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ABSTRACT
This paper presents a framework to refine identified artifi-

cial neural networks (ANN) based state-space linear parameter-
varying (LPV-SS) models with closed-loop data using online
transfer learning. An LPV-SS model is assumed to be first identi-
fied offline using inputs/outputs data and a model predictive con-
troller (MPC) designed based on this model. Using collected
closed-loop batch data, the model is further refined using online
transfer learning and thus the control performance is improved.
Specifically, fine-tuning, a transfer learning technique, is em-
ployed to improve the model. Furthermore, the scenario where
the offline identified model and the online controlled system are
“similar but not identitical” is discussed. The proposed method
is verified by testing on an experimentally validated high-fidelity
reactivity controlled compression ignition (RCCI) engine model.
The verification results show that the new online transfer learn-
ing technique combined with an adaptive MPC law improves the
engine control performance to track requested engine loads and
desired combustion phasing with minimum errors.

1 INTRODUCTION
First principles-based control that offers several advantages

for the regulation of nonlinear systems requires an accurate
model, while data-driven methods provide efficiency and flexi-
bility on modeling (model learning) highly nonlinear and even

∗Address all correspondence to this author.

stochastic dynamic systems [1]. The accuracy of the learned
models is not only determined by the data-driven methods, but
also largely depends on the discrepancy between the application
environment and the data-collecting environment, as the gener-
alization of machine learning algorithms is based on the assump-
tion that training and future data share the same feature space and
distribution [2]. Collecting data from all possible environments
is prohibitive and building a model for each environment from
scratch is inefficient, as the process is time consuming and cost
intensive. This challenge motivates the development of transfer
learning to facilitate the model identification of a new environ-
ment.

The idea of transfer learning that seeks to apply knowledge
learned from previous tasks (a.k.a. source tasks denoted as TS)
to new tasks (a.k.a. target tasks TT ) has been extensively studied
in the sub-fields of machine learning (e.g., deep learning [3] and
reinforcement learning [4]) and employed for tasks such as com-
puter vision [5] and natural language processing [6]. The knowl-
edge can be represented by reusable instances, feature represen-
tations, parameters and relational knowledge [7]. A comprehen-
sive survey can be found in [8]. Transferability, i.e., to what
extent a source task can help in learning a target task depends
on the similarity of the source and target tasks [9]. The similar-
ity can be inferred based on the domain knowledge or from the
data of TS and TT , which helps decide on the transfer learning
approach.

Among various types of models that are used to repre-
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sent nonlinear dynamic systems, linear parameter-varying, state-
space (LPV-SS) models are of great interest for control design
purposes. Such models use a linear structure to capture nonlin-
ear and time-varying behaviors of complex systems [10]. Data-
driven methods have been increasingly developed for global
identification of LPV-SS models using inputs/outputs data. Di-
rect prediction-error minimization (PEM) methods and global
subspace and realization-based techniques (SID) are two typi-
cal approaches [11]. Both approaches assume affine scheduling
dependency with known basis functions, which restricts the com-
plexity of a representation. The authors in [12] used a kernel-
ized least-squares support vector machine (LS-SVM) to capture
the dependency structure, which suffers from the kernel selec-
tion and computational complexity. Instead, the authors in a very
recent work [13] have used artificial neural networks (ANNs) to
simultaneously estimate states and explore LPV model structural
dependency. Besides universal approximation theorem, neural
tangent kernel was introduced in [14] to probe the behavior of
ANNs in the so-called large-width limit. Expressive ANNs can
learn basis functions from data and provide parametric model
estimation. Moreover, deep transfer learning techniques can be
adapted for system identification in a new environment.

Deep transfer learning has been well studied especially in
computer vision (see [3] for a detailed survey). Fine-tuning is a
commonly used technique among the existing methods. Instead
of designing and training ANNs from scratch, fine-tuning uses
the trained ANN model MS for a related TS for reference, fixes
a part of MS that is reusable for the desired model MT of TT and
fine-tunes the specific part of MT that is different from MS. In
[15], the authors empirically studied the transition of features
from being general to being specific and showed that fine-tuning
can produce a boost to generalization.

In this paper, we propose a new online transfer leaning in
the context of ANN-based LPV-SS model identification using
closed-loop data and fine-tuning. Firstly, we will characterize
the similarity between TS and TT based on domain knowledge
and introduce the maximum mean discrepancy (MMD) that in-
fers the similarity from data. Secondly, we will discuss the fine-
tuning strategies for different degrees of similarity. Moreover, we
will introduce our proposed framework to refine models online.

Our proposed online transfer learning method will be as-
sessed on a complex nonlinear thermo-kinetic combustion sys-
tem known as a reactivity controlled compression ignition
(RCCI) engine. RCCI combustion depends on several factors
including but not limited to local reactivity gradients inside the
combustion chamber, dual fuel ratio, fuel injection timing, fuel
injection pressure, number of injections, total injected fuel, in-
take air temperature and pressure, intake and exhaust valve tim-
ings, exhaust gas recirculation (EGR) level and rate, engine
speed, and load [16,17]. Developing broadly applicable physics-
based control-oriented RCCI engine models [18–21] is challeng-
ing and very time consuming. On the other hand, developing

data-driven RCCI models [13, 22, 23] with many engine vari-
ables is also very challenging for broad engine operating con-
ditions. This paper provides novel contributions that will allow
adaptive model identification by online transfer learning to im-
prove accuracy of original data-driven RCCI control model for
engine control purposes. The results will be demonstrated for
RCCI cycle-by-cycle combustion phasing and load control.

The remainder of this paper is organized as follows: Section
2 gives the problem statement and introduces ANN-based LPV-
SS identification and adaptive model predictive control (MPC).
Similarity characterization and fine-tuning strategies will be dis-
cussed in Section 3. Section 4 presents the experiments on two
“similar but not identical” RCCI engine models to evaluate the
performance of the proposed method. Concluding remarks are
finally provided in Section 5.

2 Problem Statement
In machine learning, domain D = {X ,PX (x)}1 is used to

describe the input space X and the associated distribution PX on
the data set; task T = {Y ,h} consists of the output space Y and
the mathematical model h : X −→ Y to approximate an oracle that
knows the correct answers to all questions. Model h can be a
deterministic function f : y = f (x) or a distribution PXY (x,y). In
this paper, we use environment to refer to the oracle. Environ-
ment changes when one system changes operating conditions or
switches to another system.

Assuming that we have an identified ANN-based LPV-SS
model M1 of a dynamic system P1 using open-loop data D1 and
a designed controller C1 based on M1, the main goal of this paper
is to refine the model M1 online to obtain a good model for a sim-
ilar but not identical system P2 using the closed-loop data such
that the control performance of C1 on P2 can be enhanced. We
assume that the new system P2 is similar to the previous system
P1 such that we can use the existing controller to collect closed-
loop data D2. However, as there are differences between two
systems, the distributions of the closed-loop data and previous
open-loop data D1 can be different, which can lead to a deterio-
ration in the performance of the previous model M1 on the data
D2 of the new system P2. This problem is known as transduc-
tive learning or domain adaptation, where the domain of source
task DS and the domain of target task DT are different but related
while YS = YT .

2.1 ANN-based LPV-SS Model Identification
The following discrete-time LPV-SS model with innovation

noise is used to describe systems of interest

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek, (1)
yk =C(pk)xk +D(pk)uk + ek, (2)

1We use X , X , x and PX (x) to respectively denote the space, the variable, the
sample and the distribution, and hence x ∈ X ⊆ X .
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where pk ∈ P ⊂ Rnp , uk ∈ Rnu , xk ∈ Rn, ek ∈ Rny , and yk ∈ Rny

denote the scheduling variables, inputs, states, stochastic white
noise process, and outputs of the system at time instant k, re-
spectively, and A, B, C, D, and K are smooth matrix functions of
pk. Equivalently, we have

xk+1 = Ã(pk)xk + B̃(pk)uk +K(pk)yk, (3)
yk =C(pk)xk +D(pk)uk + ek, (4)

where A(pk) = Ã(pk) + K(pk)C(pk) and B(pk) = B̃(pk) +
K(pk)D(pk). The problem of LPV-SS model identification is
to estimate states, as well as the matrices Ã(pk), B̃(pk), C(pk),
D(pk) and K(pk) given the measurements D = {uk,yk, pk}

ND
k=1.

For ANN-based LPV-SS model identification introduced in
[13], each of the matrix functions and state vector was repre-
sented by a fully-connected ANN. By minimizing the prediction
error and the consistency violation between one state estimator
represented by an ANN and the other state estimator from (3),
State Integrated Matrix Function Estimation (SIME) shown in
Figure 1 can provide an accurate LPV-SS model with moderate
hyper-parameter tuning.

2.2 Adaptive MPC Design Based on Identified LPV-SS
Model

Model predictive control (MPC) design problem for refer-
ence tracking is to solve the following multi-constraint optimiza-
tion problem at each control interval k

min
∆u(k+i|k)

P

∑
i=1

(
‖r(k+ i|k)− y(k+ i|k)‖2

Q +‖∆u(k+ i|k)‖2
R

)
(5)

s.t. ∆umin ≤ ∆u(k+ i|k)≤ ∆umax, i = 1,2, · · · ,P (6)
umin ≤ u(k+ i|k)≤ umax, i = 1,2, · · · ,P (7)
ymin ≤ ŷ(k+ i|k)≤ ymax, i = 1,2, · · · ,P (8)

and the model dynamics in (3)-(4), where P is the (length of)
prediction horizon, r(k+ i|k) and y(k+ i|k) respectively denote
reference value and predicted value at i-th prediction horizon
step, ∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k) is the incremen-
tal input, and Q � 0, R � 0 are tunable weight matrices. Ad-
ditionally, in this paper, we use p(k + i|k) = pk, i = 1,2, · · ·P.
Experiments show that in this way, finite receding horizon MPC
can still achieve good control performance with accurately iden-
tified model and slowly varying scheduling variables, although
the model for predictions at interval j depends on p j while the
future values p(k+ i|k) in the prediction horizon are usually un-
available. Stability and feasibility of such LPV-MPC are beyond
the scope of this study. Furthermore, Kalman filter is combined
with MPC to moderate plant-model mismatch.

3 Similarity and Transfer Learning
In this section, we will introduce the maximum mean dis-

crepancy (MMD), a metric to measure the similarity between two
environments and fine-tuning, a technique for transfer learning
with ANN models. Then, we will present the proposed frame-
work of online transfer learning.

3.1 Maximum Mean Discrepancy
The similarity between two environments determines trans-

ferability, i.e., shared knowledge, and thus affects the transfer
learning strategy. For example, a system P1 is more similar to the
second generation P2 of P1 than to a system P3 with a brand-new
design. Therefore, an identified model of P1 can be adapted to
P2 more easily than to P3. Similarity can be characterized based
on the domain knowledge such as the common modules of P1
and P2 and the relative complexity of P1 compared with P3. This
qualitative approach cannot provide transfer bounds that can be
used as a stopping condition to avoid negative transfer. To quan-
tify similarity, one approach is to integrate similarity estimation
into transfer learning algorithms and another approach is to es-
timate similarity from data before transfer [9]. We focus on the
latter approach to help determine whether or not to transfer.

Estimating similarity of two environments from data can be
formulated as a binary hypothesis testing problem. The max-
imum mean discrepancy (MMD) proposed in [24] for a ker-
nel two-sample test provides a statistic to compare distributions.
Given samples X : {xi}m

i=1 ∼ p and Y : {y j}n
j=1 ∼ q, the empirical

estimate of MMD is given by

M̂MD(X ,Y ) =‖ 1
m

m

∑
i=1

φ(xi)−
1
n

n

∑
j=1

φ(y j)‖2
H

=
1

m2

m

∑
i=1

m

∑
j=1

k(xi,x j)+
1
n2

n

∑
i=1

n

∑
j=1

k(yi,y j)−

2
mn

m

∑
i=1

n

∑
j=1

k(xi,y j) (9)

where H denotes a reproducing kernel Hilbert space (RKHS)
with kernel k and φ : X −→ H . A smaller MMD indicates a less
distribution discrepancy. In this paper, we use a sum of multiple
Gaussian kernels2, each of which has a specific width to better
capture the discrepancy.

3.2 Fine-tuning
Based on the observation that the first layer of many deep

neural networks trained on images learns a function similar to
Gabor filters and color blobs [15], fine-tuning assumes that the

2The list of Gaussian kernel widths used in this paper is [1e−6,1e−5,1e−
4,1e−3,0.01,0.1,1,5,10,15,20,25,30,35,100,1e3,1e4,1e5,1e6].
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Figure 1: The complete computing graph of state integrated matrix estimation (SIME) method [13]. NNI (I = Ã, B̃,K,C,D,F) are
used to distinguish neural networks. The green and yellow circles represent the inputs and outputs of their adjacent neural networks,
respectively (except for x(2)k and x(2)k+1 which are computed by NNF ). The red lines show the connections between computing graphs of
state and output estimation modules.

first few layers of deep neural networks for a task can encode
knowledge that are common for other similar tasks. By reusing
these layers, fine-tuning can facilitate the learning of other tasks.
This approach is equivalent to assuming identical basis functions
for identification of similar systems using a family of functions
with affine scheduling dependency in the context of LPV model
identification.

Fine-tuning design requires determining the way to share
both structure and parameters of ANNs. From the perspective
of function approximation, the structure of ANN determines the
family of functions. According to the prior knowledge on the
relative complexity of two similar systems, the original structure
of the previous model can be shared for the model of a new sys-
tem. If the new system is supposed to be more complex than the
original system, for example, we can add more layers to the orig-
inal model. From the perspective of optimization, the original
parameters of the identified model can provide a good initial-
ization for the training of the new model. Furthermore, we can
copy the parameters of the first few layers of the original ANN to
the new ANN, fix them and train the remaining parameters. The
advantages of this approach to reducing the number of the train-
able parameters are threefold: providing regularization, avoiding

over-fitting, and improving computational efficiency.

3.3 Framework of Online Transfer Learning
Using online transfer learning, we propose the workflow

shown in Figure 2 to refine the existing offline model in real
time. Strictly speaking, online learning updates the identified
model for future data at each time step. However, considering
the complex dynamics of a system and the feasibility of collect-
ing data and refining model in a reasonable (short) amount of
time, we use batch data to tune the model but restrict the com-
putation time such that the refinement can be completed in time
with the system operating normally.

In this paper, we aim to enhance the control performance by
improving the accuracy of identified model, although tuning ma-
trix weights Q and R in (5) can further boost the performance of
MPC. Moreover, we assume that the range of the scheduling vari-
ables in the closed-loop batch data is identical to the scheduling
variable set P to fine-tune the global model. The scenario where
only batch data over a proper subset of P can be obtained will be
investigated in the future work.

Moreover, we propose multiple metrics to monitor the pro-
cess of online transfer learning. As the metrics are estimated
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Figure 2: Workflow of refining LPV-SS model in real time.

using data, employing only one metric can result in a poor trans-
fer strategy. Firstly, MMD in (9) will be used to measure the
distribution discrepancy both between offline data and closed-
loop batch data and between the present closed-loop batch data
and the previous batch. This measure provides a metric for de-
vising transfer strategy. Another metric is derived from Kalman
filter, which is a commonly used approach to tackle plant-model
mismatch problem [25]. The convergence of the measurement
post-fit residual can reflect the accuracy of the estimated model.
In this paper, we use3

eKF =
1

NB

NB

∑
k=1

∣∣∣yk−Ĉ(pk)x̂k|k

∣∣∣, (10)

where NB is the number of intervals for a batch of closed-loop
data, yk is the measured output at time instant k, Ĉ is the cur-
rent estimation of output matrix using fine-tuned ANN and x̂k|k
is the posterior state estimation of Kalman filter using the cur-
rent estimated matrices. Additionally, the mean absolute error

3Here, we assume no feedthrough matrix D.

eT P = 1
NB

∑
NB
k=1 |rk − yk| is used to measure the tracking perfor-

mance and the best fit rate (BFR)

BFR(θ) = 100% ·max
k

(
1− ‖yk− ŷk(θ)‖2

‖yk− ȳ‖2
,0
)

is employed to measure the accuracy of the identified LPV-SS
model.

4 Experimental Results and Validation
The developed online transfer learning method is evaluated

for combustion control of an RCCI engine with the specifica-
tions listed in Table 1. The RCCI engine is based on a 4-cylinder
GM Ecotec LHU engine that was modified for RCCI operation.
Details of the engine setup are found in [26]. In this paper, a
high-fidelity experimentally validated RCCI engine model from
[20] is used to simulate RCCI indicated mean effective pressure
(IMEP) and combustion phasing that is represented by CA50 as
the crank angle by which 50% of fuel has been burnt in an engine
cycle.

Table 1: RCCI engine specifications

Description [Unit] Operating Value

Bore [cm] × Stroke [cm] 8.6 × 8.6

Compression ratio 9.2:1

Displacement volume [cc] 1998

Max engine power [kW@rpm] 164@5300

Max engine torque [Nm@rpm] 353@2400

IVO, IVC [CAD bTDC] 25.5, 2

EVO, EVC [CAD bTDC] 36, 22

DI fuel rail pressure [bar] 100

PFI fuel rail pressure [bar] 3

Structure of the designed RCCI engine controller is shown
in Figure 3. The designed controller is based on an MPC that
incorporates an LPV state-space model for RCCI engine dynam-
ics. The MPC scheme controls IMEP and CA50 by adjusting
total injected fuel (FQ) and start of injection (SOI) of the reac-
tive fuel (i.e., n-heptane), respectively. The MPC controller uses
a Kalman Filter for estimating engine states (e.g., in-cylinder gas
temperature at start of combustion) that are difficult to measure.
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Figure 3: Schematic of the designed RCCI engine controller with online transfer learning

Here, the high-fidelity RCCI model is used to: (i) serve as
our evaluation testbed, and (ii) create engine data for model iden-
tification. Using the RCCI model, two different simulation mod-
els P1 and P2 are created for the RCCI engine to validate our
proposed online transfer learning method (Figure 3). These two
models have different parameters but identical inputs, outputs
and scheduling variable as follows

U = [SOI FQ]T, (11)
p = PR, (12)

Y = [CA50 IMEP]T, (13)

where PR is the premixed ratio of dual fuels (i.e., iso-ocatne and
n-heptane) and used as the scheduling parameter for the LPV
state-space model.

The model P1 was identified using SIME in [13] and data
D1 in Figure 4 (note that a periodic scheduling variable PR was
used). We used the adaptive MPC described in Section 2.2 to
design an initial controller for P2 based on the identified LPV-
SS model M1 of P1. For MPC design, we assumed that Q is an
identity matrix and R is an identity matrix scaled by 0.1 in (5).

The constraints on inputs and outputs are as follows

−35≤∆uSOI ≤ 35 [CAD], −17.5≤ ∆uFQ ≤ 17.5 [mg/cycle],

0≤uSOI ≤ 70 [CAD bT DC], 0≤ uFQ ≤ 35 [mg/cycle],

−10≤yCA50 ≤ 30 [CAD aT DC], 500≤ yIMEP ≤ 1000 [kPa],

which are based on the experimental data used to validate the
RCCI engine dynamic model. The scale factor for IMEP is 10.
Moreover, the initial MPC was built based on the trained SIME
model evaluated at PR = 20. The aim of this experiment4 is to
refine M1 to obtain an improved LPV-SS model M2 for P2 and
achieve a better control performance than the initial controller.

To quantify the discrepancy between P1 and P2 and satisfy
the assumption that the closed-loop batch data traverse P, we
maintained the scheduling signal PR in Figure 4(a), used the out-
put signal in Figure 4(b) as reference and the designed adap-
tive MPC to calculate the control inputs. In this experiment,
the number of samples in a batch of closed-loop data set is 400,
which corresponds to scheduling signals of two periods. More-
over, we split the batch data into training and testing sets with
a ratio of 75%/25%. For fine-tuning settings, the structure of
ANNs in SIME remains unchanged and the parameters in the

4For structure design and hyperparameter setting of SIME, refer to [13].
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(a) Inputs to the engine

(b) Outputs from the engine

Figure 4: Inputs/outputs data set used for LPV-SS model learn-
ing of RCCI engine. The engine simulating conditions are
N = 1000 rpm, Tman = 333.15 K and Pman = 96.5 KPa.

trained model are used for initialization. However, we did not
fix any parameters due to the significant differences in the distri-
butions of data as shown in Figure 5. To demonstrate the poor

25 30 35 40 45
SOI (bTDC)

15

20

25

FQ
 (m

g/
cy

cl
e)

original
new

Figure 5: Distribution comparison between inputs of D1 and
new data sets. The horizontal axis represents the first input
while vertical is the second one. We note that M̂MD(D1,D2,1) =
0.4215.

prediction performance of the original model M1 on a batch of
closed-loop data D2,1

5, we directly applied that model to the new

5The first subscript is used to distinguish systems and the second subscript
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Figure 6: The outputs predicted by the original model M1 and
the true outputs on the testing set. The engine testing conditions
are N = 1000 rpm, Tman = 363.15 K and Pman = 96.5 KPa.
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Figure 7: The outputs predicted by model M1,1 and the true
outputs on the testing set. The engine testing conditions are
N = 1000 rpm, Tman = 363.15 K and Pman = 96.5 KPa. The
engine testing conditions are N = 1000 rpm, Tman = 363.15 K
and Pman = 96.5 KPa.

data. The results show that the original model M1 cannot cap-
ture the dynamics of the new engine P2 (see Figure 6). Using
D2,1 to fine-tune the model M1, the results in Figure 7 show that
the refined model M1,1 can better capture the dynamics of new
engine P2. Furthermore, the mean absolute tracking errors de-
crease from eT P = [0.8,16.48]T and eKF = [0.4287,0.5178]T to
eT P = [0.6,12.11]T and eKF = [0.2843,0.1415]T in the next 1/2
period which corresponds to scheduling signals of 1/2 period.
Figure 8 shows the tracking performance using model M1,1. Ad-
ditionally, the fine-tuning only took 100 seconds using a com-
puter with a 2.6 GHz CPU and 16 GB RAM, as we trained the
model for only 200 epochs on 260 samples under online setting
rather than 2,000 epochs on 602 samples under the offline set-
ting.

After the engine runs for 1/2 period (which corresponds to

after the comma is the batch number.
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Figure 8: Tracking performance and control inputs using model
M1,1. The engine simulating conditions are N = 1000 rpm,
Tman = 363.15 K and Pman = 96.5 KPa.

the scheduling signal PR over half a period), we can combine this
1/2-period data in Figure 8 and the previous 3/2 periods data
to obtain a new batch of data D2,2. Now, M̂MD(D2,1,D2,2) =
0.0699, which implies that the distribution discrepancy de-
creases. By sliding the time window rather than waiting for
another two periods, we can update the model faster and sta-
bilize the refinement process by using less new data. We re-
fined M1,1 using D2,2 and obtained a new version of model
M1,2 that is better than M1,1 in terms of tracking performance.
The mean absolute errors decrease to eT P = [0.4,11.42]T and
eKF = [0.1289,0.0777]T. Figure 10 shows the tracking perfor-
mance using model M1,2. Similarly, we obtain D2,3 by com-
bining the closed-loop batch data in Figure 10 and the previ-
ous 3/2-period data. However, BFRIMEP in Figure 9 shows
that the performance of predicting IMEP slightly decreases. As
eKF decreases and BFRIMEP is high, M1,2 is expected to be bet-
ter than M1,1. We can keep refining the model until the BFR
stops increasing or eKF stops decreasing or eT P fulfills the con-
trol requirements. Moreover, since M̂MD(D2,2,D2,3) = 0.0434
is small, D2,3 cannot provide much information and fine-tuning
stops.
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Figure 9: The outputs predicted by model M1,2 and the true
outputs on the testing set. The engine testing conditions are N =
1000 rpm, Tman = 363.15 K and Pman = 96.5 KPa.

5 Concluding Remarks
In this paper, a framework was presented to refine identi-

fied ANN-based LPV-SS models using online transfer learning
such that the closed-loop system performance using an LPV-
MPC controller is enhanced. Specifically, MMD was introduced
to quantify similarity, fine-tuning strategies were discussed for
transfer learning with different degrees of similarity and the
workflow of refining models online was provided. Experiments
on two different high fidelity simulation models of an RCCI en-
gine showed that the proposed framework can refine the offline
model of one system to achieve better prediction and tracking
performance on another “similar but not identical” system.

ACKNOWLEDGMENT
This work was financially supported by the United States

National Science Foundation under awards #1762595 and
#1912757.

REFERENCES
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