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The question of fast convergence in the classical problem of high
dimensional linear regression has been extensively studied. Arguably,
one of the fastest procedures in practice is Iterative Hard Thresh-
olding (IHT). Still, IHT relies strongly on the knowledge of the true
sparsity parameter s. In this paper, we present a novel fast proce-
dure for estimation in the high dimensional linear regression. Taking
advantage of the interplay between estimation, support recovery and
optimization we achieve both optimal statistical accuracy and fast
convergence. The main advantage of our procedure is that it is fully
adaptive, making it more practical than state of the art IHT methods.
Our procedure achieves optimal statistical accuracy faster than, for
instance, classical algorithms for the Lasso. Moreover, we establish
sharp optimal results for both estimation and support recovery. As a
consequence, we present a new iterative hard thresholding algorithm
for high dimensional linear regression that is scaled minimax optimal
(achieves the estimation error of the oracle that knows the sparsity
pattern if possible), fast and adaptive.

1. Introduction. Datasets with large numbers of features are becom-
ing increasingly available and important in every field of research and in-
novation. The representation of such data in any coordinate system leads
to so called high dimensional data, whose analysis is often associated with
phenomena that go beyond classical estimation theory. Further assumptions
on the structure of the underlying signal are required in order to make the
estimation problem more well-defined. For instance in a problem of high di-
mensional regression, we may assume that the vector to estimate is sparse.
The present work aims to develop an estimation method that can extract
information from existing high dimensional structured datasets in a more
efficient way.

1.1. Statement of the problem. Assume that we observe the vector of
measurements Y ∈ Rn satisfying

(1) Y = Xβ + σξ,
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whereX ∈ Rn×p is a given design or sensing matrix. The noise ξ is a centered
1-subGaussian random vector (i.e. ∀λ ∈ Rn,E(e〈λ,ξ〉) ≤ e‖λ‖

2/2), and ξ is
independent of X. We denote by Pβ the distribution of (Y,X) in model (1),
and by Eβ the corresponding expectation.

For an integer s ≤ p, we assume that β is s-sparse, that is it has at
most s non-zero components, and we denote by Sβ its support and ηβ the
corresponding binary vector. We also assume that components of β cannot
be arbitrarily small. This motivates us to define the following set Ωp

s,a of
s-sparse vectors:

Ωs,a = {β ∈ Rp : |β|0 ≤ s and |βi| ≥ a, ∀i ∈ Sβ} ,

where a > 0, βi are the components of β for i = 1, . . . , p, and |β|0 denotes
the number of non-zero components of β. The value a characterizes the scale
of the signal. In the rest of the paper, we will always denote by β the vector
to estimate, while β̂ will denote the corresponding estimator. Let us denote
by ψ the scaled minimax risk

(2) ψ(s, a) = inf
β̂

sup
β∈Ωs,a

Eβ

(

‖β̂ − β‖2
)

,

where the infimum is taken over all possible estimators β̂ and ‖.‖ is the
Euclidean norm. The risk (2) was introduced in [16] where sharp lower
bounds were given under model (1). More precisely, assuming that the design
columns are normalized (i.e. ‖Xi‖ =

√
n for all i = 1, . . . , p) and that the

noise ξ is a standard random Gaussian vector, a combination of theorems 3
and 4 in [16] provides the following sharp lower bounds:

ψ(s, a) ≥ (1 + o(1))
2σ2s log(ep/s)

n
, ∀a ≤ (1− ε)σ

√

2 log(ep/s)

n

and

ψ(s, a) ≥ (1 + o(1))
σ2s

n
, ∀a ≥ (1 + ε)σ

√

2 log(ep/s)

n
,

that holds for any 0 < ε ≤ 1 and such that the limit corresponds to s/p → 0.
One of the main motivations of the present work is to provide matching
upper bounds for the risk ψ under mild assumptions on the design matrix
X.

Notation. In the rest of this paper we use the following notation. For
any integer n, [n] denotes the set of integers {1, . . . , n}. For given sequences
an and bn, we say that an = O(bn) (resp an = Ω(bn)) when an ≤ cbn (resp
an ≥ cbn) for some absolute constant c > 0. We write an ≍ bn if an = O(bn)
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and an = Ω(bn) while an = o(bn) corresponds to an/bn → 0 as n goes to
infinity. For x,y ∈ Rp, ‖x‖∞ is the ℓ∞ norm of x, ‖x‖ the Euclidean norm
of x, and 〈x,y〉 the corresponding inner product. For a matrix X ∈ Rn×p,
we denote by Xj its j-th column, and ‖X‖2,∞ := max

j=1,...,p
‖Xj‖. For x, y ∈ R,

we denote by x ∨ y the maximum of x and y and we set x+ = x ∨ 0. The
notation 1{·} stands for the indicator function. For a vector Z ∈ Rp, Z(i)

denotes the i-th non increasing order statistic of Z such that Z(1) ≥ · · · ≥
Z(p). For any finite set S, |S| stands for its length. For any X ∈ Rp×p and
S, S′ ∈ {1, . . . , p}, XS will denote the submatrix of X with columns indexed
by S, and XS′S the submatrix of X with columns indexed by S and rows
indexed by S′. For a vector M ∈ Rp, MS is the restriction of M to the set
S. For an SDP matrix A, we denote by λmax(resp. λmin) the largest (resp.
lowest) corresponding eigenvalue, and by ‖A‖F its Frobenius norm. Ip is the
identity matrix in Rp×p.

For the sake of readability of the results, we will assume the design
columns to be normalized in the rest of this section , i.e. for all i = 1, . . . , p
we have ‖Xi‖ =

√
n .

1.2. Related literature. The literature on minimax sparse estimation in
high-dimensional linear regression (for both random and orthogonal design)
is very rich and its complete overview falls beyond the format of this paper.
We mention here only some recent results close to our work. All sharp results
are considered in the regime where s

p → 0 and s log(ep/s)/n → 0.

1. Discrepancy between the minimax rate 2sσ2 log(ep/s)/n and the or-
acle rate σ2s/n. In the last decade, the success of estimators in
sparse linear regression has been characterized by the minimax rate
2sσ2 log(ep/s)/n, achieved for instance by the popular Lasso. It is well
known by practitioners that Lasso suffers from non-negligible bias, and

this bias is unavoidable and at least of order σ2 s log (p/s)
n (cf. [2]). Other

convex estimators, such as Slope, suffer the same bias issue as the bias
lower bound in [2] applies as well. On the other hand, the oracle least-
squares estimator restricted to the support of the true β enjoys the
smaller rate σ2s/n. The focus of the present paper is the discrepancy
between the well studied minimax rate 2σ2 log(ep/s)/n and the oracle
rate σ2s/n, in particular

For which sparse β is it possible to achieve the oracle rate σ2s/n without the

knowledge of the true support ? When possible, how to construct estimators that

achieve the oracle rate σ2s/n?

When the magnitude of entries of the signal β is large enough we may
expect to get a better estimate than the Lasso by removing the associ-
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ated bias. In [16], the separation at which the bias can be removed, in
the sense that the oracle σ2s/n can be achieved, is exactly character-
ized in the case of orthogonal design. This separation is given by the

universal separation a∗ = σ

√
2 log (p/s)

n . In particular, for a larger than

a∗, the estimation risk could be as small as σ2 s
n . For the case of gen-

eral designs, the same paper shows that a ≥ a∗ is necessary in order to
remove the bias without providing corresponding sufficient conditions.
The recent paper [18] provide insight on the precise phase transition
when the design is Gaussian and the sparse vector β is binary; however
the findings of the present paper reveal that a = a∗ is the threshold at
which the transition between 2σ2s log(ep/s)/n and σ2s/n occurs for
the general class of sparse vectors.
A popular approach to avoid the bias present in convex estimators
is Iterative Hard Thresholding (IHT) [6] and its variants. IHT is a
non-convex counterpart of the gradient descent corresponding to the
Lasso [20, 24, 27, 22]. It is shown in [23, 24] that debaising and support
recovery is possible, using Gradient Hard Thresholding Pursuit, under

the sub-optimal condition a ≍ σ

√
s log(ep/s)

n . Two other approaches for

unbiased estimation are either through concave penalization [26, 11]
or forward and backward greedy algorithms [25].

When the oracle rate σ2s/n is achievable information-theoretically, is it pos-

sible to achieve this rate in polynomial time under mild assumptions on the

design?

2. Fast convergence and adaptation. IHT uses explicitly the sparsity pa-
rameter, since at each step it keeps the s largest values of the gradient
descent. In [15] for instance, IHT is shown to achieve the minimax rate

σ2s log(ep/s)/n after a number of iterations of order log
(

n‖β‖2
s log(ep/s)

)

which corresponds to the expected number of iterations under strong
convexity assumptions on the loss. In [1], algorithms to compute the
Lasso are shown to converge geometrically under stronger conditions.
FoBa [25] achieves unbiased estimation without the knowledge of s, but
may take longer to converge. This motivates the following question:

Is it possible to achieve the minimax rate 2σ2s log(ep/s) and the oracle rate

σ2s/n using fast iterative algorithms, without the knowledge of s?

3. Sharpness. Here we refer to sharpness for the problem of statistical
convergence rates where the statistical accuracy matters up to ex-
act multiplicative constants. It is inspired by statistical physics where
phase transitions occur at some sharp threshold. The notion of sharp
optimality is useful to compare algorithms in practice since the con-
stants generally hide large values that may impact practical imple-
mentations. In [21], SLOPE is shown to be sharply minimax optimal
on the set of sparse vectors. Similarly, [14] show sharp results of esti-
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mation for the debiased Lasso (with a post-processing step) that are
adaptively optimal up to a logarithmic factor. Results in both [7] and
[14] hold, under the Gaussian design assumption, in the asymptotic
where s/p → 0 and s log(p)/n → 0. To the best of our knowledge, no
sharp results for general designs that are not necessarily Gaussian are
known.

Is it possible to extend sharp minimax results with beyond Gaussian designs,

for instance to sub-Gaussian designs?

In this paper, we shed some light on these issues. Specifically, we address
the above questions in what follows.

1.3. Main contribution. The present work is mainly devoted to bridging
the gap between statistical optimality and optimization in a sharp an adap-
tive way. The main novelty is a unified framework to analyze simultaneously
estimation error, support recovery and optimization speed. Our objective is
to build a procedure that would answer positively the questions stated in
Section 1.2. The proposed method is an iterative hard thresholding algo-
rithm where the threshold is updated at each step. For λ > 0, we define the
hard thresholding operator Tλ : Rp → Rp, such that

∀u ∈ Rp,∀j = 1, . . . , p, Tλ(u)j = uj1{|uj | ≥ λ}.

We consider here a general class of IHT estimators. For a given sequence
(λm)m of positive numbers, we define the corresponding sequence of estima-
tors (β̂m)m such that β̂0 = 0 and for m = 1, 2, . . .

(3) β̂m = Tλm

(

β̂m−1 +
1

n
X⊤(Y −Xβ̂m−1)

)

.

This procedure corresponds to a projected gradient descent on a non-convex
set. Our thresholding procedure is, in some sense, an interpolation between
the two classical thresholds, namely the largest s component for IHT, and

σ

√
2 log(p)

n for the LASSO. We start with a large threshold, we then update
it geometrically until hitting the statistical universal threshold. This gives
further an explicit stopping time of our procedure that may be seen as
an early stopping rule for gradient descent. Another perspective about our
procedure is that it could be seen as what we describe later as an iteration
selection procedure. At each step we may see β̂m as an estimator computed
using one iteration starting from the one before β̂m−1. By analogy with a
classical model selection criterion, we can select the iteration that is minimax
optimal. This leads, in particular, to a faster adaptive procedure compared to
model selection since each estimator is simply one iteration of our algorithm.
Our contribution can be summarized as follows:
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• We derive a new proof strategy to construct adaptive minimax op-
timal estimators through algorithmic regularization. This combines
techniques from non-convex optimization and model selection.

• We propose a fully adaptive variant of IHT that is scaled minimax
optimal (i.e. achieves optimal risk of the oracle that knows the spar-
sity pattern when possible). We also show optimal support recovery
results for this procedure. To the best of our knowledge, our conditions
improve upon the previously known ones to achieve support recovery
for an IHT procedure. When s log(p)3/n → 0, optimal conditions for
the problem of support recovery in high dimensional linear regression
under Gaussian design are provided in [12] using an iterative proce-
dure without sample splitting. Similarly, our methodology does not
require sample splitting. Moreover it achieves support recovery for a
larger class of designs under a milder condition.

• We establish sharp optimal results under RIP as δ → 0. This in par-
ticular holds for sub-Gaussian designs as s log(ep/s)/n → 0. To the
best of our knowledge, those are the first sharp estimation results to
hold beyond Gaussian design.

• As for the optimization part, we use local strong convexity/local smooth-
ness of the loss function (equivalent in our setting to RIP) in order to
get fast global convergence as in [1] for convex penalized estimators.
Our analysis makes it possible to study algorithms with non-convex
penalization for instance the hard thresholding penalization. Using
statistical properties of the model, we benefit from both local strong
convexity and non-convex penalization in order to provide optimal
worst-case computational guarantees of our procedure.

As a consequence of our methodology, we extend results of scaled minimax
optimality to the regression model under RIP. In particular we close the gap
by showing that

ψ(s, a) = (1 + o(1))
2σ2s log(ep/s)

n
, ∀a ≤ (1− ε)σ

√

2 log(ep/s)

n

and

ψ(s, a) = (1 + o(1))
σ2s

n
, ∀a ≥ (1 + ε)σ

√

2 log(ep/s)

n
,

that holds for any ε > 0 and such that the limit corresponds to s/p → 0 and
δ → 0. Moreover, the upper bound is achieved through a polynomial time
method that is fully adaptive. Some interesting questions arise based on
adaptation to parameters on both optimization and statistical sides that we
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address in the Conclusion. We summarize our contribution to the problem
of minimax scaled sparse estimation below.

Non asymptotic
results

Sharp results
(a ≤ (1− ε)a∗)

Sharp results
(a ≥ (1 + ε)a∗)

Minimax lower bounds C4σ
2 s log(ep/s)

n [3] 2σ2 s log(ep/s)
n [16] σ2 s

n [16]

Risk of LASSO
(not adaptive to sparsity)

C1σ
2 s log(ep/s)

n [3] 2σ2 s log(ep/s)
n [14] 2σ2 s log(ep/s)

n [2]

Risk of SLOPE
(adaptive to sparsity)

C2σ
2 s log(ep/s)

n [3] 2σ2 s log(ep/s)
n [7] 2σ2 s log(ep/s)

n [2]

RISK of adaptive IHT
C3σ

2 s log(ep/s)
n

This paper, Theorem 4

2σ2 s log(ep/s)
n

this paper, Theorem 5

σ2 s
n

this paper, Theorem 6

Table 1. Summary of minimax upper and lower bounds for estimation in high dimensional

linear regression where a∗ = σ
√

2 log(ep/s)
n

and C1, C2, C3, C4 > 0 some absolute constants.

Sharp results hold for any 0 < ε < 1.

2. Non-asymptotic minimax sparse estimation: A new proof strat-

egy. Classical non-asymptotic minimax results for sparse estimation in lin-
ear regression are proved for minimizers of well defined objective loss func-
tions. In this section, we present and analyze our variant of iterative hard
thresholding algorithm, and show similar minimax results. In what follows
we assume that the design X satisfies the following condition. For an integer
s = 1, . . . , p, define Ls,ms > 0 such that

Ls = max
|S|=s

λmax(X
⊤
S XS),

and
ms = min

|S|=s
λmin

(

X⊤
S XS

)

.

Set δs := 1− ms
Ls

.
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Assumption 1. For 0 < c < 1 and s ∈ [p], we say that X satisfies
RIP(s, c) if

δs ≤ c.

In the rest of the paper, we assume that s ≤ p/3 and that X satisfies
RIP(3s,δ/2) for some 0 ≤ δ < 1. Assumption 1 is equivalent to Restricted
Strong Convexity and Restricted Smoothness on the set of s-sparse vectors,
where we assume that γs :=

Ls
ms

, the condition number, is bounded. Here are
few remarks concerning this assumption with respect to adaptation.

• Although our results should hold for general γs, we decided to consider
only the case of bounded γs, and omit the dependence on γs, to make
the presentation of our results simpler and also since a fully adaptive
procedure would require an upper bound on γs .

• Our results hold under a relaxed assumption on the design where there
exits some matrix M such that MX⊤X satisfies a condition similar
to RIP as in [14]. For instance, in the case of general Gaussian design
with full rank covariance Σ, and for M chosen to be Σ−1, the condition
would hold under the usual assumption s log(ep/s) = O(n). Again, this
requires knowing M in advance and constrains adaptation.

• For gradient descent step in IHT, the step size depends on γs or more
precisely on Ls. When no upper bound on γs is unknown, there exist
adaptive choices of the step size based on the exact line search for
instance.

For all above reasons, we decided to only focus on adaptivity with respect
to statistical parameters of the problem, namely s, σ and ‖β‖, and to leave
the general case with other results for further research.

Our procedure is an iterative hard thresholding algorithm where the
threshold is updated at each step. For λ > 0, define the hard threshold-
ing operator Tλ : Rp → Rp, such that

∀u ∈ Rp,∀j = 1, . . . , p, Tλ(u)j = uj1{|uj | ≥ λ}.

Notice that the usual IHT algorithm corresponds to Tu(s)
(u) where u(s) is

the s largest entry of u, hence the threshold is data-dependent but most
importantly sparsity dependent [6]. For a given sequence (λm)m of positive
numbers, we define the corresponding sequence of estimators (β̂m)m such
that β̂0 = 0 and for m = 1, 2, . . .

(4) β̂m = Tλm

(

β̂m−1 +
1

‖X‖22,∞
X⊤(Y −Xβ̂m−1)

)

.
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This procedure corresponds to a projected gradient descent on a non-convex
set. The choice of normalizing the gradient by ‖X‖2,∞ instead of L3s is due
to the fact that L3s is not tractable and that we do not consider adaptivity
with respect to optimization parameters (L3s, δ3s) in this work. If δ3s is small
enough, it is easy to see that ‖X‖2,∞ is a good proxy for L3s. The usual
projection step consists in keeping the largest s components. The operator
Tλ plays a similar role here. Imposing sparsity at each step of the procedure
is crucial in order to benefit from restricted properties of the design. The
novelty of our procedure lies in the fact that it implicitly grants the sparsity
of our estimator at each step without having to choose exactly s components.

Unlike the analysis of IHT, in previous works, that benefits from local
convex properties of the objective function, we choose to directly analyze
the non-convex gradient descent algorithm and leverage the structure of both
the signal and design in order to get a contraction of the error. We give here
the intuition behind our procedure. In what follows we propose a specific
choice for the sequence of thresholds (λm)m that will allow us to achieve
both optimal statistical accuracy and fast convergence of the algorithm in
an adaptive way. Let λ0, λ∞ > and 0 < κ < 1 be given constants, we define
the sequence (λm)m as follows

(5) λm = κm/2λ0 ∨ λ∞, m = 0, 1, . . . .

The sequence of thresholds starts at some very large threshold λ0, then keeps
updating it linearly until reaching a final threshold given by λ∞. A good

choice of λ∞ is given by the universal statistical threshold

√

2σ2 log(ep/s)
‖X‖22,∞

. Our

choice of the thresholding sequence is motivated by the following. Observe
that

β̂m +
1

‖X‖22,∞
X⊤(Y −Xβ̂m) =(6)

β +

(

1

‖X‖22,∞
X⊤X − Ip

)

(β − β̂m)

︸ ︷︷ ︸

optimization error

+
σ

‖X‖22,∞
X⊤ξ

︸ ︷︷ ︸

statistical error

.

At each step, we can decompose the estimation error into two parts. An
optimization error that may be reduced thanks to the local contraction of
the design (RIP), and a statistical error that is unavoidable. While it is well

understood that the choice of a threshold of order

√

2σ2 log(ep/s)
‖X‖22,∞

is optimal

in order to control the statistical error, the same threshold does not grant
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sparsity of the estimator at first steps. In fact, if the signal β is “well-spread”
(i.e. its coordinates share similar magnitude) and ‖β‖ large enough, it may
occur that we select too many coordinates at the first step. This lack of
sparsity makes it hard to benefit from restricted properties of the design.
The alternative choice of a very large threshold grants sparsity but leads to a
high statistical error. The usual choice of keeping the largest s-components at
each step, is a natural fix. This intuition is similar to the motivation behind
the LARS algorithm [10]. Our thresholding procedure is, in some sense,
an interpolation between the two classical thresholds, namely the largest s-

component for IHT, and

√

2σ2 log(ep/s)
‖X‖22,∞

for LASSO. We start with a threshold

large enough, then as we move forward the optimization error gets smaller
which allows us to update the threshold without loosing the contraction.
Our choice of thresholding sequence gives also an explicit stopping time, as
we may stop once the threshold hits the universal statistical threshold. In
the rest of the paper, we use the following notation:

Ξ :=
σ

‖X‖22,∞
X⊤ξ and Φ :=

(

1

‖X‖22,∞
X⊤X − Ip

)

.

It is useful to observe that as long as X satisfies RIP(3s,δ/2), then Φ is a
contraction for 3s-sparse vectors. This is rephrased in the following Lemma
that we prove in the Appendix.

Lemma 1. If X satisfies RIP(3s,δ/2) then for all S ⊂ {1, . . . , p} such
that |S| ≤ 3s, we have λmax(ΦSS) ≤ δ.

Before stating our results we give a first result that is relevant to the
analysis of our algorithm. We draw the reader’s attention, that our analysis
is fully deterministic since we place ourselves in a well chosen random event
that captures the complexity of our model. Namely, we consider the event

O =

{
s∑

i=1

Ξ2
(i) ≤

10σ2s log(ep/s)

‖X‖22,∞

}

.

Using Lemma 3 (cf. Appendix), the event O holds with high probability.
Conditionally on the event O, the next Theorem shows that, at each step,
the corresponding estimator is 2s-sparse and the surrogate function of the
estimation error, given by sλ2

m, decreases exponentially.

Theorem 1. Assume that β is s-sparse, that is |β|0 ≤ s and that X
satisfies RIP(3s,δ/2). We denote by S the support of β. Let λ0, λ∞ > 0, 0 <
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κ < 1, and define (β̂m)m and its corresponding thresholding sequence (λm)m

as in (4)-(5). Assume that δ < 1/36 ∨ κ, ‖β‖ ≤ √
sλ0 and

σ
√

40 log(ep/s)

‖X‖2,∞ ≤
λ∞. If O holds, then for all m, we have

(7) |β̂m
Sc |0 ≤ s,

and

(8) ‖β̂m − β‖2 ≤ 9sλ2
m.

Unlike for convex regularized least squares, the objective function ‖β̂m −
β‖2 does not decrease at each step. Indeed, our gradient descent step may
be trapped in some saddle points for instance when there is a big gap be-
tween coordinates of β. We get around this issue by finding an upper bound-
ing surrogate function that decreases exponentially. This can be viewed as
the highlight of our non-convex approach. The sequence λm decreases un-
til it reaches the stationary threshold λ∞. If we tune λ∞ with the uni-
versal statistical threshold then the final estimation error is optimal. In
that case, we may stop the algorithm after a number of steps of order

log

(
sλ2

0‖X‖22,∞
σ2s log(ep/s)

∨ 2

)

/ log(1/κ). Notice that we do not need to know the

precise value of δ here but only an upper bound, that we set to 1/36 in
Theorem 1. We did not try to optimize this value. We may also set λ0 as
large as possible and our algorithm would still output an estimator that
attains the minimax optimal rate. If sλ2

0 is much larger than ‖β‖2, then the
result of Theorem 1 is not optimal from an optimization perspective, in the
sense that it would take more steps to stop compared to IHT for instance.
In order to achieve both optimal statistical accuracy and optimal fast con-

vergence, we need λ0 to be roughly of the same order as ‖β‖√
s
∨ σ

√
log(ep/s)

‖X‖2,∞ .

The optimal choices of λ0 and the stopping time m depend on ‖β‖. In order
to derive minimax optimal results, we need to make these choices adaptive
with respect to ‖β‖. We show next how to tune λ0 and m in order to grant
linear convergence of our procedure. Denote by M the vector

M :=
1

‖X‖22,∞
X⊤Y = β +Φβ + Ξ,

and set

(9) λ̂0 =

√

10
∑s

i=1 M
2
(i)

s
∨ σ

‖X‖2,∞
√

40 log(ep/s),
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and

(10) m̂ =

⌊

2 log

(

λ̂2
0‖X‖22,∞

40σ2 log(ep/s)

)

/ log(1/κ)

⌋

+ 1.

Proposition 1. Let β be s-sparse and let X satisfy RIP(3s,δ/2). As-
sume that δ ≤ 1/4 and that event O holds. Then

(

‖β‖ ∨ σ
√

10s log(ep/s)

‖X‖2,∞

)

≤
√
sλ̂0 ≤ 10

(

‖β‖ ∨ σ
√

10s log(ep/s)

‖X‖2,∞

)

,

and

2 log

(

‖β‖2‖X‖22,∞
40σ2s log(ep/s)

∨ 1/4

)

/ log(1/κ) ≤ m̂−1 ≤ 2 log

(

5‖β‖2‖X‖22,∞
σ2s log(ep/s)

∨ 25

)

/ log(1/κ).

Observe that for large values of ‖β‖, λ̂0 is of the same order as ‖β‖√
s
with

high probability and that m̂ is of order log

(
‖β‖2‖X‖22,∞
σ2s log(ep/s)

)

/ log(1/κ). We are

now ready to state a result of the minimax optimality of our procedure. We
will also pick λ∞ to be of the same order as the universal threshold

(11) λ̂∞ =
σ
√

40 log(ep/s)

‖X‖2,∞
.

Theorem 2. Let 0 < κ < 1. Assume that δ ≤ 1/36 ∨ κ and that X
satisfies RIP(3s,δ/2). Let λ̂0 and λ̂∞ given by (9) and (11), (λm)m be the
corresponding sequence of estimators (5), and m̂ be the stopping time (10).
Then the following holds

sup
|β|0≤s

Pβ

(

‖β̂m̂ − β‖2 ≥ 360σ2s log(ep/s)

‖X‖22,∞

)

≤ e−c1s log(ep/s),

sup
|β|0≤s

Pβ

(

|β̂m̂|0 ≥ 2s
)

≤ e−c1s log(ep/s),

and

sup
|β|0≤s

Pβ

(

m̂ ≥ 2 log

(

5‖β‖2‖X‖22,∞
σ2s log(ep/s)

∨ 25

)

/ log (1/κ) + 1

)

≤ e−c1s log(ep/s),

for some absolute constant c1 > 0.
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Theorem 2 shows that β̂m̂ achieves optimal statistical accuracy in linear
time. Notice that m̂ depends on log(1/κ) instead of log(1/δ3s) simply be-
cause δ3s is intractable. As we emphasized earlier, optimal results that are
adaptive to γ3s (or equivalently δ3s) fall beyond the scope of this paper.
Theorem 2 shows minimax optimality of an estimator constructed through
a non-convex algorithmic regularization scheme. Similar estimation error is
also achieved using the SLOPE estimator as in [3]. The advantage of the
proposed estimator is that it achieves the optimal statistical accuracy in
linear time.

3. A fully adaptive minimax optimal procedure. The above min-
imax estimator depends on the statistical parameters of the model s and σ,
and this only through the thresholding sequence (λm)m. In particular, the
choices of λ̂0, λ̂∞, and m̂ depend on s and σ. For estimation of σ, we may
consider the sequence of estimators σ̂2

m of σ2 such that

(12) σ̂2
m =

‖Y −Xβ̂m‖2
n

.

In practice, estimator (12) is considered in the Square-Root Lasso [4] among
others in order to adapt to the noise level in high-dimensional regression.
During the first steps, σ̂2

m may have bad performance but in this case this
means that the threshold λm is much larger than the universal statistical
threshold making precise estimation of σ not necessary. As we get closer to
the final threshold the estimation error gets smaller and estimation of σ is
improved as long as n = Ω(s log(ep/s)). The latter condition is sufficient in
order to achieve good estimation of σ. It is worth saying that the same con-
dition is not more restrictive than RIP. Indeed, a consequence of Corollary
7.2 in [3] implies that n = Ω(s log(ep/s)) as long as X satisfies RIP.

Concerning the choice of the initial threshold, recall that Theorem 2 hold
if we replace λ̂0 by any upper bound, off to running more iterations. Hence,
we can replace λ̂0 by the adaptive initial threshold

(13) λ̄0 =
√
20|M |(1) ∨

σ̂0
‖X‖2,∞

√

160 log(ep).

Based on the fact that u(1) ≥ 1
s

∑s
i=1 u

2
(i), threshold (13) is indeed an upper

bound for the initial choice λ̂0 in (9). Notice that the threshold λ̄0 in (13)
can be as large as ‖β‖ and not ‖β‖/√s as it was for λ̂0. This loss only
appears in the number of iterations where we may run our algorithm for
log(s) more steps. We present now two fully adaptive procedures that are
minimax optimal.
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3.1. Adaptive early stopping. We may now define a new adaptive thresh-
olding sequence as follow

(14) λm = κm/2λ ∨ σ̂m
‖X‖2,∞

√

160 log(ep), m = 0, 1, . . . .

Our choice of m is adaptive as well and given by

(15) m̄ = inf

{

m/λm ≤ σ̂m
‖X‖2,∞

√

160 log(ep)

}

+ 1.

Observe that the adaptive stopping rule is exactly given by the step when
we hit the statistical threshold. We can now state a minimax optimal result
corresponding to our fully adaptive procedure.

Theorem 3. Let 0 < κ < 1. Assume that δ ≤ 1/36 ∨ κ, that n >
14000s log(ep) and that E(ξξ⊤) = In. Let λ̄0 and (σ̂m)m be defined as in (13)
and (12), (λm)m be the corresponding sequence (14) and m̄ be the stopping
time (15). Then the following holds

sup
|β|0≤s

Pβ

(

‖β̂m̄ − β‖2 ≥ 4000σ2s log(ep)

‖X‖22,∞

)

≤ e−c1s log(ep/s),

sup
|β|0≤s

Pβ

(

|β̂m̄|0 ≥ 2s
)

≤ e−c1s log(ep/s),

and

sup
|β|0≤s

Pβ

(

m̄ ≥ 2 log

(

10‖β‖2‖X‖22,∞
σ2 log(ep)

∨ 100

)

/ log (1/κ) + 1

)

≤ e−c1s log(ep/s),

for some absolute c1 > 0.

The adaptive procedure of Theorem 3 is minimax optimal up to a loga-
rithmic factor ( replacing log(ep/s) by log(ep)). Conditions n = Ω(s log(ep))
and E(ξξ⊤) = In are only required for adaptation to the noise level σ. Finally
the number of iterations may be larger by log(s) compared to analogous non
adaptive results. Hence, up to a logarithmic loss in both statistical accuracy
and optimization speed, our early stopping procedure is fast, fully adaptive
and minimax optimal.
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3.2. Iteration selection. In order to capture the optimal dependence with
respect to s, we rely on a different approach. One of the most popular meth-
ods to achieve adaptation is through the lens of model selection introduced
in [5]. Given a set of models (or estimators) one picks a good estimator based
on some criterion. More concretely, one may think of Cross-Validation where
for each regularization parameter λ an estimator is constructed, then the re-
sulting estimators are either aggregated or one of them is chosen based on
some criterion. In what follows, we present an adaptive procedure in the
same flavor. We like to see our procedure as an iteration selection method
instead of model selection. Indeed, we can think of our m−th iteration as an
estimator corresponding to λm. With this analogy in mind, penalized model
selection boils down to a penalized iteration selection. Observe that itera-
tion selection is much faster than the classical model selection since each
estimator is computed using only one iteration initialized with the previous
estimator. More concretely, we construct all iterations corresponding to the
thresholding sequence

(16) λm = κm/2λ̄0, ∀m ∈ [T̂ ],

where λ̄0 was defined in (13) and T̂ is defined below. The selected iteration
is given by

(17) m̃ = arg min
m∈[T̂ ]

{

1

n
‖Y −Xβ̂m‖2 + 10σ̂2

m̄|β̂m|0 log(ep/|β̂m|0)
n

}

,

where σ̂m̄ was defined above. Again the problem of estimation of σ is easier
as long as s log(ep) = O(n) and we may replace σ̂m̄ by any good estimator of
σ. For completeness of our result we decided to stop the search domain over
m once the thresholding sequence (λm)m is below σ

‖X‖2,∞ where solutions

are not granted to be sparse anymore. For that reason we set T̂ such that

T̂ = inf

{

m ≥ 0/λm ≤ 4σ̂m̄
‖X‖2,∞

}

,

where (λm)m is defined in (16). We get the following result.

Theorem 4. Let 0 < κ < 1. Assume that δ ≤ 1/36 ∨ κ and that n >
14000s log(ep) and that E(ξξ⊤) = In. Let m̃ be defined in (17), then the
following holds

sup
|β|0≤s

Pβ

(

‖β̂m̃ − β‖2 ≥ 1002σ2s log(ep/s)

‖X‖22,∞

)

≤ e−c1s log(ep/s),
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sup
|β|0≤s

Pβ

(

|β̂m̃|0 ≥ 3s
)

≤ e−c1s log(ep/s),

and

sup
|β|0≤s

Pβ

(

T̂ ≥ 2 log

(

10‖β‖2‖X‖22,∞
σ2

∨ 100

)

/ log (1/κ) + 1

)

≤ e−c1s log(ep/s),

for some absolute c1 > 0.

The iteration selection procedure is different compared to the early stop-
ping one since it chooses the best threshold λm instead of worrying about
tuning the stopping rule. Moreover it achieves the minimax optimal rate of
σ2s log(ep/s)/‖X‖22,∞ adaptively to all parameters under the mild condition

s log(ep) = O(n). Notice also that the number of constructed estimators T̂
is small with overwhelming probability. Overall, full optimal adaptation on
the statistics side comes with the price of log(s log(ep/s)) more steps on the
optimization side. The our knowledge, Theorem 4 is the first to provide a
fast and adaptive procedure that is minimax optimal.

4. Sharp results and scaled minimax optimality. In this section
we present sharp minimax results for the problem of estimation in high di-
mensional linear regression. Moreover, we show that a variant of our estima-
tor is scaled minimax optimal, improving upon regularized convex estimators
that provably suffer from an unavoidable bias term. Our final procedure is
an IHT algorithm with fixed threshold that is initialized by β̂m̃ defined ear-
lier (Theorem 4). By analogy with non-convex optimization, the step where
the initialization is constructed plays the role of the first iterations getting
to the basin of attraction. For a given λ > 0, our final procedure (β̃m)m is
a variant of IHT where β̃0 = β̂m̃ and for all m ≥ 1

(18) β̃m = Tλ

(

β̃m−1 +
1

‖X‖22,∞
X⊤(Y −Xβ̃m−1)

)

.

For any ǫ > 0, define the statistical threshold given by

(19) λǫ
∞ = (1 +

√
ǫ)
σ
√

2 log(ep/s)

‖X‖2,∞
.

Remark 1. • We can replace β̃0 by any estimator that is minimax
optimal and is at most 2s- sparse. In particular one may choose to
initialize our procedure with square-root slope [9]. Our choice of ini-
tialization is not only adaptive but is also fast to compute.
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• Sharp adaptation to σ can be achieved by choosing σ̃2 := 1
n‖Y −

Xβ̂m̃‖2. It is easy to observe that σ̃ = σ(1 + o(1)) with overwhelm-
ing probability under the mild assumption s log(ep)/n → 0. Hence, all
our sharp results hold adaptively to σ under the above condition.

Sharp results are stated under the standard conditions s/p → 0 and δ → 0
as p → ∞. Indeed, the first condition is relevant to observe a strict change
of behaviour between biased and unbiased estimators and the second one
corresponds to s log(ep/s)/n → 0 under Gaussian design. We remind the
reader that s, n, δ depend on p as p → ∞. Our next result states that one
step is enough to achieve sharp optimal minimax estimation.

Theorem 5. Let ǫ ∈ (0, 1) and λǫ
∞ given by (19). Assume that δ ≤ ǫ ∨

1/4002. Let λ ≥ λǫ
∞ and let β̃m be the corresponding sequence of estimators

(18). Then, for any m ≥ 0 we have

lim
s/p→0

sup
|β|0≤s

Pβ

(

‖β̃m − β‖ ≥ (1 + 4
√
δ + 100δm/2 + o(1))

√
sλ

)

= 0.

Theorem 5 is sharp in the sense that when δ → 0, then for any ǫ > 0, there
exists an estimator (depending on ǫ) achieving the asymptotic minimax error

of (1 + ǫ)2σ
2s log(ep/s)
‖X‖22,∞

and that estimator corresponds to the threshold λ =

λǫ
∞. Replacing log(ep/s) by log(ep) in this choice of λ leads to an adaptive

nearly sharp minimax optimal procedure. A similar result was shown for the
SLOPE estimator in [21] under Gaussian isotropic designs and in [14] for
more general Gaussian designs with known covariance. Our sharp results do
not require σ to be known nor the design to be Gaussian, since we conduct
a deterministic analysis over the design.

Another advantage of our procedure, is that it eliminates the usual bias
due to regularization under almost optimal conditions. Namely, as long as
the informative signal components are well separated from zero, then our
estimator achieves the same rate of estimating an s-sparse vector as if its
support were known. The next result proves that our procedure is scaled
minimax optimal.

Theorem 6. Let a > 0 and ǫ ∈ (0, 1). Assume that conditions of Theo-
rem 5 hold and that s → ∞. If a ≥ λ(1 +

√
ǫ), then ∀m ≥ log(log(ep/s)) we

have

lim
s→∞,s/p→0

sup
β∈Ωs,a

Pβ

(

‖β̃m − β‖ ≥ (1 + 4
√
δ + o(1))

σ2s

‖X‖22,∞

)

= 0.
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Notice first, that if a = Ω

(
σ
√

log(ep/s)

‖X‖2,∞

)

, then we can construct an estima-

tor β̃m achieving the non-asymptotic minimax parametric statistical error
of order σ2s

‖X‖22,∞
. For the sharp counterpart, observe that for any ǫ > 0, if

δ → 0 and s → ∞, then there exists an estimator β̃m (depending on ǫ) that

achieves the optimal error of (1 + o(1)) σ2s
‖X‖22,∞

w.h.p under the condition

a ≥ (1 + ǫ)
σ
√

2 log(ep/s)

‖X‖2,∞ . The last condition on a is necessary in order to

achieve such a result as shown in [16]. This result shows that β̃m is sharply
scaled minimax optimal as long as m ≥ log(log(ep/s)). Again full adapta-
tion is granted replacing log(ep/s) by log(ep) which leads to nearly sharp
optimal results.

5. On support recovery. Throughout the paper our proofs are based
on simultaneous analysis of both estimation error and variable selection. As
a consequence, we can also recover results for support recovery. For a given
vector β, we denote by η the corresponding decoder i.e ηi = 1(βi 6= 0). We

first give a straightforward result for almost full recovery , i.e |η̂−η|
s → 0,

based on the previous section.

Theorem 7. Under the conditions of Theorem 6, we get, for all m ≥
log(log(ep/s)), that

lim
s/p→0

sup
β∈Ωs,a

Pβ

( |η̃m − η|
s

≥ ωp

)

= 0,

for some ωp → 0.

It comes out that η̃m achieves almost full recovery under the nearly opti-
mal condition

a ≥ (1 + ǫ)
σ
√

2 log (ep/s)

‖X‖2,∞
,

for any ǫ ≥ δ as long as s/p → 0. This sufficient condition is moreover
optimal as δ → 0 by reduction to the Gaussian sequence model studied in [8].
These results improve upon state-of-the-art recovery results in compressed
sensing, and in particular results of [17], where authors use a two-stage
procedure and sample splitting leading them to a strict loss in the sharp
constants. Again our results, as opposed to most of the literature of support
recovery, do not assume the design to be Gaussian nor sub-Gaussian.
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Remark 2. All sharp results are stated for given ǫ. The procedure we
construct depends on ǫ. This is due to the fact that we do not have access
to a sharp upper bound on δ. In compressed sensing under isotropic sub-
Gaussian design, we can replace ǫ by s log(ep/s)

n for instance. In this case, we
can achieve sharp optimal results for any level ǫ.

In order to prove similar results for support recovery we rely on a different
proof strategy. Our result for support recovery does not require sample split-
ting compared to [17] and is more general than [12] since it is fully adaptive.
For any ǫ > 0, the statistical threshold for support recovery is given by

(20) µǫ
∞ = (1 +

√
ǫ)
σ
√

2 log(p)

‖X‖2,∞
,

Define the least square solution, given the true support S, such that

β̃∗ = ((X⊤X)SS)
−1X⊤

S Y.

Then the following result holds.

Theorem 8. Assume that conditions of Theorem 5 hold, and a ≥ (1 +

3
√
ǫ)

σ(
√

2 log (p)+
√

2 log(s))

‖X‖2,∞ . Let (β̃m)m be the sequence of estimators defined

in (18) corresponding to λ = µǫ
∞ defined in (20). Then, we have for all

m ≥ 0 that

lim
s/p→0

sup
β∈Ωs,a

Pβ

(

‖β̃m − β̃∗‖2 ≥ 1502(10δ)mσ2s log(ep/s)

‖X‖22,∞

)

= 0,

As a consequence, we get that for m ≥ log(s)

lim
s/p→0

sup
β∈Ωs,a

Pβ (|η̃m − η| > 0) = 0.

Hence under the minimal separation condition for support recovery our
estimator converges to the oracle least square solution β̃m → β̃∗ in proba-
bility even for non vanishing δ. Notice that β̃∗ has the same support as β
a.s. It turns out that

a ≥ (1 + 3
√
ǫ)
σ(
√

2 log (p) +
√

2 log(s))

‖X‖2,∞
,

for any ǫ > 0 is sufficient to achieve exact recovery as long as δ → 0, s/p → 0.
This condition is shown to be necessary in [8] under orthogonal design. We
also recover the results of [12] for Gaussian design. Moreover, our approach
is fully adaptive and holds beyond Gaussian design.
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6. Conclusion. In this paper, we have presented a novel non-asymptotic
minimax optimal estimation procedure for high dimensional linear regres-
sion. Our procedure is moreover fast and fully adaptive. We also provided
sharp asymptotic results beyond the Gaussian design assumption. In par-
ticular, our procedure is scaled minimax optimal (i.e. unbiased whenever it
is possible). Moreover, optimal results for both exact and almost full recov-
ery were established as δ → 0. We conclude that our procedure has many
attractive properties under the high dimensional linear regression model.

As potential extensions of our results, we believe that full adaptation with
respect to the optimization parameters δs and Ls has its own interest. More-
over, our results in their actual form do not have the optimal dependence in
terms of the condition number γs, and it would be interesting to generalize
them beyond the RIP condition. Finally, another direction of interest is ro-
bust estimation through algorithmic regularization, where our strategy may
be used to construct robust estimators with some of the desired properties
we have in this paper. We leave all these questions for further research.
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APPENDIX A: PROOFS OF NON-ASYMPTOTIC RESULTS

Proof of Lemma 1. Recall that X satisfies RIP(3s, δ/2). It is easy to
observe that m3s ≤ ‖X‖22,∞ ≤ L3s. Hence for S ∈ {1, . . . , p} such that
|S| ≤ 3s, we have

λmax(ΦSS) ≤
(

1− m3s

L3s

)

∨
(
L3s

m3s
− 1

)

.

Since 1− m3s
L3s

≤ δ/2, it remains to prove that

L3s

m3s
− 1 ≤ δ.

Using that fact that m3s ≥ (1− δ/2)L3s, it comes that

L3s

m3s
− 1 ≤ δ/2

1− δ/2
≤ δ,

since δ ≤ 1.

Proof of Theorem 1. We proceed by induction. For m = 0, The result
is obvious. We now assume the result true for m and prove it for m+ 1. In
what follows let us denote by Hm+1 the vector

Hm+1 = β̂m +
1

‖X‖22,∞
X⊤(Y −Xβ̂m).

Notice that Hm+1 can be written in the form

Hm+1 = β +Φ(β − β̂m) + Ξ,

and that
β̂m+1 = Tλm+1(H

m+1).

We prove the first part of the result reasoning by the absurd. Assume that
|β̂m+1

Sc |0 > s. Then there exists a subset S̃ of Sc such that |S̃|0 = s and

sλ2
m+1 ≤

∑

i∈S̃

(Hm+1
i )21{|Hm+1

i | ≥ λm+1}.

Since S̃ is not supported on S, then we have

√
sλm+1 ≤

√
∑

i∈S̃

Ξ2
i +

√
∑

i∈S̃

〈Φ⊤
i , β − β̂m〉2.
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Since β is s-sparse and |β̂m
Sc |0 ≤ s then β−β̂m is at most 2s-sparse. Moreover

|S̃| = s. Hence using Lemma 1 we have that

√
sλm+1 ≤

√
√
√
√

s∑

i=1

Ξ2
(i) + δ‖β − β̂m‖.

Using the induction hypothesis and event O, we get moreover that

√
sλm+1 ≤

√

10σ2s log(ep/s)

‖X‖2,∞
+ 3δ

√
sλm

≤ (1/2 + 3
√
δ)
√
sλm+1 <

√
sλm+1,

as long as δ < 1/36, which is absurd. Hence |β̂m+1
Sc |0 ≤ s. For the second

part, observe that ∀i ∈ S,

β̂m+1
i − βi = −Hm+1

i 1{|Hm+1
i | ≤ λm+1}+ Ξi + 〈Φ⊤

i , β − β̂m〉.

Then using the same arguments as before we have

‖β̂m+1
S − β‖ ≤

√
sλm+1 +

√

10σ2s log(ep/s)

‖X‖2,∞
+ δ‖β̂m − β‖.

Moreover on Sc, we have

‖β̂m+1
Sc ‖ ≤

√

10σ2s log(ep/s)

‖X‖2,∞
+ δ‖β̂m − β‖.

Hence

‖β̂m+1 − β‖ ≤
√
sλm+1 + 2

√

10σ2s log(ep/s)

‖X‖2,∞
+ 2δ‖β̂m − β‖.

Using the definition of λm and the induction hypothesis, we get that

‖β̂m+1 − β‖ ≤
√
sλm+1 +

√
sλm+1 + 6δ

√
sλm.

We conclude that

‖β̂m+1 − β‖ ≤
√
sλm+1(2 + 6

√
δ) ≤ 3

√
sλm+1.
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Proof of Proposition 1. Let S̃ be a set of size s then

‖MS̃‖ ≤ ‖βS̃‖+ δ‖β‖ + σ
√

10s log(ep/s)

‖X‖2,∞
.

Hence

‖MS̃‖ ≤ ‖β‖(1 + δ) +
σ
√

10s log(ep/s)

‖X‖2,∞
.

Then
√
sλ̂0 ≤ 2(

√
10(1 + δ) + 1)

(

‖β‖ ∨ σ
√

10s log(ep/s)

‖X‖2,∞

)

.

Hence
√
sλ̂0 ≤ 10

(

‖β‖ ∨ σ
√

10s log(ep/s)

‖X‖2,∞

)

.

We also have for the true support S of β that

‖MS‖ ≥ (1− δ)‖β‖ − σ
√

10s log(ep/s)

‖X‖2,∞
.

If ‖β‖ ≤ σ
√

40s log(ep/s)

‖X‖2,∞ the result is trivial. Else ‖β‖ >
σ
√

40s log(ep/s)

‖X‖2,∞ , and

√
sλ̂0 ≥

√
10(1− δ − 1/2)‖β‖ ≥ ‖β‖.

The result for m̂ is straightforward.

Proof of Theorem 2. Assume that event O holds, then using Proposi-
tion 1, we have ‖β‖2 ≤ sλ̂2

0. We can then apply Theorem 1 and get that

∀m ≥ 0, ‖β̂m − β‖2 ≤ 9

(

sλ̂2
0κ

m/2 ∨ 40σ2s log(ep/s)

‖X‖22,∞

)

.

With the choice of m̂ we get further using Proposition 1 that

sλ̂2
0κ

m̂/2 ≤ 40σ2s log(ep/s)

‖X‖22,∞
.

Hence

‖β̂m̂ − β‖2 ≤ 360
σ2s log(ep/s)

‖X‖22,∞
.
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It follows that

P

(

‖β̂m̂ − β‖2 ≥ 360
σ2

‖X‖22,∞
s log(ep/s)

)

≤

P

(
s∑

i=1

Ξ2
(i) ≥

10σ2s log(ep/s)

‖X‖22,∞

)

.

We conclude using Lemma 3. We proceed similarly for the remaining state-
ments using Proposition 1.

Proof of Theorem 3. For this proof we consider both events O and A

where
A = {|‖ξ‖ −

√
n| ≤ 1/4

√
n}.

Using the Hanson-Wright inequality [19] and the condition on n, it is easy
to observe that

P(A ) ≤ e−c2s log(ep/s),

for some absolute c2 > 0. For the rest of the proof we place ourselves on the
event O ∩A that holds with probability 1− e−c3s log(ep/s) for some absolute
c3 > 0. From the definition of σ̂2

m, observe that, as long as β − β̂m is 2s-
sparse, we have

|σ̂m − σ| ≤ ‖X‖2,∞√
n

(1 + δ)‖β − β̂m‖+ 1

4
σ.

Hence

(21)
σ̂m

‖X‖2,∞
√

160 log(ep) ≤ 3
√

40 log(ep)√
n

‖β−β̂m‖+ 3σ

‖X‖2,∞
√

40 log(ep).

Next, recall that

λ̄0 =
√
20|M |(1) ∨

σ̂0
‖X‖2,∞

√

160 log(ep).

Since n is large enough compared to s log(ep) it is easy to see that

λ̄0 ≤
√
20|M |(s) ∨ ‖β‖ ∨ 12σ

‖X‖2,∞
√

10 log(ep).

Hence using Proposition 1 it comes that

(22)
√
2‖β‖ ≤

√
sλ̄0 ≤ 20

√
s

(

‖β‖ ∨ σ
√

10s log(ep)

‖X‖2,∞

)

.
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Hence the threshold λ̄0 satisfies the condition required to apply Theorem 2.
Let m̂∗ such that

(23) m̂∗ = inf

{

m/λm ≤ 6σ

‖X‖2,∞
√

40 log(ep)

}

+ 1.

We recall that

(24) m̂ = inf

{

m/λm ≤ σ

‖X‖2,∞
√

40 log(ep/s)

}

+ 1.

Observe that m̂∗ ≤ m̂. As long as m ≤ m̂∗ then

σ

‖X‖2,∞
√

40 log (ep) ≤ 1/6λm,

so the first induction steps remain the same as before. Now using (21) we
get further

σ̂m
‖X‖2,∞

√

160 log (ep) ≤
√

3500s log(ep)

n
λm + 1/2λm.

Hence for n larger than 14000s log(ep), σ̂m
‖X‖2,∞

√

160 log (ep) is strictly smaller

than λm and m̂∗ < m̄. After running m̂∗ steps we get

‖β − β̂m̂∗‖ ≤ 18σ

‖X‖2,∞
√

40s log (ep),

and for all m̂∗ ≤ m ≤ m̂
|σ̂m − σ| ≤ σ/2.

It comes out that for all m̂∗ ≤ m ≤ m̂

σ̂m
‖X‖2,∞

√

160 log (ep) ≥ σ

‖X‖2,∞
√

40 log (ep).

Hence a finite number of steps after the first m̂∗ are enough to hit the
threshold σ̂m̄

‖X‖2,∞
√

160 log (ep) and stop the algorithm. Observe that m̄ ≤ m̂

and hence σ̂m̄
‖X‖2,∞

√

160 log (ep) ≥ λ̂∞. We finally get, applying Theorem 1,

that

‖β − β̂m̄‖ ≤ 10σ

‖X‖2,∞
√

40s log (ep),

and that |β̂m̄|0 ≤ 2s. Going back to the definition of m̄ and using (22) we
get also that

m̄ ≤ 2

(

log

(

10‖β‖2‖X‖22,∞
σ2 log(ep)

∨ 100

)

/ log (1/κ)

)

.

This concludes the proof.
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Proof of Theorem 4. Before proving the result, we recall that with
probability 1− e−cs log(ep/s) we have

|σ̂m̄−σ| ≤ ‖X‖2,∞√
n

(1+δ)‖β−β̂m̄‖+ 1

20
σ ≤ σ

(

(1 + δ)
10
√
40

14000
+

1

20

)

≤ σ/10.

In what follows we assume that

(25) |σ̂m̄ − σ| ≤ σ/10.

Using Theorem 2 and Lemma 5, then we assume moreover that

‖β̂m̂ − β‖2 ≤ 360σ2s log(ep/s)

‖X‖22,∞
,

|β̂m̂
Sc |0 ≤ s,

and 〈

ξ,
X⊤(β − β̂)

‖X(β − β̂)‖

〉2

≤ 7(s + |β̂Sc |0) log(ep/(s + |β̂Sc |0)),

since all those events hold with probability 1− e−cs log(ep/s). The remainder
of the proof is fully deterministic. Based on (25) it is easy to observe that
m̂ ≤ T̂ . Hence we have that
(26)

1

n
‖Y−Xβ̂m̃‖2+1000σ̂2

m̄|β̂m̃|0 log(ep/|β̂m̃|0)
n

≤ 1

n
‖Y−Xβ̂m̂‖2+1000σ̂2

m̄|β̂m̂|0 log(ep/|β̂m̂|0)
n

.

The rest of the proof is decomposed in two parts.

• Show that |β̂m̃|0 ≤ 3s:
Let us assume that |β̂m̃|0 > 3s. On the one hand, we have

‖Y −Xβ̂m̃‖2 ≥ σ2‖ξ‖2 + ‖X(β − β̂m̃)‖2 − 2σ
∣
∣
∣

〈

ξ,X(β − β̂m̃)
〉∣
∣
∣

≥ σ2‖ξ‖2 + ‖X(β − β̂m̃)‖2 −
√

42σ2|β̂m̃|0 log(3ep/4|β̂m̃|0)‖X(β − β̂m̃)‖
≥ σ2‖ξ‖2 + ‖X(β − β̂m̃)‖2/2− 21σ2|β̂m̃|0 log(ep/|β̂m̃|0).

It comes out that

1

n
‖Y −Xβ̂m̃‖2+1000σ̂2

m̄|β̂m̃|0 log(ep/|β̂m̃|0)
n

≥ σ2‖ξ‖2
n

+
900σ̂2

m̄|β̂m̃|0 log(ep/|β̂m̃|0)
n

.
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On the other hand, we have

‖Y −Xβ̂m̄‖2 ≤ σ2‖ξ‖2 + ‖X(β − β̂m̄)‖2 + 2σ
∣
∣
∣

〈

ξ,X(β − β̂m̄)
〉∣
∣
∣

≤ σ2‖ξ‖2 + ‖X(β − β̂m̄)‖2 +
√

8σs log(ep/2s)‖X(β − β̂m̄)‖
≤ σ2‖ξ‖2 + 3‖X(β − β̂m̃)‖2/2 + 4σ2s log(ep/2s).

It comes out that

1

n
‖Y −Xβ̂m̄‖2+1000σ̂2

m̄|β̂m̄|0 log(ep/|β̂m̄|0)
n

≤ σ2‖ξ‖2
n

+
2500σ̂2

m̄s log(ep/2s)

n
.

Going back to (26), we conclude that

900|β̂m̃|0 log(ep/|β̂m̃|0)
n

≤ 2500s log(ep/2s)

n
.

The last equation does not hold as long as s/p is small enough. As a
consequence, we have |β̂m̃|0 ≤ 3s.

• Show that ‖β̂m̃ − β‖ ≤ 100σ
√

s log(ep/s)/‖X‖2,∞: Using the above
equations we get also that

‖X(β − β̂m̃)‖2/(2n) ≤ 2500σ̂2
m̄s log(ep/es)

n
.

Since β̂m̃ is at most 3s-sparse, then we conclude using RIP that

‖β − β̂m̃‖2 ≤ 1002σ2s log(ep/s)

‖X‖22,∞
.

The result corresponding to T̂ is straightforward based on (25).

APPENDIX B: PROOFS OF ASYMPTOTIC RESULTS

Without loss of generality we will assume in the next proofs that ‖β̃0 −
β‖2 ≤ 2.104σ2s log(ep/s)

‖X‖22,∞
and |β̃0|Sc ≤ s. Indeed according to Theorem 4 both

statements hold with high probability. In order to alleviate notations we
assume that σ = ‖X‖2,∞.

Proof of Theorem 5. Let ǫ > 0. Observe that

P

(
p

∑

i=1

Ξ2
i1{|Ξi| ≥ λ} ≥ s

log log(ep/s)

)
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≤ log log(ep/s)

s

p
∑

i=1

E
(
Ξ2
i1{|Ξi| ≥ λ}

)
.

Hence using Lemma 4, we get

P

(
p

∑

i=1

Ξ2
i1{|Ξi| ≥ λ0

∞(1 +
√
ǫ/2)} ≥ s

log log(ep/s)

)

= o(1).

Using Lemma 2, we get also that

P
(

‖ΞS‖2 ≥ s
√

log(ep/s)
)

= o(1).

As a consequence, we assume, in what follows, that
∑p

i=1 Ξ
2
i1{|Ξi| ≥ λ0

∞(1+√
ǫ/2)} ≤ s

log log(ep/s) and ‖ΞS‖2 ≤ s
√

log(ep/s). We show first that ∀m ≥ 0
we have

|β̃m
Sc |0 ≤ s,

and
‖β̃m − β‖ ≤

√
s(λ+ 2 log(ep/s)1/4)(1 + 4

√
δ + 100δm/2).

For m = 0 the result is immediate based on the assumption on λ. Assume
that result holds for m and we prove it for m+ 1. On S we have

|β̃m+1
i − βi| ≤ λ+ |Ξi|+ |〈Φ⊤

i , β − β̃m〉|.

Hence
‖β − β̃m+1

S ‖ ≤
√
s(λ+ log(ep/s)1/4) + δ‖β − β̃m‖.

On Sc, we show first that |β̂m+1
Sc |0 ≤ s. By absurd, assuming this is not the

case, then

√
sλ ≤

√
∑

i∈S̃

|Ξi|21{|Ξi| ≥ λ
ǫ/4
∞ }

+

√
∑

i∈S̃

|Ξi|21{|Ξi| ≤ λ
ǫ/4
∞ , |〈Φi, β − β̃m〉| ≤

√
ǫλ0∞/2}+ δ‖β − β̃m‖

for some S̃ that is s-sparse. It comes out that

√
sλ ≤

√
s

log log(ep/s)
+ 2

(

1 +
1√
ǫ

)

δ‖β − β̃m‖.

Using the induction hypothesis

√
sλ ≤

√
s

log log(ep/s)
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+ 2
√
δ(
√
δ + 1)

√
s(λ+ 2 log(ep/s)1/4)(1 + 4

√
δ + 100δm/2).

Since δ ≤ 1/4002 and p/s large enough the above statement can not hold.
Next we have on Sc

|β̃m+1
i | ≤ |Ξi|1{|Hm+1

i | ≥ λ}+ |〈Φ⊤
i , β − β̃m〉|.

Since Sc
m+1 is s-sparse then arguing as above we get

‖β̃m+1
Sc ‖ ≤ 2

(

1 +
1√
ǫ

)

δ‖β − β̃m‖+
√

s

log log(ep/s)
.

Hence

‖β̃m+1 − β‖ ≤
√
s(λ+ 2 log(ep/s)1/4) +

√
δ(3 + 2

√
δ)‖β − β̃m‖.

Using the induction hypothesis

‖β̃m+1 − β‖ ≤
√
s(λ+ 2 log(ep/s)1/4)(1 +

√
δ(3 + 2

√
δ)(1 + 4

√
δ + 100δm/2)).

Since
√
δ(3+2

√
δ)(1+4

√
δ+100δm/2) ≤ 4

√
δ+100δ(m+1)/2 then the result

follows. As a consequence, as s/p → 0,we have for m ≥ 0

‖β̃m − β‖ ≤ (1 + 4
√
δ + 100δm/2)

√
sλ.

This concludes the proof.

Proof of Theorem 6. Let ǫ > 0. Following the same steps as in the
proof of Theorem 5, we assume, in what follows, that

∑p
i=1 Ξ

2
i1{|Ξi| ≥

λ0
∞(1+

√
ǫ/2)} ≤ s

log log(ep/s) ,
∑

i∈S 1{|Ξi| ≥ λ0
∞
√
ǫ/2} ≤ s

2 log(ep/s) log log(ep/s)

and ‖ΞS‖2 ≤ s+ log(s). Indeed, sing Lemma 4, we get

P

(
p

∑

i=1

Ξ2
i1{|Ξi| ≥ λ0

∞(1 +
√
ǫ/2)} ≥ s

log log(ep/s)

)

= o(1),

and using Markov inequality

P

(
∑

i∈S
1{|Ξi| ≥ λ0

∞
√
ǫ/2} ≥ s

2 log(ep/s) log log(ep/s)

)

= o(1).

Using Lemma 2, we get also that

P
(
‖ΞS‖2 ≥ s+ log(s)

)
= o(1),
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as s → ∞.
We show that ∀m ≥ 0 we have

|β̃m
Sc |0 ≤ s,

and

‖β̃m − β‖ ≤ 100
√
sλδm/2 +

(
√

s+ log(s) +

√

4s

log log(ep/s)

)

(1 + 4
√
δ).

For m = 0 the result is immediate based on the assumption on λ. Assume
the result is true for m and we prove it for m+ 1. On S we have

|β̃m+1
i − βi| ≤ λ1{|βi + Ξi + 〈Φ⊤

i , β − β̃m〉| ≤ λ}
+ |Ξi|+ |〈Φ⊤

i , β − β̃m〉|.

Moreover

1{|βi + Ξi + 〈Φ⊤
i , β − β̃m〉| ≤ λ} ≤ 1{|Ξi|+ |〈Φ⊤

i , β − β̂m| ≥ (|βi| − λ)}
≤ 1{|Ξi| ≥

√
ǫλ/2}+ 1{|〈Φ⊤

i , β − β̂m〉| ≥
√
ǫλ/2}.

Hence

‖β − β̃m+1
S ‖ ≤

√
s

log log(ep/s)
+

√

s+ log(s) + δ‖β − β̃m‖
(

1 +
2√
ǫ

)

.

On Sc, we show first that |β̃m+1
Sc |0 ≤ s. By absurd assume this is not the

case then

√
sλ ≤

√
∑

i∈S̃

|Ξi|21{|Ξi| ≥ λ
ǫ/4
∞ }

+

√
∑

i∈S̃

|Ξi|21{|Ξi| ≤ λ
ǫ/4
∞ , |〈Φi, β − β̃m〉| ≤

√
ǫλ0∞/2}+ δ‖β − β̃m‖

for some S̃ that is s-sparse. It comes out that

√
sλ ≤

√
s

log log(ep/s)
+ 2

(

1 +
1√
ǫ

)

δ‖β − β̃m‖.

Using the induction hypothesis

√
sλ ≤

√
s

log log(ep/s)
+ 2

√
δ(
√
δ + 1)‖β − β̃m‖.
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Since δ ≤ 1/4002 and both s and p/s are large enough the above statement
can not hold. Next we have on Sc

|β̃m+1
i | ≤ |Ξi|1{|Hm+1

i | ≥ λ}+ |〈Φ⊤
i , β − β̃m〉|.

Since Sc
m+1 is s-sparse then arguing as above we get

‖β̃m+1
Sc ‖ ≤ 2

(

1 +
1√
ǫ

)

δ‖β − β̃m‖+
√

s

log log(ep/s)
.

Hence

‖β̃m+1 − β‖ ≤
√

4s

log log(ep/s)
+

√

s+ log(s) +
√
δ(3 + 2

√
δ)‖β − β̃m‖.

We conclude using the induction hypothesis since
√
δ(3 + 2

√
δ)(1 + 4

√
δ +

100δm/2) ≤ 4
√
δ + 100δ(m+1)/2 . As a consequence, as s/p → 0 and s → ∞,

we have for m ≥ 0 that

‖β̃m − β‖ ≤ 100
√
sλδm/2 +

√
s(1 + 4

√
δ + o(1)).

Observing that form ≥ log log(p/s) we have 100
√
sλδm/2 = o(

√
s) concludes

the proof.

Proof of Theorem 7. Similarly to the proof of Theorem 6 we assume
that

∑p
i=1 Ξ

2
i1{|Ξi| ≥ λ0

∞(1+
√
ǫ/2)} ≤ s

log log(ep/s) ,
∑

i∈S 1{|Ξi| ≥ λ0
∞
√
ǫ/2} ≤

s
2 log(ep/s) log log(ep/s) and ‖ΞS‖2 ≤ s+log(s)+log(p/s). Observe that ‖ΞS‖2 ≤
s + log(s) + log(p/s) holds with high probability even for fixed s. It comes
out that

∑

i∈S
|η̃mi − ηi| =

∑

i∈S
1{|Hm

i | ≤ λ}

≤
∑

i∈S
1{|Ξi| ≥ λ

√
ǫ/2}+

∑

i∈S
1{|Φ⊤

i , β − β̃m| ≥ λ
√
ǫ/2}.

Hence using Theorem 6 we get, for m ≥ log log(ep/s), that

∑

i∈S
|η̃mi − ηi| = o(s).

Moreover on Sc we have that |η̃m|0 ≤ s and

∑

i∈Sc

|η̃mi − ηi| =
∑

i∈Sc

1{|Hm
i | ≥ λǫ

∞}
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≤
∑

i∈Sc

1{|Ξi| ≥ λ∞(1 +
√
ǫ/2)}

+
∑

i∈Sc

1{|Φ⊤
i , β − β̃m| ≥ λ∞

√
ǫ/2}.

Hence using again Theorem 6 we get, for m ≥ log log(ep/s), that

∑

i∈Sc

|η̃mi − ηi| = o(s).

The result follows immediatly.

Proof of Theorem 8. So far we have used the following decomposition

Hm+1 = β +Φ(β − β̂m) + Ξ.

Using the oracle vector β̃∗, we get another decomposition

Hm+1 = β̃∗ +Φ(β̃∗ − β̂m) + Ξ̃,

where Ξ̃S = 0 and Ξ̃Sc = 1
‖X‖2,∞X⊤

Sc

(
In −XS((X

⊤X)SS)
−1X⊤

S

)
ξ. Our

goal is to estimate β̃∗. Observe that the noise Ξ̃ is zero on S and each of
its coordinates is 1-subGaussian on Sc. Without loss of generality we may
assume that ‖β̃0 − β̃∗‖ ≤ 150

√

s log(ep/s) since ‖β − β̃∗‖ ≤ 50
√

s log(ep/s)
with high probability.

Let ǫ > 0. We assume, in what follows, that ∀i = 1, . . . , p, |Ξ̃i| ≤ µ
ǫ/4
∞ . This

actually holds with high probability since each coordinate is 1-subGaussian.
Similarly, we also assume that ‖β̃∗ − β‖∞ ≤

√

2 log(s) +
√

2ǫ log(p). In
particular, for all i ∈ S, |β̃∗

i | ≥ (1 + 2
√
ǫ)
√

2 log(p).
We show that ∀m ≥ 0 we have

|β̃m
Sc |0 ≤ s,

and
‖β̃m − β̃∗‖ ≤ 150

√

s log(ep/s)(10δ)m/2.

For m = 0 the result is immediate. Assume the result is true for m and we
prove it for m+ 1. On S we have

|β̃m+1
i − β̃∗

i | ≤ µǫ
∞1{|β̃∗

i + 〈Φ⊤
i , β̃

∗ − β̃m〉| ≤ µǫ
∞}+ |〈Φ⊤

i , β̃
∗ − β̃m〉|.

Moreover

1{|β̃∗
i + 〈Φ⊤

i , β̃
∗ − β̃m〉| ≤ µǫ

∞} ≤ 1{|〈Φ⊤
i , β̃

∗ − β̂m| ≥ (|β̃∗
i | − µǫ

∞)}
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≤ 1{|〈Φ⊤
i , β̃

∗ − β̂m〉| ≥
√
ǫµ0

∞}.
Hence

‖β̃∗ − β̃m+1
S ‖ ≤ δ‖β̃∗ − β̃m‖

(

2 +
1√
ǫ

)

.

On Sc, we show first that |β̃m+1
Sc |0 ≤ s. By absurd assume this is not the

case then

√
sµǫ

∞ ≤
√

∑

i∈S̃

|Ξ̃i|21{|Ξ̃i| ≥ µ
ǫ/4
∞ }

+

√
∑

i∈S̃

|Ξ̃i|21{|Ξ̃i| ≤ µ
ǫ/4
∞ , |〈Φi, β̃∗ − β̃m〉| ≤

√
ǫµ0∞/2} + δ‖β̃∗ − β̃m‖

for some S̃ that is s-sparse. It comes out that

√
sµǫ

∞ ≤ 2

(

1 +
1√
ǫ

)

δ‖β̃∗ − β̃m‖.

Using the induction hypothesis
√
sµǫ

∞ ≤ 2
√
δ(
√
δ + 1)‖β̃∗ − β̃m‖.

Since δ ≤ 1/4002 and p/s is large enough the above statement can not hold.
Next we have on Sc

|β̃m+1
i | ≤ |Ξ̃i|1{|Hm+1

i | ≥ µǫ
∞}+ |〈Φ⊤

i , β̃
∗ − β̃m〉|.

Since Sc
m+1 is s-sparse then arguing as above we get

‖β̃m+1
Sc ‖ ≤ 2

(

1 +
1√
ǫ

)

δ‖β̃∗ − β̃m‖.

Hence
‖β̃m+1 − β̃∗‖ ≤

√
δ(3 + 4

√
δ)‖β̃∗ − β̃m‖.

We conclude using the induction hypothesis since
√
δ(3 + 4

√
δ)(10δ)m/2 ≤

(10δ)(m+1)/2 . As a consequence, as s/p → 0, we have for m ≥ 0 that

‖β̃m − β̃∗‖ ≤ 150
√

s log(ep/s)(10δ)m/2 .

In particular, we have for m ≥ log(s), that

‖β̃m − β̃∗‖∞ ≤ µǫ
∞/2,

since δ is small enough. Based on the separation condition on β̃∗, it is now
clear that β̃m and β̃∗ share the same support. Hence we conclude that

|η̃m − η| = 0.
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APPENDIX C: TECHNICAL LEMMAS

Lemma 2. Assume that ξ is a centered 1-subGaussian random vector.
Then, for all S ⊂ {1, . . . , p} such that |S| ≤ s, we have

∀t ≥ 0, P

(

1

‖X‖42,∞

∑

i∈S

(

X⊤
i ξ

)2
≥ s+ t

‖X‖22,∞

)

≤ e−(t/8)∧(t2/(64s)).

Proof. Observe that

∑

i∈S

(

X⊤
i ξ

)2
= ‖X⊤

S ξ‖2.

Then using Theorem 2.1 in [13] we get that

P
(

‖X⊤
S ξ‖2 ≥ Tr(XSX

⊤
S ) + 2‖XSX

⊤
S ‖F

√
t+ 2λmax(XSX

⊤
S )t

)

≤ e−t.

We have that
Tr(XSX

⊤
S ) ≤ s‖X‖22,∞.

Moreover λmax(XSX
⊤
S ) ≤ 2‖X‖22,∞ (using RIP) and ‖XSX

⊤
S ‖F ≤ 2

√
s‖X‖22,∞

since the rank of XSX
⊤
S is at most s. Hence we conclude using the above

concentration inequality that

P

(

1

‖X‖42,∞

∑

i∈S

(

X⊤
i ξ

)2
≥ s+ 4

√
st+ 4t

‖X‖22,∞

)

≤ e−t.

The final bound is obtained by considering u = 8
√
t(
√
s ∨

√
t) and equiva-

lently t = (u/8) ∧ (u2/(64s)).

Lemma 3. There exists c > 0 such that

P

(
s∑

i=1

Ξ2
(i) ≥

10σ2s log(ep/s)

‖X‖22,∞

)

≤ e−cs log(ep/s).

Proof. Using Lemma 2, and the union bound since
(
p

s

)

≤
(ep

s

)s
≤ es log(ep/s).

The result follows as long as p ≥ s.

Lemma 4. Let Ξ defined as in Section 2, then we have

∀t ≥ 0, E(Ξ2
i1{|Ξi| ≥ t}) ≤ 2

(
t2 + σ2/‖X‖22,∞

)
e−t2‖X‖22,∞/(2σ2).
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Proof. Let t ≥ 0. We have

E(Ξ2
i1{|Ξi| ≥ t}) =

∫ ∞

0
P(Ξ2

i 1{|Ξi| ≥ t} ≥ u)du.

=

∫ t2

0
P(|Ξi| ≥ t)du+

∫ ∞

t2
P(Ξ2

i ≥ u)du

= t2P(|Ξi| ≥ t) + 2

∫ ∞

t
uP(|Ξi| ≥ u)du

≤ 2
(
t2 + σ2/‖X‖22,∞

)
e−t2‖X‖22,∞/(2σ2).

Lemma 5. Let β be a s-sparse vector and S its support. Then

Pβ



sup
β̂

〈

ξ,
X⊤(β − β̂)

‖X(β − β̂)‖

〉2

≥ 7(s+ |β̂Sc |0) log(ep/(s + |β̂Sc |0))



 ≤ e−cs log(ep/s).

Proof. Observe that β−β̂ is has sparsity at most s+|β̂Sc |0. Let π be the
orthogonal projector onto the span of columns of X indexed by the support
of β − β̂. It comes out that

∣
∣
∣
∣
∣

〈

ξ,
X⊤(β − β̂)

‖X(β − β̂)‖

〉∣
∣
∣
∣
∣
≤ ‖πξ‖.

Since π has rank at most s + |β̂Sc |0, then using Theorem 2.1 in [13] we get
that for all t ≥ 0 and for fixed π

P
(

‖πξ‖2 ≥ s+ |β̂Sc |0 + 3t
)

≤ e−t.

It comes out that

P
(

‖πξ‖2 ≥ 7(s + |β̂Sc |0) log(ep/(s + |β̂Sc |))
)

≤ e−2s log(ep/s).

Hence

Pβ

(

sup
|β̂Sc |0=v

‖πξ‖2 ≥ 7(s+ v) log(ep/(s + v))

)

≤ e−s log(ep/s).

We conclude using a union bound over all values of v.
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