FGYM: Toolkit for Benchmarking FPGA based
Reinforcement Learning Algorithms

Nathaniel Peura, Yuan Meng, Sanmukh Kuppannagari, Viktor Prasanna
School of Electrical and Computer Engineering, University of Southern California
Emails: {peura, ymeng643, kuppanna, prasanna} @usc.edu

Abstract—FPGA-based heterogeneous computing platforms
are promising candidates to enable fast training of Reinforcement
Learning (RL) agents. Typically, an RL agent for an environment
is trained via interactions with a software that simulates the
environment. While several toolkits exist to quickly deploy RL
training on CPU or GPU, there lacks a similar toolkit for
FPGAs. To ease the deployment process of RL using FPGAs,
we demonstrate FGYM (FPGA-GYM) - a toolkit that generates
an end-to-end interface between the simulation environments
running on the CPU and agents running on the FPGA. FGYM
supports a variety of environments and automatically generates
the memory interface using PCIle. FGYM supports multiple levels
of parallelism including vectorized agent-environment interac-
tions and memory port aggregation. It also provides profiling
results for users to identify the execution bottlenecks.

I. INTRODUCTION

Reinforcement Learning (RL) involves the iterative process
of an autonomous agent interacting with the environment by
sensing the state, s, and choosing actions, a, in a temporal-
spatial trajectory to maximize its rewards, r (based on its
policy model) [1]. As a common practice in the RL commu-
nity, OpenAl GYM [2] - a software simulation environment
running on a CPU - is used to benchmark various RL al-
gorithms. However, interfacing GYM with an FPGA based
RL agent remains a manual and time-consuming process.
To address this issue, we develop FGYM that automates
the process of deploying RL training on FPGAs, thereby,
enabling rapid benchmarking of novel RL algorithms and
their FPGA implementations. Benefiting from the complete
software development flow enabled by VITIS [3], FGYM
targets developers and academic researchers in both FPGA
and Deep Learning community.

II. MAIN FEATURES

FGYM has two phases. In the pre-execution phase, the Host
Code Generator takes high-level algorithm and device speci-
fications as user inputs, and generates: @ host executable,
and @ main memory port specifications that needs to be
implemented in the RL FPGA kernel. Several template RL
agents will be made available. In the post-execution phase, @
profiling results are provided to identify execution bottlenecks.

Host Code Generator: It generates the host program
and memory configuration file from user-provided high-level
specifications such as algorithm hyper-parameters [1] (e.g.
Rollout Number (V), Trajectory Length (7)), GYM bench-
marking environment name [2] and FPGA device specification

This work is supported by Xilinx and NSF awards 2009057 and 1911229.

U FPGA

PyOpenCL

St Tiyer Qit:
State, reward,

v, .c, .cpp -> .xclbin

action of agent M Heterogeneous RL Agent Kernel
iattimestept ai; Programming (DNN Policy
i €[0,N) —_— Interface Model, etc.)
te[o,T)
1) Host Program| S ¢, ri'tl Tai : Sir T'i,rl Tai,t
RL Hyper 4

Parameters PCle Network

Interface

FGYM host
generator

Benchmark ‘
Name I

HBM/DDR/PLRAM

8 ' -

Fig. 1. FGYM workflow

(v 4

Post-execution
Profiling Data

as inputs. The generated program automates data communica-
tion between the GYM environment and the kernel bitstream.
FGYM also computes the memory requirements for the par-
ticular GYM environment and generates a configuration file
where the main memory is chosen (on-chip vs DRAM/HBM)
to store observations and rewards to minimize communication
latency.

Post-Execution Profiler: The generated host program is
integrated with code that outputs profiling data after execution.
The main profiling data include GYM step latency, kernel
computation latency, the overhead and bandwidth utilization
of communication through PCle, and main memory read/write
operations. These results can be utilized by RL researchers to
fine-tune the performance of parallel Deep RL algorithms on
heterogeneous platforms.

III. DEMO

We demonstrate FGYM by deploying action evaluations
on two environments, one that outputs a scalar value -
Cartpole [2], and another that outputs an image - Atari-
Pong [2] on a data center CPU-FPGA heterogeneous platform.
The action-generation policies of the agents are implemented
in pre-loaded FPGA bitstreams. For each environment, we
deploy groups of RL agents by varying the algorithmic hyper-
parameters. We show the output profiling results of different
execution bottleneck scenarios (PCle, FPGA kernel, etc.).

REFERENCES

[1] Y. Meng, Y. Yang, S. Kuppannagari, R. Kannan, and V. Prasanna, “How
to efficiently train your ai agent? characterizing and evaluating deep
reinforcement learning on heterogeneous platforms,” in HPEC. 1EEE,
2020.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[3] V. Kathail, “Xilinx vitis unified software platform,” in Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2020, pp. 173-174.



