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Abstract—Privacy of data is a critical concern when applying
Machine Learning (ML) techniques to domains with sensitive
data. Homomorphic Encryption (HE), by enabling computations
on encrypted data, has emerged as a promising approach to
perform inference on ML models such as Convolution Neural
Network (CNN) in a privacy preserving manner. A significant
portion of the total inference latency is in performing con-
volution over homomorphic encrypted data (HE-Convolution).
For performing convolution over plaintext data, low latency
accelerator designs have been proposed using algorithms such as
im2col, frequency domain convolution, etc. However, developing
accelerators for the HE versions of these algorithms is non-trivial.
In this work, we develop a unified FPGA design that enables
low latency execution of both im2col and frequency domain HE-
Convolution. To enable selection of the efficient algorithm for
each convolution layer of a CNN, we develop a performance
model that takes the parameters about the encryption and
convolution layer as input and outputs the computation and
resource requirements of the two algorithms for that layer. We
use the performance model to select convolution algorithm for
each layer of ResNet-50 and obtain the first low latency batch-
1 inference accelerator for CNN inference with HE-Convolution
targeting FPGAs using HLS. We compare our design against
prior techniques on CPUs and show that our accelerator achieves
speedups in the range of 3.4×∼6.7× in latency.

Index Terms—Homomorphic Encryption, Convolutional Neu-
ral Network, FPGA

I. INTRODUCTION

Data security and privacy have gained importance in recent
years. This has had great impact on domains which use cloud
computing to perform machine learning analytics on large
amount of data such healthcare, financial analytics, recom-
mendation systems [1], [2]. Data security becomes a critical
concern when uploaded data or results returned from the cloud
are sensitive and confidential. Encryption of data provides
protection for data in transit. However, as cloud platforms
are public, shared resources, the application’s data remain
vulnerable if decoded on the cloud platform for execution [2].

Fully homomorphic encryption (FHE) [3] offers a promising
solution to this challenge by enabling arbitrary computations

on encrypted data. In the context of ML analytics on cloud,
the encrypted user data are sent to the cloud server which
performs computations over the ciphertext to produce the
results. The results are sent back to the user for decryption.
All the intermediate and final results are encrypted, thereby,
guaranteeing end-to-end privacy. FHE has recently become
popular in implementing ML applications such as Convolution
Neural Networks (CNN) [2], [4], [5].

However, a major challenge in the efficient implementation
of CNN inference over homomorphic encrypted data is the
large computational complexity and storage requirements of
executing convolution layers. This is because FHE converts
the inputs into high degree polynomials, typically 1K to
32K [6]. Additionally, the computations can only be performed
in a coefficient-wise manner and require expensive rotation
operations to align the coefficients [2]. These challenges
have prevented the porting of efficient convolution algorithms
such as im2col and frequency domain convolution which
have been successfully used for developing low latency CNN
implementations targeting FPGAs [7]. Thus, while FPGA
implementations of basic FHE operations exist [8], [9], there
does not exist an FPGA accelerator for HE based CNNs.

In this work, we develop a unified FPGA design that enables
low latency execution of both im2col and frequency domain
HE-Convolution targeting FPGAs. For each convolutional
layer, the layer parameters and the security parameters deter-
mine the complexity of the HE-Convolution algorithms. Thus,
to determine the algorithm with the best performance for each
layer, we develop a performance model that takes the layer
parameters and the security parameters as input, and outputs
the computation time and the FPGA resources consumed for
each HE-Convolution algorithm. We leverage the model to
select algorithms for each convolutional layer of ResNet-50 to
obtain a low latency batch-1 inference accelerator. The specific
contributions of this work are:
• We develop an efficient FPGA design for performing HE-

Convolution. This single design supports both im2col and



frequency domain algorithms for different convolutional
layers without reconfiguration.

• We develop a performance model that takes security pa-
rameters and convolutional layer dimensions as input, and
outputs the computation time and the FPGA resources
consumed for each HE-Convolution algorithm.

• We use the performance model to select convolution
algorithm for each layer of ResNet-50 and obtain the first
low latency batch-1 inference accelerator for a HE-CNN
targeting FPGAs.

• We implement our design in HLS, compare it against
state-of-the-art CPU based designs and show that our
accelerator obtains speedups in the range of 3.4×∼6.7×
in latency for the convolution layers of ResNet-50.

II. RELATED WORK

Acceleration of FHE based Neural Network inference has
received attention recently due to their significance in enabling
privacy preserving ML applications. CryptoNets [4] was the
first work to enable neural network inference over encrypted
data. The authors designed a framework for neural network
inference on a batch of images. As FHE does not support non-
polynomial computations, their framework only uses average
pooling and replaces all activation functions with the square
function f(z) = z2. CryptoDL [10] further explored poly-
nomial approximations for typical activation functions, i.e.,
ReLU, Sigmoid and Tanh, to improve the prediction accuracy.
HCNN [11] implemented the first GPU acceleration based
on CryptoNets and achieved low amortized latency for each
image in the batch. However, these works perform inference on
large batches and are not suitable for performing low latency
inference on a single image.

To perform inference on a single image, authors of
Gazelle [5] developed a single image encoding scheme and
proposed algorithms for secure linear algebra kernels including
homomorphic matrix-vector multiplication and homomorphic
convolution. They also designed a secure protocol based on
garbled circuits (GC) to perform non-linear computations with
the collaboration between the server and the client. Cheetah [2]
optimized Gazelle by modeling the noise growth and select-
ing the minimal FHE parameters to reduce the computation
complexity. They further implemented the algorithms on cus-
tom accelerators. However, both Gazelle and Cheetah require
performing expensive Rotation operations (Section III-A). In
contrast, authors of ENSEI [12] developed a frequency domain
algorithm for HE-Convolution that simply uses Hadamard
products and accumulations.

All the prior works have targeted either a CPU or a GPU
platform. A few works have accelerated FHE primitives on
FPGAs. These include [9] that accelerates the primitives of
the BFV [13] [14] encryption scheme, and HEAX [8] that
accelerates the primitives of the CKKS scheme [15] includ-
ing the Number Theoretic Transform (NTT) that transforms
polynomials into the evaluation space to simplify polynomial
multiplications. It is non-trivial to develop an efficient HE-
CNN implementation using these primitives as naive imple-

mentation will result in significant computational complexity
due to Rotation operations. To the best of our knowledge, no
implementation exists for performing HE-CNNs on FPGAs.

This work proposes the first FPGA-based low latency in-
ference accelerator for convolutional layers of ResNet-50. We
achieve it by implementing the im2col [16] and frequency
domain convolution [12] over homomorphic encrypted data,
which avoid expensive Rotation operations, on FPGA.

III. BACKGROUND

A. Homomorphic Encryption Scheme

Homomorphic encryption (HE) provides a practical way
for privacy-preserving computations. It was first proposed
by Gentry [3] using lattice-based cryptography. It allows
direct computations, including addition and multiplication,
over ciphertext without revealing the original data. Several
homomorphic encryption schemes have been developed re-
cently, including BGV [17], BFV [13] [14], CKKS [15], etc.
A noise term is included in a ciphertext of HE to hide the
underlying message. The noise is multiplicative and grows
rapidly when homomorphic multiplications are performed.
Every ciphertext has a restriction on the maximum amount
of noise (called “noise budget”). When a ciphertext runs out
of its noise budget, the original plaintext will be corrupted
and lost. Therefore, practical HE applications usually limit the
maximum depth of computations to control the noise.

In this work, we choose the BFV scheme. The scheme
has three parameters (N, pE , Q), where N defines the degree
of polynomials, pE is the plaintext modulus, and Q is the
ciphertext modulus. The plaintext space is ZN

pE
, which means

a vector of N elements from the finite ring of integers ZpE
,

i.e., integers modulo pE . Denote R = Z[X]/(XN +1) where
N is a power of 2. Then R is a ring for polynomials with
degree of N − 1. The ciphertext space is R2

Q = (R/QR)2,
which means a pair of polynomials with coefficients from ZQ.

For two plaintext vectors u,v ∈ ZN
pE

, we denote their
encrypted ciphertexts as [u], [v] ∈ R2

Q respectively. The
primitive computations supported by the BFV scheme are as
follows:
• Addition: Add([u], [v]) = [u+ v].
• Plaintext-Ciphertext Multiplication (Pt-Ct Mult):

Mult([u],v) = [u ◦ v], where u ◦ v is the Hadamard
product (i.e., element-wise product) of two vectors.

• Ciphertext-Ciphertext Multiplication (Ct-Ct Mult):
Mult([u], [v]) = [u ◦ v].

• Rotation: Let u = (u0, u1, ..., uN−1), then
Rotate([u], k) = [uk, uk+1, ..., uN−1, u0, ..., uk−1] for
k ∈ {0, 1, ..., N − 1}.

Among these, Addition and Pt-Ct Mult have low computation
complexity and can be embarrassingly parallel. However, Ct-
Ct Mult and Rotation are more expensive because they are
composed of a long sequence of procedures [13].

A plaintext vector is generated as follows: (1) N integers
from ZpE

are packed into an initial vector. (2) The initial vec-
tor is mapped into a polynomial from RpE

using the Chinese



Remainder Theorem (CRT) [4]. The polynomial is represented
as a coefficient vector from ZN

pE
. (3) The coefficient vector is

transformed with NTT into the plaintext vector.
The typical value of N varies from 1K to 32K [6]. The

corresponding ciphertext modulus Q can be hundreds of
bits, which exceeds the word width of actual processors.
The solution is to use CRT again to break the large Q
into several smaller moduli [18] that fit the machine word
width. All the moduli usually have approximately the same
bit width denoted as log q. Each ciphertext is transformed into
multiple pairs of polynomials with smaller coefficients. The
computations of Addition and Pt-Ct Mult can be performed
on all pairs of polynomials independently. Note that before
the computations, all polynomials in the ciphertext have been
transformed into the evaluation space using NTT to simplify
polynomial multiplications to Hadamard products.

B. Privacy Preserving CNN Inference Protocol

We define client as the owner of the plaintext data. In this
work, the data is an image. Server is defined as the host/owner
of the pre-trained CNN model. The client needs to perform an
inference on the image using the CNN model hosted by the
server. The privacy of the input image and the inference result
needs to be guaranteed. Our CNN inference protocol uses BFV
scheme of homomorphic encryption for linear computations
(convolutional layers and fully connected layers). The key
steps in our protocol are as follows:

1) Setup. The client locally sets up a public key and
private key. The public key is used to encrypt the image
into ciphertext. The private key is used to decrypt the
ciphertext (result) back to plaintext.

2) Convolutional layers. (a) On the client, the input images
are transformed to the format required by the chosen
convolution algorithm (Section IV-A). The transformed
data are packed into plaintext vectors which are then
encrypted into ciphertexts and sent to the server. (b) The
server receives the ciphertexts from the client, computes
the convolution, and sends the result back to the client.
The focus of this work is to accelerate the computation
in this step using FPGAs. (c) After receiving the results
from the server, the client decrypts them into plaintexts
and performs reverse transformations as required by the
chosen convolution algorithm.

3) Fully connected layers. The protocol for the fully con-
nected layers are similar to the convolutional layers with
the only difference being that format transformations are
not needed.

4) Non-linear computations. FHE does not natively support
non-linear computations. Thus, non-linear layers such as
pooling or activation layers are performed jointly by the
client and the server under the GC protocol. More details
are described in Gazelle [5].

In this paper, we focus on accelerating and modeling the
computations for convolutional layers which are executed on
the server.

IV. ALGORITHMS AND ACCELERATOR DESIGN FOR
HE-CONVOLUTION

Convolutional layers are the main components of most
common CNN models. As convolution is essentially composed
of Multiply and Accumulate (MAC) operations, it can be
performed securely with homomorphic encryption. In this
section, we describe how to apply two popular convolution
algorithms, im2col and frequency domain convolution, over
homomorphic encrypted data. Then we propose an FPGA
architecture to accelerate the two algorithms.

A. HE-Convolution Algorithms

A typical convolutional layer consists of an n × n × fin
input image X convolved with a set of filters W of dimension
f × f × fin × fout to output a u× u× fout image M . Here,
fin and fout denote the number of input and output channels,
respectively. Let s denote the stride.

Prior works [5] [2] perform straightforward HE-Convolution
and thus require expensive Rotation operations. In contrast, we
use im2col convolution or frequency domain convolution that
only use Pt-Ct Mult and Additions.

Im2col convolution converts convolution into matrix mul-
tiplication. Specifically, X is transformed into a matrix X ′

of dimension u2 × (f2fin), and W is transformed into a
matrix W ′ of dimension (f2fin)×fout. Then the convolution
X ∗W is equivalent to the matrix multiplication X ′W ′. Each
column of X ′W ′ contains all pixels of one channel of the
output image. Assuming the input image is padded, we have
u = 1 + n−1

s .
In order to allow the server to compute X ′W ′ securely, the

client should pack all elements from X ′ into vectors of length
N as plaintexts, and then encrypt them into homomorphic
ciphertext. Our packing scheme guarantees that each vector
only contains elements from the same column of X ′. The
concrete packing scheme depends on the vector size N :

1) When a single vector is large enough, i.e., N ≥ u2, we
can pack bN/u2c copies of the same column into a vec-
tor to compute multiple output channels simultaneously.
After receiving the encrypted vectors, the computations
on the server are f2finfout/bN/u2c Pt-Ct Mult and
Additions.

2) When the vector size is not large enough for multiple
copies of a column, i.e., N < u2, we pack each
column of X ′ into du2/Ne vectors. After receiving the
encrypted vectors, the computations of the server are
f2finfoutdu2/Ne Pt-Ct Mult and Additions.

For both cases, we can approximate the number of computa-
tions as f2finfoutu2/N .

Frequency domain convolution converts a convolution into
Hadamard products and accumulations by transforming the
input image X and filters W into frequency domain X ′ and
W ′ using two-dimensional NTT. The transformation of W ′

is pre-processed by the server. On the client, each channel of
the input image is padded into size of u×u, transformed into
frequency domain, flattened into one dimension, and finally



packed into vectors. Here u is the minimum power of 2 and
no less than n+ f − 1.

1) When a single vector is large enough, i.e., N ≥ u2, we
can pack bN/u2c copies of the same channel into a vec-
tor to compute output multiple channels simultaneously.
The computation on the server are finfout/bN/u2c Pt-
Ct Mult and Additions.

2) When the vector size is not large enough to contain an
entire channel, i.e., N < u2, we can pack a channel
into du2/Ne vectors. The computation on the server are
finfoutdu2/Ne Pt-Ct Mult and Additions.

For both cases, the number of computations can be approxi-
mated as finfoutu2/N .

Our packing scheme for im2col and frequency domain
convolution guarantees that any pair of elements to be summed
or multiplied are in the same position in the vector. Therefore,
we only need Pt-Ct Mult and Additions without the expensive
Rotations.

B. Accelerator Design

On the server, the computations for both im2col and fre-
quency domain convolution over homomorphic encrypted data
are essentially Pt-Ct Mult and Additions. For a ciphertext, the
computations are performed on all its polynomials indepen-
dently. Each polynomial is represented by a coefficient vector.
Then both convolution algorithms can be abstracted as follows.
Let nout be the number of output vectors, and nin be the
number of required input vectors for computing each output.
The server computes

Cj =

nin−1∑
i=0

Ai ◦Bj,i (1)

for j = 0, 1, ..., nout − 1. Here Ai ∈ ZN
q is a vector of

size N representing an evaluation space polynomial from the
ciphertext input images. Bj,i ∈ ZN

pE
is a vector of size N

generated from the plaintext filters. Cj ∈ ZN
q is a vector

representing an evaluation space polynomial of the output
ciphertext. The operator ◦ is the Hadamard product of two
vectors. To make the architecture more flexible for different
amounts of hardware resources, each vector Ai is split into
r sub-vectors A

(0)
i ,A

(1)
i , ...,A

(r−1)
i . Each sub-vectors has a

size of Ne = N/r. The vectors Bj,i and Cj are split into
r sub-vectors similarly. The architecture shown in Figure 1
is to compute one output sub-vector C

(l)
j for a certain l ∈

{0, 1, ..., r−1}. The architecture is reused r times sequentially
to get the complete Cj .

To achieve a low latency, our design uses the following
ideas. First, we use multiple processing elements (PEs) to com-
pute the Hadamard products and accumulations for multiple
input sub-vectors simultaneously. An adder tree is then used to
accumulate the output of all PEs and get C(l)

j . Second, as all of
C

(l)
0 , ...,C

(l)
nout−1 depend on A

(l)
0 , ...,A

(l)
nin−1, we reuse these

nin input sub-vectors until all of the nout output sub-vectors

Fig. 1. Top Level Architecture

Fig. 2. Processing Element (PE)

are computed. Third, all the input and output data are double-
buffered to completely hide the latency of data communication
between the FPGA and the external memory.

Prior to the execution, the input vectors, including
A

(l)
0 , ...,A

(l)
nin−1 and B

(l)
j,0, ...,B

(l)
j,nin−1, are pre-fetched from

the external memory into the on-chip memory. The on-chip
input vectors are split into p partitions and assigned to p PEs.
PEk computes the Hadamard-accumulation

Rk =

(k+1)·nin/p−1∑
i=k·nin/p

A
(l)
i ◦B

(l)
j,i (2)

There are nin/p pairs of A
(l)
i and B

(l)
j,i sent into PEk se-

quentially, multiplied and accumulated. As any coefficient
of the ciphertext is in the finite ring of integers Zq , all
integer computations in the PE are followed by a modulo
q opreation. We use Barrett Reduction Algorithm [19] for
efficient modular multiplication. This algorithm performs three
integer multiplications without expensive division operations.
In each PE, a Mult unit computes the Hadamard product of two
sub-vectors, and an Add unit computes the sum of two sub-
vectors. Each unit has a pipeline that computes m elements
every cycle. After all the PEs finish the computation and save
the results of all rk to the buffers, an adder tree starts to sum
them up to get the output sub-vector C(l)

j .

V. PERFORMANCE MODELING FOR HE-CONVOLUTION
A. Parameters

We first summarize all the parameters for the performance
model as follows.
• Parameters about the encryption

– N : polynomial degree. It is also the length of each
coefficient vector.

– log pE : width of plaintext modulus.
– logQ: width of ciphertext modulus depending on N .
– log q: width of each ciphertext modulus split from Q

(See Section III-A).



• Parameters about the convolutional layer
– n× n× fin: dimension of the imput image.
– f × f × fin × fout: dimension of the filters.
– s: convolution stride.

• Parameters about the hardware design
– p: number of PEs in the architecture.
– m: unrolling factor for the computation in each PE.
– nout: number of output sub-vectors for the layer.
– nin: number of input sub-vectors for each output.
– Ne: length of each input/output sub-vector.

log pE and log q are assumed as fixed values. It is observed
that, for a given N , a larger logQ leads to more noise budget
but lower security level [6]. We select the smallest N such that
there exists a logQ providing enough noise budget as well as
at least 128-bit security level. As the noise budget consumption
depends on the amount of computations, the values of N and
logQ vary for im2col and frequency domain convolution. We
denote the values of them as Nic and Qic for im2col, and Nfd

and Qfd for frequency domain.

B. Performance Model for the Architecture

Latency: As a Mult unit is a pipeline that computes m
elements per cycle, its latency is Tmult = tmult−1+Ne

m cycles.
Similarly, the latency of an Add unit is Tadd = tadd−1+ Ne

m .
The term tmult and tadd are the latency for the unit to generate
the first output element, which are assumed as known values.
Then the latency of computing one output vector Cj is

Tout = (Tmult + Tadd) ·
nin
p

+ Tadd · log p (3)

cycles. The first term is for the PEs and the second term is
for the adder tree.

DSP resources: Our architecture has p PEs, and each
PE performs multiplications and additions on m elements in
parallel. Thus the number of DSPs is

D = mp · dmult (4)

The factor dmult refers to the number of DSPs to perform the
modular multiplication, which depends on log pE and log q.

On-chip memory: According to Section IV-B, we need to
keep the sub-vectors A

(l)
0 , ...,A

(l)
nin−1 and B

(l)
j,0, ...,B

(l)
j,nin−1

on chip using double buffer strategy. Thus the number of bits
to save on chip is

M = 2Nenin(log pE + log q) (5)

External bandwidth: Every Tout cycles, nin sub-vectors
B

(l)
j,0, ...,B

(l)
j,nin−1 are loaded onto the chip, and one sub-vector

C
(l)
j is exported to the external memory. Due to the reuse of

A
(l)
0 , ...,A

(l)
nin−1 mentioned in Section IV-B, nin sub-vectors

are loaded every noutT cycles. In total, the external bandwidth
is

B =
Ne

Tout
· (nin log pE +

nin
nout

log q + log q) (6)

C. Performance Model for Convolutional Layers

We build a performance model for both im2col and fre-
quency domain convolution by predicting the number of times
the FPGA design is reused to execute the computations. The
proposed architecture computes nin Pt-Ct Mult and Additions
over a sub-vector of size Ne.

For im2col, the total number of Pt-Ct Mult and Additions
is f2finfoutu2ic/Nic. Here u2ic = (1 + n−1

s )2 is the size of an
output image channel for im2col. Thus the architecture should
be reused

αic =
Nic

Ne
· f

2finfoutu
2
ic

ninNic
· logQic

log q
(7)

times. We then derive the total latency for im2col as Tic =
αicTout cycles.

For frequency domain, the total number of Pt-Ct Mult and
Additions is finfoutu2fd/Nfd. Here u2fd is the size of an output
image channel for frequency domain. ufd is the minimum
power of 2 no less than n + f − 1. Thus the architecture
should be reused

αfd =
Nfd

Ne
·
finfoutu

2
fd

ninNfd
·
logQfd

log q
(8)

times. Then the total latency for frequency domain is Tfd =
αfdTout cycles.

For a given convolutional layer, the performance model
predicts the better algorithm with lower latency by the value
of

αic

αfd
= f2 · u

2
ic

u2fd
· logQic

logQfd
(9)

When αic/αfd < 1, im2col outperforms frequency domain.
When αic/αfd > 1, frequency domain has a better perfor-
mance. Note that Equation 9 is valid when a single FPGA
design is used to accelerate both algorithms for all convolu-
tional layers in a CNN without reconfiguration.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We target ResNet-50, a deep CNN with state-of-the-art im-
age classification accuracy [20] for implementation. We select
this model as it exhibits a wide variety in its convolutional
layers configurations — n (7 ∼ 224), f (1 ∼ 7), fin (3 ∼
2048) and fout (64 ∼ 2048). We use the notation convx y for
the layers consistent with the original notations for ResNet-50.

For baselines, we implement and optimize im2col and
frequency domain algorithms for HE-Convolution in C++
using Microsoft SEAL library [21]. We target a state-of-the-
art server with an AMD Ryzen Threadripper 3990X CPU @
2.90 GHz with 64 cores and 128 threads. The server has 256
GB DDR4 with 200 GB/s peak bandwidth to DRAM. We use
OpenMP 4.5 library [22] for parallel computations. Our FPGA
architecture is synthesized and place-and-routed using Xilinx
Vivado HLS 2020.1 [23]. The experiments are conducted on
Xilinx Virtex UltraScale+ xcvu7pflva2104 FPGA [24]. It has
4560 DSPs, 1576K FFs, 788K LUTs, 51 Mb of BRAM and



Fig. 3. Scalability with respect to DSP resources Fig. 4. Latency and frequency for various convolutional layers

TABLE I
PARAMETERS AND PERFORMANCE OF CONVOLUTIONAL LAYERS

Layer n f fin fout s CPU (ms) Im2col Frequency Domain Speedup
Nic logQic FPGA (ms) Nfd logQfd FPGA (ms)

conv1 224 7 3 64 2 70 2048 54 26.32 4096 109 18.05 3.9×
conv2 3 56 1 64 256 1 43 2048 54 12.03 4096 109 18.05 3.6×
conv4 1 28 1 512 256 2 34 4096 109 7.33 2048 54 24.07 4.6×
conv4 3 14 1 256 1024 1 81 4096 109 14.67 2048 54 12.03 6.7×
conv5 1 14 1 1024 512 2 27 4096 109 7.90 2048 54 24.07 3.4×
conv5 2 7 3 512 512 1 79 4096 109 35.53 4096 109 18.05 4.4×

Fig. 5. Comparison of our FPGA implementation with the CPU baseline

180 Mb of UltraRAM. The peak external memory bandwidth
is 78 GB/s.

For each layer, we assume that the transformed input data
for each algorithm is stored in the DRAM. The latency is
defined as the total time to load the data from the DRAM, per-
form the computations (as per the protocol in Section III-B),
and write the results to the DRAM.

B. Experimental Evaluation

To demonstrate the scalability of the architecture, we first
analyze the trade-offs between latency and DSP resources.
Due to space limitations, we show four convolutional layers
in Figure 3. We vary mp as 32, 64, 128, 256 and 512.
Corresponding number of DSPs are 224, 448, 896, 1792 and
3584, respectively. For each layer and each number of DSPs
we enumerate the possible values of m, p, Ne and nin, and
estimate the latency min{Tic, Tfd} and resources consumed
in terms of bandwidth B and on-chip memory M using the

performance model defined in Section V. We perform place-
and-route for the top-4 designs with the lowest estimated
latency, and then report the lowest actual latency in Figure 3.
As evident from the figure, for each layer, increasing the
number of DSPs leads to a decrease in latency. However,
the drop in latency is not linear because: (i) Latency of the
adder tree increases with higher parallelism (Equation 3);
(ii) The initialization latency of the pipeline (tmult, tadd) is
not affected by increasing DSPs and contributes to overall
latency; (iii) Increased resources increases the interconnection
complexity leading to a slight reduction in frequency. Note
that the frequency variation of the designs is very low — 250
MHz (224 DSPs) to 220 MHz (1792 DSPs). When 3584 DSPs
are used, the frequency drop is larger as significant resources
are consumed.

In Figure 4, we show the performance of our architecture
for six convolutional layers of ResNet-50 of different sizes.
For each layer, we perform a design space exploration to
determine the values of m, p, Ne and nin that minimize
the estimated latency. Then we perform place-and-route for
the six selected designs. As illustrated in Figure 4, all the
designs achieve similar frequency with a low variance. Note
that in this subsection, we generate optimized designs for each
layer separately to evaluate the performance our architecture.
In the next subsection, a single FPGA design will be used to
implement all the layers to avoid reconfiguration at runtime.

C. Comparison with the Baseline on CPU

For all the convolutional layers of ResNet-50, we measure
the performance of the CPU baseline and the FPGA imple-
mentation. In contrast to the previous subsection, here, we use



a single FPGA architecture to execute all the layers, i.e., our
design does not require expensive runtime reconfiguration of
FPGA to execute the entire CNN. We perform design space
exploration to determine the values of m, p, Ne and nin using
our performance model to minimize the sum of min{Tic,Tfd}
for all the convolutional layers. All of the four parameters
are assumed to be powers of 2. Our design space exploration
identified a design with the following parameters: Ne = 2048,
nin = 16, p = 4, m = 128. We then perform place-and-route
for this design. The resulting design uses 3584 DSPs, 278.7K
LUTs, 157.5K FFs, 76.8 GB/s external bandwidth and 3.69
Mb on-chip memory, and operates at 165.4 MHz. The latency
of a single execution is 1.47 µs. The design space exploration
takes less than 1 second on a CPU.

We measure the computation time of each convolutional
layer of ResNet-50 using the CPU implementation of both
im2col and frequency domain algorithms, and use the one
with lower latency as the baseline. All layers can be ac-
celerated by reusing the same FPGA design without run-
time reconfiguration. For each layer, we compute αic and
αfd, i.e., the number of times the FPGA design is reused
to execute the computations of the im2col and frequency
domain algorithm. We obtain the execution time of the two
algorithms by multiplying αic and αfd by the latency of a single
FPGA execution (1.47 µs). Table I shows the parameters and
performance of the chosen convolutional layers of ResNet-
50. The layers were chosen to illustrate the speedup for
various parameters of ResNet-50 layers. Figure 5 illustrates the
performance comparison for these layers. The FPGA design
obtains speedups in the range of 3.4× ∼ 6.7×. The first two
layers show lower speedups because their CPU baseline are
faster than the others. We also use our performance model
to predict the algorithm with lower latency by computing the
value of αic/αfd (Section V). The prediction using our model
for each layer is marked with a red star in Figure 5. It shows
that our performance model predicts the algorithm with lower
latency correctly for all the chosen layers.

VII. CONCLUSION

In this paper, we proposed a unified FPGA design that accel-
erates both im2col and frequency domain HE-Convolution. We
developed a performance model that enables design space ex-
ploration and algorithm selection for each convolutional layers.
We targeted ResNet-50 for acceleration and experimentally
demonstrated that our designs achieved speedup in the range
of 3.4× ∼ 6.7× in latency.
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