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We study the supervised clustering problem under the two-component
anisotropic Gaussian mixture model in high dimensions in the non-
asymptotic setting. We first derive a lower and a matching upper
bound for the minimax risk of clustering in this framework. We also
show that in the high-dimensional regime, the linear discriminant
analysis (LDA) classifier turns out to be sub-optimal in a minimax
sense. Next, we characterize precisely the risk of regularized super-
vised least squares classifiers under `2 regularization. We deduce the
fact that the interpolating solution (0 training error solution) may
outperform the regularized classifier, under mild assumptions on the
covariance structure of the noise. Our analysis also shows that inter-
polation can be robust to corruption in the covariance of the noise
when the signal is aligned with the “clean” part of the covariance, for
the properly defined notion of alignment. To the best of our knowl-
edge, this peculiar phenomenon has not yet been investigated in the
rapidly growing literature related to interpolation. We conclude that
interpolation is not only benign but can also be optimal and in some
cases robust.

1. Introduction. The topic of overparametrization has gain tremen-
dous interest in recent literature devoted to high dimensional statistics.
Previously, it was widely believed that regularization yields the best gener-
alization power because of bias-variance tradeoff. Recently, it was discovered
that interpolation also generalizes well when number of covariates exceeds
sample size. This phenomenon, termed “benign overfitting” by [2], has been
intensively investigated in the regression setting. In this work, we study the
problem of clustering. In particular, we derive the bounds for the gener-
alization error under different settings. The model we consider is a binary
sub-Gaussian mixture model with unknown, anisotropic noise.

1.1. Statement of the problem. Consider the simple two component Gaus-
sian mixture model, where we are given

Y = θη> +W

1
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or equivalently for all i = 1, . . . , n

ηiYi = θ + ηiWi

where θ ∈ Rp is a center vector, η ∈ {−1, 1}n a label vector and W a
random matrix with i.i.d vectors Wi ∼ N (0,Σ) (or sub-Gaussian) and Σ is
full rank. We mostly focus on the supervised setting, where we are given a
classifier η̂ and a new independent observation (Yn+1, ηn+1) such that ηn+1

is a Rademacher random variable. We want to analyze its generalization
error given by

RΣ(η̂) := P (η̂(Yn+1) 6= ηn+1) ,

where P is the probability under the model described above. When there is
no ambiguity we will omit the subscript Σ from RΣ. In particular we want
to analyze the minimax risk

inf
η̂

sup
‖θ‖≥∆

R(η̂),

and study necessary and sufficient conditions on ∆ for consistent clustering
i.e. conditions on (∆n)n such that

inf
η̂

sup
‖θ‖≥∆n

R(η̂) →
n→∞

0.

The case Σ = Ip was studied in [9]. In particular it is shown there that

inf
η̂

sup
‖θ‖≥∆

R(η̂) ≈ exp

(
−(1 + on(1))

∆4

2(∆2 + p
n)

)
.

The case of general but known Σ was studied in [12]. Following similar
arguments as in [9] we can actually show in the general case that

inf
η̂

sup
‖θ‖Σ≥∆

R(η̂) ≈ exp

(
−(1 + on(1))

∆4

2(∆2 + p
n)

)
,

where ‖θ‖2Σ−1 = θ>Σ−1θ. In particular the condition ‖θ‖2Σ �
√
p/n + 1 is

necessary and sufficient for consistency under the norm ‖.‖Σ. Moreover a
minimax optimal classifier is the LDA classifier given by

η̂LDA = sign

(〈
Σ−1

n∑
i=1

Yiηi, Yn+1

〉)
,

(cf. [12] and references therein and the recent work of [5]. All these works
consider anisotropic mixtures in the low dimensional case). In this project
we are interested in the case of unknown Σ in high dimensions (i.e p � n)
where estimation of both θ and Σ becomes challenging.
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1.2. Related work. [2] introduce the concept of benign overfitting, a phe-
nomenon that interpolation can give accurate prediction in linear regression.
This is counter intuitive compared with the traditional thinking that over-
fitting leads to severe bias-variance tradeoff. This work provides a complete
proof of the upperbound of excess risk of min norm estimator. [13] consider
the case where noise of the linear model is anisotropic. They propose the
idea of aligned and misaligned prior on true coefficients and data covariance
and analyse the asymptotic behavior of the prediction risk of the general-
ized ridge regression estimator in the overparameterized regime. There are
a lot of works considering overparametrized regression, but our focus is to
derive bounds for misclassification rate for clustering (sub)Gaussian mixture
models. We write our proofs in the style of [9]. Previously, [11] explore the
isotropic case where SVM solution linear interpolates the data. They argue
that when p is large enough, error of SVM interpolator (which is equiva-
lently least square solution) goes to 0, under different conditions both in
high SNR regime and low SNR regime (the bi-level ensemble is less general
than our results). [12] and [5] consider anisotropic clustering, but not in
overparametrization sense (they are more aligned with [9]). Both propose
efficient algorithms. The former one is via uncoupled regression and per-
turbed gradient descent while the latter one is based on Lloyd’s algorithm.
[7] provides bound for misclassification error in a more general structure
setting via analyzing properties of RKHS. [3] is very close to our work, but
only considers the case of r(Σ) ≥ n and no regularization is considered.

Reference Type Noise p� n Asymptotic

[2] Regression Isotropic Yes No

[13] Regression Anisotropic Yes Yes

[9] Classification Isotropic Yes No

[11] Classification Anisotropic Yes No

[12] Classification Anisotropic No No

[7] Classification Isotropic Yes No

[5] Classification Anisotropic No Yes

[4] Classification Anisotropic Yes No

[8] Classification Anisotropic Yes Yes

[3] Classification Anisotropic Yes No

Our Work Classification Anisotropic Yes No

Table 1: Summary of the related work.

1.3. Contribution. The closest works to our paper are [11, 3]. Both works
consider the case where r(Σ) ≥ n. We summarize below their findings: Our
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Wang and Thrampoulidis [11] Cao et al.[3]

Proliferation Tr(Σ) > C
(
‖Σ‖F · n

√
log n+ ‖Σ‖∞ · n

√
n log n+ 1

)
Tr(Σ) ≥ C max

{
n3/2‖Σ‖∞, n‖Σ‖F

}
Tr(Σ) > C1n

√
log(2n)‖θ‖Σ Tr(Σ) > C1n

√
log(n) · ‖θ‖Σ

Error bound exp

 −
(
‖θ‖22−

C1n‖θ‖
2
Σ

Tr(Σ)
−C2‖θ‖Σ

)2

C3 max

{
1,
n2‖θ‖2

Σ
Tr(Σ)2

}
‖Σ‖2

F
+C4‖θ‖2Σ

 exp
(

−C′‖θ‖42
‖θ‖2Σ+‖Σ‖2

F
/n+‖Σ‖2∞

)

contributions are three folds:

• First, we derive the minimax generalization risk for clustering in the
anisotropic sub-Gaussian model and show that the averaging classifier
that is adaptive is also minimax optimal.
• Next, we show that proliferation happens under the mild conditions:

Tr(Σ) ≥ Cn log(n)‖Σ‖∞ and Tr(Σ) > C1n
√

log(n) · ‖θ‖Σ. These con-
dition are strictly better than previous ones and hold in particular
when r(Σ) ≥ n log(n).
• Finally we show that under mild assumptions the interpolating solu-

tion is minimax optimal when r(Σ) ≥ Cn leading to a better bound to
previous works. We also show that, under corruption of the covariance
matrix, interpolation can lead to a robust classifier, a feature that is
not available for the averaging oracle. Hence not only interpolation
can be benign, but can also be optimal and robust!

2. Minimax clustering: the supervised case. In this section we
consider the supervised clustering problem when Σ is not necessarily known.
For a matrix A we define its effective rank by r(A) := Tr(A)/‖A‖∞. We first
establish a lower bound result.

Theorem 2.1. Let ∆, λ, r > 0. Then

inf
η̂

sup
r(Σ2)=r,‖Σ‖∞=λ

sup
‖θ‖2≥∆2λ

R(η̂) ≥ C exp

(
−c ∆4

∆2 + r
n

)
,

for some c, C > 0 where the infimum is over all measurable classifiers η̂(Y ).

Notice that the norm of θ is the Euclidean norm and not the Mahalanobis
one that would lead to a different lower bound. The proof of the lower bound
is inspired from the lower bound proof in [9] that only holds for isotropic
noise. As for the upper bound, we show that the averaging linear classifier

η̂ave = sign

(〈
n∑
i=1

Yiηi, Yn+1

〉)
,
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is minimax optimal. In fact we can show the following result.

Theorem 2.2. Let ∆ > 0. For any covariance matrix Σ we have

sup
‖θ‖2≥∆2‖Σ‖∞

R(η̂ave) ≤ C exp

(
−c ∆4

∆2 + r(Σ2)
n

)
,

for some c, C > 0.

Theorem 2.2 provides a matching upper bound to Theorem 2.1. In partic-
ular this implies that consistency, under the Euclidean norm, happens under
the condition ‖θ‖2 � ‖Σ‖∞(

√
r(Σ2)/n + 1). Among other conclusions this

implies for instance that, from a minimax perspective, the averaging clas-
sifier outperforms the LDA one. This phenomenon is only possible in high
dimensions. It is easy actually to show that, when p � n, then LDA out-
performs the averaging classifier for any given center θ. Notice that the last
statement is stronger than a minimax comparison.

Remark 2.1. Minimax clustering: the unsupervised case. We can actu-
ally extend the result of this section to the unsupervised case. Using the same
procedure as in [9] we claim the existence of a polynomial time method that
is minimax optimal for clustering.

3. Interpolation vs Regularization in Gaussian mixtures. In
this section we study the risk of the regularized OLS estimators. While it
is more common to study SVM for classification, recent works [1, 6] have
shown that in high dimensions (p = Ω(n log n)), both SVM and OLS solu-
tions coincide under mild conditions. This phenomenon is also known in the
literature as proliferation of support vectors. Hence is high dimensions, it is
sufficient to study the least squares estimator and then show that it coincide
with the hard-margin SVM solution. For the rest of this section, our goal is
the study the risk of the following family of supervised estimators solving

min
θ̂∈Rp

1

n

n∑
i=1

(ηi − 〈Yi, θ̂〉)2 + λ‖θ̂‖2.

Observe that the case λ = 0 and p ≥ n leads to interpolation and more
precisely to the minimum `2-norm interpolating solution (cf [2] for interpo-
lation in regression and [11, 3] for interpolation in clustering of Gaussian



6

mixtures, cf. also [7]). For each λ > 0, the corresponding estimator θ̂λ is
proportional to

θ̂λ =
1

n

(
λIp +

1

n
Y Y >

)−1

Y η =
1

n
Y

(
λIn +

1

n
Y >Y

)−1

η.

Each estimator θ̂λ leads to a linear classifier defined through

η̂λ(.) = sign
(〈
θ̂λ, .

〉)
.

In what follows we compute R(η̂λ). We also provide sufficient conditions for
the matrix Σ such that the interpolating classifier (corresponding to λ = 0)
has at least the same performance as the oracle (or the averaging classifier).

Notice that as λ goes to ∞ we recover the averaging classifier. We empha-
size here that if we replace the regularizing term ‖θ‖2 by ‖θ‖2Σ (not adaptive
to Σ), then our claims may no longer be true.

As a side note, We suspect that the excess risk of estimation θ gets smaller
for large values of λ although this is not necessarily the case for the classifi-
cation risk. This suggests that the excess risk of estimation is not the right
metric to evaluate classification performance.

In order to state our main result, we define the following quantities. For
any integer k, let

rk(Σ) =

∑p
i=k+1 λi

λk+1
,

where (λk)k is the decreasing sequence of eigenvalues of Σ. For a given co-
variance matrix Σ, we define k∗Σ such that

k∗Σ(λ) = min

{
k ≥ 0, rk(Σ) +

λ

λk+1
≥ C1n

}
,

for some constant C1 > 1 and k∗Σ(λ) = p+ 1 if the above set if empty. The
reader may observe that k∗Σ(.) is decreasing with λ and that k∗Σ(λ) = 0 if
r(Σ) ≥ C1n. In what follows we will require k∗Σ to be smaller than n/2 which
means that we are not allowing more than a fraction of n eigenvalues to
be much larger than the remainder of the spectrum. This is a large class of
covariance matrices, and contain in particular the case Σ = Ip +R where R
is a low rank perturbation/corruption of the isotropic noise.

Theorem 3.1. Let ∆ > 0, λ ≥ 0. Assume that k∗Σ(λ) ≤ n/2 and that
‖θ‖2Σ/‖θ‖2 ≤ C(

∑
i>k∗ λi/n+λ). Then for some constants c, C > 0 we have
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with probability 1− δ − e−cn that

R(η̂λ) ≤ C exp

−c ‖θ‖4

θTΣθ(1 + k∗) +
k∗λ2

k∗+
∑
i>k∗ λ

2
i (Σ)

n +
(k∗λ2

k∗+λ2
k∗+1

) log(1/δ)

n

 ,

where k∗ = k∗Σ(λ).

The condition on the alignment of θ with Σ can be understood as follows.
Remember that we are thinking of the first k∗ eigenvectors of Σ as outliers.
Hence as long as ‖θ‖2Σ/‖θ‖2 ≤ λk∗+1 then ‖θ‖2Σ/‖θ‖2 ≤ C(

∑
i>k∗ λi/n+ λ)

holds. Hence the latter condition means simply that the vector θ is only
allowed to be aligned with the “clean” part of the covariance Σ.

When k∗ = 0 (or equivalently r(Σ) ≥ C1n) we recover the bound in [3] by
taking δ = e−cn. Our result is stronger since we show that the bound holds
with probability 1−e−cn while they only show that the same bound holds with
probability 1−1/n. Moreover, under the mild condition r(Σ2) ≥ log(n), then
by taking δ = 1/n we show that with probability 1− 1/n we have

R(η̂λ) ≤ C exp

(
−c ‖θ‖4

θTΣθ + Tr(Σ2)
n

)
.

Hence interpolation leads to the same bound as the averaging oracle in this
case. Without any further assumptions on Σ we get the following minimax
result

Corollary 3.1. Let ∆ > 0, λ ≥ 0. Assume that r(Σ) ≥ C1n. Then for
some constants c, C > 0 we have that

sup
‖θ‖≥∆

R(η̂λ) ≤ C exp

(
−c ∆4

∆2‖Σ‖∞ + Tr(Σ2)
n

)
+ e−cn.

The above result suggests that under a mild condition on the noise covari-
ance, not only interpolation is benign but it is also optimal in a minimax
sense. This also means that interpolation is better for classification than in
regression ([2]) since it does not suffer from a bias term which leads to a bad
worst-case performance.

Unlike previous works [3, 11], our result is more geenral since we allow k∗

to be non zero. It is straightforward to observe that k∗λ2
k∗ +

∑
i>k∗ λ

2
i (Σ) is

increasing with λ. The latter quantity could be seen as a truncated trace of Σ2

where we truncate the large eigenvalues of Σ. The bound in Theorem 3.1, in
particular, gets smaller as λ goes to 0 which suggests that interpolation may
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outperform regularization in some cases, especially under several corruption
where a finite number of eigenvalues are much larger than the rest of the
spectrum.

Remember that all our results require k∗ ≤ n/2. We may wonder here
what happens if such k∗ is much larger than n and our simulations (see
further) suggest that interpolation behaves poorly in this case.

4. Proliferation of support vectors in high dimensions under
the subGaussian mixture model. In this section, we provide sufficient
conditions for proliferation of support vectors. Based on [6], both θ̂SVM and
θ̂0 coincide if and only if

∀i = 1, . . . , n ηie
>
i (Y >Y )−1η > 0,

where (ei)i=1,...,n is the Euclidean canonical basis. The main result is stated
next.

Theorem 4.1. Assume that k∗ log2(n) ≤ Cn,
∑

i>k λ
2
in log(n) ≤ C(

∑
i>k λi)

2

and ‖θ‖Σ
√

(1 + k∗) log(n) ≤ C
∑

i>k λi/n, then with probability 1− 1/n we
have

θ̂SVM = θ̂0.

When k∗ = 0, the sufficient conditions can read as:

• ‖θ‖Σ ≤ C Tr(Σ)/n .
• Tr(Σ2)n log(n) ≤ C(Tr(Σ))2.

The first condition (signal dependent) is also required in both papers [3, 11].
As for the dimension dependent condition, our requirement is much milder
than the was proposed in both previous papers. To compare these results, we
can think of the case Σ = Ip, where our condition reads as p = Ω(n log(n))
while previous require p = Ω(n3/2 log(n)). Our result also suggests that
r(Σ) = Ω(n log(n)) is sufficient for proliferation under the sub-Gaussian
mixture model which confirms the general conjecture stated by [6].

5. Numerical experiments. In this section, we propose some numer-
ical experiments to endorse our theory. We consider the worst-case general-
ization error for three cases of the noise covariance matrix.

• The case of large effective rank corresponds to k∗ = 0.
• The case of medium effective rank corresponds to k∗ = n/4.
• The case of small effective rank corresponds to k∗ � n.
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Our simulations suggest that interpolation has a similar performance to the
oracle as long as k∗ is smaller than n. We can also see that interpolation
performs poorly, in a minimax sense, compared to other methods as k∗ grows.

(a) Case of large effective rank covariance

(b) Case of existence of k∗ ≤ n such that
rk∗(Σ) ≥ n

(c) Case of small effective rank rk(Σ) for
all k

Fig 1: Comparison of the worst-case generalization errors of some supervised
learners under different covariance scenarios.

A recent paper ([13]) considers interpolation as a special case of ridge
regression in the case where both design and signal are anisotropic. There
are some nice ideas that we can definitely use in the setup of Gaussian mix-
ture. In particular they introduce a notion of misalignment between signal
and the covariance that gives intuition about when the interpolation is bet-
ter than regularization. In our case, the worst case scenario happens when
θ corresponds to the top eigenvector of Σ (case of alignment). It turns out
that the picture is completely different in the opposite scenario where θ cor-
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responds to the smallest eigenvector (case of misalignment) when r(Σ)� n.
In this case, simulations show that interpolation has a closer performance
to LDA and they both beat regularized classifiers (and the oracle). We may
actually want to prove a theoretical result in this setup. This would imply
that interpolation can actually be better than regularization in some cases.

Acknowledgements. Authors acknowledge support by the National Sci-
ence Foundation grant CCF-1908905.
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APPENDIX A: PROOFS OF MINIMAX CLUSTERING

A.1. Proof of Theorem 2.1. Fix λ, r > 0 and let Σ be a diagonal
PSD matrix such that r(Σ2) = r and ‖Σ‖∞ = λ. Then

inf
η̂

sup
r(Σ̂2)=r,‖Σ̂‖∞=λ

sup
‖θ‖2≥∆2λ

RΣ̂(η̂) ≥ inf
η̂

sup
‖θ‖2≥∆2λ

RΣ(η̂).

We can simply focus on showing the result for the above diagonal matrix Σ.
The proof is decomposed in two steps.

• A dimension independent lower bound:
We have that

2 inf
η̂

sup
‖θ‖2≥∆2λ

RΣ(η̂) ≥ inf
η̃
EπE(θ̄,η)|η̃(Y, Yn+1)− ηn+1|

for any prior π on (θ, η) such that ‖θ‖2 ≥ ∆2λ. Let θ̄ be a vector in
Rp such that ‖θ̄‖2 = ∆2λ. Placing an independent Rademacher prior
π on ηn+1, and fixing θ, it follows that

(1) inf
η̃
EπE(θ̄,η)|η̃(Y, Yn+1)− ηn+1| ≥ inf

η̄
EπE(θ̄,η)|η̄(Yn+1)− ηn+1|,
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where η̄(Yn+1) = E(η̃(Y, Yn+1)|Y ) ∈ [−1, 1]. The last inequality holds
because of independence between Y and Yn+1. We define, for ε ∈
{−1, 1}, f̃ε(.) the density of the observation Yn+1 conditionally on the
value of ηn+1 = ε. Now, using Neyman-Pearson lemma and the explicit
form of f̃ε, we get that the selector η∗ given by

η∗ = sign
(
θ̄>Σ−1Yn+1

)
,

is the optimal selector that achieves the minimum of the RHS of (1).
To show that, we remind the reader that the distribution of Yn+1 =
ηn+1θ̄ +Wn+1 is given by N (ηn+1θ̄,Σ). Hence

f̃ε(Yn+1) = (2π)−p/2|Σ|−1/2e−
1
2

(Yn+1−εθ̄)TΣ−1(Yn+1−εθ̄).

It follows that

f̃1(Yn+1)

f̃−1(Yn+1)
=

(2π)−p/2|Σ|−1/2e−
1
2

(Yn+1−θ̄)TΣ−1(Yn+1−θ̄)

(2π)−p/2|Σ|−1/2e−
1
2

(Yn+1+θ̄)TΣ−1(Yn+1+θ̄)

= e2θ̄TΣ−1Yn+1

By Neyman-Pearson lemma, we can now conclude that

η∗ = sign
(
θ̄>Σ−1Yn+1

)
.

Plugging this value in (1), we know further that

inf
η̄
Eπ|η̄(Yn+1)− ηn+1| = R(η∗).

It is now straightforward that

R(η∗) = Φc
(√

θ̄>Σ−1θ̄
)
≥ Ce−cθ̄>Σ−1θ̄,

for some c, C > 0. The above inequality holds for all θ̄ as long as
‖θ̄‖2 = ∆2λ. The worst case is reached for θ̄ being co-linear with the
top eigenvector of Σ since θ̄>Σ−1θ̄ = ∆2. Hence we get the lower bound

inf
η̂

sup
‖θ‖2≥∆2λ

RΣ(η̂) ≥ Ce−c∆2
.

In order to conclude we only need to derive the other lower bound

inf
η̂

sup
‖θ‖2≥∆2λ

RΣ(η̂) ≥ Ce−cn∆4/r.

For the rest of the proof we only focus on the case 100 ≤ ∆2 ≤ 10r/n,
otherwise the dimension independent lower bound dominates.
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• A dimension dependent lower bound:
Since Σ is diagonal, we write Σ = diag(d1, . . . , dp) where λ = d1 ≥
d2 ≥ · · · ≥ dp > 0. Using Theorem 1 in [9] we get

2 inf
η̂

sup
‖θ‖2≥∆2λ

RΣ(η̂) ≥ inf
T∈[−1,1]

EπE(θ,η)|T (Y, Yn+1)−ηn+1|−2π(‖θ‖2 ≤ ∆2λ),

for any prior π on (θ, η). The second term in the above lower bound
accounts for the constraint on θ. In what follows we choose πD to be
a product prior on (θ,ηn+1) such that ηn+1 is a Rademacher random
variable and θ is an independent random vector such that θ ∼ N (0, D)

where D is a diagonal matrix such that Djj = 2∆2λ
d2
j∑p

i=1 d
2
i
. Using the

Hanson-Wright inequality it comes out that

πD(‖θ‖2 ≤ ∆2λ) ≤ Ce−c r,

for some c, C > 0. Hence, and since ∆2 ≤ r/n, we only need to show,
for n large enough, that

inf
T∈[−1,1]

EπE(θ,η)|T (Y, Yn+1)− ηn+1| ≥ Ce−cn∆4/r,

for some c, C > 0. We define, for ε ∈ {−1, 1}, f̃ε the density of the
observation (Y, Yn+1) given ηn+1 = ε. Using Neyman-Pearson lemma,
we get that

η∗∗ =

{
1 if f̃1(Y, Yn+1) ≥ f̃−1(Y, Yn+1),
−1 else,

minimizes EπDE(θ,η)|T (Y, Yn+1)−ηn+1| over all functions of (Y, Yn+1)
with values in [−1, 1]. Using the independence of the rows of Y we have

f̃ε(Y ) =

p∏
j=1

e−
1
2
L>j (Σjε)

−1Lj

(2π)p/2|Σj
ε |

,

where Lj is the j-th row of the matrix (Y, Yn+1) and Σj
ε = djIn+1 +

Djjηεη
>
ε . We denote by ηε the binary vector such that ηn+1 = ε and

the other components are known. It is easy to check that |Σj
ε | = dj +

Djj(n+ 1), hence it does not depend on ε. A simple calculation leads
to

(Σj
ε)
−1 = (1/dj)In −

Djj/d
2
j

1 +Djjn/dj
ηεη
>
ε
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= (1/di)In −
2∆2λ/

∑
d2
i

1 + 2n∆2dj/
∑
d2
i

ηεη
>
ε

= (1/di)In −
2∆2λ/

∑
d2
i

1 + 2(n∆2dj)/(λr)
ηεη
>
ε .

Hence

f̃1(Y )

f̃−1(Y )
=

p∏
j=1

e−
1
2
L>j ((Σj1)−1−(Σj−1)−1)Lj

=

p∏
j=1

exp

(
2∆2λ/

∑
d2
i

1 + (2n∆2dj)/(λr)
Lj,n+1

n∑
k=1

Ljkηk

)

= exp

2∆2λ∑
d2
i

n∑
k=1

ηk

p∑
j=1

LjkLj,n+1

1 + (2n∆2dj)/(λr)


= exp

(
2∆2λ∑

d2
i

〈Yn+1,
n∑
k=1

ηkD̃Yk〉

)
.

where D̃ = diag
(

1
1+(2n∆2di)/(λr)

)
i=1,...,p

. We conclude that the optimal

selector is given by

η∗∗ = sign

(
Y >n+1

(
n∑
k=1

ηkD̃Yk

))
and that

R(η∗∗) = P((D̃Y >η)>Yn+1 < 0)

Let us denote by θ̂ = 1
n

∑n
i=1 Yiηi = θ + ξ where ξ = 1

n

∑n
i=1Wiηi.

Then

R(η∗∗) = E

(
Φc

(
〈θ, D̃θ̂〉√
θ̂>D̃ΣD̃θ̂

))
.

Observing that the eigenvalues of D̃ belong to [1/3, 1] and that D̃ΣD̃ �
Σ/9 in a PSD sense, it comes out that

R(η∗∗) ≥ E

(
Φc

(
3〈θ, D̃θ̂〉√
θ̂>Σθ̂

))
≥ CE

(
exp

(
−c‖θ‖

4 + 〈θ, D̃ξ〉2

θ̂>Σθ̂

))
,

for some c, C > 0. It comes out that

R(η∗∗) ≥ CE

(
exp

(
−c‖θ‖

4 + 〈θ, D̃ξ〉2

ξ>Σξ − 2‖θ‖2λ

))
.
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Consider the three events

A1 = {‖θ‖2 ≤ 2∆2λ},

A2 = {ξ>Σξ ≥ rλ2/2n},

A3 = {〈θ, D̃ξ〉2 ≤ 2∆4λ2}.

Hence and since ∆4 ≥ ∆2 we get

R(η∗∗) ≥ Ce−c′n∆4/r(1−P(Ac1)−P(Ac2)−P(Ac3)).

Using hanson-Wright inequality it comes out that

P(Ac1) + P(Ac2) ≤ 2e−cr ≤ 1/4,

since r/n ≥ 10. Moreover we also have that

P(Ac3) ≤ πD(e−c∆
4λ/‖θ‖2) ≤ e−c∆2

+ P(Ac1) ≤ 1/4,

since ∆2 ≥ 100. The proof is now complete.

A.2. Proof of Theorem 2.2. Let θ be a vector in Rp such that
‖θ‖2 ≥ ∆2‖Σ‖∞. Without loss of generality we may assume that
∆2 ≥ C1 for some constant C1 > 0 large enough, otherwise the re-
sult is trivial as the upper bound becomes of constant order. We start
by observing that

P((η̂(Yn+1) 6= ηn+1) = P

(〈
n∑
i=1

Yiηi, Yn+1ηn+1

〉
< 0

)
.

Using the symmetry of the normal distribution (valid also with sub-
Gaussian noise), we can assume that ηn+1 = 1. Let us denote by θ̂ =
1
n

∑n
i=1 Yiηi = θ + ξ where ξ = 1

n

∑n
i=1Wiηi.Then we get following

upper bound

P((η̂(Yn+1) 6= ηn+1) = P(〈θ̂, θ +Wn+1〉 ≤ 0) ≤ CE
(
e
−c 〈θ,θ̂〉

2

θ̂>Σθ̂

)
.

for some constant c, C > 0 where we have conditioned on θ̂. Next we
have that

〈θ̂, θ〉2 = 〈θ + ξ, θ〉2 ≥ ‖θ‖
4

2
− 〈ξ, θ〉2 ,

and that
θ̂>Σθ̂ ≤ 2‖Σ‖∞‖θ‖2 + 2ξ>Σξ.
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Hence

R(η̂) ≤ CE

(
e
−c ‖θ‖4−2〈ξ,θ〉2

4‖Σ‖∞‖θ‖2+4ξ>Σξ

)
.

Let us define now the random event

A = {ξTΣξ ≤ Tr(Σ2)/n+ ‖Σ‖∞‖θ‖2} ∩ {4〈ξ, θ〉2 ≤ ‖θ‖4}.

Since nξTΣξ =d z
TΣ2z = ‖Σz‖2,EξTΣξ = Tr(Σ2)/n and

√
nξT θ =d

θTΣ1/2z where z ∼ N (0, Ip) (or simply sub-Gaussian with i.i.d. en-
tries). By Hanson-Wright inequality ([10]), for any t > 0,

P(nξTΣξ−nEξTΣξ ≥ t) = P(zTΣ2z−Tr(Σ2) ≥ t) ≤ e−cmin{t2/Tr(Σ4),t/‖Σ2‖∞}

for some c. Hence

P(Ac) ≤ e−cn2‖Σ‖2∞‖θ‖4/Tr(Σ4) + e−cn‖θ‖
2/‖Σ‖∞ + e−cn‖θ‖

4/θ>Σθ,

for some c > 0 small enough. Observing that Tr(Σ4) ≤ ‖Σ‖2∞Tr(Σ2)
we get further that

P(Ac) ≤ 3e
−c ∆4

∆2+
r(Σ2)
n .

Therefore we have

R(η̂) ≤ CE

(
e
−c ‖θ‖4−2〈ξ,θ〉2

4‖Σ‖∞‖θ‖2+4ξ>Σξ1{A}

)
+ 3Ce

−c ∆4

∆2+
r(Σ2)
n .

We conclude, using the event A, that

R(η̂) ≤ C exp

(
−c ∆4

∆2 + r(Σ2)
n

)

for some c, C > 0.

APPENDIX B: PROOFS OF REGULARIZATION VS
INTERPOLATION

B.1. Proof of Theorem 3.1. Recall that Wn+1 is N (0,Σ) (or sub-
Gaussian). Hence for any vector v the random variable v>Wn+1 is a centered
Gaussian of variance v>Σv. It follows that

P (η̂(Yn+1) 6= ηn+1) ≤ Ce
− 〈θ,θ̂λ〉

2

2θ̂>
λ

Σθ̂λ ,
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conditionally on θ̂λ. Observe that θ̂λ = θx/n + W>A−1
λ η/n where Aλ =

λIn + Y TY/n and x = ηTA−1
λ η. The risk is invariant by rescaling θ̂λ hence

we rescale it by n/x. Hence without loss of generality we may assume that
θ̂λ = θ +W>H−1

λ η/x. Using Lemma 3 we have

θ̂λ =
(
Ip −WA−1W>/n

)
θ +

1 + η>A−1W>θ/n

η>A−1η
WA−1η.

On the one hand we have

|〈θ, θ̂λ〉| ≥ ‖θ‖2 − θ>WA−1W>θ/n− |η
>A−1W>θ|
η>A−1η

.

On the other hand we have

θ̂>λ Σθ̂λ ≤ 2

(
‖Σ1/2

(
Ip −WA−1W>/n

)
θ‖2 +

2 + 2(η>A−1W>θ/n)2

(η>A−1η)2
ηTA−1W TΣWA−1η

)
.

• Control of the numerator:

|〈θ, θ̂λ〉| ≥ ‖θ‖2 − ‖A−1/2W>θ‖2/n− ‖A
−1/2W>θ‖√
η>A−1η

.

Using Lemma 6 and Lemma 7 we get that

|〈θ, θ̂λ〉| ≥ ‖θ‖2 − C1
θ>Σθ∑

i>k λi/n+ λ
− C2‖θ‖Σ.

• Control of the denominator:

θ̂>λ Σθ̂λ ≤ C
(
‖θ‖2Σ + ‖Σ1/2WA−1W>θ‖2/n2 +

2 + 2(η>A−1W>θ/n)2

(η>A−1η)2
ηTA−1W TΣWA−1η

)
.

Using the same bound as for the numerator and the fact that ‖W>θ‖2 ≤
Cn‖θ‖2Σ with probability 1− e−cn we get further that

θ̂>λ Σθ̂λ ≤ C

(
‖θ‖2Σ(1 + ‖Σ1/2WA−1‖2∞/n) + ((

∑
i>k

λi/n+ λ)2 + ‖θ‖2Σ)
ηTA−1W TΣWA−1η

n2

)
.

Using Lemma 5 we have that with probability 1− δ

ηTA−1W TΣWA−1η ≤ 3/2 Tr(A−1W TΣWA−1)+‖A−1W TΣWA−1‖∞ log(1/δ).

Hence using Lemma 8 and Lemma 9 we get that with probability 1− δ

ηTA−1W TΣWA−1η ≤ C
(
k∗n+ n

∑
i>k λ

2
i

(
∑

i>k λi/n+ λ)2

)
+

(
k∗n+

∑
i>k λ

2
i + λ2

k+1n

(
∑

i>k λi/n+ λ)2

)
log(1/δ),
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and that

‖Σ1/2WA−1‖2∞/n ≤ C(k∗ +

∑
i>k λ

2
i /n+ λ2

k+1

(
∑

i>k λi/n+ λ)2
) ≤ C(1 + k∗).

Notice also that

ηTA−1W TΣWA−1η

n2
≤ C1 + C2 (k∗ + 1) /n log(1/δ).

We conclude that with probability 1− δ1 − δ2

θ̂>λ Σθ̂λ ≤ C

(
‖θ‖2Σ (1 + k∗ + (1 + k∗)/n log(1/δ1)) +

k∗λ2
k +

∑
i>k λ

2
i

n
+

(k∗λ2
k + λ2

k+1) log(1/δ2)

n

)
.

Hence by taking δ1 = e−cn we get further that

θ̂>λ Σθ̂λ ≤ C

(
‖θ‖2Σ(1 + k∗) +

k∗λ2
k +

∑
i>k λ

2
i

n
+

(k∗λ2
k + λ2

k+1) log(1/δ2)

n

)
.

We have used the fact that k the smallest integer that satisfies rk(Σ)+
λ/λk+1 > bn for b ≥ 1. Hence we have∑

i≥k
λi/n+ λ ≤ bλk.

Notice that k is a decreasing function of λ. We treat two cases. If
Tr(Σ)/n+ λ ≥ ‖Σ‖∞ then we can take k = 0. Now if Tr(Σ)/n+ λ ≤
‖Σ‖∞, then k ≥ 1 and we use the above property of k

k(
∑

i>k λi/n+ λ)2

n3
+n2

∑
i>k λ

2
i

n3
≤
bkn2λ2

k

n3
+

∑
i>k λ

2
i

n
≤ C

kλ2
k +

∑
i>k λ

2
i

n
.

Since k is a decreasing function of λ then kλ2
k +

∑
i>k λ

2
i is also a

decreasing function of λ. Observe that

kλ2
k +

∑
i>k

λ2
i ≤ Tr (Σ2).

B.2. Proof of Theorem 4.1. Using the proof of Lemma 3, we have

n(Y >Y )−1η =

√
n

‖θ‖det

(
A−1u(1 + u>A−1v)−A−1vu>A−1u

)
,
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where A = W>W/n, u = ‖θ‖η/
√
n and v = W>θ/

√
n‖θ‖2. Hence e>1 (Y >Y )−1η

has the sign as

e>1 (W>W )−1η(1 + η>(W>W )−1W>θ)− e>1 (W>W )−1W>θη>(W>W )−1η.

Using Lemma 4 we also have

e1(W>W )−1ω =
ω1 −W>1 W̃ (W̃>W̃ )−1ω̃

‖W1‖2 −W>1 πW1
.

Notice that π = W̃ (W̃>W̃ )−1W̃> is a p × p projection matrix. Since W ∼
N(0,Σ), W1 is independent of the column space spanned by W̃ . Therefore
‖W1‖2 −W>1 πW1 = W>1 (Ip − π)W1 is always positive.

Hence we only need to show that the following expression is positive

(1−η1W
>
1 W̃ (W̃>W̃ )−1η̃)(1+η>(W>W )−1W>θ)−η1W

>
1 (Ip−π)θη>(W>W )−1η.

We first use the bound

η>(W>W )−1W>θ ≤
√
ηA−1η‖A−1/2W>θ‖/n ≤ C

√
θ>Σθ∑
i>k λi/n

.

Hence under the condition ‖θ‖Σ ≤ C
∑

i>k λi/n we have that

1 + η>(W>W )−1W>θ ≥ 1/2.

Next observe that η1W
>
1 (Ip−π)θ is sub-Gaussian with parameter ‖Σ1/2(Ip−

π)θ‖. Hence using the bound from the proof of Theorem 3.1, we get that

‖Σ1/2(Ip − π)θ‖2 ≤ C‖θ>Σθ‖2(1 + k∗).

It comes out that with probability at least 1− δ we have

|η1W
>
1 (Ip − π)θη>(W>W )−1η| ≤ C

‖θ‖Σ
√

(1 + k∗) log(1/δ)∑
i>k λi/n

≤ 1/4,

under our condition ‖θ‖Σ
√

(1 + k∗) log(1/δ) ≤ C
∑

i>k λi/n. Finally, we

have that η1W
>
1 W̃ (W̃>W̃ )−1η̃ is sub-Gaussian with parameter ‖Σ1/2W̃ (W̃>W̃ )−1η̃‖.

Using the proof of Theorem 3.1 we have

‖Σ1/2W̃ (W̃>W̃ )−1η̃‖2 ≤ C
(
k∗/n+

∑
i>k λ

2
i

n(
∑

i>k λi/n)2

)
+

(
k∗/n+

∑
i>k λ

2
i /n

2 + λ2
k+1/n

(
∑

i>k λi/n)2

)
log(1/δ).
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Hence

‖Σ1/2W̃ (W̃>W̃ )−1η̃‖2 ≤ C

(
k∗ log(1/δ)/n+

(
∑

i>k λ
2
i + λ2

k+1 log(1/δ))/n

(
∑

i>k λi/n)2

)
.

Hence with probability 1− C/n2 we have

|η1W
>
1 W̃ (W̃>W̃ )−1η̃| ≤ C

√k∗ log2(n)/n+

√∑
i>k λ

2
i log(n)/n+ λk+1 log(n)/

√
n∑

i>k λi/n

 .

Hence under the conditions k∗ log2(n) ≤ Cn and
∑

i>k λ
2
in log(n) ≤ C(

∑
i>k λi)

2

we get our result. We can now Conclude using the union bound for i =
1, . . . , n. Hence the final bound hold with probability 1− 1/n.

APPENDIX C: AUXILIARY RESULTS (ALGEBRA)

Lemma 1. Let u, v ∈ Rn and A ∈ Rn×n an invertible and symmetric
matrix then

(uu> + uv> + vu> +A)−1 −A−1

= −(1− v>A−1v)A−1uu>A−1 + (1 + u>A−1v)A−1(uv> + vu>)A−1 − u>A−1uA−1vv>A−1

(1− v>A−1v)u>A−1u+ (1 + u>A−1v)2
.

Proof. We will use the Woodbury matrix identity

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,

with U = (u v) ∈ Rn×2, V = U> and C =

(
1 1
1 0

)
. We start by computing

C−1 =

(
0 1
1 −1

)
. It comes out that

C−1 + V A−1U =

(
u>A−1u 1 + u>A−1v

1 + u>A−1v v>A−1v − 1

)
.

Let us denote by det = (1− v>A−1v)u>A−1u+ (1 + u>A−1v)2, then

(C−1 + V A−1U)−1 =
1

det

(
1− v>A−1v 1 + u>A−1v
1 + u>A−1v −u>A−1u

)
.

Moreover

U(C−1+V A−1U)−1V =
(1− v>A−1v)uu> + (1 + u>A−1v)(uv> + vu>)− u>A−1uvv>

det
.
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We conclude observing that

uu> + uv> + vu> +A = A+ UCV.

Lemma 2. Let u, v ∈ Rn and A ∈ Rn×n and an invertible and symmetric
matrix then

(uu> + uv> + vu> +A)−1u =
A−1u(1 + u>A−1v)−A−1vu>A−1u

(1− v>A−1v)u>A−1u+ (1 + u>A−1v)2
,

and

(uu>+uv>+vu>+A)−1v =
A−1v(1 + u>A−1v + u>A−1u)−A−1u(u>A−1v + v>A−1v)

(1− v>A−1v)u>A−1u+ (1 + u>A−1v)2
.

Proof. Using Lemma 1.

Lemma 3. For any λ > 0, we have that

θ̂λ =
(
In −WA−1W>/n

)
θ +

1 + η>A−1W>θ/n

η>A−1η
WA−1η,

where A = λIn +W>W/n. We also have

θ̂λ/c = (1− η>W>B−1Wη/n2)B−1θ + (1 + θ>B−1Wη/n)B−1Wη/n,

where B = λIp +WW>/n and c > 0 some constant.

Proof. Recall that θ̂λ = θ + WH−1
λ η/x where Aλ = λIn + Y >Y/n and

x = ηTA−1
λ η. By denoting w = θ/‖θ‖, we have that

Hλ =
‖θ‖2

n
ηη> +

‖θ‖
n

(η(W>w)> + (W>w)η>) + λIn +W>W/n.

By choosing u = ‖θ‖η/
√
n, v = W>w/

√
n and A = λIn + W>W/n we get

using Lemma 2 that

H−1
λ η =

√
n

‖θ‖det

(
A−1u(1 + u>A−1v)−A−1vu>A−1u

)
,

where det = (1− v>A−1v)u>A−1u+ (1 + u>A−1v)2. It comes out that

η>H−1
λ η =

nu>A−1u

‖θ‖2det
=
η>A−1η

det
.
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We also get

WH−1
λ η =

√
n

‖θ‖det

(
WA−1u(1 + u>A−1v)−WA−1vu>A−1u

)
=

1

det

(
WA−1η(1 + η>A−1W>θ/n)− η>A−1η

n
WA−1W>θ

)
.

As a conclusion we get that

θ̂λdet =
(
In −WA−1W>/n

)
θ +

1 + η>A−1W>θ/n

η>A−1η
WA−1η.

On the other hand we also have

θ̂λ =
(
θθ> + θ(Wη)>/n+Wηθ>/n+ λIp +WW>/n

)−1
(θ +Wη/n).

By choosing u = θ, v = Wη/n and B = λIp+WW>/n we get using Lemma
2 that

θ̂λ = (uu> + uv> + vu> +B)−1(u+ v)

=
1

det

(
B−1u(1− v>B−1v) +B−1v(1 + u>A−1v)

)
.

where det = (1− v>B−1v)u>B−1u+ (1 + u>B−1v)2. Hence

θ̂λdet = (1− η>W>B−1Wη/n2)B−1θ + (1 + θ>B−1Wη/n)B−1Wη/n.

Lemma 4. Let W = (W1 W̃ ) and ω = (ω1 ω̃), then we have

e1(W>W )−1ω =
ω1 −W>1 W̃ (W̃>W̃ )−1ω̃

‖W1‖2 −W>1 πW1
,

where π = W̃ (W̃>W̃ )−1W̃>.

Proof. We will use the following formula (Schur complement) that holds
as long as all matrix inverses exist.(
A B
B> D

)−1

=

(
A−1 +A−1B(D −B>A−1B)−1B>A−1 −A−1B(D −B>A−1B)−1

−(D −B>A−1B)−1B>A−1 (D −B>A−1B)−1

)
.

Considering A = ‖W1‖2, B = W>1 W̃ and D = W̃>W̃ , then

W>W =

(
A B
B> D

)
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By Sherman-Morrison formula we have that

(D −B>A−1B)−1 =

(
W̃>W̃ − 1

‖W1‖2
W̃>W1W

>
1 W̃

)−1

= (W̃>W̃ )−1 +

1
‖W1‖2 (W̃>W̃ )−1W̃>W1W

>
1 W̃ (W̃>W̃ )−1

1− W>1 πW1

‖W1‖2

= (W̃>W̃ )−1 +
(W̃>W̃ )−1W̃>W1W

>
1 W̃ (W̃>W̃ )−1

‖W1‖2 −W>1 πW1

=
E

‖W1‖2 −W>1 πW1
.

where E = (W̃>W̃ )−1(‖W1‖2−W>1 πW1)+(W̃>W̃ )−1W̃>W1W
>
1 W̃ (W̃>W̃ )−1.

Hence

B(D −B>A−1B)−1 =
W>1 W̃ (W̃>W̃ )−1

1− W>1 πW1

‖W1‖2
=
‖W1‖2W>1 W̃ (W̃>W̃ )−1

‖W1‖2 −W>1 πW1
.

It comes out that

A−1+A−1B(D−B>A−1B)−1B>A−1 =
1

‖W1‖2
1

1− W>1 πW1

‖W1‖2
=

1

‖W1‖2 −W>1 πW1
,

and that

A−1B(D −B>A−1B)−1 =
1

‖W1‖2
W>1 W̃ (W̃>W̃ )−1

1− W>1 πW1

‖W1‖2
=

W>1 W̃ (W̃>W̃ )−1

‖W1‖2 −W>1 πW1
.

Hence

(W>W )−1 =
1

‖W1‖2 −W>1 πW1

(
1 −W>1 W̃ (W̃>W̃ )−1

−(W̃>W̃ )−1W̃>W1 E

)
and

e1(W>W )−1ω =
ω1 −W>1 W̃ (W̃>W̃ )−1ω̃

‖W1‖2 −W>1 πW1
.
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APPENDIX D: AUXILIARY RESULTS (PROBABILITY)

Following the idea of [2], we write Σ in its eigen-decomposition form Σ =∑n
i=1 λiviv

T
i and decompose W>W in the basis of Σ. More specifically, let

zi = W T vi/
√
λi. Then {zi} is a basis (not orthogonal, if we assume W full

rank) of Rn×n and W TW =
∑

i λiziz
T
i . With our notations Aλ = 1

nW
>W +

λIn =
∑

i λ
′
iziz

T
i + λIn where λ′i = λ/n. Let us also define

A−i =
∑
j 6=i

λ′jzjz
T
j + λIn, Ak =

∑
i>k

λ′iziz
T
i + λIn,

and similarly
A0
−i = A−i − λIn, A0

k = Ak − λIn.

In that case we can apply Lemma 9 and 10 still to A0
−i and A0

k. Adding λ to

all sides, we get with probability at least 1− 2e−n/c that:

• For any k ≥ 0

1

c

∑
i>k

λ′i − cλ′k+1n+ λ ≤ θn(Ak) ≤ θ1(Ak) ≤ c

(∑
i>k

λ′i + λ′k+1n

)
+ λ

• ∀i ≥ 1,

θk+1(A−i) ≤ θk+1(A) ≤ θ1(Ak) ≤ c

(∑
i>k

λ′i + λ′k+1n

)
+ λ

• 1 ≤ i ≤ k,

θn(A) ≥ θn(A−i) ≥ θn(Ak) ≥
1

c

∑
i>k

λ′i − cλ′k+1n+ λ

Recall that the effective rank is given by rk(Σ) :=
∑
i>k λi
λk+1

. Hence under the

condition rk(Σ) + nλ
λk+1

≥ bn the above inequalities become

• for k = k∗

1

c

∑
i>k

λi/n+ λ ≤ θn(Ak) ≤ θ1(Ak) ≤ c
∑
i>k

λi/n+ λ

• ∀i ≥ 1,

θk+1(A−i) ≤ θk+1(A) ≤ θ1(Ak) ≤ c
∑
i>k

λi/n+ λ
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• 1 ≤ i ≤ k,

θn(Aλ) ≥ θn(A−i) ≥ θn(Ak) ≥
1

c

∑
i>k

λi/n+ λ

Lemma 5. Let ξ be a 1 sub-Gaussian vector with i.i.d entries and let B
be a SDP matrix. Then with probability at least 1− δ, we have

|ξ>Bξ − Tr(B)| ≤ 1/2 Tr(B) + C‖B‖∞ log(1/δ),

for some C > 0.

Proof. Using Hanson-Wright inequality.

Lemma 6. With probability at least 1− e−cn we have

‖A−1/2W>θ‖2 ≤ C nθ>Σθ∑
i>k λi/n+ λ

.

Proof. We have that

‖A−1/2W>θ‖2 ≤ ‖W>θ‖22‖A−1‖∞.

Since W>θ has the same distribution as ‖θ‖Σ.ξ where ξ is 1 sub-Gaussian
with i.i.d entries, then using Lemma 5 we get with probability at least 1−e−n

‖A−1/2W>θ‖2 ≤ Cθ>Σθn‖A−1‖∞.

Hence we conclude that

‖A−1/2W>θ‖2 ≤ C nθ>Σθ∑
i>k λi/n+ λ

.

Lemma 7. There exist C1, C2 > 0 such that

η>A−1η ≤ C1
n∑

i>k λi/n+ λ
,

and with probability at least 1− e−cn we have

η>A−1η ≥ C2
n∑

i>k λi/n+ λ
.
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Proof. The first inequality is straightforward observing that

η>A−1η ≤ n‖A−1‖∞.

For the lower bound, we will the sub-Gaussian property of η. To lower bound
Tr(A−1) observe that with probability 1 − e−cn we have

Tr(A−1) =
n∑
i=1

(θi(A))−1 ≥
n∑

i=k+1

1

cλk+1rk(Σ)/n+ λ
≥ cn

λk+1rk(Σ)/n+ λ
.

We conclude using Lemma 5.

Lemma 8. With probability at least 1− e−cn we have

Tr(A−1W TΣWA−1) ≤ c
(
k∗n+ n

∑
i>k λ

2
i

(
∑

i>k λi/n+ λ)2

)
.

Proof. Let us denote by C := A−1W TΣWA−1. Using the rank one
inverse formula we get

Tr(C) = Tr(A−1W TΣWA−1)

=
n∑
i=1

λ2
i zi(λ

′
iziz

T
i +A−i)

−2zTi

=
n∑
i=1

λ2
i z
T
i A
−2
−i zi

(1 + λ′iz
T
i A
−1
−i zi)

2
.

Then for some l ≤ k∗,

Tr(C) =
l∑

i=1

λ2
i z
T
i A
−2
−i zi

(1 + λ′iz
T
i A
−1
−i zi)

2
+
∑
i>l

λ2
i ziA

−2
λ zTi

Under the condition rk(Σ) + nλ/λk+1 ≥ bn, there exists c1 such that with
probability at least 1−2e−n/c1 , for i ≤ k, θn(A−i) ≥ 1

c

∑
i>k λi/n+λ. Hence

zTA−2
−i z ≤

c2
1‖z‖2(∑

i>k λi/n+ λ/c1

)2 .
Let Li be the span of eigenvectors of A corresponding to n − k∗ smallest
eigenvalues. Then

zTA−1
−i zi ≥ (ΠLi

z)T A−1
−iΠLi

z ≥ ‖ΠLi
z‖2

1/c
∑

i>k λi/n+ λ
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Using the sub-Gaussian property, it comes out that with probability 1 −
3e−cn, for all i

‖zi‖2 ≤ n
‖ΠLi

zi‖2 ≥ n.
Hence the first sum can be bounded by

l∑
i=1

λ2
i z
T
i A
−2
−i zi

(1 + λ′iz
T
i A
−1
−i zi)

2
≤ c4

1

n2
∑l

i=1 ‖zi‖2

‖ΠLi
zi‖4

≤ c4ln.

For the second sum, consider the same event we have θn(A) ≥ λk+1rk(Σ)/nc1+
λ,

∑
i>l

λ2
i z
T
i A
−2zi ≤

c2
1

∑
i>l λ

2
i ‖zi‖2

(
∑

i>k λi/n+ λ/c1)2
≤

c5n
∑

i>l λ
2
i

(
∑

i>k λi/n+ λ/c1)2

Therefore we have

Tr(C) ≤ c
(
k∗n+ n

∑
i>k λ

2
i

(
∑

i>k λi/n+ λ)2

)
for 0 ≤ k ≤ n/c with high probability.

Lemma 9. With probability at least 1− e−cn we have

‖A−1W TΣWA−1‖∞ ≤ c

(
k∗n+

∑
i>k λ

2
i + λ2

k+1n

(
∑

i>k λi/n+ λ)2

)
.

Proof. For the first half (elements i ≤ k) we simply bound spectral
norm with Trace. It only remains to bound

‖
∑
i>k

λ2
iA
−1ziz

>
i A
−1‖∞ ≤ n2‖A−1‖2∞‖Ak‖∞.

Hence we get

‖
∑
i>k

λ2
iA
−1ziz

>
i A
−1‖∞ ≤

c
(∑

i>k λ
2
i + λ2

k+1n
)

(
∑

i>k λi/n+ λ)2
.

We conclude that

‖A−1W TΣWA−1‖∞ ≤ c

(
k∗n+

∑
i>k λ

2
i + λ2

k+1n

(
∑

i>k λi/n+ λ)2

)
.
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