
Architectural Decay as Predictor of
Issue- and Change-Proneness

Duc Minh Le*, Suhrid Karthik†, Marcelo Schmitt Laser†, and Nenad Medvidovic†

Software Infrastructure* Computer Science Department†

Bloomberg L.P. University of Southern California
London, EC4N 4TQ, UK Los Angeles, CA 90089, USA

dle50@bloomberg.net {skarthik,schmittl,neno}@usc.edu

Abstract—Architectural decay imposes real costs in terms of
developer effort, system correctness, and performance. Over time,
those problems are likely to be revealed as explicit implemen-
tation issues (defects, feature changes, etc.). Recent empirical
studies have demonstrated that there is a significant correlation
between architectural “smells”—manifestations of architectural
decay—and implementation issues. In this paper, we take a step
further in exploring this phenomenon. We analyze the available
development data from 10 open-source software systems and
show that information regarding current architectural decay in
these systems can be used to build models that accurately predict
future issue-proneness and change-proneness of the systems’
implementations. As a less intuitive result, we also show that, in
cases where historical data for a system is unavailable, such data
from other, unrelated systems can provide reasonably accurate
issue- and change-proneness prediction capabilities.

Index Terms—Architectural Decay, Issue Proneness, Change
Proneness, Architectural Smell, Decay Prediction

I. INTRODUCTION

Software systems change regularly, as do their architectures.
Over time, a system’s architecture is increasingly affected by
decay, caused by careless or unintended design decisions [53].
Decay results in systems whose implemented architectures
differ in important ways from their designed architectures. Both
researchers and practitioners have recognized the negative im-
pact of architectural decay and its role in causing technical debt.
Despite this, when developers modify a system during main-
tenance, they often focus on code and neglect the architecture.

Researchers have proposed a number of techniques to analyze
a system at the code level and to predict issues that are likely to
appear in the system’s future versions. A common approach has
been to use historical artifacts, such as data from issue trackers
and version control systems, to build prediction models. Early
approaches [29], [47], [24], [13] built models to predict imple-
mentation issues based on code metrics. Later studies made use
of other properties that were reckoned to be potential causes of
issues, such as code dependencies [73] and code smells [25].

In contrast to code-level techniques, analogous techniques at
the architecture level have not received nearly as much attention,
even though recent work has demonstrated that even simple
code updates can cause system-wide architectural changes [36].
Frequently, such updates introduce architectural smells in a
system (e.g., dependency cycle, ambiguous interface [35]).
These smells may have no immediately visible effect, but they
are symptoms of architectural decay and accumulated technical

debt [64], [18], [36], [35]. As decay compounds in long-lived
systems, the number of architectural smells grows, creating
unforeseen issues when engineers try to modify a system.

In such cases, engineers are eventually likely to realize the
negative effects of the incurred technical debt and the need
to refactor their system. However, they usually spot deeper
architectural problems only when related implementation-level
issues surface. For example, issue #1178 reported for Apache
Pig indicates that developers recognize the problem of having a
large number of functions in a component: “[The component]
has been an area of numerous bugs, many of which have
been difficult to fix” [2]. Similarly, issue #223 in Apache CXF
acknowledges the need to refactor CXF’s architecture to reduce
the amount of code changes and improve extensibility [1].

Recent studies have established strong correlations between
architectural smells and both (1) a system’s proneness to change
and (2) the emergence of certain implementation issues [35],
[37]. Furthermore, many bugs reported for a system have been
shown to have architectural roots [70], [44]. Prior work has
also demonstrated that identifying code smells using existing
approaches will not help to uncover the underlying architectural
issues, and modifications to address thus identified problems
run the risk of being inadequate, short-term patches [51].
Despite this, predictive models that leverage architectural
characteristics to anticipate the implementation issues or the
amount of change a system may experience have been scarce.

In this paper, we propose and empirically evaluate an
approach to predict a system’s (1) future implementation issues
and (2) proneness to change based on the system’s current
and past architectural characteristics. Our work is inspired in
part by the recent finding [35] that architectural smells and
implementation issues are strongly correlated. Specifically, we
analyze 466 versions of 10 open-source software systems. For
each system version, we use 3 different methods to recover its
architectures from source code. We analyze thus obtained 1,398
architectural models to detect 11 distinct types of architectural
smells. The detected smells are subsequently used as features
in our prediction models. We make use of different machine
learning techniques to predict a given system’s issue- and
change-proneness based on the collected architectural features.

Our study has resulted in two principal findings regarding
the predictive power of the models obtained in this manner:

1) The architectural smells detected in a system can help to
accurately predict both the issue-proneness and change-

z
Recovery

Techniques
Source Code Architecture Architectural

Smell Detector

Issue Repository

Issue
Extractor

Issues Relation Analyzer
zCorrelation
Data

Legend

Artifacts
Artifacts

Component

Architectural-
Smell Instances

zPrediction
Models

Build models

FIG. 1: ARCHITECTURE RECOVERY PIPELINE USED IN OUR STUDY AND ENABLED BY THE ARCADE TOOL SUITE.

proneness of that system at a given point in time.
Our models yielded precision and recall scores of at
least 70% (and as high as 95%) for specific recovered
architectural views of the subject systems. This finding
allows maintainers to foresee future problems involving
new smell-impacted parts of a system.

2) Different, independently developed software systems tend
to share issue- and change-proneness characteristics. This
allows developers to use models created using data from
a set of existing systems to predict the issue- and change-
proneness of an unrelated system for which historical data
does not exist (e.g., a newly developed system). While
the accuracy of such general-purpose prediction models is
lower than the system-specific models, the loss in accuracy
is moderate, typically under 10%. Our results indicate
that this is a fruitful area for further investigation, and
that our models are already usable in practice for making
certain types of decisions.

Section II introduces foundations for our study. Section III
presents the research questions and describes the study. The
results are detailed in Section IV. Threats to validity, related
work, conclusions, and acknowledgment round out the paper.

II. FOUNDATION

Our work is directly enabled by three research threads:
(1) software architecture recovery, (2) definition and analysis
of architectural smells, and (3) tracking implementation issues.
Figure 1 depicts how these threads are combined to answer
our research questions in this paper.

A. Architecture Recovery with ARCADE
Garcia et al. [19] conducted a comparative evaluation of

software architecture recovery techniques. Their objective was
to measure the existing techniques’ accuracy and scalability
on a set of systems for which researchers had previously
obtained “ground-truth” architectures [20]. To that end, the
authors implemented a tool suite, named ARCADE, offering a
large set of architecture recovery choices to an engineer.1

Garcia et al.’s results indicate that two techniques im-
plemented in ARCADE consistently outperformed the rest:

1The existing techniques implemented within ARCADE support structural
clusterings of software systems’ elements based on a range of criteria. While
the resulting recovered models contain only partial architectural information for
a given system, in this paper we will refer to them as “recovered architectures”.
We note that our use of this term is consistent with existing literature.

ACDC [66] and ARC [23]. We select these techniques for our
study. ACDC leverages a system’s structural characteristics
to cluster implementation-level modules into architectural
components, while ARC focuses on the concerns implemented
by a system. ACDC relies on static dependency analysis; ARC
uses information retrieval and machine learning.

PKG is another technique implemented in ARCADE. PKG
extracts a system’s implementation package structure. The pack-
age structure of a system is considered to be a reliable view of a
system’s “implementation architecture” [34]. We use it to com-
plement the two selected clustering-based architectural views.

B. Architectural Smells

Architectural smells are instances of poor architectural
design decisions [45]. They negatively impact system lifecycle
properties, such as understandability, testability, extensibility,
and reusability [21]. While code smells [16], anti-patterns [10],
or structural design smells [17] originate from implementation
constructs (e.g., classes, methods, variables), architectural
smells stem from poor use of software architecture-level
abstractions — components, connectors, interfaces, patterns,
styles, etc. Detected instances of architectural smells are
candidates for restructuring [9], to help prevent architectural
decay and improve system quality.

Researchers have collected a growing catalog of architectural
smells. Garcia et al. [21], [22] identified an initial set of four
smells related to connectors, interfaces, and concerns. Mo et
al. [46] introduced a new concern-related smell. Ganesh et al.
[17] also summarized a catalog of structural design smells,
some of which are at the architecture-level. Le et al. [35]
described 11 different architectural smells and proposed a set
of algorithms to detect them. Table I summarizes a consolidated
list of smells that were identified in the above references, after
removing duplicates and non-architectural smells.

C. Issue Tracking Systems

Issue tracking systems are commonly used development
tools that allow users to report different problems and concerns
about a system and monitor their status. All subject systems
selected for analysis in this paper use Jira [4] as their issue
tracking system. However, this is not a limitation; our approach
can be applied to other issue trackers.

When reporting implementation issues, engineers categorize
them into different types: bug, new feature, improvement, task

TABLE I: CONSOLIDATED CATALOG OF ARCHITECTURAL SMELLS

Category Type Definition Consequences

Interface-
based

Unused Interface Component’s interface is not linked to other components Adds unnecessary complexity to the system
Unused Brick Component’s interfaces are all unused Same as Unused Interface, but more severe
Sloppy Delegation Component delegates functionality it could have performed Reduces separation of concerns
Functionality Overload Component has an excessive amount of functionality Reduced modularity
Lego Syndrome Component handles exceedingly small amount of functionality High coupling

Change-
based

Duplicate Functionality Several components replicate the same functionality Bugs if changing only one duplicate
Logical Coupling Parts of different components are frequently changed together Similar to Duplicate Functionality

Dependency-
based

Dependency Cycle Set of components whose links form a circular chain Changes to one component affect the entire cycle
Link Overload Component’s interfaces have too many dependencies Reduced isolation of changes

Concern-
based

Scattered Parasitic Funct. Multiple components responsible for realizing one concern Changing a feature modifies multiple system parts
Concern Overload Component implements an excessive number of concerns Violates separation of concerns

to be performed, etc. We consider all issue types in our study
because they may result in relevant changes to a system. In other
words, any issue type or individual issue instance may have an
underlying architectural cause. Note that it would be possible to
perform a finer-grained analysis using the same process we em-
ployed that would focus on a specific subset of issues or types.

Each issue has a status that indicates where the issue is
in its lifecycle [3]. An issue starts as “open”, progresses to
“resolved”, and finally to “closed”. We restrict our study to
closed and resolved issues that have been “fixed”, and ignore
those resolved issues that fall under “won’t fix”, “cannot
reproduce”, etc. We do so because any effects caused by the
fixed issues presumably appear in certain system versions and
disappear once the issue is addressed. Additionally, a fixed issue
contains information that is useful for our study: (1) affected
versions in which the issue has been found, (2) type of issue,
and (3) fixing commits, i.e., the changes applied to the system
to resolve the issue. Finding fixing commits is not always easy
since there is no standard method for engineers to keep track
of this information. Three ways of keeping track of an issue’s
fixing commits are commonly employed in our set of subject
systems: (1) direct links to the commits, (2) specifying pull
requests, and (3) specifying patch files. Our implemented tool
supports collecting data from all three methods.

Based on the collected information, issues are mapped to
detected smells. To do this, first, we find the system versions
that the issue affects. Then we find the architectural smells
present in those versions. We say the issue is infected by a
given smell if and only if (1) both the issue and the smell
affect the same system version and (2) the resolution of the
issue changes files that are involved in the smell. Based on
this relationship, we studied if the characteristics of an issue
(e.g. issue type, number of fixing commits) depend on whether
the issue is infected by a given smell.

Note that resolving an issue may not remove the smell that
led to the issue in the first place. One reason is that developers
could find a workaround. The smell may also correlate with
more than one issue. In general, it is difficult to identify the ex-
act relationship between a specific architectural smell instance
and a specific implementation issue. Fortunately, we do not need
to do that in our work, because we are looking for prediction
models that uncover smell-issue correlations across most cases.

III. EMPIRICAL STUDY SETUP

This section describes our study setup. Our hypothesis and
research questions are described in Section III-A. We then
describe how we pre-processed the raw data in Section III-B.

A. Research Question and Research Hypothesis

Our hypothesis is that it is possible to construct accurate
models to predict the impact of architectural decay on a
system’s implementation. To evaluate this hypothesis, we focus
on the predictability of a system’s issue- and change-proneness
based on the identified architectural smells (i.e., the symptoms
of decay). We define two research questions accordingly.

RQ1. To what extent can the architectural smells detected
in a system help to predict the issue-proneness and change-
proneness of that system at a given point in time?

The training data used to build the prediction models for a
system is collected from different versions of that system. If
these models can be shown to accurately predict issue- and
change-proneness, this would indicate that architectural smells
have consistent impacts on those two properties throughout a
system’s life span. In turn, this would confirm that the impact
of architectural smells is not related to other factors, such as
system size, which will change during a system’s evolution.
In addition, an accurate prediction model will be useful for
maintainers to foresee the future issue- and change-proneness
of newly smell-affected parts of a system, helping them to
decide when and where they may need to refactor the system.

RQ2. To what extent do unrelated software systems tend to
share properties with respect to issue-proneness and change-
proneness?

This question investigates whether the issue- and change-
proneness of a system can be accurately predicted by a general-
purpose model trained using symptoms of architectural decay
from unrelated systems. If such a model can be constructed,
it can be reused by developers to predict properties of systems
for which historical information is not (yet) available. An
affirmative answer to this question would also have a deeper im-
plication: software systems tend to share fundamental properties
regardless of system type, application domain, developers, em-
ployed tools, programming languages, execution platforms, etc.

Raw data
From ARCADE

Labelling Balancing

10-fold
Cross-validation

One system as
test set

RQ1 result

RQ2 result
Data pre-processing

Model building

FIG. 2: DATA PROCESSING PIPELINE.

B. Building the Data Pipeline

To answer the two research questions, we build multiple
prediction models based on different systems’ architectural-
smell data and assess the models’ accuracy. We rely on
ARCADE [36] to collect the underlying raw architectural-smell
data, and WEKA[50]—a well-known ML framework—to pre-
process the data, build prediction models, and evaluate their
accuracy. The data pipeline we use is illustrated in Figure 2.
Section III-B1 introduces the list of subject systems and the pro-
cess of recovering their architectural artifacts with ARCADE.
Two main pre-processing tasks are labeling and balancing the
raw data, which are discussed in Sections III-B2 and III-B3,
respectively. Creating the training and test sets, evaluating pre-
diction models as well as determining the baseline models are
discussed in Sections III-B4, III-B5, and III-B6, respectively.

1) ARCADE and Subject Systems: We collected data from
ten open-source systems from the Apache Software Foundation,
shown in Table II. Specifically, our study uses three types of
data: (1) architectural smells detected in recovered architectures,
(2) implementation issues collected from the Jira [4] issue
repository, and (3) code commits extracted from GitHub [5].

Using ARCADE, we recover the subject systems’ architec-
tures using the three recovery techniques—ACDC, ARC, and
PKG—whose accuracy and scalability have been demonstrated
by prior work (recall Section II-A). We then analyze the
recovered architectures for the presence of smells identified
in the literature (recall Section II-B and Table I), as well as
the systems’ issue- and change-proneness. Those architectural
artifacts are the raw data for building prediction models.

2) Labeling the Data: Data labeling is a key step to ensure
the success of prediction models. In our prediction problem,
we are interested in two properties—issue-proneness and

TABLE II: SUBJECT SYSTEMS IN OUR STUDY

System Domain # Versions # Issues Avg. LOC
Camel Integration F-work 78 9665 1.13M
CXF Service F-work 120 6371 915K
Hadoop Data Proc. F-work 63 9381 1.96M
Ignite In-memory F-work 17 3410 1.40M
Nutch Web Crawler 21 1928 118K
OpenJPA Java Persist. 20 1937 511K
Pig Data Analysis F-work 16 3465 358K
Struts2 Web App F-work 36 4207 379K
Wicket Web App F-work 72 6098 332K
ZooKeeper Config. Mgmt F-work 23 1390 144K

change-proneness. These properties can be obtained by, first,
counting the raw numbers of issues and changes in a system’s
development history and, then, finding a way of characterizing
those numbers. Specifically, we assign nominal labels based on
the raw numbers of issues and changes related to source files
to represent different levels of issue- and change-proneness.

Converting a set of numerical values to nominal labels de-
pends on the values’ distribution. In our problem, the numbers
of issues and changes follow a heavy-tailed distribution [15],
where many files are associated with small numbers of issues
and code changes, while comparatively fewer files are associ-
ated with large numbers of issues and changes. This is not an
uncommon type of distribution [72], [8]. As an illustration, the
Pareto chart [68] in Figure 3 depicts the distribution of issues
per file in Hadoop: while few files are associated with a large
number of issues, the arc, which represents the cumulative per-
centage of file-groups’ sizes, shows a clear heavy-tailed pattern.

One common labeling approach is to segment a heavy-tailed
distribution into head and tail segments. A more sophisticated
approach is to divide the distribution into three parts—head,
body, and tail—which in our case represent the three levels
of proneness: low, medium, and high. We choose the latter
approach because the numerical values in our study span a
wide range. Having these three levels gives developers a better
estimation of architectural decay’s impact.

To segment a dataset, we use the Pareto principle [52], a
popular segmentation method for heavy-tailed distributions,
widely used in software engineering (e.g., [8], [30], [61]). To
obtain the three segments, we apply the Pareto principle twice,
as suggested in literature [6]. Specifically, we divide the original
dataset into two portions. The first portion contains 80% of the

FIG. 3: PARETO CHART OF ISSUES PER FILE IN HADOOP.
THE X-AXIS REPRESENTS THE HADOOP FILES GROUPED BY
THE NUMBER OF ISSUES THEY CONTAIN, THE LEFT Y-AXIS
THE NUMBER OF FILES IN SAME GROUPS, AND THE RIGHT

Y-AXIS THE CUMULATIVE PERCENTAGE OF GROUPS’ SIZES.

RQ 1 - Cross-Validation Training set

 Test set

Fold-1 Fold-2 Fold-3 … Fold-9 Fold-10 Iter 1

Fold-1 Fold-2 Fold-3 … Fold-9 Fold-10 Iter 2
… …

RQ 2 - Separate Test System

Camel CXF Hadoop … Wicket Zookeeper

Camel CXF Hadoop … Wicket Zookeeper
…

Dataset of a single system (e.g., Hadoop)

Prediction model for Camel

Prediction model for CXF

Prediction model for Hadoop

FIG. 4: CREATING DATASETS TO ANSWER RQ1 (TOP) AND RQ2 (BOTTOM).

original dataset’s low-end, while the second portion contains
20% of the high-end. We apply the Pareto segmentation once
more to the latter portion, thus obtaining two new portions that
respectively contain the next 16% (80% of the 20%) and 4%
(20% of the 20%) of the high-end data points.

In order to collect the data regarding architectural decay,
for each version of a subject system, we first collect the list
of “fixed” issues affecting that version. Next, we collect the
files that were changed when fixing the issues. For each file,
we gather its associated architectural smells, the number of
issues whose fixing commits changed that file (used when
determining the system’s issue-proneness in Sections IV-RQ1-
A and IV-RQ2-A), and the total number of changes (used when
determining the system’s change-proneness in Sections IV-RQ1-
B and IV-RQ2-B). After the raw data is collected, we label it
using the Pareto technique mentioned above before feeding it
to supervised ML algorithms.

To determine the level of issue-proneness of a source file in
a system version, first, the number of issues related to that file
is collected. This is one data point. We collect data points for
all files in all available versions of a system, and then sort the
dataset by the numbers of issues, from low to high. Then, the
first 80% of data points are marked with “low” labels; the next
16% and 4%, respectively, are marked with “med(ium)” and
“high” labels. To determine the change-proneness of a source
file in a system’s version, we count the number of commits
related to that file and repeat a similar labeling process.

Table III shows several data samples in our datasets after
labeling. The shown features, i.e., architectural smells in our
case, are CO (Concern Overload), SF (Scattered parasitic
Functionality), LO (Link Overload), and DC (Dependency
Cycle). The output features, i.e., labels, are the levels of issue-
proneness and change-proneness. The two leftmost columns
show the versions and filenames of each data point. The next
eleven columns are binary features that indicate the presence (1)
or absence (0) of a specific smell (recall Table I) in a given file.

TABLE III: DATA SAMPLES FROM HADOOP

Vers. Filename CO SF LO DC ... Iss Chg
0.20.0 dfs/DFSClient.java 0 1 1 1 ... H L
0.20.0 mapred/JobTracker.java 1 0 1 0 ... M M
0.20.0 tools/Logalyzer.java 0 0 0 0 ... L L
...

The two rightmost columns indicate the issue-proneness (“Iss”)
and change-proneness (“Chg”) of the files. For example, in
version 0.20.0 of Hadoop, DFSClient.java has three smells:
SPF, LO, and DC. The file’s issue-proneness is high (H), and
its change-proneness is low (L). On the other hand, both issue-
and change-proneness of JobTracker.java are medium (M).

3) Balancing the Data: Due to the distribution of data and
the labeling approach, we need to balance our datasets [55].
Recall from Section III-B2 that the low : med : high ratio of our
datasets is 80:16:4 (i.e., 20:4:1). If such a dataset were used
to train a prediction model, the most likely outcome would
be a model that predicts “low” for every data point. As we
are more interested in “high” and “med” labels, such a model
would be useless. It is thus important to ensure that weighted
metrics are not biased by less (or more) frequent labels.

We use SMOTE [11] to balance our dataset, oversampling
“med” by a factor of 5 and “high” by a factor of 20. SMOTE
is a technique that synthesizes new minority samples based
on nearest neighbors between sample data points. Adding new
minority samples guarantees that the dataset will be balanced,
i.e., that the low : med : high ratio will be 1:1:1.

4) Training and Test Sets: To build and test our prediction
models, we use two different approaches for the two research
questions, as illustrated in Figure 4. In the first approach, used
for RQ1, one dataset is created for each subject system with
a cross-validation setup. Specifically, we use 10-fold cross-
validation, where the dataset is randomly divided into ten
equal-sized subsets. Then, we sequentially select one subset
and test it against the prediction model built by the other nine
subsets. The final result is the mean of the ten tests’ results.
In the second approach, used for RQ2, we combine all subject
systems and then divide them into two independent datasets:
a training set, which comprises nine systems, and a test set,
which comprises the single remaining system.

5) Evaluation Metrics: To evaluate the accuracy of our mod-
els, we use precision and recall [54]. Precision is the fraction
of correctly predicted labels over all predicted labels. Recall is
the fraction of correctly predicted labels over all actual labels.

For illustration, consider the sample confusion matrix, shown
in Table IV, that is produced after classifying 25 samples into
“high”, “med”, and “low”. The precision for the “high” label is

TABLE IV: EXAMPLE PREDICTED VS. ACTUAL VALUES

True/Actual
High Med Low

High 4 6 3
Med 1 2 0Predict
Low 1 2 6

the number of correctly predicted “high” samples (4) out of all
samples predicted to be “high” (4+3+6=13), i.e., 30.8%; its re-
call is the number of correctly predicted “high” samples (4) out
of the number of actual “high” samples (4+1+1=6), i.e., 66.7%.
We can similarly calculate the precision and recall for “med”
and “low”. Finally, we compute the average values of all labels.

If a model predicts the correct labels, we consider this a true
positive. On the other hand, if the model predicts any of the
three labels (“high”, “med”, or “low”) incorrectly, we consider
this a false positive. This is the standard way of measuring the
accuracy of multi-label problems [65].

6) Determining Baseline Models: To determine the effec-
tiveness of the prediction models, we need to compare them
to a baseline. In this case, we consider a baseline model
to be the simplest possible prediction. The model can be
obtained through different approaches. For some problems
this may be a random result, and for others in may be the
most common prediction. As our dataset has been balanced
(Section III-B3), the simplest approach is “uniform” — generate
predictions uniformly at random. This implies a prediction in
which Table IV has equal values in all cells, giving us a model
with both precision and recall of 33.3%.

IV. EMPIRICAL STUDY RESULTS

In this section, for each of the two research questions we
discuss the validation method and the associated findings.

RQ1: To what extent can the architectural smells detected
in a system help to predict the issue-proneness and change-
proneness of that system at a given point in time?

In this prediction problem, all input features are binary (recall
Table III), indicating whether a file contains an architectural
smell. For this reason, decision-based techniques are most likely
to yield good results [41]. Metrics collected from a range of
models we built and evaluated using four different classification
techniques—decision table [31], decision tree [56], logistic
regression [39], naive bayes [28]—confirmed this. We thus
only discuss the results obtained by the decision-table models.

A. Issue-Proneness
Recall from Section III-B that, to compute issue-proneness,

for each file in each version of a given system, we gather
the file’s associated architectural smells and number of issues
whose fixing commits changed the file. Table V shows the preci-
sion and recall of the models for predicting the issue-proneness
of our subject systems from Table II. These metrics are com-
puted using 10-fold cross-validation [32]. The bottom-most row
shows the average values across all systems. For each system,
we built different prediction models based on smells detected in
the three architectural views (ACDC, ARC, and PKG). In total,
30 prediction models per system were created and evaluated.

TABLE V: PREDICTING ISSUE-PRONENESS

ACDC ARC PKG
System Precision Recall Precision Recall Precision Recall
Camel 69.9% 68.4% 70.8% 67.0% 68.2% 62.8%
CXF 78.0% 76.7% 68.9% 68.3% 64.7% 63.8%
Hadoop 81.2% 80.1% 76.6% 76.6% 72.8% 73.4%
Ignite 78.9% 78.1% 78.9% 79.1% 70.4% 71.0%
Nutch 80.8% 71.6% 82.5% 82.7% 68.3% 52.1%
OpenJPA 71.4% 68.3% 74.5% 73.2% 69.2% 67.9%
Pig 71.7% 69.1% 71.3% 71.1% 68.6% 69.5%
Struts2 89.2% 89.0% 95.0% 94.8% 79.1% 78.3%
Wicket 69.2% 70.1% 76.7% 77.1% 63.7% 65.4%
ZooKeeper 72.0% 72.6% 70.8% 69.2% 68.7% 69.4%
Average 76.2% 74.4% 76.6% 75.9% 69.4% 67.4%

In general, the prediction models that relied on architectures
recovered by ACDC and ARC were comparable in terms of
accuracy: the average (precision, recall) for the ACDC and ARC
models were (76.2%, 74.4%) and (76.6%, 75.9%) respectively.
On the other hand, the models emerging from PKG yielded ac-
curacy that was up to 13% lower. The models yielded very high
predictive power in the cases of certain systems. For example,
the ARC-based models for Struts2 achieved ≈95.0% and the
ACDC-based models ≈90.0% for each of the two metrics.

As discussed in Section III-B3, our dataset has been balanced
to ensure that the trained models will accurately predict “high”
and “med” labels, in which we are interested. Table VI shows
the precision and recall of issue prediction for all three labels.
While there are variations across the three labels, the average
precision and recall for the “high” label—79.6% and 85.9%,
respectively—outstrip the average values for the other two
labels. Figure 5 shows the comparison of our prediction models
with the baseline model. Our prediction models are at least 1.5×
better (2× in a majority of cases) than the baseline’s 33.3%,
further confirming that our models are useful for predicting
files with high numbers of related issues.

Our results confirm that architectural smell-based models
can accurately predict the issue-proneness of a system. In
other words, architectural smells have a consistent impact on a
system’s implementation with respect to issue-proneness over
the system’s lifetime. This finding means that architectural
decay can be a powerful indicator of the health of a system’s
implementation. It serves as a direct motivator for software
engineers to pay more attention to the architecture, and
architectural smells, in their systems. For example, system
maintainers can use our models to foresee future problems, to
devise refactoring plans, to prioritize their activities, etc.

TABLE VI: PREDICTING ISSUE-PRONENESS WITH ”HIGH”,
”MED” AND ”LOW” LABELS UNDER ACDC

High Med Low
System Precision Recall Precision Recall Precision Recall
Camel 73.9% 56.9% 57.6% 63.6% 78.2% 69.9%
CXF 94.4% 83.3% 65.2% 76.0% 74.5% 70.7%
Hadoop 71.2% 81.5% 78.3% 78.1% 72.1% 81.5%
Ignite 93.8% 89.1% 66.4% 76.8% 76.6% 67.8%
Nutch 66.9% 94.7% 90.4% 61.2% 95.0% 75.8%
OpenJPA 69.3% 89.5% 65.9% 49.8% 79.1% 65.6%
Pig 80.5% 90.9% 72.9% 52.3% 61.8% 64.1%
Struts2 96.3% 95.7% 88.2% 81.1% 83.1% 90.4%
Wicket 78.8% 89.6% 59.3% 60.3% 69.5% 57.3%
ZooKeeper 71.0% 88.0% 64.2% 54.2% 80.7% 75.6%
Average 79.6% 85.9% 70.5% 65.3% 76.1% 71.9%

(a) Precision (b) Recall

FIG. 5: PRECISION AND RECALL OF ISSUE-PRONENESS
PREDICTION FOR EACH LABEL IN ACDC.

The comparatively poorer performance of PKG in answering
RQ1 suggests that implementation-package structure is not
effective for measuring architectural decay and it can mask
deeper architectural problems. This observation is in line with
previous findings [36], which showed that, compared to ACDC
and ARC, PKG is markedly less useful for understanding the
underlying architectural changes and their impact.

This leads to another observation. Recall the categorization
of architectural smells in Section II-B and Table I: two of the
four categories are dependency-based and concern-based smells.
This suggests that ACDC (dependency-based recovery) and
ARC (concern-based recovery) should inherently outperform
PKG when such smells are encountered. It further suggests
that targeting specific recovery techniques to specific types of
smells, and then finding a way to combine their results, may
yield even higher accuracy in our prediction models. We are
exploring this hypothesis in our ongoing work.

B. Change-Proneness

Recall from Section III-B that, to compute change-proneness,
for each file in each version of a given system we gather (1) the
file’s associated architectural smells and (2) the total number of
changes to the file reflected in the implementation issues’ fixing
commits. We used the same approach to evaluate the accuracy
of the 30 architectural models for each system in predicting
change-proneness as we did for predicting issue-proneness.

Table VII shows the accuracy of our models. The models
based on PKG-recovered architectures again have the lowest
accuracy. In some systems, e.g., CXF and Nutch, the values
for PKG-recovered architectures are 10-20% lower than the
corresponding values in the other two views. The average
(precision, recall) are (74.7%, 71.6%) and (73.6%, 73.5%) for
the ACDC- and ARC-based architectural views, respectively.
Notably, the values yielded when analyzing Struts2 are, once
again, very high. A further investigation of Struts2’s dataset
highlighted a distinguishing characteristic: 36 of the analyzed
versions are distributed across just four minor Struts2 versions:
2.0.x, 2.1.x, 2.2.x and 2.3.x. In other words, the changes in
most of these 36 versions were “patches”. It is reasonable
to expect that the architectures and detected smell instances
between patches within a single minor version will be very
similar. The prediction model for Struts2 benefits from this
similarity and thus achieves very high accuracy in the cross-
validation test. This suggests a promising strategy for building

TABLE VII: PREDICTING CHANGE-PRONENESS

ACDC ARC PKG
System Precision Recall Precision Recall Precision Recall
Camel 69.9% 63.4% 68.0% 67.1% 60.3% 61.0%
CXF 73.7% 70.8% 69.7% 63.4% 60.8% 63.4%
Hadoop 78.1% 73.2% 74.9% 74.8% 67.4% 70.0%
Ignite 77.5% 76.1% 75.8% 76.1% 68.7% 69.1%
Nutch 73.1% 66.8% 76.3% 78.0% 62.2% 46.1%
OpenJPA 78.3% 77.7% 74.3% 70.0% 68.2% 62.1%
Pig 70.1% 67.4% 69.6% 70.2% 65.9% 66.5%
Struts2 89.3% 85.8% 87.8% 96.7% 71.2% 73.7%
Wicket 66.6% 65.3% 72.1% 71.8% 62.7% 59.0%
ZooKeeper 69.9% 69.6% 67.8% 67.2% 65.5% 64.4%
Average 74.7% 71.6% 73.6% 73.5% 65.3% 63.5%

prediction models: to increase the accuracy of models used to
predict properties of a system version, one should select recent
versions instead of all versions across the entire system lifespan.

In summary, our results confirm that the historical data of a
software system regarding its architectural smells, issues, and
changes can be used to develop models to accurately predict
the issue- and change-proneness of that system. The results
also indicate that architectural smells have a consistent impact
on software system implementations throughout the systems’
lifetimes. Our architecture-based prediction approach, whose
performance is usually two times better than the baseline, is
useful for software maintainers to foresee likely future problems
in newly smell-impacted parts of their system. The approach
can also help in creating maintenance plans that can help to
effectively reduce the system’s issue- and change-proneness.
Lastly, ACDC and ARC outperform PKG, emphasizing the
importance of selecting the appropriate architecture recovery
techniques and targeting them to the task at hand.

RQ2: To what extent do unrelated software systems tend to
share properties with respect to issue- and change-proneness?

The results obtained in answering RQ1 showed that architec-
tural smells consistently impact the issue- and change-proneness
of a software system during its lifetime. In that sense, RQ2
can be considered an extension of RQ1: we aim to understand
whether architectural smells have consistent impacts across un-
related software systems, more specifically, whether the issue-
and change-proneness of a system can be accurately predicted
by models trained with data from unrelated systems. More
deeply, this research question tries to assess whether there are
fundamentally shared traits across software systems, regardless
of their developers and development processes, implementation
features, application domains, underlying designs, etc.

To answer this question, instead of using 10-fold cross-
validation, we selected each subject system as the test system
and used its dataset as the test set; the training set was then cre-
ated by combining datasets of the remaining nine systems. For
reference, we also built a prediction model by combining all ten
systems, i.e., including the test systems. Note that the datasets
of different subject systems have different sizes; we had to
resample those datasets to the same size before combining them.

A. Issue-Proneness

Tables VIII, IX, and X summarize the precision and recall
values of RQ2 experiments with regard to predicting issue-

TABLE VIII: PREDICTING ISSUE-PRONENESS –
PRECISION (TOP) AND RECALL (BOTTOM) UNDER ACDC

System 10-fold (RQ1) All 10 9 Others
Camel 69.9% 64.8% 53.6%
CXF 78.0% 71.4% 66.4%
Hadoop 81.2% 71.1% 62.8%
Ignite 78.9% 73.9% 60.2%
Nutch 80.8% 74.9% 59.6%
OpenJPA 71.4% 68.8% 63.9%
Pig 71.7% 66.8% 61.4%
Struts2 89.2% 77.1% 69.1%
Wicket 69.2% 66.7% 55.0%
ZooKeeper 72.0% 65.4% 56.0%

Camel 68.4% 57.5% 46.7%
CXF 76.7% 71.3% 65.7%
Hadoop 80.1% 69.2% 62.9%
Ignite 78.1% 73.5% 59.3%
Nutch 71.6% 68.8% 54.4%
OpenJPA 68.3% 63.0% 57.3%
Pig 69.1% 64.1% 58.8%
Struts2 89.0% 76.4% 68.8%
Wicket 70.1% 66.0% 54.9%
ZooKeeper 72.6% 60.3% 56.9%

TABLE IX: PREDICTING ISSUE-PRONENESS –
PRECISION (TOP) AND RECALL (BOTTOM) UNDER ARC

System 10-fold (RQ1) All 10 9 Others
Camel 70.8% 64.9% 59.7%
CXF 68.9% 55.2% 49.0%
Hadoop 76.6% 67.6% 59.6%
Ignite 78.9% 66.9% 62.3%
Nutch 82.5% 64.6% 62.3%
OpenJPA 74.5% 66.9% 63.9%
Pig 71.3% 62.1% 61.7%
Struts2 95.0% 76.1% 63.8%
Wicket 76.7% 63.3% 62.0%
ZooKeeper 70.8% 66.3% 50.4%

Camel 67.0% 59.4% 48.5%
CXF 68.3% 62.3% 54.5%
Hadoop 76.6% 67.4% 59.4%
Ignite 79.1% 66.5% 61.6%
Nutch 82.7% 58.1% 53.9%
OpenJPA 73.2% 65.5% 62.0%
Pig 71.1% 62.5% 61.1%
Struts2 94.8% 75.7% 63.7%
Wicket 77.1% 65.3% 63.6%
ZooKeeper 69.2% 67.1% 56.4%

proneness under ACDC, ARC, and PKG, respectively. The left-
most columns of these tables show the lists of systems. The pre-
cision and recall values are presented for three different cases:

1) “10-fold” column – 10-fold cross-validation on the test
set. We reproduce this result from RQ1 for easy reference.

2) “All 10” column – Models trained by datasets from all
10 systems, including the test set.

3) “9 Others” column – Models trained by 9 other systems’
datasets, not including the test set.

In total, beside the 300 issue-proneness prediction models
per system that emerged from RQ1’s analysis, we built and
evaluated 60 additional issue-proneness models to answer RQ2.

We found several consistent trends across all three architec-
tural views. First, a prediction model built by combining data
sets of multiple different software systems, even if the test
system itself is included, has lower accuracy than the model

TABLE X: PREDICTING ISSUE-PRONENESS –
PRECISION (TOP) AND RECALL (BOTTOM) UNDER PKG

System 10-fold (RQ1) All 10 9 Others
Camel 68.2% 59.5% 46.0%
CXF 64.7% 62.7% 59.1%
Hadoop 72.8% 61.8% 50.2%
Ignite 70.4% 70.2% 62.6%
Nutch 68.3% 66.9% 51.9%
OpenJPA 69.2% 71.2% 53.1%
Pig 68.6% 68.0% 53.6%
Struts2 79.1% 92.4% 67.6%
Wicket 63.7% 66.1% 60.2%
ZooKeeper 68.7% 66.3% 44.0%

Camel 62.8% 50.9% 43.5%
CXF 63.8% 60.0% 44.7%
Hadoop 73.4% 61.5% 50.3%
Ignite 71.0% 69.5% 62.3%
Nutch 62.1% 54.1% 50.9%
OpenJPA 67.9% 68.3% 39.2%
Pig 69.5% 68.0% 44.5%
Struts2 78.3% 92.0% 67.1%
Wicket 65.4% 66.1% 58.9%
ZooKeeper 69.4% 66.8% 42.7%

built for that specific test system. This can be seen in all three
Tables VIII, IX, and X, where the “All 10” columns have lower
values for precision and recall than the corresponding “10-fold”
(results from RQ1) columns.

More interesting is the case where the test system is excluded
and the model is trained on the datasets from the remaining nine
systems (the “9 others” column). This represents the scenario of
using a generic predictive model comprising entirely different
systems. The precision and recall values predictably decrease
further across all three architectural views. These results are
reflective of the intuition that using datasets from different
systems can create a more general-purpose model, but is also
likely to add noise and reduce the model’s ability to predict the
properties of a specific system. Therefore, if a sufficiently large
dataset for a given system is available, the system’s prediction
models should be trained only on that dataset.

At the same time, it is interesting to note that the loss of
accuracy between the “10-fold” and “9 Others” models is
relatively moderate: with few exceptions, it is on the order of
10-20%. On the lower end, one example exception is PKG’s
precision for Wicket’s issue-proneness (Table X-top), where
the discrepancy is only 3.5%. On the higher end, an interesting
exception are the precision and recall values obtained by ARC
for Struts2 (Table IX), which are both more than 30% lower
for the “9 Others” models. This ties to the above discussion of
the limited types of smells that exist in Struts2: its uniqueness
decreased the ability of other systems to predict its issue-
proneness, just like it helped ensure highly accurate models
when using only its own historical data.

Figure 6 shows a comparison of precision and recall between
different combinations of ACDC based models. We observe that
using data from “9 Others” systems can yield a relatively good
prediction model with at least 50% improvement compared
to the baseline (0.5 vs. 0.33). In addition, the accuracy of
“All 10” models lends support to a hypothesis that if a system
has a short history of development, then including generic data

(a) Precision (b) Recall

FIG. 6: PREDICTING ISSUE-PRONENESS UNDER ACDC.

can help improve predictive performance. We are currently
evaluating this hypothesis more extensively.

B. Change-Proneness

We observed analogous trends to those discussed above in
the experiments that attempt to predict the change-proneness
using unrelated systems’ datasets. We elide this data for space.

In summary, the results of the experiments conducted in
the context of RQ2 confirm that software systems tend to
share properties with respect to issue- and change-proneness.
The accuracy of general-purpose models is lower than that
of specific models, but the gap is not prohibitive. Our results
suggest that developers can use general-purpose models to get
an overall sense of the likely issue- and change-proneness of
a new software system in the early stages of its development,
before sufficiently large numbers of system versions become
available. Similarly, developers can use such models to predict
important properties of any existing systems for which historical
data is missing, spotty, or unreliable.

An interesting question is whether restricting general-purpose
models to systems that are likely to share certain key char-
acteristics can improve the models’ predictive power. This is
something we have not done in our current study: while the
set of test systems we used share some characteristics (e.g.,
Java-based enterprise systems and Apache Projects), they are
also inherently different systems targeting a variety of domains.
Our ongoing work is investigating whether taking into account
factors such as the role of the employed development processes,
off-the-shelf frameworks, system design principles and patterns,
application domains, etc. can be used to increase the accuracy
of the general-purpose models.

Overall, the predictive models we developed provide develop-
ers another tool to check and maintain their software system’s
health and track technical debt. A straightforward way to
identify “unhealthy” parts of a system is to look for long-lived
smelly files, i.e., files that have been involved in architectural
smells across a large number of system versions. These files
have a high potential to introduce new issues. Figure 7 shows
examples of such files from Hadoop and Struts2. The x-axes in
both plots indicate system versions, while the the y-axes indi-
cate the numbers of smells in which each of the files is involved.

From the collected data such as that depicted in Figure 7,
we have observed that long-lived smelly files are repeatedly
involved in new issues during a system’s lifetime. For example,
DFSClient.java is mentioned in ≈2,900 Hadoop issues to

FIG. 7: TOP-5 LONG-LIVED SMELLY FILES
IN HADOOP (TOP) AND STRUTS2 (BOTTOM).

date; JobTrackers.java is mentioned in ≈2,200 Hadoop
issues; Dispatcher.java is mentioned in ≈670 Struts2 issues;
and so on. We posit that stemming such trends and properly
addressing the underlying problems will require considering
the architectural causes of these issues.

V. THREATS TO VALIDITY

The key threats to external validity include our subject
systems. Most of the steps in our data gathering process are
automated. However, manual intervention is required since each
system has different implementation conventions. Due to the
manually-intensive data gathering process, we have used data
from ten subject systems in our dataset. We mitigate a possible
threat stemming from the number of systems by using data
from their 466 versions and evaluating 720 prediction models.

All our subject systems are Apache projects, implemented
in Java, and use the Jira issue tracking system. The reason for
this is that it helped to simplify our data gathering and analysis
workflow. In our on-going work, we are expanding our analysis
beyond Apache. The diversity of the chosen systems, however,
helps to reduce this threat, as does the wide adoption of Apache
software, Java, and Jira. Further, all the recovery techniques
and smell definitions in this paper are language-independent.

Our study’s construct validity is threatened by (1) the
accuracy of the recovered architectural views, (2) the detection
of architectural smells, and (3) the relevance of implementation
issues. To mitigate the first threat, we applied three architec-
ture recovery techniques (ACDC, ARC, and PKG) that had
previously exhibited the greatest usefulness in an extensive
comparative analysis of available techniques [19] and in a
study of architectural change during system evolution [36], [7],

[62]. The three techniques were developed independently and
use different strategies for recovering a system’s architecture.
To mitigate the second threat, we selected architectural smell
types that were previously studied on a smaller scale [42], [46],
[38], [22], [21], and were shown to be strong indicators of
architectural problems. Finally, to mitigate the third threat, we
only collected “resolved” and “closed” issues, i.e., those issues
that have been independently verified and fixed by developers.

The primary threat to our study’s internal validity and
conclusion validity involves the predictability relationship
between reported implementation issues and architectural
smells. Our prediction models are built based on significant
correlations between architectural smells and implementation
issues, which have been confirmed in other work [35]. Although
correlation does not imply causality, we have shown examples
of the causal relationship’s existence. Prior work has also
confirmed the causality between implementation issues and
architectural smells via manual inspection [70], [44]. In
addition, our observations are consistent across the ten systems.

VI. RELATED WORK

Predicting implementation issues and code change have been
widely studied research problems in software maintenance.
The main type of implementation issues that researchers were
interested early on were defects. Li et al. [40] used OO metrics
as predictors of software maintenance effort. Subramanyam
et al. [63] also demonstrated that a set of metrics [12] has
significant implications on software defects. Nagappan et
al. [49] found a representative set of code complexity measures
to determine failure-prone software entities. However, the
metrics considered in prior work cannot prevent defects at
higher abstraction levels, such as architectural problems.

Issue prediction based on bug-fixing history is also an
established area. Rahman et al. [58] developed an algorithm
that ranks files by their numbers of past changes. The algorithm
helps developers find hot spots in the system that need
developers’ attention. There are more sophisticated methods
that combine historical information and software change impact
analysis to increase the efficiency and accuracy of the prediction
[67], [27], [57]. However, as before, these approaches do not
explain higher-level defects caused by architectural decay.

Code changes have a close connection with defects in
software. Nagappan et al. [48] used code churn to predict
the defect density of software systems. Hassan et al. [26] used
complexity metrics based on code changes to predict faults.
Code change has been used in a number of other research
efforts [71], [14], [37], [36] to evaluate system maintainability.

To predict code changes, Romano et al. proposed two
approaches, relying on code metrics [59] and anti-patterns [60].
Xia et al.’s approach [69] predicts a system’s change-proneness
using co-change information of unrelated systems. While their
approach is similar to the one we employed in the context of
RQ2, it yields relatively low accuracy. Malhotra et al. [43]
used hybridized techniques to identify change-prone classes.
However, their empirical study is relatively small. Kouroshfar et

al. [33] do use architectural information to study the correlation
between co-changes across architectural models and defects.
However, they restrict their study to cross-module changes.

VII. CONCLUSION

This paper’s contributions are twofold. First, we have
developed an approach that can identify parts of a software
system that are likely targets of future maintenance activities
based on architectural characteristics as well as the change- and
issue-proneness of different architectural elements. Second, we
have conducted an empirical study that highlights the impact
of architectural decay on ten well known open-source systems.

We leverage the identified correlations between symptoms
of architectural decay and reported implementation issues to
develop an architecture-based approach that accurately predicts
a system’s issue- and change-proneness. Our approach has been
validated on ten existing systems, considering 11 different types
of smells under three different architectural views. This is the
first study of its kind and, as such, its results can be treated as
a foundation on which subsequent work should build. At the
same time, the study has resulted in several important findings
regarding the predictive power of architecture-based models.

Our study confirmed that architectural smells consistently
impact a system’s implementation during the system’s lifecycle.
In other words, the impact does not change significantly with
other factors such as system size. This means that the detected
architectural smells can help to accurately predict the issue-
proneness and change-proneness of a system at any relevant
point in time. In turn, such architecture-based prediction can
serve as a useful tool for maintainers to recognize future
problems associated with newly smell-impacted parts of the
system and to plan their activities.

As a perhaps more unexpected result, we have shown that
unrelated software systems tend to share properties with respect
to issue- and change-proneness. This allows developers to use
general-purpose models created with the available data from
a set of existing systems to predict the properties of systems
for which such information is missing. Unsurprisingly, the
accuracy of such general-purpose models is lower than that of
system-specific models, but not prohibitively so. Our results
suggest that it is possible to develop such models sufficiently
accurately to use them as a basis of actionable advice.

It is important to keep in mind that this was an initial attempt
at constructing general-purpose prediction models. Our models
were trained using all architectural smells and software systems
without particular prior planning. Our future work will investi-
gate how to select an appropriate set of systems to improve the
accuracy of these models. We will also explore whether further
accuracy improvements can be achieved by restricting the types
of architectural smells on which the models are trained.

VIII. ACKNOWLEDGMENTS

This work is supported by the U.S. National Science
Foundation under grants 1717963, 1823354, and 1823262 and
U.S. Office of Naval Research under grant N00014-17-1-2896.

REFERENCES

[1] CXF Implementation Issue - CXF-223. https://issues.apache.org/jira/
browse/CXF-223, 2007.

[2] Pig Implementation Issue - PIG-1178. https://issues.apache.org/jira/
browse/PIG-1178, 2010.

[3] What is an issue. https://confluence.atlassian.com/jira064/
what-is-an-issue-720416138.html, 2018.

[4] Apache jira. https://issues.apache.org/jira, 2019.
[5] GitHub. https://github.com/, 2019.
[6] J. Arthur. Six Sigma simplified: quantum improvement made easy.

KnowWare International, 2001.
[7] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and

N. Medvidovic. A large-scale study of architectural evolution in open-
source software systems. Empirical Software Engineering, 2016.

[8] B. W. Boehm. Value-based software engineering: Overview and agenda.
In Value-based software engineering, pages 3–14. Springer, 2006.

[9] I. Bowman, R. Holt, and N. Brewster. Linux as a case study: its extracted
software architecture. In ICSE, 1999.

[10] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-oriented software
architecture, on patterns and pattern languages, volume 5. John wiley
& sons, 2007.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. Softw. Eng., 20(6):476–493, June 1994.

[13] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, Aug 1994.

[14] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analysing software
repositories to understand software evolution. In Software evolution,
pages 37–67. Springer, 2008.

[15] S. Foss, D. Korshunov, S. Zachary, et al. An introduction to heavy-tailed
and subexponential distributions, volume 6. Springer, 2011.

[16] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1999.

[17] S. Ganesh, T. Sharma, and G. Suryanarayana. Towards a principle-based
classification of structural design smells. Journal of Object Technology,
12(2):1–1, 2013.

[18] J. Garcia. A Unified Framework for Studying Architectural Decay of
Software Systems. PhD thesis, University of Southern California, 2014.

[19] J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis
of software architecture recovery techniques. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 486–496, 2013.

[20] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic. Obtaining ground-
truth software architectures. ICSE, 2013.

[21] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Toward a
catalogue of architectural bad smells. In QoSA ’09: Proc. 5th Int’l Conf.
on Quality of Software Architectures, 2009.

[22] J. Garcia, D. Popescu, G. Edwards, and M. Nenad. Identifying
Architectural Bad Smells. In 13th European Conference on Software
Maintenance and Reengineering, 2009.

[23] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai.
Enhancing architectural recovery using concerns. In ASE, 2011.

[24] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering, 31(10):897–910, Oct 2005.

[25] T. Hall, M. Zhang, D. Bowes, and Y. Sun. Some code smells have a
significant but small effect on faults. ACM Transactions on Software
Engineering and Methodology, 23(4):33:1–33:39, Sept. 2014.

[26] A. E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software
Engineering, pages 78–88. IEEE Computer Society, 2009.

[27] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-
grained module histories. In Software Engineering (ICSE), 2012 34th
International Conference on, pages 200–210. IEEE, 2012.

[28] G. H. John and P. Langley. Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pages 338–345. Morgan Kaufmann Publishers
Inc., 1995.

[29] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting
faults from cached history. In Proceedings of the 29th International Con-
ference on Software Engineering, ICSE ’07, pages 489–498, Washington,
DC, USA, 2007. IEEE Computer Society.

[30] A. R. Kiremire. The application of the pareto principle in software
engineering. Consulted January, 13:2016, 2011.

[31] R. Kohavi. The power of decision tables. In European conference on
machine learning, pages 174–189. Springer, 1995.

[32] R. Kohavi et al. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, volume 14, pages 1137–1145.
Montreal, Canada, 1995.

[33] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y. Cai.
A study on the role of software architecture in the evolution and quality
of software. In Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 246–257. IEEE Press, 2015.

[34] P. B. Kruchten. The 4+ 1 view model of architecture. Software, IEEE,
1995.

[35] D. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study
of architectural decay in open-source software. In ICSA, 2018.

[36] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic. An empirical study of architectural change in open-source
software systems. In Proc. Mining Software Repositories, 2015.

[37] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic. Relating
architectural decay and sustainability of software systems. In 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA), 2016.

[38] D. M. Le and N. Medvidovic. Architectural-based speculative analysis to
predict bugs in a software system. In Proceeding ICSE ’16 Proceedings
of the 38th International Conference on Software Engineering, pages
807–810. ACM New York, NY, USA ©2016, 2016.

[39] S. Le Cessie and J. C. Van Houwelingen. Ridge estimators in logistic
regression. Applied statistics, pages 191–201, 1992.

[40] W. Li and S. Henry. Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23(2):111 – 122, 1993. Object-Oriented
Software.

[41] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new
classification algorithms. Machine learning, 40(3):203–228, 2000.

[42] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. von
Staa. Are automatically-detected code anomalies relevant to architectural
modularity?: an exploratory analysis of evolving systems. In Proceedings
of the 11th annual international conference on Aspect-oriented Software
Development. ACM, 2012.

[43] R. Malhotra and M. Khanna. An exploratory study for software
change prediction in object-oriented systems using hybridized techniques.
Automated Software Engineering, 24(3):673–717, 2017.

[44] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda. Identifying and
prioritizing architectural debt through architectural smells: A case study
in a large software company. In C. E. Cuesta, D. Garlan, and J. Pérez,
editors, Software Architecture, pages 320–335, Cham, 2018. Springer
International Publishing.

[45] T. Mens and T. Tourwe. A survey of software refactoring. IEEE TSE,
Jan. 2004.

[46] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic. Mapping architectural
decay instances to dependency models. In Managing Technical Debt
(MTD), 2013 4th International Workshop on, pages 39–46, 2013.

[47] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 181–190, New York, NY, USA,
2008. ACM.

[48] N. Nagappan and T. Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of the 27th international
conference on Software engineering, pages 284–292. ACM, 2005.

[49] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component
failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461. ACM, 2006.

[50] T. U. of Waikato. Weka 3: Data mining software in java. https://www.
cs.waikato.ac.nz/ml/weka/, 2018.

[51] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. v. Staa.
When code-anomaly agglomerations represent architectural problems?
an exploratory study. In Software Engineering (SBES), 2014 Brazilian
Symposium on, pages 91–100, Sept 2014.

[52] V. Pareto and A. Page. Manuale di economia politica (manual of political
economy). Milan, Italy: Societa Editrice Libraia, 1906.

[53] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT SEN, 1992.

[54] D. M. Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. 2011.

[55] F. Provost. Machine learning from imbalanced data sets 101. In
Proceedings of the AAAI’2000 workshop on imbalanced data sets, pages
1–3, 2000.

[56] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
[57] F. Rahman and P. Devanbu. How, and why, process metrics are better.

In Software Engineering (ICSE), 2013 35th International Conference on,
pages 432–441. IEEE, 2013.

[58] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. Bugcache
for inspections: Hit or miss? In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 322–331, New York, NY,
USA, 2011. ACM.

[59] D. Romano and M. Pinzger. Using source code metrics to predict change-
prone java interfaces. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 303–312. IEEE, 2011.

[60] D. Romano, P. Raila, M. Pinzger, and F. Khomh. Analyzing the impact of
antipatterns on change-proneness using fine-grained source code changes.
In Reverse Engineering (WCRE), 2012 19th Working Conference on,
pages 437–446. IEEE, 2012.

[61] A. S. Sayyad and H. Ammar. Pareto-optimal search-based software
engineering (posbse): A literature survey. In 2013 2nd International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), pages 21–27. IEEE, 2013.

[62] A. Shahbazian, D. Nam, and N. Medvidovic. Toward predicting
architectural significance of implementation issues. In 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR),
May 2018.

[63] R. Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics
for object-oriented design complexity: implications for software defects.
IEEE Transactions on Software Engineering, 29(4):297–310, April 2003.

[64] R. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. 2009.

[65] G. Tsoumakas and I. Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining (IJDWM), 3(3):1–
13, 2007.

[66] V. Tzerpos and R. Holt. ACDC: an algorithm for comprehension-driven
clustering. In Working Conference on Reverse Engineering (WCRE),
2000.

[67] S. Wang and D. Lo. Version history, similar report, and structure: Putting
them together for improved bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension, pages 53–63.
ACM, 2014.

[68] L. Wilkinson. Revising the pareto chart. The American Statistician,
60(4):332–334, 2006.

[69] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan. Cross-
project build co-change prediction. In Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on,
pages 311–320. IEEE, 2015.

[70] L. Xiao. Detecting and preventing the architectural roots of bugs. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 811–813, New
York, NY, USA, 2014. ACM.

[71] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 488–498, New
York, NY, USA, 2016. ACM.

[72] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi.
Revisiting the applicability of the pareto principle to core development
teams in open source software projects. In Proceedings of the 14th
International Workshop on Principles of Software Evolution, pages 46–
55. ACM, 2015.

[73] T. Zimmermann and N. Nagappan. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 531–540, New
York, NY, USA, 2008. ACM.

