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Water turbidity is a frequent impediment for achieving satisfactory imaging clarity in underwater video and inhibits 
the extraction of information concerning the condition of submerged structures. Ports, rivers, lakes and inland 
waterways are notoriously difficult spots for camera inspections, in particular for hull inspections in lieu of dry-
docking. This complex problem motivated us to study methods to extract a cleaner image /video footage from the 
acquired one. The purpose of this paper is to describe a novel mathematical model for the degradation of images due 
underwater turbidity caused by suspended silt particulates and algae organisms and to propose methods to improve 
image and video clarity using multiscale non-linear transforms.  
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INTRODUCTION 
Water affects light propagation due to scattering, which is 
increased by suspended solid particles in the water. Light 
absorption is one way this effect manifests. Turbidity is an optical 
determination of the level of water clarity and is caused by variety 
non-soluble particles, e.g. clay, sand, silt, or algae. Suspended 
particulates are those having diameter larger than 2μm. Anything 
smaller is considered soluble. In average, salt water environments 
have lower turbidity levels than freshwater ones. In this work, we 
discuss some ideas on how to model image formation in aqueous 
environments and we propose a new method on how to restore 
clarity of still photos and video (live feed or saved in a file). We 
also discuss what our method can extract from a given image and 
possible ways of improving clarity restorations in the future.  
 
Underwater Image Formation  
First, we begin with a description of how images are formed, 
ideally, in vacuum, or in clear atmospheric conditions. The key 
principle is derived from Lambert: the image f is expressed as 
  
f = Luminance (σ) x Reflectance (R)                                         (1) 
 
where the luminance σ depends on the incident light. Luminance 
can also account for the lower illumination a shadow may cast on 
an object. The reflectance accounts for the portion of the luminous 
energy that can be reflected back from the object, hence it contains 
all the necessary information for the shape of an objects and its 
boundaries with other objects, crack lines and all of the necessary 
structural information we want to know. The problem of interest 
is to recover R without knowing σ.  When adequate light from a 

scene reaches the sensor we conventionally have R=f. If very low 
luminous energy is emitted back from the scene, then recovering 
R from f may become impossible. Recovering or better say 
approximating R in some sense, is the goal of Illumination 
Neutralization algorithms, a term the authors were first to coin in 
(Upadhyay and Papadakis 2019). By Illumination Neutralization, 
we mean the process to derive a surrogate Rs of R from f with the 
following properties: 

• Rs contains all the edges of R and does not contain 
artificial edges. 

• Smooth areas of R are preserved in Rs 
• Edges in Rs are spatially organized in the same way as 

in R in order to preserve all shapes in R. 
In (Upadhyay and Papadakis 2019) we provide a mathematical 
definition for Rs so we refrain from giving more details here. As 
we argue therein, from a given f we can extract more than one 
surrogate of R which circumvents the problem of extracting the 
reflectance from a given image which is not a well-posed problem 
since luminance is also unknown. Numerous contributions have 
been made claiming to solve (1) but many of them lack rigor and 
deliver a surrogate of R while they claim that they extract R. The 
need to avoid such mathematically non-rigorous approaches leads 
us to introduce Illumination Neutralization.  
 
Image formation in marine environments differs from the model 
of Eq. (1) because light is scattered on water molecules and quite 
often on NaCl molecules as well. In simple terms those molecules 
function as microscopic reflectors causing incident light to be 
dispersed in multiple directions and also back to the direction of 
the camera. Apparently light rays scattered by one molecule will 
be scattered multiple times, but these multiple scatterings are 
ignored. To account for the cumulative effect of these scatterings 
Jaffe and McGlamery (McGlamery 1980) (Jaffe 1990) suggest 
that image acquisition in underwater is governed by: 

http://www.sname.org/


 

Improving the Visibility of Underwater Video in Turbid  
Aqueous Environments                         2 
Manos Papadakis                                      SMC2020 - A Virtual Event, 29 September-2 October                                                  
    

 f(x)= σ (x)R (x)+A (1- σ(x))                                                      (2) 
 
where, σ is a light absorption function and A models the ambient 
illumination from the sun. The same model also postulates that 
 
 σ(x)=Ae(-Kd(x))                                                                             (3) 
 
where d(x) is the distance of an object inside the water from the 
point x of the camera sensor plane and K is constant. The object 
also reflects light back to the camera. This a widely accepted 
model for image formation in non-turbid aqueous environments. 
Two interesting points arise when comparing this model to Eq. 
(1): First, the term of the sum in (2) is a special case of the right-
hand side (RHS) of (1) while here we have an explicit form for 
the luminance assuming we know d; second, the second term in 
the sum models haze. The significance of the model is that we 
have an additional term to account for when solving for R. When 
we use underwater lights in non-turbid aquatic environments, we 
can essentially ignore the second term if the image f captures a 
scene with objects not far from the camera. In this case, A will be 
the light intensity of the camera. The Jaffe and McGlamery model 
inspired us to propose a model for image formation in turbid 
aquatic environments utilizing again two terms as in (2). Our 
motive to explore underwater image formation in the presence of 
turbidity is the need to develop training sets for deep neural 
networks tuned for the detection of structural problems during 
camera inspections. Obtaining real training sets is a rather difficult 
task, but using images obtained not in aqueous environments is an 
easier task. Then, if we can simulate turbidity then we can possible 
create training sets for the AI-detection of certain defects 
underwater.  
 
Underwater Image formation when turbidity is present. Here we 
assume that light only comes from the direction of the camera. We 
ignore ambient sun light because it is either highly attenuated or 
non-existent (e.g. in a ballast tank or under ice).  Then, we must 
have that an image f is given by  
 
 f(x)= σ (x)R(x)(1-q(x))+Acam q(x)                            (4) 
 
where q is a “function” accounting for the interaction of the 
artificial light with intensity Acam. The “function” q is non-
deterministic. In fact, we postulate that q is a random field, which 
is the analogue of a random process in two dimensions. As we see 
both summands in the RHS of Eq. (4) are coupled as in the Jaffe 
and McGlamery model due to the presence of q. This does not 
allow us to treat the second term in the sum as noise. So recovering 
R from f is a lot more complicated problem because f is the sum 
of two images one of which, Acam q, is a random field and a more 
special type referred to as texture. This type of texture is stochastic 
or in simple words we mean that it does not have a specific pattern 
as for instance a brick wall has. Even in this more complicated 
situation we want to extract a surrogate of R. To solve this 
problem we argue that it will be important first, to model q.  
 
The rest of this work discusses a plausible model for q and partial 
solution for the extraction of a surrogate of R under certain 

conditions using methods proposed in (Upadhyay and Papadakis 
2019) (Upadhyay, Mitsakos and Papadakis 2018).   
 
METHODS 
Modeling q. There are two visible properties of textures or 
intensity patterns that is created by turbidity in natural sub-aquatic 
environments. 
  

1. The back scattered light appears to be reflected from 
suspended particles that are randomly distributed. The 
average intensities across the image is mostly uniform 
for uniform illuminations. 

2. These suspended particles appear at many scales. At a 
fixed distance from the camera, smaller particles are 
more densely distributed than larger ones. However, 
larger particles at greater distance from the camera 
appears similar to smaller particles close to the camera. 

 These two properties suggest that we should model q using 
stochastic texture that also has a self-similar statistics across 
different scales. That is, textures at courser scales show same 
statistical behavior as those in finer scales. These two properties 
can together be addressed using a family of stochastic texture 
called fractional Brownian motion (fBm) random fields. Our 
larger goal is to simulate turbidity across many 2D planes at 
multiple depths in the field of view, and then find the cumulative 
effect of their superimposition. However, we are going to limit 
our scope of research to only one such plane in this article.   
 
Ordinary Brownian motion. An ordinary Brownian motion also 
known as a Wiener process is a continuous-time stochastic 
process W(t) for t≥0 with W(0)=0 and such that the increment 
W(t)-W(s) has normal distribution with mean 0 and variance t-s 
for any 0≤s<t, and increments for non-overlapping time intervals 
are independent (Karatzas 1997).  
 
Fractional Brownian motion. The term fractional Brownian 
motion was first introduced by Mandelbrot and van Ness in 1968. 
They used fBm as a special category of Gaussian stochastic 
processes in one dimension, which followed certain specialized 
properties. These models were later generalized into higher 
dimensions, and we are going to adopt a two dimensional version 
of fBm models for simulation of turbidity at a given plane 
perpendicular to the line of sight of the camera (or the principle 
axis of the lens).   
 
It is simpler to understand the underlying principal of fBm by 
looking at its definition in one dimension, which is given by an 
integral: 
 
𝐵𝐵𝐻𝐻(𝑡𝑡) = ∫ [𝐾𝐾𝐻𝐻(𝑡𝑡 − 𝑠𝑠) − 𝐾𝐾𝐻𝐻(−𝑠𝑠)]𝑑𝑑𝑑𝑑(𝑠𝑠)+∞

−∞                                          (5) 
 
where, 0 ≤ 𝐻𝐻 ≤ 1, 
 𝐾𝐾𝐻𝐻(𝑡𝑡) = 𝑡𝑡𝐻𝐻−0.5

𝛤𝛤(𝐻𝐻+0.5)                                                                           (6) 
 
for 𝑡𝑡 ≥ 0 and 𝐾𝐾𝐻𝐻(𝑡𝑡) = 0 for 𝑡𝑡 < 0, and {B(s)}s is ordinary 
Brownian motion (i.e., the integration of a white Gaussian 
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process) (Abry and Sellan 1996). Thus a fractional Brownian 
motion is a moving average of an ordinary Brownian motion, 
weighted over a Kernel. Fourier transform of 𝐵𝐵𝐻𝐻(𝑡𝑡) shows that it 
does not have any dominant frequency, rather the frequencies are 
spread across the spectrum in a way that each frequency to the 
power spectrum is nearly inversely proportional to the frequency. 
In addition, the increments of fBm are statistically self-similar, 
that is, 𝐵𝐵𝐻𝐻(𝑡𝑡 + 𝛥𝛥𝛥𝛥) − 𝐵𝐵𝐻𝐻(𝑡𝑡) and ℎ−𝐻𝐻[𝐵𝐵𝐻𝐻(𝑡𝑡 + ℎ𝛥𝛥𝛥𝛥) − 𝐵𝐵𝐻𝐻(𝑡𝑡)] have the 
same distribution functions. The positive quantity H is called the 
Hurst parameter and works as the self- similarity parameter.   
Higher dimensional extensions to fBm follow the same properties, 
making them suitable for our modeling (Fournier, Fussel and 
Carpenter 1982). 

 
Generating fBm fields using midpoint displacement algorithm. 
The midpoint displacement algorithm is a method to generate an 
intensity map by assigning a value to each of the four corners of a 
rectangle, and then subdividing the rectangle and each resulting 
child into four smaller rectangles, whose value at the subdivided 
corners are the average value between the corners of the parent 
rectangle perturbed by a randomly generated Gaussian white 
noise (Brouste, Istas and Lambert-Lacroix 2007). The Matlab 
implementation we used to derive the simulations of the fBm are 
due to Meg Noah (Meg n.d.). 
 
Proposed numerical scheme to generate turbidity. 
We assume that the sensor of our digital camera records images 
as rectangular matrices of size M x N. Let us recall that the field 
of view of this camera is pyramidal in shape when we observe the 
same in 3D. That is, texture matrices of larger dimensions gets 
projected to size M x N for planes far away from the camera. For 
the sake of simplicity, we choose only those grid points along the 
depth where matrices of size �2𝑗𝑗𝑀𝑀�𝑥𝑥�2𝑗𝑗𝑁𝑁�  for some 𝑗𝑗 ≥ 0 gets 

projected to M x N. We adopt the following algorithm to generate 
a monoscale texture q. 
 

1. Generate 2D fBm stochastic texture X of size 
�2𝑗𝑗𝑀𝑀�𝑥𝑥�2𝑗𝑗𝑁𝑁� using midpoint displacement algorithm. 
The values of  X scaled to lie between [0,1]. This is a 
monoscale (all particulates have the same size regardless 
of their distance from the camera). 

2. Convolve X with 2D low pass analysis filter that is a B-
spline of order 3. These kernels are symmetric and 
smooth, hence good for interpolations. A 3D graph of the 
low pass filter is attached in Figure 1. 

3. Downsample X by eliminating alternate rows and 
columns to obtain X’. This delivers a matrix of size 
�2(𝑗𝑗−1)𝑀𝑀�𝑥𝑥�2(𝑗𝑗−1)𝑁𝑁�. 

4. Set  X = X’ 
5. Iterate steps (2) to (4) j times in order to arrive at the 

texture X of size M x N matching the resolution of our 
camera. 

6. The matrix q = 1-X is the image of water turbidity 
captured by the camera (Figs. 4,5). The brighter the 
image the more opaque water is due to a higher 
concentration of suspended particulates. 

 
The particles present in this texture are all of the same size, 

because our present construction makes that assumption. Yet they 
generate a range of intensities because they do not reflect back all 
the light hitting them. We assume these particles to be spherical 
in shape, and hence light may bounce off in a direction depending 
on the surface normal at the point of incident. It is extremely 
difficult model the net incident light by studying reflected light at 
the particle level. So, we adopt the strategy to model the 
cumulative effect of lights coming to the sensor after factoring in 
the possibility that some light may be lost because it does not 
propagate towards the sensor. 
 

Figure 1. B-Spline averaging filter used to generate 
q in the second term of Equation (4). The texture X 
is the physical barrier of suspended particulates and 
q is the image of X captured by the camera. To 
arrive at step 6 of the turbidity texture generating 
algorithm we use this filter as an averaging kernel 
before lowering the resolution as in step 3. 

Figure 4 Example of a turbidity image obtained 
with algorithm above. The brighter areas of the 
image indicate higher concentration of 
particulates reflecting more light back to the 
camera. This is an image of the texture q. 
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Finally, we are ready to model Equation (4), where we 
superimpose the turbidity on an actual target image in the 
background. Our results here represent work in progress. At this 
stage we model turbidity only for gray-scale images. Modeling 
turbidity for color images is a quite more complex problem that 
will be the objective of our future study.  
 
We assume that out some of the incident light is not reflected back 
because it is obstructed by suspended particulates. The light that 
is reflected back due to turbidity is scattered across every direction 
but our interest lies only in that component which is directed 
towards the sensor. We find experimentally, that this cumulative    
reflection can be approximated by convolving 1 – q with a normal 
radial, distribution density function in 2D with std=8 (pixels) 
along any axis. 
 
Next, we present a few examples to demonstrate the efficacy of 
this algorithm to generate the effect of turbidity on some natural 
images of objects photographed in air. The reader may notice that 
a certain lack of clarity similar to what is observed in turbid water 
is evident in the images created by monoscale simulated turbidity. 
We do not claim that we have fully simulated turbidity. This will 
require a refinement of the previous algorithm to incorporate 
several sizes of particles. Here we only report partial results of our 
ongoing research project to model the effects of suspended 
particulates in underwater image formation.  
 
We assume that approximately 40% of light gets obstructed in the 
medium, hence σ (x)=0.6. Four images are chosen to represent 
R(x) in Equation (4). The first image is that of Indian cartoon 
characters Motu and Patlu. A cartoon image is always a good first 
test case. They allow us to observe the effect of an image analysis 
process on a simple example because cartoons consists of very 
smooth surfaces combined with very sharp edges. Notice that the 
two characters are close up. When one observes the effects of 
captured in simulated turbidity, that the captured image f then 
notice that the background details, those that would be far from 
the camera, are not discernible anymore as it happens in turbid 
water.  
 
We observe that turbidity images generated by our process appear 
to show particulates of same size spread across the image in a 
random manner. Very high frequencies, ω, are not lost in the 
turbidity. This agrees with the theoretical understanding that 
fractional Brownian motion is among the family of (1/ ω)-noise, 
meaning that the frequency spectrum of fBm texture has a decay 
of 1/ ω, making higher frequencies very weak in the monoscale 
texture.  Currently, we work on developing a more general model 
for q using multiscale methods, which will allow us to incorporate 

Figure 5 Motlu and Patlu in the bottom. This 
image is used to generate the top panel using 
Eq. (3) and the turbidity image in the middle 
panel. 



 

Improving the Visibility of Underwater Video in Turbid  
Aqueous Environments                         5 
Manos Papadakis                                      SMC2020 - A Virtual Event, 29 September-2 October                                                  
    

particles of many different sizes and will have a slower decay of 
frequencies in their Fourier spectrum.   

 
Illumination Neutralization 
In this section we illustrate a method to extract a surrogate of the 
reflectance R from f. In (Upadhyay and Papadakis 2019) we 
rigorously define illumination neutralization and we show two 
examples of operators performing this task under the assumption 
that the imaging regime is governed by the Lambertian model of 
Eq. (1). One note before we proceed will promote better 
understanding: we often refer to scales as opposed to frequencies. 
The term scales refers to frequency bands determined by upper 
and lower bounds that are powers of two and have some 
orientation, horizontal, vertical, diagonal, or some other 
intermediate. The higher the powers of two the higher the scale is, 
pretty much as octaves in music.  

Figure 6 Top panel is an example of a texture q 
applied again via Eq. (4) to the original shown in 
the middle panel to derive the hazy output f. The 
mid-panel photo is taken out of water and shows 
part of a dock and a umbilical tube. 
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We do not yet have a rigorous mathematical proof that 
neutralization operators will work in the presence of turbidity, but 
as it happens with numerous algorithms, one example of 
neutralization operator appears to improve image clarity and 
definition even in turbid environments governed by Eq. (4).  
Exploring the mathematics of illumination neutralization under 

the regime of Eq. (4) is one of the main objectives of our future 
research. In this article we will skip all of the mathematical details 
of this class of operators. We will only describe here how an 
illumination normalization operator works.  There are two key 
ideas in devising such an operator. The crucial information in 
reflectance is concentrated on edges which describe shapes. 

 

Figure 7 Flow chart of the Illumination Neutralization operator we use for video and photo clarity enhancements. The 
formulation of this operator is in (Upadhyay and Papadakis 2019). The illumination neutralization applied to each band 
can be tuned for each band, high and low frequency for better performance for each imaging regime. Further details 
regarding the steps described in the two blue boxes can be found in (Upadhyay and Papadakis 2019); all rights reserved. 
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Curvature of smooth surfaces is the other main ingredient of 
reflectance. Depending on the intensity of illumination, 
curvatures of smooth surfaces may be preserved in the captured 
image, but as it happens with human vision, edges are more 
resilient and many of them, not all, survive poor illumination. An 
Illumination Neutralization operator restores the original 
definition of edges under certain circumstances and delivers a 
surrogate image containing the information we described in the 
introduction. In (Upadhyay and Papadakis 2019) we prove that the 
surrogate image we extract by applying an illumination 
neutralization operator to an image with luminance σ is 
approximately equal to the surrogate image  we would obtain with 
full intensity luminance σ=1. We remark that in the latter case 
f=R. So the surrogate image we will extract from f is not going to 
be equal to R but it will have all the useful information of R we 
need to recover from the camera input f, that is shape information. 
In (Upadhyay and Papadakis 2019) we argue there can be more 
than one illumination neutralization operator and that surrogate 
images resulting from the same scene contain all edges in the 
reflectance of the scene. For each scene we have only one 
reflectance because reflectance exclusively depends on their 
shape and relative position in the scene. In (Upadhyay and 
Papadakis 2019) we prove that under certain low or high intensity 
illuminations σ the resulting surrogate images have very small 
difference from the surrogate image a Illumination Neutralization 
operator generates when σ=1, as long as σ is uniformly smooth 
and the parameters for the definition the Illumination 
Neutralization operator are not changed. In summary, we prove 
that under most illumination conditions from a unique scene we 
extract an approximate illumination invariant image, the surrogate 
of R when illumination if full and uniform (σ=1). 
 
 Nonetheless, the mathematical assumptions we make, 
intentionally ignore one key factor: When illumination σ is very 
low on certain patches of an image then less energy hits the sensor 
is not able to capture a part of the edge at that patch. This 
complete loss of input information sometimes can be recovered 
by using directional representations, which use filters that have 
aspect ratios far from 1, come in a variety of orientations, and can 
align with edges. These representations are sparse, in the sense 
that they use only a few local “building blocks” (finite elements 
are one example of such blocks) to locally express an image as a 
linear combination. In aggregate these “building blocks” are not 
linearly independent. This redundancy affords representations 
with directional “building blocks” that are sensitive to edges and 
resilient to the presence of adversities such as noise or the “veil” 
of turbidity. Nonetheless, a discussion of such filters is beyond 
the scope of this paper. The filters we use in our operators tend to 
align with edges close to horizontal and vertical directions. 
Moreover, edges manifest in various scales: Consider hair and lip 
lines for instance. The latter are more pronounced than the 
former, hence they are captured in intermediate scales, while the 
former are captured only in high scales. Fine or thin edges are 
akin to high scales while thicker and sharper (higher gradient) 
edges appear in a range of scales from intermediate to high. This 
analysis applies only to the model of Eq. (1).  
 

Turbidity adds another layer of complexity because we have two 
images superimposed on one another as Eq. (4) shows. In this 
imaging regime, we can assume that illumination is adequate, so 
low values alone are not the problem. In fact, as Eq. (4) suggests, 
that the turbidity generated texture q first blocks the light energy 
emanating from an object in the scene to reach the camera, while 
at exactly the same spot what is blocked is adversely compensated 
by a significant amount of energy emanating now from the 
scattered light on the very turbidity particulates blocking the light 
from the object to reach the camera. To improve image clarity first 
we need to undo the superimposition of the desirable image     
 
σ(x)R(x)(1-q(x))                                                                         (7) 
 
from the undesirable Acamq(x). In the former term the product 
σ(x)(1-q(x)) can be roughly treated as a form of luminance 
(Upadhyay, Mitsakos and Papadakis 2018). Currently, the 
mathematical assumptions we use in (Upadhyay and Papadakis 
2019) do not even cover this case, but our illumination 
neutralization method truly enhances the clarity of images 
acquired in underwater turbid environments, while the parsing of 
information in multiscale seems to significantly attenuate the 
contribution of Acamq(x) in the processed image (Fig. 9). This 
analysis suggests that moving forward the use of multiscale 
transforms with directional sensitivity in several select 
orientations can further enhance the surrogate image illumination 
neutralization extracts from σ(x)R(x)(1-q(x)) because this 
component contains edge information, while Acamq(x) does not 
have local dominant directional components due to its stochastic 
nature. This short analysis also provides some initial explanations 
why it is not expected to see algorithms based on mere local 
intensity value statistics, e.g. Histogram equalization, Local 
Histogram Equalization, (Zuiderveld 1994) and references 
therein, to help improve clarity of images as those algorithms rely 
on local statistics of the sum of the two previously mentioned 
terms. This discussion is also the motive for us to try to model 
image formation in turbid aqueous environments. This type of 
rigorous approach will help us understand the mathematical 
intricacies of image clarity restoration under such conditions. 
Closing, we remark that the turbidity simulation method we 
presented can be utilized to simulate other visibility inhibiting 
conditions, e.g. smoke. The reader may have already noticed that 
our turbidity images look more like smoke. We believe that this is 
may be happening because in the simulations we used in this paper 
are monoscale fractional Brownian motions. 
 
EXPERIMENTS 
There are a few commercially available products for real-time 
underwater video clarity restoration. Most are based on various 
forms of histogram equalization. When simple haze is the 
visibility compromising factor: all of them appear to give 
comparably good results with often faithful color adjustments, e.g. 
(Arici, Dikbas and Altunbasak 2009) (Chiang and Chen 2011) (Li, 
et al. 2016) (Zhang, et al. 2017) (Celik and Tjahjadi 2011) 
(Schettini and Corchs 2010) (Lu, et al. 2016). On the other hand, 
when serious turbidity is present their results appear to be looking 
more like the original hazy input. The most advanced method for 
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histogram equalization is the Contrast-Limited Adaptive 
Histogram Equalization (CLAHE) (Zuiderveld 1994) that also has 
some “multiscale” variants, in the sense that the more than one 
window sizes are used to improve local contrast by adjusting the 
local intensity histogram. More recently, various AI-based 
systems have also been proposed (Ding, et al. 2019) but do not 
seem to give better results than HE-based methods, primarily 
because AI-systems require training and their training requires 
enormous amounts of data. On the other hand, the manifestation 
of turbidity is complex and underwater environments have 
significant variations, limiting the ability of such systems to 
overcome training constraints. Essentially, turbidity acts as a 
strong adverse input that a HE-based system is not designed to 
handle in order to capture reflectance. Demo results of such 
systems are also obtained under plain haze and not in the presence 
of serious concentrations of suspended particulates. Using the 
Illumination Neutralization method, we propose in this paper we 
significantly restore clarity in underwater images captured in even 
in inland turbid water conditions, such as lakes, and show that 
Illumination Neutralization gives better results than HE-based 
systems in such adverse conditions. At the deployable software 
level video footage clarity restoration can be executed literally in 
real-time at 24fps or offline on saved photos or video. Under such 
conditions all space domain statistics-based methods are not 
expected to work equally well, because, as we argue in the first 
subsection of our methods presentation, images acquired in turbid 
conditions are the superposition of two images, one from the 
object and another one from light scattering on turbidity 
particulates. Unlike multiscale methods space domain statistics-
based algorithms cannot parse these two superimposed images. 
Only when light scattering on water and salt molecules are the 
only two factors contributing to haze, and silt particulates are 
present in very low concentrations, then CLAHE and Illumination 
Neutralization will give results that are hardly distinguishable. We 
compare outputs of both methods in Figs. 10, right column and 
11).  The CLAHE algorithm we used for the experiments we 
report is implemented by the MATLAB command adapthisteq(.) 
with the default parameters. 
 
 Only one Illumination Neutralization Operator is currently 
implemented in the commercially available software suite 
ALSvision™. This software works both in real-time and offline. 
Unless otherwise stated, all images clarified using illumination 
neutralization algorithm that are shown here were produced with 
ALSvision OfflineTM. One final significant note is warranted 
before closing this section: Turbidity particulates scatter luminous 
energy (Jaffe 1990). Consequently, it is crucial to have enough of 
it and to avoid pointy light sources. Led light beams need to be 
spread so their beams are widened to facilitate as uniform as 
possible illumination of the surveyed region. Also keeping the 
lights at some distance from the camera and in symmetric 
positions around it and at an angle relative to the camera axis  will 
give best results as the close up particulates will not be illuminated 
and a smaller percentage of light scattered on particulates be 
directly reflected to the camera. Our experimentation shows that 
point sources also tend to flare up the different layers of turbidity 

as if someone views a lit light source behind steam billowing over 
a tea pot.  
 
CONCLUSIONS 
We presented a novel, multiscale non-linear method implemented 
on a GPU that restores the clarity of video footage and photos 
when water turbidity, inland or offshore is high. Our methods 
have the potential to enable vessel camera inspections in ports and 
inland waters to a much greater degree than currently allowable. 
This can save downtime in marine operations, costs, operational 
time savings and reduce risk since inspections in weather 
sheltered locations are always preferred. Furthermore, the 
proposed methods can be applied to pipeline and other fixed 
installation camera inspections in turbid aqueous environments 
such as lakes and rivers. Our approach is based on deriving a 
surrogate image of a scene containing all useful shape 
information. We refer to this process as illumination 
neutralization. We also presented some novel ideas for a model of 
image formation in turbid underwater environments. We also 
provided some initial evidence about the validity of our model. 
Understanding mathematically image formation in turbid water 
will enable researchers to improve the accuracy of the extracted 
surrogate images of reflectance and even develop relevant Deep 
Neural Network models to advance this task and also to enable 
object detection, corrosion identification and automated 
classification of structures and marine life  because it will enable 
the massive enrichment of training sets by overlaying simulated 
turbidity on images containing objects from the classes of interest 
acquired even outside of water. 
 

For the near future, we plan to carry out a comprehensive study of 
the proposed turbidity model we launched with this paper. So far, 
we only looked at monochromatic images and simple textures is 
generated only for fine grained particulates of one scale only. 
Although, our results show that we move to the right direction we 

Figure 8 Simulation of monoscale turbidity 
generated by brown silt shown as a colored 
image. Here the hue is a Gaussian centered at 
red with small standard deviation just to render a 
brown color 
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are not there yet. The aims of our future work are: 
 

1. Simulate turbidity generated from particulates of 
different sizes. Natural turbidity is a combination of 
many different substances, each of different size and 
color. The visibility is often dominated by size of particle 
and distance form camera. This property of a particulate 
is described by its scale. Particles existing in coarse 
scales often block the view of other particles at finer 
scales. We want to create a multiscale model that 
respects this hierarchy in an effort to develop more 
realistic examples of turbidity textures q. This first step 
will be restricted to grayscale images only. 

2. Next, we will model turbidity for color images. Natural 
turbidity is colored due to various factors such as color 
of the suspended particulates the algae or chemical 
pollutants, etc. It is possible to generate colored texture 
by extending the process to the color channels of RGB 
images. An example is shown below in Figure (9).  
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Figure 9 Above and in the right column: Three underwater images 
in highly turbid water, along with their corresponding enhanced 
outputs using the Illumination neutralization algorithm implemented 
by ALSvision. Originals taken with a GoPro 5 camera. Middle panel 
acquired in Barbara’s Cut, Houston ship channel; bottom in Lake Houston.  
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Figure 10 (Left column) The top panel shows a turbidity texture. 
The mid panel shows a TV-test pattern. We observe that weak 
edges are completely blurred by the texture, while stronger edges 
are mostly preserved.  

Right column: Top panel: An original frame extracted from a 
tunnel thruster camera inspection of a M/T in turbid water 
(horizontal visibility around 3ft). There is a nick on the blade 
which is quite visible on the bottom panel generated by ALSvision. 
The mid panel was processed with CLAHE. Original courtesy of 
G&G Marine of Houston TX. 
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Figure 12 Top panel original captured by a pipe inspection 
camera, 480p (horizontal visibility around 10’’). The bottom 
panel was generated by ALSvision. The mid panel was processed 
with CLAHE. 

 

Figure 11 Original (top) shot during a rainstorm on I-10 
East of Houston, TX while driving. The bottom panel shows 
the enhancement. The average brightness of the cloudy sky 
and of the road are the same since we perform illumination 
neutralization and not contrast enhancement.  


