Input-output Data-driven Modeling and MIMO
Predictive Control of an RCCI Engine Combustion

Behrouz Khoshbakht Irdmousa * , Jeffrey Donald Naber *
Javad Mohammadpour Velni ** , Hoseinali Borhan *** , Mahdi Shahbakhti ****

* Michigan Technological University, Houghton, MI 49931, USA (e-mails: bkhoshi,
jnaber@mtu.edu)
** Undversity of Georgia, Athens, GA 30602, USA (e-mail: javadm@uga.edu)
** Cummins Inc, Columbus, IN 47201, USA (e-mail: hoseinali.borhan @cummins.com)
% University of Alberta, Edmonton, AB, Canada T6G 1H9 (e-mail: mahdi Qualberta.ca)

Abstract: This study presents a data-driven identification method based on Kernelized Canonical
Correlation Analysis (KCCA) approach to generate a state-space Linear Parameter-Varying (LPV)
dynamic representation for the RCCI engine combustion. An LPV model is used to estimate RCCI
combustion phasing (CA50) and indicated mean effective pressure (IMEP) based on fuel injection timing
and quantity. The proposed data-driven method does not require prior knowledge of the plant model
states and adjusts number of states to increase the accuracy of the identified state-space model. The
results demonstrate that the proposed data-driven KCCA-LPV approach provides a dependable technique
to establish a fast and reasonably accurate RCCI combustion model. The established model is then
incorporated in a design of a constrained MIMO Model Predictive Controller (MPC) to track desired
crank angle for 50% fuel burnt and IMEP at various engine conditions. The controller performance results
demonstrate that the established data-driven constrained MPC combustion controller can follow desired

CA50 and IMEP with less than 1.5 CAD and 37 kPa error, respectively.

1. INTRODUCTION

Low Temperature Combustion (LTC) strategies are among
promising candidates to help in meeting future emission
and fuel economy requirements for Internal Combustion
Engines (ICEs). LTC strategies are developed into vari-
ous forms and Reactivity Controlled Compression Ignition
Combustion (RCCI) is one of the most recently developed
LTC strategies. Researchers have been studying to develop
an RCCI combustion controller since the introduction of
the RCCI strategy. These studies can be classified into
simulation studies and experimental studies according to
controller verification platform. Simulation studies im-
plemented a validated RCCI engine models to test the
controller performance. On the other hand, experimental
studies tested the established RCCI combustion controller
on an actual RCCI engine. Model-based simulation control
study on RCCI combustion was initiated by Sadabadi et
al. (Khodadadi Sadabadi et al., 2016). They developed a
Linear Quadratic Regulator (LQR) based on their control-
oriented RCCI engine model. Indrajauna et al. (Indra-
juana et al., 2016) created a control-oriented model by
linearizing a multi-zone RCCI combustion model and used
it to control ignition delay and IMEP. They also conducted
another study and developed a mode switching controller
between Conventional Dual Fuel (CDF) operation and
RCCI operation. (Indrajuana et al., 2018). Researchers
also used the developed RCCI control-oriented models to
study RCCI operation. Kakoee et al. (Kakoee et al., 2020)
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estimated combustion timing and load of an RCCI engine
using their validated physics-based control-oriented model
and proved the accuracy of estimations.

Experimental RCCI combustion controller designs initially
used the PI controller strategy. Arora et al. (Arora and
Shahbakhti, 2017) implemented a real-time closed-loop
single input single output combustion controller to con-
trol CA50 during transient operation. Later Kondipati et
al. (Kondipati et al., 2017) advanced Arora et al. work
and implemented three PI controllers to track IMEP as
well as CA50. Their designed controller selected dual fuel
premixed ration (PR) or start of injection (SOI) of the
in-cylinder injected fuel as the control action based on
a sensitivity map and was able to reach desired control
targets within 2-4 engine cycles. Model-based RCCI com-
bustion controller design approach was used by a couple
of researchers on a real RCCI engine. The first model-
based RCCI MPC controller was accomplished by Raut et
al. (Raut et al., 2018a), (Raut et al., 2018b). Their MPC
controller was designed to track desired CA50 and IMEP
by using SOI and fuel quanity (FQ) as control actions. The
MPC controller tracked CA50 and IMEP with 1 CAD and
19.6 kPa average tracking errors, respectively.

Data-driven modeling (DDM) is a more recent approach
in RCCI combustion controller design. This approach can
reduce model development efforts significantly while reach-
ing similar estimation accuracy compared to the physics-
based modeling approach. Khoshbakht Irdmousa et al.
(Irdmousa et al., 2019) developed and implemented the
first validated data-driven RCCI dynamics model. The
developed state-space model was used to design an MPC
controller to control CA50 on a real RCCI engine. Basina



(Basina et al., 2020) also developed the first data-driven
model to estimate maximum pressure rise rate (MPRR) for
RCCI engines. These researches used known-states data-
driven approach where the knowledge for selecting RCCI
states is required and structure of the RCCI model needs
to be known. Due to the complexity of RCCI combus-
tion, the optimal selection of relevant states to represent
RCCI combustion dynamics is challenging. This issue is
addressed in the current research and a novel KCCA
approach is implemented to develop a data-driven RCCI
dynamic model based on unknown plant states. To the
best knowledge of authors, this study presents: (i) the first
RCCI combustion identification based on input-output
approach with unknown model structure. (ii) the first
constrained MPC controller design and implementation for
an RCCI combustion.

This paper has following structure. The theory of KCCA
based Linear Parameter Varying modeling is explained in
Section 2, and the KCCA-LPV aplication into an RCCI
engine is provided in Section 3. Section 4 discusses the
physics-based RCCI dynamic model. Finally, the model
predictive controller design and results for input-output-
based MPC combustion controller for RCCI combustion is
presented in Section 5.

2. KERNELIZED CANONICAL CORRELATION
ANALYSIS BASED LINEAR PARAMETER VARYING
MODELING

This study utilizes the state estimation approach devel-
oped by Rizvi et. al (Rizvi et al., 2018) to form an input-
output based KCCA-LPV combustion model for an actual
RCCI engine. A state-space dynamic model for an LPV
system can be presented as shown in Eq. (1).

(1a)

X1 = A(pr) Xk + B(pr)Ur + K (pr) Bk,

Y. = C(pk)Xk + E, (lb)
where, Uy, Yi, represent the inputs, the outputs, respec-
tively. X denotes unknown states at discrete-time instant
k. Matrices A(pr), B(px), K(pr) and C(pg) denote LPV
state-space matrices dependent on scheduling variables py.
E) notes additive Gaussian white noise. Eq. (1) can be
updated by Ej, = Yy, — C(pr) X to form state space model
presented by Eq. (2).

Xpy1 = A(pr) X + B(pr)Ur + K (pr) Bk,
Y, = C(pr) Xy + Ek,

(2a)
(2b)

where Zl(pk) and E(pk) are represented by B(pg) —
K (pr)D(pi) and A(px) — K(pr)C(pr), respectively. Iden-

tification of A(pr), B(pk), K(px) and C(pg) requires es-
timation of states (X}) associated with measured Uy, Yj
data. LPV-SS formulation at Eq. (2) can be used to obtain
future outputs as presented in Eq. (3).

Y. Uy
T = (Ofop) Xy, + (Hfop)k Vin
YkJr'dH Uk:+.d+1 3)
Y. ek
(Chop | o
Yk—i-.d—i-l €k+.d+1

(O?op)k is the observability matrix at time k along with
the scheduling trajectory p. (’H?op) & is a forward Toeplitz

matrix, and ((L’?Op)k is a lower triangle matrix. Future
measured outputs, implemented inputs, white noise, and
scheduling parameter vectors for time instant k are col-
lected to form matrices presented in Eq. (4a) till Eq. (4d).

. Ykldﬂ]T (4a
- Upaal’ (4b
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where d represents future data window size. Eq. (3) can
t

be updated to by implementing definitions at Eq. (4) to
form Eq. (5)

ka+d = (O?OP)ka + (H?OP)kUgM‘F (5)
(LFop)rYilia+ By

Unknown states at time step k based on future inputs and
outputs are computed from Eq. (5) and presented in Eq.

(6).
Xy = (O?OP)k-T (I = (LGop)i) Vil g — (Hop) Uiy g) —
(O?OP)TEICJH

(6)

Since F is an independent zero-mean process noise which is

— — — —

identically distributed at experimental data, (O?op)TEg +d

is expected to be zero and can be eliminated. State
estimation represented at Eq. (6) is simplified to Eq. (7) by
Frd

defining Zg = [}U/]?+ﬂ as the collection of future plant
+

inputs and outputs .

+ _
Xi = (Ofop)i [—(Hop)r 1 — (LGop)i] Zitia (7)
Future mapping matrix can be defined as Eq. (8)

er(Pea) = (OFop)! [~(Hfop)e T— (Lfop)i]  (8)
and state estimation at time step k can be simply ex-
pressed as:
Xi =050 a) Zit s (9)
This approach is also applicable to past measurements to
estimate unknown states at time step k based on stepwise
output calculation from past d step measurement.

Xp, = (Xdop)uXp—a + (Riop)i [Uk—a Ur—ds1 - - Upa]"

T
+(Viop)k [Yi—a Yi—ds1 - Yio1]

(10)

Past measured outputs, inputs, white noise, and schedul-

ing parameter vectors for time instant k are denoted by

ka, U, ,gl, Eg, and P,f and formed similar to future matrices

at Eq. (4). These past measurements can be used to rewrite
state estimation at Eq. (10).

Xy, = (Xop)p Xp—a + (Ryop)xUf + (Vyop)r Vi (11)

Choosing d such that (XJop), ~ 0 and defining Zj} =

Frd

LU/?] , state estimation at Eq. (11) is expressed as Eq. (12).

Xi = [(Rfop)s (Viop)i] Zi! (12)



State estimation at time step k based on the past data

is simplified to Eq. (14) by defining ¢,(P) as the past
mapping matrix.

ep(P) = [(Rop)e (Viop)i]

Xi = op(P)Z; (14)

The past data-based state estimation approach which is

presented in Eq. (9) can be employed to obtain a collection

of all estimated states at all time steps. This collection is
named as ¢, and defined in Eq. (15)

D, = [p(PHZY 0p(Ps)Zs5 ... 0p(PR)Z5 (15)
®; is also defined as the collection of estimated states at

all time steps based on the future data estimation method
presented at Eq. (16).

= [<Pp(P1d+d)Zf+d <Pp(P2d+d)Z§1+d
_ = T

@p(PJ%—&-d)Z]%H-d]
Maximizing correlation between future data-based esti-
mated states and past data-based estimated states can be
accomplished by Canonical Correlation Analysis (CCA)
method. The CCA problem with respected past data based

estimated states and future data based estimated states is
provided by the following description:

(13)

}T

(16)

max v]—-'—(I)}r(Dpwj s.t. v;r@}r@fvj = w;r(I);(I)pwj =1

Vj,Wj
(17)
Solution for the regularized CCA formation can be ob-
tained by Lagrangian formation represented by Eq. (18).

L(vj,wj,s,T) =

N
j(vjij7 S’T) - ZW;‘C(Sk - v]—'r@f(plg+d)zg+d)i
k

=1 (18)
N
> (k= vl s (PZE)
k=1
where 7; = [} ... 7] and k; = [k} ... k}']T are

Lagrangian multipliers. The global minimum is computed
where derivatives with respect to Lagrangian function
variables are zero. Lagrange problem can be converted to
the following generalized eigenvalue problem.

Kpprj = Aj(ve Ky f + I)n; (19a)
Kffn = )\j(Ufof-‘rI)Iij, (19b)

where K, = (I>p<I>;— and Ky = @f@}r. Lagrangian multi-

pliers are the solution of the generalized eigen value prob-

lem presented in Eq. (19). Finally, Lagrangian multipliers

are used to compute the estimated states as

(Z0)" k(P P) (21, ) Th(PL 4. Py a)

ZRPLRL | ) () KPP
. — 1y .

(Z3)"k(Py, FY)

X]jg = fij
(Z%er)T];(P]‘\i[er, Pltcier)
20

Estimated states through the KCCA method can be used
along with measured inputs and outputs to obtain a state-
space dynamic model of the RCCI engine. This research
utilizes the least-squared SVM (LS-SVM) method which
is explained at (Irdmousa et al., 2019) to determine the
dynamic state space matrices A(py), B(pk), C(px), and
K(pr) at Eq. (2).

3. KCCA-LPV MODELING OF AN RCCI ENGINE

The presented method from section 2 is used to develop
a control-oriented combustion model for an RCCI engine.
Experimental data were obtained from a 2-liter 4-cylinder
RCCI engine. Fig. 1 presents the RCCI engine, AC dy-
namometer, fuel supply system and data acquisition setup.
Inputs to the plant and measurable outputs from the plant
are defined in Eq. (21) and (22), respectively.

U =[PR SOI FQ|", (21)

Y = [CA50 IMEP]" . (22)
Input n-heptane SOI, PR, and FQ were varied and CA50,
IMEP were computed from acquired pressure traces.
Scheduling variable was considered to be fuel quantity as it
is the primary parameter to affect engine load (IMEP) and
affects the RCCI engine dynamics. Fig. 2 presents a sam-
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Fig. 1. The experimental RCCI engine setup.
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Fig. 2. Training data from the RCCI engine at T;,, = 333
K, N = 1200 RPM, P;, = 96.5 kPa, PR = 10.

ple of acquired experimental data at PR=10 and varied
FQ and SOI values. The collected experimental data were
split into training data and test data sets. Training data
set which includes 65% of the data is used by KCCA-LPV
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Fig. 3. The effect of unknown states number on model
identification accuracy.

approach to estimate unknown states. This leads finding
Lagrangian multipliers « and § for the representation of
the RCCI combustion dynamics. Computed Lagrangian
multipliers are used to estimate state space at Eq. (1). The
developed LPV representation is then used to estimate the
plant output at the remaining 35% of the data which was
reserved as the test data.
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3 20
£ 0 o 10 0 : b e
< 2| 4 < < L < 4 < 18
4 5 - -5 16
20 25 30 20 25 30 20 25 30 20 25 30 o 25 30
2 15
-0 o~ o -20 <‘
<2 < 10 < <5
-4 5 -25
20 25 30 20 25 30 20 25 30 20 25 30 o 25 30
18 -14
5 7 gy 216 *35
< 9 < < 14 -16
- -10 12
20 25 30 20 25 30 20 25 30 20 25 30 20 25 30
- 2 i o~ -2 ) 10 < 2 0 8
<1 < < 9 < < 9
< < 4 < 3 < <
0 15 i
20 25 30 20 25 30 20 25 30 20 25 30 20 25 30
35
4
3 I 210 3 3 813
< g < < < < 14
- -8 10 2.5 15
20 25 30 20 25 30 20 25 30 20 25 30 20 25 30

FQ (mg/cycle) FQ (mg/cycle) FQ (mg/cycle) FQ (mg/cycle) FQ (mg/cycle)

Fig. 4. LPV representaion of ” A” matrix by KCCA identi-
fication, representing RCCI dynamics in a state-space
model.

independent of outputs and consequently states numbers
can be varied to obtain the best estimation accuracy for
the test data. Fig. 3 presents the effect of estimated state
size on estimation accuracy for CA50 and IMEP. The
KCCA-LPV model accuracy reaches the highest accuracy
when KCCA uses five unknown states at each time step.
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Fig. 5. Performance of the identified input-output LPV
model at T;, = 333 K, N = 1200 RPM, P;, = 96.5
kPa, PR = 14.

Therefore, state numbers are selected to be five, and
state-space representation of the RCCI combustion is
represented as Eq. (23). Fig. 4 shows dependency of
identified A matrix elements on fuel quantity as the
scheduling variable. It can be observed that these elements
vary significantly with the scheduling variable variation
as we expect from a typical LPV system. Fig. 5 verifies
performance of the KCCA-LPV model to estimate CA50
and IMEP with 2.4 CAD and 51.7 kPa estimation error,
respectively. The developed LPV model is later used to
control CA50 and IMEP on a experimentally validated
physics-based RCCI model. (Basina et al., 2020).

4. DATA-DRIVEN MODEL-BASED PREDICTIVE
COMBUSTION CONTROLLER DESIGN

This study utilizes the MPC strategy because of its ca-
pacity to handle states and actuators’ constraints and to
predict future plant outputs and consider them during
MPC optimization process. Here, a constrained MPC plat-
form (Fig. 6) is developed to follow the referenced CA50
and IMEP through five engine cycles as the prediction
horizon while computing optimum n-heptane SOI, injected
fuel quantity, and PR as the control variables. The de-
signed MPC controller uses the KCCA-LPV RCCI com-
bustion model to obtain system dynamics. The data-driven
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Mode X FQ |
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Scheduling Deswedj tDeswedJ
Parameter IMEP CAS0

Fig. 6. Schematic of the designed data-driven input-output
identified MIMO model predictive controller.

KCCA-LPV model adjusts the RCCI dynamics based on
changing fuel quantity as the scheduling parameter. It
also receives measured plant outputs and computes the
unknown plant states. The computed state-space matrices
and unknown states are provided to the MPC controller
to compute optimized control actions based on desired



outputs, measured outputs, and actuators’ constraints.
The decided control actions are then implemented on the
validated physics-based RCCI model to test the controller
efficiency of the KCCA based constrained MIMO MPC
controller. The discrete time state-space dynamic model
of an RCCI combustion which is presented at Eq. (23),
can be used to iteratively compute plant output through
the prediction horizon. Eq. (24) represents the predicted
plant output through prediction horizon based on plant
information at beginning of the horizon.

Y = QX(}{:Z) + ¢Uy, (24)

Yi and Uy are vectors denoting plant outputs and plant
inputs at prediction horizon.

Y (ki + 4lk;) Y (ki +5k:)] T, (25)

Uy = [U(k:) U(ks+1) Uks +3)U(k; +3) Uk; +4)]",
(26)

Y (k; + NJk;) represents the forecasted plant output at
step k; + N using plant knowledge at step k;; U(k; +
N) represents control action at step k; + N. Prediction
matrices 2 and ® are computed based on state-space
A(FQ), B(FQ), and C(FQ) matrices from Eq. (23).

CA CB 0 0 0 0
CA? CAB CB 0 0 0

Q= |CA®| ;&= |CA?B CAB CB 0 0 (27)
CA* CA3B CA’B CAB CB 0
CA® CA*B CA®B CA%B CAB CB

MPC optimization strategy considers to minimize predic-
tion tracking error with minimized control action efforts.
This strategy is formulated by the cost function presented
at Eq. (28).

N
> (W - V) QY — Vi) + U RUY,

=1

J

(28)

where desired outputs through the prediction horizon
are denoted by W. The weighting matrices through the
prediction horizon on tracking errors and magnitude of
control variables are shown by @ and R, respectively. Eq.
(28) is used to generate MPC cost function at Eq. (29).

J = (V- Qa(k;)) T (¥ — Qa(k;))

29
—2AUT " (¥ — Qu(k;)) + AUT (@' ® + R)AU, (29)
Constraints on the rate and magnitude of control action
can be represented by Eq. (30).

MAU < v, (30)

where M, AU and v are defined as

AU (k;)
AU(/%‘ +1)
AU (k; +2)
AU (k; + 3)
AU (k; +4)

AFQ
ASOI
APR

AU = ;AU = (31)
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Fig. 7. Constrained MIMO MPC results (a) maintaining
desired CA50 tracking, (b) load trajectory tracking,
control actions: (c) start of injection timing, (d) fuel
quantity , (e) premixed ratio.
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Lagrangian optimization process is used to minimize MPC
cost function at Eq. (29) while considering constraints on
rate and magnitude of control action represented at Eq.
(30). Lagrangian optimization can be represented as

1
mazmin[-AUT EAU + AUTF + \T(MAU — )] (33)
A>0 AU "2
E and F matrices are defined as:
E=2(®"®+R)

F=23"0+R)®" (¥ — Qu(k;))

(34)
(35)
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The optimal solution is derived to be
AU=—-E'F—-E*MT)* (36)
where \* is the solution for the Lagrangian multiplier. This

research utilizes Hildret quadratic programming method
to perform the following iterative method to compute \*

NP = max (0, w1 (37)
where w}"*! is computed as
1 i—1 n
T P R SUTYELR D DR VRV R
" j=1 j=i+1

where [;; is the ijth entry in the L matrix and k; is the ith
element in the K matrix. L and K matrices are defined as

L=ME'M";K =y+ME™'F (39)
Fig. 7 presents the MPC controller performance to track
step changes at IMEP and fixed CA50. The controller was
able to track desired values with 1.4 CAD and 36.2 kPa
errors respectively. A similar test was conducted for fixed
desired IMEP and step changes at desired CA50. Fig. 8
shows tracking performance and computed control actions.
The controller followed the desired IMEP and CA50 with
1.2 CAD and 17.1 kPa tracking errors, respectively.

5. CONCLUSIONS

This paper introduced the first Kernelized Canonical Cor-
relation Analysis based LPV state-space dynamic model

for an RCCI engine combustion and the first constrained
MPC controller for RCCI combustion. Experimental mea-
surements were obtained from an RCCI engine by chang-
ing start of injection timing, premixed ratio and fuel quan-
tity as the control inputs and measuring CA50 and IMEP
as the outputs. These data were then used to estimate
unknown states and create a data-driven LPV model to
determine CA50 and IMEP as a function of three con-
trol inputs. The LPV model was later connected into a
constrained MPC framework to track reference CA50 and
IMEP. The developed controller results showed that the
KCCA-LPV based constrained MPC controller followed
the referenced CA50 and IMEP with less than 1.4 CAD
and 37 kPa average tracking errors, respectively.
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