the SODTW cost as well as RSI of the 

subject by comparing the elbow joint angle data from 

the subject and pre-recorded data sent to the robot 

system. 

Thirteen subjects participated in this study. The subjects 

were invited to the social robotics lab at the Next Generation 

System Group and asked to imitate hand motion of Zeno. The 

subjects completed motions with and without carrying a 15-

pound weight to model normal and impaired subjects. Fig. 7 

shows the SODTW cost for a subject calculated by Zeno robot 

system in real time during the experiment. This figure shows 

that the system updates the SODTW cost while the subject 

performs the motion.  

We exported the SODTW cost and RSI calculated by 

system of Zeno for these 13 subjects after 279 sequence data 

point from the subject captured and checked the accuracy of 

the reported SODTW costs and RSIs offline using our 

MATLAB code. We found the exact same numbers from our 

MATLAB code that shows the accuracy of our real time 

calculations. The average SODTW cost when subjects did not 

carry a weight was SODTW=7.23 for this motion which 

increased to SODTW=9.5 when subjects carried 15-pound 

weight. The average normal RSI was RSI=107 which 

decreased to RSI=103 when subjects performed their motion 

with a 15-pound weight. We noticed that impairment modeled 

by carrying weights did not significantly affect the RSI for 

these subjects. Decrease in RSI can be due to learning the 

imitation task by subjects after their first trial which causes 

faster reaction to the robot in the second trial of the 

experiments. 

 
Figure 7. SODTW calculation in real time performed by Zeno robot 

system. 

 
Figure 8. Metric, M, for normal and impairment model conditions. 

We developed our metric, M, by assigning SODTWav = 7.23 

and RSIrav =107 for this motion. Since we found a small effect 

of RSI in our impairment model in comparison with SODTW 

cost, we selected c2 as 0.5 while c1 was chosen as 2. Fig. 8 

shows the calculated metrics for 13 subjects for normal and 

impairment model conditions. For nine subjects, we see an 

increase in the metric values when the subject carries the 

weight during the experiments. A metric of 2.5 is the normal 

line in these experiments which is calculated by substituting 

SODTW=SODTWav and RSIr= RSIrav in Equation (2). Smaller 

metric reflects a higher quality of performance of the subject.  

IV. ADAPTIVE IMITATION 

SODTW algorithm can be used to assess the human 



  

performance and adapt the robot motion to the user by 

calculating the similarity measurement costs in real time. In 

this section, we discuss the application of the SODTW 

algorithm to design an adaptive interactive behavior on Zeno 

for practicing a hammering motion with subjects.  

Specifically, we have programmed Zeno to change the speed 

of the motion based on the speed of the hand movements of 

the subject. This was done by comparing the streamed data 

from the subject for the cyclic elbow joint angle with 

reference time series of three similar motions and different 

speed levels. In an initial experiment, we defined three speed 

levels including slow, normal, and fast. The Zeno robot 

performs one cycle of the motion in 0.9s, 1.71s, and 3.51s for 

fast, normal and slow speed levels respectively. The robot 

system calculates the SODTW cost comparing these three 

reference trajectories for the cyclic elbow joint angle and data 

streamed from the subject. Then the robot selects the 

reference trajectory time series with the smallest SODTW 

cost to perform next. If the subject imitates the motion slower 

than the robot, the robot will select the slow level motion 

performance since this trajectory gives the smallest SODTW 

cost. If the hand motion of the subject is faster than the robot, 

the fast level motion is selected by the system since it gives 

the smallest SODTW cost. 

To test our adaptive algorithm, we asked the 13 subjects to 

perform the hammering motion with normal speed and let the 

robot to follow their motion. Simultaneously, our system 

calculated the SODTW costs for all three speed levels. Fig. 9 

shows the online similarity measurements comparing subjects 

elbow joint angle data with, fast, normal, and slow reference 

trajectories. When subjects perform the motion with normal 

speed, the SODTW cost for normal trajectory is smaller than 

both fast and slow SODTW costs.  

 
Figure 9. SODTW costs comparing the subject normal speed trajectory with 

three different speed levels.   

As the last part of our experiments, we asked subjects to 

imitate motion of Zeno; however, they performed the motion 

faster or slower based on our instructions. We observed that 

the Zeno robot switched the motion to the faster or slower 

speed level based on the performance of the subject. Fig. 10 

shows the SODTW costs calculated by system of Zeno when 

it changes the speed of the motion in comparison with the 

SODTW cost of a normal speed level. When the subject 

performs with slow speed, the SODTW cost with respect to 

slow reference trajectory is smaller than SODTW cost of 

normal trajectory (Fig. 10 (a)). When subject is fast, the 

SODTW cost with respect to fast reference trajectory is 

smallest (Fig. 10(b)). 

 

(a) 

 
(b) 

Figure 10. SODTW costs for adaptive robot a) subject performs slowly, b) 

subject performs fast.  

V. CONCLUSIONS AND FUTURE WORK 

     In this paper, we proposed a new algorithm, SODTW, for 

online calculation of joint trajectory similarities during HRI, 

as well as the human subject’s imitation reaction time. These 

numbers are then aggregated into a HRI quality metric and 

used to adapt robot motion speed. Results from our 

experiments of interaction by social robot Zeno and 

approximately 70 subjects prove that the SODTW algorithm 

can suitably work for online applications and can be used to 

design adaptive robotic therapies. The system can adapt to 

human performance during imitation by adjusting upper arm 

cyclic motion speeds. As a result, the robot can be 

programmed to play the role of a teacher motivating subjects 

to perform a special physical motion. It also encourages the 

patient to perform movements with higher quality and faster 

speeds until imitation performance deteriorates. 

     In the future, the resulting metric incorporating SODTW 

will be used to diagnose the severity of neuromotor conditions 

of patients such as children with ASD.  
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