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Abstract: We consider the problem of estimating the covariance structure of a
random vector ¥ € R? from an independent and identically distributed (i.i.d.)
sample Y7,...,Y,. We are interested in the situation in which d is large relative
to m, but the covariance matrix ¥ of interest has (exactly or approximately) low
rank. We assume that the given sample is either (a) e-adversarially corrupted,
meaning that an e-fraction of the observations can be replaced by arbitrary vec-
tors, or (b) i.i.d., but the underlying distribution is heavy-tailed, meaning that
the norm of Y possesses only finite fourth moments. We propose estimators that
are adaptive to the potential low-rank structure of the covariance matrix and to
the proportion of contaminated data, and that admit tight deviation guarantees,
despite rather weak underlying assumptions. Finally, we show that the proposed
construction leads to numerically efficient algorithms that require minimal tuning
from the user, and demonstrate the performance of such methods under various

models of contamination.
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tailed distribution, low-rank recovery, U-statistics.



1. INTRODUCTION

1. Introduction

We focus on the problem of covariance estimation under various types
of contamination, emphasizing practical methods that admit an efficient
implementation. Assume that we are given independent copies Y7,...,Y,
of a random vector Y € R? that follows an unknown distribution D over
R?, with mean p := E[X] and covariance matrix X := E[(Y — p)(Y — p)7].
The observations Y, ...,Y, are assumed to be either e-adversarially cor-
rupted, meaning that an “adversary” could replace a fraction ¢ < 0.5 of
observations with arbitrary (possibly random) vectors, or that the underly-
ing distribution D is heavy-tailed, meaning that the Euclidean norm ||Y||2
is assumed to possess only four finite moments. Our goal is to construct
an estimator of the covariance matrix > that performs well in the present
framework.

As attested by, among others, Tukey (1960) and Huber (1964), robust
estimation has a long history. During the past two decades, a growing num-
ber of applications has created high demand for practical tools for recover-
ing high-dimensional parameters of interest from corrupted measurements.
Robust covariance estimators, in particular, have been studied extensively.

The statistical properties of the sample covariance matrix of “light-tailed”
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distributions, such as sub-Gaussian distributions, are well understood; see,
for example, Koltchinskii and Lounici (2016), Vershynin (2010), and Cai
et al. (2010, 2016), among many others. Srivastava and Vershynin (2013)
investigate the performance of the sample covariance matrix under weaker
moment assumptions. Some popular robust estimators of scatter, such as
the minimum covariance determinant (MCD) estimator and the minimum
volume ellipsoid (MVE) estimator, are discussed in Hubert et al. (2008).
However, rigorous results for these estimators are available only for ellip-
tically symmetric distributions because, in general, they are biased. For
instance, Butler et al. (1993) discuss asymptotic results for the MCD, and
Davies (1992) do so for the MVE estimator. Other popular constructions,
such as the estimators of scatter of Maronna (1976) and Tyler (1987), are
consistent only for distributions possessing certain symmetry properties.
Chen et al. (2018) demonstrate the minimax optimality, with respect to
the proportion of outliers, of a robust estimator based on a so-called “ma-
trix depth” function inspired by the notion of Tukey’s depth; unfortunately,
this estimator is not computationally tractable. Covariance estimation for
heavy-tailed distributions has attracted significant attention; see, for exam-
ple, Catoni (2016), Giulini (2015), Fan et al. (2016), Abdalla and Zhivo-

tovskiy (2022), Oliveira and Rico (2022), Minsker (2018), and
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Minsker and Wei (2020). The survey by Ke et al. (2019) contains a more
detailed overview of recent progress. Contributions by theoretical computer
scientists have introduced a range of new ideas, leading to theoretically op-
timal estimators in adversarial contamination frameworks; see, for example,
Lai et al. (2016), Diakonikolas et al. (2021, 2019, 2017), Cheng et al. (2019),
and Diakonikolas and Kane (2019). Furthermore, Abdalla and Zhivotovskiy
(2022) and Oliveira and Rico (2022) describe estimators that achieve the
sharpest possible bounds. Several proposed approaches, including those of
the latter two works, result in optimality with respect to the contamination
proportion and the dependence on the estimators of the dimension factors.
However, the corresponding algorithms are either not computationally fea-
sible or not user friendly, because they are often sensitive to the choice of
“absolute constants” in the tuning parameters, require a preliminary robust
mean estimation, or assume that (typically unknown) parameters, such as
the contamination proportion ¢, are given as an input. Other works focus
only on the bounds with respect to the Frobenius norm, whereas we are
interested in the error measured in the operator norm as well. Finally, the
dependence of the resulting probabilistic estimates on the deviation param-
eter controlling the probability of the desirable bound is often not made

explicit.
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This study continues the line of research on robust covariance estima-
tion. We design a “Lasso-type” penalized estimator, and show the follow-
ing: (a) it admits nearly optimal error bounds in cases of practical interest,
namely, when the so-called “effective rank” of the covariance matrix % (de-
fined rigorously later) is small; (b) it requires minimal tuning, and can be
calculated efficiently using traditional numerical methods; and (c) the de-
pendence of the resulting estimates on all parameters of interest is stated
explicitly. Note that theoretical guarantees for our estimator are not re-
stricted to data generated from an elliptically symmetric distribution.

The rest of the paper is organized as follows. Section 2 introduces
the main notation and background material. Sections 3 and 4 discuss the
main results for the cases of adversarially corrupted data and heavy-tailed
data, respectively. Section 5 presents the algorithms for our numerical
evaluation of the proposed estimators, as well as the results of our numerical
experiments. Additional simulation results and proofs are contained in the

online Supplementary Material.

2. Preliminaries

In this section, we introduce the main notation and recall several useful

facts that we rely on in the subsequent exposition.
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2.1 Notation

Given two real numbers a,b € R, we define a V b := max{a, b}, a A b :=
min{a, b}. For z € R, we denote |z] := max{n € Z : n < z} as the largest
integer less than or equal to . The absolute constants are typically unspec-
ified, and are denoted as ¢, C,Cy, C, and so on, where the same constant
letter might denote different absolute constants in different expressions.
When the constant depends on certain parameters of the problem, we write

it as C'(z,y,...). Remaining notation will be introduced as needed.

2.2 Matrix algebra

Assume that A € R4*% ig a d; x dy matrix with real-valued entries. Let AT
denote the transpose of A, and define S4(R) := {A € R4 : AT = A} as
the set of all symmetric d x d matrices. The eigenvalues of A are denoted as
A1, ..., Ag, all of which are real numbers. Given a square matrix A € R4,
the trace of A is tr(A) := Z?Zl A;;, where A;; represents the element of
the ith row and 7th column of A. For a rectangular matrix A € R%*% with

singular values o1(A) > -+ > 0yanka)(A) > 0, the operator or spectral

norm is defined as ||A| := 01(A) = /Amaz(ATA), the Frobenius norm is

defined as || A : \/ Yo rank(4) 52(4) = /tr (ATA), and the nuclear norm

is defined as [|Al|, = Zir:arllk(A) 0i(A) = tr (VATA). The inner product
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associated with the Frobenius norm is defined as (A, B) = (A, B), =
tr (ATB) = tr (ABT), where A, B € R%*%  Finally, we introduce the

functions of matrix-valued arguments.

Definition 1. Given a real-valued function f defined on an interval T C R
and a real symmetric matrix A € S%(R), with the spectral decomposition
A = UAUT, such that \;(A) € T, for j = 1,...,d, define f(A) as f(A) =

Uf(MN)UT, where

A f(A)

Ad f(Aa)

Finally, the effective rank of a matrix A € S4(R) \ {0} is defined as

_ (4)
rk(A) = Al

Note that 1 < rk(A) < rank(A) is always true, and it is possible that

rk(A) < rank(A) for “approximately low-rank” matrices A.

2.3 Sub-Gaussian distributions

Given a random variable X on a probability space (€2, A, P), and a convex

nondecreasing function ¢ : R, +— R, with ¢)(0) = 0, we define the 1)-norm
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of X, following Vershynin (2018, Section 2.7.1), as

1X1l, = inf{o >0 E{@z} (%'ﬂ < 1}.

Below, we are interested in ¢y (u) := exp {u} — 1, for u > 0, and 9(u) :=
exp{u?} — 1,u > 0, which correspond to the sub-exponential and sub-
Gaussian norms, respectively. A random variable X is sub-Gaussian (sub-
exponential) if [ X[, < oo ([[X]|,, < 00). In addition, we define the Lo-
norm of a random variable X as || X||,, = (E[|X|2])1/2. The sub-Gaussian

(or sub-exponential) random vector is defined as follows.

Definition 2. A random vector Z in R? with mean p = E[Z] is called L-
sub-Gaussian if for every v € RY, there exists an absolute constant L > 0,

such that

I{Z = w0}y, < LIKZ = 0}l - (2.1)

Moreover, Z is called L-sub-exponential if ¢)o-norm in (2.1) is replaced with

11-norm.

3. Problem formulation and main results

Let Zi,...,Z, € R? be independent and identically distributed (i.i.d.)

copies of an L-sub-Gaussian random vector Z, such that E[Z] = p and



3. PROBLEM FORMULATION AND MAIN RESULTS

E[(Z — p)(Z — p)"] = X. Assume that we observe a sequence
Y, =Z;+V, j=1,....n, (3.1)

where V; are arbitrary (possibly random) vectors, such that only a small
portion of them are not equal to zero. That is, we assume that there exists
a set of indices J C {1,...,n} such that |J| < n and V; =0, for j ¢ J.
In what follows, the sample points with j € J are called outliers, and

e := |J|/n denotes the proportion of such points. In this case,

VY =22l + ViV + V2] + Z;,V] = X; + /U,

::ﬁU;
where rank(U;) < 2, and the y/n normalization factor is added for the
technical convenience. Our main goal is to construct an estimator for the
covariance matrix X in the presence of outliers V. In practice, we usually
do not know the true mean p of Z. We can avoid an explicit estimation
of p if we are interested only in X. To this end, we recall the definition of

U-statistics.

Definition 3 (Hoeffding (1948)). Let Y3,...,Y, (n > 2) be a sequence of
random variables taking values in a measurable space (S, ). Assume that
H : 8™+ S4R) (2 < m < n) is an S™-measurable permutation-symmetric

kernel, that is, H(y1, ..., Ym) = HYxy, -+ Yr,), for any (y1,...,ym) € S™
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and any permutation m. The U-statistic with kernel H is defined as

_ |
U, == M H(Y,,...,Y:),
n! =

(215eeestm )EIN

where I := {(i1,...,im) 1 1 <i; <n,i; # i if j # k}.

An example of a U-statistic is the sample covariance matrix

Boim = Y (- V) - T (3:2)

J=1

where Y := %22:1 Y;. Indeed, it is easy to verify that

= 1 (Y = Y)(Y; = Y)T

S, = L VAL Vi 3.3
=) 2 > 3)

(4.5)€l}

Hence, the sample covariance matrix is a U-statistic with kernel

(z —y)(z—y)"

5 , for any z,y € R%

H(z,y) =

Note that E[(Y; — ¥;)/v2] = 0 and E[(}g —Y)(Y;i - ) /2| = %, for all
(i,4) € I2. That is, by expressing the sample covariance matrix as a U-
statistic in (3.3), we avoid an explicit estimation of the unknown mean pu.

Therefore, we consider the following settings:

> Yi-Y, o Zi— 2 Vi—=V; .
Yij = L Zij= L Vi o= L for all (i,7) € I2.

S

Then,

ﬁ,ji?; = ZZJZZ; + ‘7;,]‘71?; + ‘Z,J,ZVZT’] + ZZ’J‘Z’Z = )?z',j + n(n — 1)[7{;,

=4 /n(n—l)ﬁi*’j
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where the n(n — 1) = |I?] factor is equal to the total number of EN/Z-J», and is
added for technical convenience. The followings facts can be easily verified:

(1) Vi, = Zi, + Vi, with E[Z,j] — 0 and E[ZJ'ZVTJ] =%, for any (i, ) €

I?. Moreover, Z;.:, for (i,j) € I?, has a sub-Gaussian distribution,

’]’
according to Corollary 2.

(2) Z” are identically distributed, but not independent.

(3) Denote J = {(i,j) el2:V,, + O} as the set of indices such that
‘ZJ = 0, V(i,j) ¢ J. Then, |J| represents the number of outliers in

{}7” :(4,7) € Iz}, and we have that
71 =21T1(n = 7)) + |J|(1]] = 1) = |J|(2n = |J] = 1). (3.4)

(4) Rank(ﬁifj) < 2. This follows from the fact that for any vector v € RY,
ﬁi’fjv € span {‘71‘,3‘7 Z;}

In the following, we let Up := (Uiy,...,Upn—1) represent the n(n — 1)-

dimensional sequence with subscripts valued in I2. Similarly, the nota-

tion (S, Uyz) represents the (n? —n + 1)-dimensional sequence (S, Uy, .. .,

Upn-1). Now, we are ready to define our estimator. Given Ay, Ay > 0, set

Yi, Y =S —V/n(n—1)U,

2
F

SO ‘ 1
(Sx,Urz) =  argmin [mZ‘

S’UI,Q ~~~~~ Un,nfl 175‘7

FASH + A0 Y Ul |- (3:5)

i#]
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where the minimization is over S,U; ; € S4R), V(i, j) € I

Remark 1. The double penalized least-squares estimator defined in (3.5) is
a solution to the nuclear-norm penalized Huber loss minimization problem.
In the context of robust linear regression, this fact has been observed by
several authors, including Sardy et al. (2001), Gannaz (2007), McCann and
Welsch (2007), She and Owen (2011), and Donoho and Montanari (2016).
In the setting of a robust principal component analysis, similar connections
are established by She et al. (2016). The approach of the latter work is
similar in spirit to ours, but focuses on estimating the leading principal
components when the number of principal components is known. To show
the connection between (3.5) and the penalized Huber loss minimization in
our framework, we express the estimator as

~ o~ 1 ~ ~ 2
(S, Urz) = arg minmin [—)tr {Z (m,m?; —S—/n(n— 1)Ui,j) ]

Uz |n(n—1 Py

A8+ A Y Ul
i

, (3.6)

and observe that the minimization with respect to Up in (3.6) can be

carried out explicitly. This yields that

. . 9 -~
Sy = argmin ¢ ————tr [mexz (Yi;Yi, — S)} +A Sl ¢, (3:7)
S n(n - 1) i) 2
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where

oa(u) = ,forallu e R, € RY (3.8)
AMul =20 Ju| > A

is the Huber loss function; the derivation is given in section S6.1 of the

Supplementary Material.

3.1 Performance guarantees for adversarial contamination

We are ready to state our main results, namely, the error bounds for the
estimator defined in (3.5). We compare the performance of our estimator
with that of the sample covariance matrix 3, defined in (3.2). When there
are no outliers, it is well known that f]s is a consistent estimator of X,
with an expected error of at most O(d//n) in the Frobenius norm, namely,
IE[His — EHF} < Cd/+/n, for some absolute constant C' > 0 (e.g., see Cai
et al. (2010)). However, in the presence of outliers, the error for 3, can
be large (see section S8 in the Supplementary Material for some specific
examples). Recall that )N(” = ZJZTJ The following bound characterizes

the performance of the estimator (3.5).

Theorem 1. Fiz 0 > 0, and assume that n > 2 and that |J| < ¢1()n,

where ¢1(0) is a constant depending only on 0. Then, on the event
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140 || 1 -
5:{/\12M\/1~k(2)+4 — Y X3,

n(n —1) nn—1) 52
%-] |

< inf {(1+5) IS = B2 +c(8) (A2 rank(5)+A§\Jy2)}.
S: rank(S)§6222A2
1

4
———/1k(¥) + ———= max
n(n —1) (%) n(n — 1) Giel?

the following inequality holds:

2

o

A detailed proof of Theorem 1 is presented in section S2 of the Supple-

mentary Material.
Remark 2. The bound in Theorem 1 contains two terms:

(1) The first term, (1 +6) ||S — 2|2 + ¢(5)A? rank(S), does not depend on
the number of outliers. When there are no outliers, that is, |J| = 0, the
bound contains only this term. In such a scenario, Lounici (2014) proves
that the optimal bound has the form

(rk(X) + )

~ 2
3= 5]} <int {12 - 51+ e rank(s) .

which holds with probability at least 1 —e~t. By choosing the smallest valid
A1 specified in (3.9), the first term of our bound coincides with this optimal

bound.

(2) The second term, c(§)A3|J|?, controls the worst possible effect due to

the presence of outliers. When additional conditions are imposed on the
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outliers (e.g., independence), this bound can be improved; see the discussion
following equation (4.3). Moreover, Diakonikolas et al. (2017) prove that
when Z is centered Gaussian, there exists an estimator 5 achieving the
theoretically optimal, with respect to e, bound Hi — EHF < O(e) IZ]],
which is independent of the dimension d. In our case, by choosing the
smallest possible Ay, we can show that the error bound scales O (( log(n) +
rk(E))s) |%]|. The additional factor (log(n)-+rk(X)) shows that our bound
is sub-optimal, in general. However, in the class of matrices with rk(X)
bounded by a constant, our bound is nearly optimal, up to a logarithmic

factor.

Note that in Theorem 1 the regularization parameters A; and Ay should
be chosen sufficiently large such that the event £ happens with high prob-
ability. Under the assumption that Z;, for j = 1,...,n, are i.i.d. L-sub-
Gaussian vectors, we can prove the following result, which gives an explicit

lower bound on the choice of A;.

Proposition 1. Assume that Z is L-sub-Gaussian with mean p and co-
vartance matrix X. Let Zy, ..., Z, be independent copies of Z, and define
Z-J» = (Z; — Z;)/\/2, for all (i,5) € I?. Then, Zz’,j; for (i,5) € I?, are

mean-zero L-sub-Gaussian random vectors with covariance . Moreover,
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for any t > 1, there exists ¢(L) > 0 depending only on L such that

") ZZ ZT

with probability at least 1 — 2e™!

(D) =] < rk(ZTB +t N k(%) +t)’

n

Proposition 1 together with the definition of event £ indicates that it

suffices to choose \; satisfying

M= o) 3] EE (3.9)

given that n > rk(X) 4+ ¢. The next proposition provides a lower bound for

the choice of \,.

Proposition 2. Assume that Z is L-sub-Gaussian with mean zero, and
Z1, ..., Zy are copies of Z (not necessarily independent). Then, there exists

c(L) > 0 depending only on L, such that for any t > 1,

jmax 1Z;Z] = 2| < (L) 2] (tk(2) + log(n) + 1),

77777

with probability at least 1 — ™",

Because Proposition 2 does not require independence, it can be applied
to the mean-zero, L-sub-Gaussian vectors Zm for (i,7) € I?, to deduce

that

max
i#]

Z:5Z8 = || < L) SN BK() + log(n(n — 1)) + 1],
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with probability at least 1 —e~*. Combining this bound with the definition

of event &£, we conclude that it suffices to choose Ay satisfying

%o > o) [ K08 2D (3.10)

By choosing the smallest possible A; and Ao, as indicated in (3.9) and (3.10),

respectively, we deduce the following corollary.

Corollary 1. Let § > 0 be an absolute constant. Assume that n > rk(X) +
log(n) and |J| < ¢1(6)n, where c1() is a constant depending only on .
Then, we have that

2

H§A—2

F

< inf {(1+5)\|S—2||§

B S:rank(S)<chn (rk(E)—l—log(n)

e(r,) [t [ L1080y | (D) log(m)) }

(3.11)

with probability at least 1 — 3/n.

Note that the term ||| MUP in (3.11) can be equivalently

n2

written in terms of &, the proportion of outliers, as | Z||* (rk(X) + log(n))* 2.

4. Performance guarantees for heavy-tailed distributions

In this section, we consider heavy-tailed data and compare this framework

with the model of adversarial contamination. Let Y € R? be a random vec-
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tor with mean E[Y] = p and covariance matrix ¥ = E[(Y — p)(Y — p)7],

such that E[[|Y — u||§] < 00. Assume that Yi,...,Y, arei.i.d. copies of Y,
and our goal is to estimate Y. As before, we define Y;; = (Y; —Y;)/v/2, and
denote H; ; := }ZJ}ZTJ We showed earlier that E [fﬁ]} =0and E[H; ;] =X.
Given Ay, Ay > 0, we propose the following estimator for X:

1

~ . ~ = A1
Sy = arg;nm {mtr [;P\MTQDAQ (YMY;E—S)l +§ 151l }, (4.1)

which is the minimizer of the penalized Huber loss function

1 ~ = A
L) = ot | S BT - 9)] + sl 02

n(n i
Note that the estimator Sy in (4.1) is equivalent to the double-penalized
least-squares estimator in (3.5) (see section S6.1 of the Supplementary Ma-
terial). The key idea behind deriving the error bounds for Sy is to decom-
pose the heavy-tailed distribution into a mixture of “well-behaved” compo-
nents and contaminated components; a similar approach is used by Prasad
et al. (2019). This decomposition can be viewed as a “bridge” between the
heavy-tailed model and the adversarial contamination model (3.1), allowing
us to repeat parts of the reasoning used to obtain the inequalities in Section

3. Specifically, we consider the decomposition

-]

Yi;

Yi;

<n) 4
2

, > R}, (4.3)

~\~ v~

=Zi, =Vi,j
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where R > 0 is the truncation level, specified later. We view V ; as “out-

liers.”

Note that these outliers cannot be too bad: in particular, they are
identically distributed and mutually independent, as long as the subscripts
do not overlap; therefore, one can expect many cancellations to occur in
the sum ZZ i ‘N/” This, in turn, translates into better performance bounds
of the proposed estimators. In the following two subsections, we show that

the estimator Sy in (4.1) is close to X, both in the operator and in the

Frobenius norms.

4.1 Bounds in the operator norm

Our goal is to show that S \ 18 close to X in the operator norm, with high
probability. We are interested in the effective rank of the “variance matrix”

E[(Hy2 — X)?], and denote it as

tr (B[(H12 — %))
E[(Hi2 — 22|

ry = rk(E[(Hy 5 — %)?]) =

Minsker and Wei (2020, Lemma 4.1) suggest that under the bounded kur-
tosis assumption (see (4.4)), we can upper bound ry by the effective rank

of ¥, namely, rg < Crk(X), with some constant C' > 0.

Theorem 2. Assume that t > 1 is such that ryt < csn, for some suffi-

ciently small constant cs, o0 > ||E[(Hy 2 — Z)Q]H%, andn > max {64aryt, 4bt> ||E||2/02},
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for some sufficiently large constants a, b. Then, for \y < (o/4)\/n/t and

Ao > o /+/(n— 1)t, we have that

. 20 80 [t 40
S—EH<—>\ —\/j ot
HA =30 T 397\ T30

with probability at least 1 — (8ry /3 +1)et.

It is also easy to see that the bound still holds if Ay > (¢/4)+/n/t.
Lemma 1. Assume that t >0, o > |E[(H12 — E)Q]H%, and

4bt? |22
n > max {64arHt, #} )
o

where a,b are sufficiently large positive constants. Then, for any A\ >

(0/4)y/n/t, we have that argming L(S) = 0, with probability at least 1—e™.

In particular, under the conditions of the previous lemma, )g N — EH =
||X||. The proofs of Lemma 1 and Theorem 2 are presented in section S4.1

of the Supplementary Material.

Remark 3. According to Minsker and Wei (2020, Lemma 4.1), the “ma-
trix variance” parameter o2 appearing in the statement of Theorem 2 can
be bounded by [|Z||tr(2) = rk(X) ||Z||* under the bounded kurtosis as-
sumption (4.4), stated formally below. In this case, |E[(Hi2 — %)% <
rk(¥) [|2[|?, and o can be chosen to be proportional to 1/tk(X) ||X||. More-

over, the assumptions on n and ¢ in Lemma 1 and Theorem 2 can be reduced
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to a single assumption that rgt < cn, for some sufficiently small constant

5. Note that the magnitude of the deviations suggested by Theorem 2 is
controlled by ||Z[|1/rk(X) (indeed, the term involving the deviations param-
eter ¢ has the form Aot), whereas the optimal sub-Gaussian-type deviations
are controlled by ||X||, as shown by Mendelson and Zhivotovskiy (2020). Un-
fortunately, the estimator proposed by Mendelson and Zhivotovskiy (2020)

that achieves such bounds is not computationally tractable.

4.2 Bounds in the Frobenius norm

In this subsection, we show that §,\ is close to the covariance matrix of
Y in the Frobenius norm, with high probability, under a slightly stronger

assumption on the fourth moment of Y.

Definition 4. A random vector Y € R? is said to satisfy an L, — Lo
norm equivalence with constant K (also referred to as the bounded kurtosis

assumption) if there exists a constant K > 1 such that

N

B[y —EY,0)'])" < K B[y ~EV,0)7])", (44)
for any v € RY,

As discussed in Remark 3, condition (4.4) allows us to connect the ma-

trix variance parameter o2 with rk(2y), the effective rank of the covariance
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matrix Yy. We assume that Y satisfies (4.4) with a constant K throughout

this subsection. Recall the decomposition

Y, =Y,1 {’ Y| < R} 47,1 {‘ vl > R}, (4.5)
2 2
7, i

where R > 0 is the truncation level, to be specified later. Denote ¥y :=

E[}ZQ?’S] and ¥, = ]E[ZLQZEQ], and recall that our goal is to estimate

Zi

Yly. Because ‘ < R, almost surely, (4.5) represents Y; ; as a sum of a
2

bounded vector ZZ] and a “contamination” component IZJ, which is similar
to model (3.1). On the other hand, the truncation level R should be chosen
to be neither too large (to obtain a better behaved truncated distribution)
nor too small (to reduce the bias introduced by the truncation). Mendelson

and Zhivotovskiy (2020) suggest that a reasonable choice is given by

e s )
h= <log (tk(Zy)) + log(n)) ' (4.6)

Denote J = {(i,j) er?: ‘

Yi;

> R} as the set of indices corresponding
2
to the nonzero outliers (i.e., XN/” # 0), and ¢ := |j|/(n(n— 1)) as the
proportion of such outliers. Under this setup, we have the following result,

which provides an upper bound on ¢, with high probability.

Lemma 2. Assume that Y satisfies the Ly — Lo norm equivalence with
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constant K, and R is chosen as in (4.6). Then,

c < oK) rk(Zy ) [log (rkff]y)) + log(n)] ,

with probability at least 1 — 1/n.

The proof of Lemma 2 is presented in Section S4.2 of the Supplemen-
tary Material. Note that the proportion of “outliers” (in the sense of the
definition above) in the heavy-tailed model can be relatively small when
the sample size n is large. The following inequality is the main result of

this section.

Theorem 3. Given A > 1, assume that Y € R? is a random vector with
mean E[Y] = p and covariance matriz Sy = E[(Y — p)(Y — p)7], and
satisfying an Ly — Lo morm equivalence with constant K. Let Yi,...,Y,
be i.i.d. samples of Y, and let ZJ be defined as in (4.5). Assume that
n > cy(K)rk(Sy) (log(rk(Xy)) + log(n)), and rank(Sy) < co(K)n. Then,
for

—1/2

1/2
|“n

A= c(K) |12y [rk(Zy)(log(rk(Zy)) + log(n))

and

Ao = c() Sy ]| (1k(Sy) log(n)) 2 (An) 172,
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we have that

rk(Zy) <log (tk(Zy)) + log(n)>

n

~ 2
HsA - zYHF < o(K) |y [ rank(Sy )

n

| Ark(Sy)? log(n)3] |

with probability at least 1 — (8ry /3 + 1)n~4 — dn~1,

The proof of Theorem 3 is given in section S5 of the Supplementary

Material.

Remark 4. Let us compare the result in Theorem 3 with the bound of
Corollary 1:

rk(Zy) <log (rk(Ey))—Hog(n))

n

1. The first term of the bound, ¢(K) || Sy ||? rank(2y ),
has the same order as in Corollary 1 (up to a logarithmic factor), un-

der the assumption that ¥y has low rank. This part of the bound is

theoretically optimal, according to Remark 2.

2. The second part of the bound, ¢(K) ||y | w, controls the
error introduced by the outliers. It is smaller than the correspond-
ing quantity in Corollary 1, which in the present setup, is of order
oK) |2y |)? w (note the additional rk(Xy ) factor). As noted
earlier, the improvement is mainly because of the special structure of

the heavy-tailed data, namely, independence among the outliers ‘7“,
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with non-overlapping subscripts; see the discussion following equation

(4.3).

5. Numerical experiments

In this section, we discuss algorithms for evaluating the proposed estima-
tors, as well as our numerical experiments. Recall that the loss function is

defined as

VY5 = 8 = V/nln = 1)U

2
F

F SN+ A ) Ul - (5.1)
i#j

We approximate (S, I/J\}%), the minimizer of (5.1), numerically. Because we

are only interested in Sy, while Ujz are the nuisance parameters, equation

(3.7) suggests that it suffices to minimize the following function:

1 . A
( ) n(n—l) r;p@( VEEN )+ 9 ” ”1

where p,(+) is the Huber loss function defined in (3.8).

5.1 Algorithm for computing the estimator

Our computational approach, formally described in Algorithm 1, is based

on minimizing the loss function L(S) using the batch proximal gradient
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descent (PGD) method: suppose we want to minimize the function f(z) =
g(x) + h(x), where (a) g is convex and differentiable, and (b) h is convex,
but not necessarily differentiable. The PGD method for solving the problem

starts from an initial point (%), and performs updates

2™ = prox, ,, (z*7Y — a,Vg(a* ™)),

arh

where «y > 0 are the step sizes, and prox,,(x), the proximal mapping of a

convex function h at the point z, is defined as

u

1
prox,(x) = argmin <h(u) + 5 ||u — m||§) :

When g(z) = %2?21 gi(x), where g,...,g, are convex functions, the up-
date step of the PGD method requires evaluating n gradients, which is
expensive for large values of n. A natural alternative is to consider the
stochastic PGD (SPGD) method, where at each iteration k = 1,2,...,
we pick an index i, randomly from {1,2,...,n}, and make the following
update: z® = prox,, , (z*V — Vg, (z*V)). A batch SPGD method
assumes that we pick a small random subset of indices at each iteration, bal-
ancing the computational cost and the variance introduced by the random

sampling. Additional facts about the PGD and its variants are presented

in section S7.1 of the Supplementary Material.
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Algorithm 1 Stochastic proximal gradient descent (SPGD)

Input: number of iterations T, step size 1, batch size b, tuning parameters \; and

Ao, initial estimation S°, sample size n, dimension d.

1: fort=1,2,...,7T do
2: (1) Randomly pick 4, j: € {1,2,...,n} without replacement.

3:  (2) Compute Gy = —Vg; ;(S") ()7”}727; - SY).

— /

~ P
4:  (3) If b> 1, then repeat (1)(2) b times, and save the average gradient in G.
5:  (4) (gradient update) T'*! = S — G,.

6: (5) (proximal update)
Sl — argmin{f1 ||S - Tt 1H2 + M I1S]I } =y, (T
S 2 F 2 1 21 ’

where vy (u) = sign(u)(Ju| — A)+.

7: end for

Output: ST+!

5.1.1 Rank-one update of the spectral decomposition

Note that at each iteration of Algorithm 1, we need to compute the spec-

tral decomposition of the matrices }7;]}717; — S which is computationally

expensive. However, because Y} ; Y;T] is a matrix of rank one, and the spectral

decomposition of S! is performed in step 7' — 1, the problem of comput-
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ing the spectral decomposition of the matrices EN/”}ZT] — S can be viewed
as a rank-one update of the spectral decomposition, which has been stud-
ied extensively (e.g., Bunch et al. (1978) and Stange (2008)). It turns out
that, with the help of rank-one update methods, the complexity of a spec-
tral decomposition can be reduced from O(d*) to O(d?log®d). A detailed
description of the required techniques is given in section S7.2 of the Sup-

plementary Material.

5.2 Simulation results

As a proof of concept, consider the following setup: d = 200, n = 100,
J] = 3, u = (0,...,00T, ¥ = diag(10,1,0.1,...,0.1). The inputs to
the algorithm are generated as follows: we sample n independent real-
izations Z; from the Gaussian distribution A (p,X), and then replace |J|
of them (chosen randomly) with Z; + V;, where V}, for j € J, are out-
liers drawn independently from another Gaussian distribution N (py, Xv),
with gy = (0,...,0)T and ¥y = diag(100,...,100); the results for other
types of outliers are given in section S8 of the Supplementary Material.
The sample Y7, ...,Y; obtained in this manner is the input to the SPGD
algorithm. Next, we calculate 17” = (Y; = Y;)/V/2, for i # j, and perform

our algorithm with K = 500 steps and the diminishing step size ay, = 1/k.
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The initial value S° is determined using a one-step full gradient update,
as explained in the last paragraph of section S7.1 of the supplementary
material (S7.1). To analyze the performance of the estimators, we define
RelErr(S, Frob) := ||S — 2| -/||X|| » as the relative error of the estimator S
in the Frobenius norm, and RelErr(S,op) := ||S — X||/||2]] as the relative
error of the estimator S in the operator norm. We compare the performance
of the estimator S* produced by our algorithm with that of the sample co-
variance matrix ¥, introduced in (3.2). We performed 200 repetitions of
the experiment, with A\; = 3 and Ay = 1, and recorded S* and f]s for each
run. Histograms of the distributions of the relative errors in the Frobenius
norm are shown in Figures 1 and 2. The average and maximum (over 200
repetitions) relative errors of S* are 0.2842 and 0.6346, respectively, with a
standard deviation of 0.1108. The corresponding values for 3, are 34.5880,
39.6758, and 2.1501. The estimator S* clearly outperforms the sample co-
variance is, as expected. Figures 3 and 4 show that S* yields smaller
relative errors in the operator norm as well. The average and maximum
relative errors of S* in the operator norm are 0.2676 and 0.6290, respec-
tively, with a standard deviation of 0.1148. The corresponding values for

Y are 22.9255, 28.2328, and 1.8791.
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The online Supplementary Material includes detailed proofs and additional

simulation results.
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