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a b s t r a c t 

We revisit Nye’s lattice curvature tensor in the light of Cartan’s moving frames. Nye’s definition of lat- 

tice curvature is based on the assumption that the dislocated body is stress-free, and therefore, it makes 

sense only for zero-stress (impotent) dislocation distributions. Motivated by the works of Bilby and oth- 

ers, Nye’s construction is extended to arbitrary dislocation distributions. We provide a material definition 

of the lattice curvature in the form of a triplet of vectors, that are obtained from the material covariant 

derivative of the lattice frame along its integral curves. While the dislocation density tensor is related 

to the torsion tensor associated with the Weitzenböck connection, the lattice curvature is related to the 

contorsion tensor. We also show that under Nye’s assumption, the material lattice curvature is the pull- 

back of Nye’s curvature tensor via the relaxation map. Moreover, the lattice curvature tensor can be used 

to express the Riemann curvature of the material manifold in the linearized approximation. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The definitions of the dislocation density tensor and the lattice 

urvature tensor are both due to Nye [1] . Nye’s seminal work was 

otivated by the observation that “when a single crystal deforms 

y glide which is unevenly distributed over the glide surfaces the 

attice becomes curved”. The dislocation density tensor α is then 

efined as the operator that assigns to a unit vector l the Burg- 

rs vector B associated with a circuit of unit area that is normal to 

 , i.e., B i = αi j l j , and it results from the distribution of dislocations

n the lattice. Nye also showed that this tensor carries information 

n the change of the orientation of the lattice directions along the 

oordinate d x j described by the infinitesimal axial vector d φi via 

he relation d φi = κi j d x j , where κ is a tensor that is related to the 

islocation density tensor as κi j = α ji − 1 
2 αkk δi j . Nye called κ the 

urvature tensor, but since in the geometric setting the expression 

curvature tensor” usually implies the Riemannian curvature asso- 

iated with the material metric, we will be referring to κ as the 

attice curvature tensor as in Kröner [2] (where the lattice curva- 

ure tensor is defined with the opposite sign). 

To prove the relation between α and κ, Nye looked at the de- 
ormed configuration of lattice directions and planes and through 

he use of graphic techniques he was able to calculate their curva- 

ure. His study was carried out under the assumption of negligible 
∗ Corresponding author at: School of Civil and Environmental Engineering, Geor- 

ia Institute of Technology, Atlanta, GA 30332, USA. 
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lastic deformations: “when real crystals are distorted plastically 

hey do in fact contain large-scale distributions of residual strains, 

hich contribute to the lattice curvature”. In the absence of exter- 

al loads, elastic deformations develop to restore compatibility of 

he total strain in the crystal, inducing residual stresses. This diffi- 

ulty can be avoided by considering impotent plastic deformations, 

.e., plastic deformations that, albeit incompatible in the sense that 

hey are not associated with any configuration map, still allow the 

rystal to relax locally into a stress-free configuration. In the lan- 

uage of modern dislocation theory, the absence of residual elastic 

trains is equivalent to the assumption of plastic deformations in- 

ucing a Euclidean material metric. This state is the same as Noll’s 

ontorted aeolotropy [3] , sometimes referred to as zero-stress or 

mpotent dislocation distributions [4–6] . This ensures the existence 

f a local isometric embedding of the material manifold into the 

mbient space, so that the plastic deformation of the material can 

e relaxed into a stress-free configuration. The lattice curvature 

ensor has been studied by other researchers from a more geomet- 

ic perspective. Bilby et al. [7] and Bilby and Smith [8] reviewed 

ye’s construction, and provided a material version of the notion 

f lattice curvature, showing that it is related to the Ricci rotation 

oefficients. Steinmann [9] established a relation between the con- 

orsion tensor and Nye’s lattice curvature. 

In this paper we revisit Nye’s lattice curvature tensor in the 

ight of modern differential geometry, and particularly, Cartan’s 

oving frames [10,11] , and teleparallelism. The material nature of 

ye’s tensor will be shown without assuming the absence of resid- 

al stresses. We do this by using a notion of lattice curvature due 

https://doi.org/10.1016/j.mechrescom.2021.103696
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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o Bilby and Smith [8] , which is purely material and relies on the

iemannian structure inherited by the metric defined on the ma- 

erial manifold, without the need of a Euclidean material metric. 

ore specifically, the lattice curvature is defined starting from the 

aterial covariant derivative of the lattice moving frame along the 

rame itself, a quantity that is independent of any mapping of the 

aterial manifold into the ambient space. In our approach, using 

artan’s moving frames, the lattice curvature is represented by a 

riplet of vectors. We show that starting from this more general 

efinition of curvature, the material variant of Nye’s tensor is the 

bject that encodes it. As a matter of fact, while the material dis- 

ocation density tensor is related to the torsion tensor associated 

ith the Weitzenböck connection, the material lattice curvature 

ensor can be obtained from the contorsion tensor in a similar way. 

arrying information on both the Weitzenböck and the Levi–Civita 

onnections, the lattice curvature tensor can be used to express 

he Riemann curvature of the material manifold in the linearized 

pproximation. 

This paper is organized as follows. In Section 2 we introduce 

he notion of lattice frame in a dislocated solid and define all the 

eometric quantities associated with it. In Section 3 we review the 

islocation density tensor. In Section 4 we introduce a material 

efinition of lattice curvature, show its relation with the contorsion 

ensor and, in the linear approximation, with the Einstein tensor. 

. The dislocated lattice 

We work in the framework of continuum mechanics and con- 

ider smooth embeddings ϕ : B → S representing spatial configu- 

ations of a material body B in the ambient space S . The ambient 

pace is endowed with a Euclidean metric g , expressing the stan- 

ard scalar product in the ambient space. Crystalline solids carry 

dditional information on the order with which particles are ar- 

anged. In a geometric continuum theory this information is en- 

oded in a moving frame { e β} on B [6] , that we call lattice frame.

lternatively, one can use the associated lattice coframe { ϑ 

β} , i.e., 
 field of three 1-forms such that 〈 ϑ 

β
, e γ 〉 = δβ

γ . The material met-

ic G representing the natural distances in the lattice is then de- 

ned as 

 = δαβ ϑ 

α
� ϑ 

β
. (2.1) 

his means that the lattice frame { e α} is orthonormal with respect 

o G , i.e., 〈〈 e α, e β〉〉 G = δαβ . In other words, the lattice frame repre-

ents an internal observer that is unaware of the plastic slip occur- 

ing in the solid [12,13] . 

The presence of dislocations in solids is associated with the 

nholonomicity of the lattice frame. A frame { e β} is holonomic 

f there exist local coordinates { Y β} such that e β = 
∂ 

∂Y β
. This is

quivalent to the vanishing of the Lie bracket [ e α, e β ] for all α, β
14–17] . Holonomicity of the lattice frame can also be expressed in 

erms of its coframe as ϑ 

β = d Y β , which is equivalent to requiring

he lattice forms to be closed. 1 As a matter of fact one has 

 ϑ 

γ
( e α, e β ) = −〈 ϑ 

γ
, [ e α, e β ] 〉 . (2.2) 

he presence of distributed dislocations can be detected by calcu- 

ating the circulation of the lattice coframe along a closed curve γ , 

iz. 

 
β [ γ ] = 

∫ 
ϕ(γ ) 

ϕ ∗ϑ 

β = 

∫ 
γ
ϑ 

β
. (2.3) 
1 A k -form α on B is closed if d α = 0 , and is exact if there exists a k − 1 -form χ
uch that α = d χ. An exact k -form is necessarily closed, while the converse holds 

nly when the k -th de Rham cohomology group is trivial [18] . Since closedness can 

e seen as the local version of exactness, holonomicity becomes quite clear: the 

xistence of local coordinates { Y β } such that ϑ β = d Y β is guaranteed whenever the 

attice forms are closed. 

a

p

n

t

ϕ
l

2 
he scalars B β [ γ ] represent the Burgers vector associated with γ . 

f γ is the only component of the boundary of a surface 
, i.e., 

= ∂
, invoking Stokes’ theorem one can write (2.3) as 

 
β [ γ ] = 

∫ 


i ∗d ϑ 

β
, (2.4) 

here i : 
 ↪→ B is the inclusion map. 

emark 2.1. The dislocation-free case implies the existence of lo- 

al coordinates { Y β} such that ϑ 

β = d Y β , and hence, from (2.1) one

btains G = δαβ d Y α � d Y β . This means that there exists a map

 : B → S whose Cartesian coordinate representation is { Y β} and 
uch that G = ϕ 

∗g locally, i.e., a local isometric embedding. Such a 

ap can be seen as a local relaxation for the body. 

We define a Weitzenböck connection ˆ ∇ on B that parallelizes 

he lattice frame { e α} . As a derivative operator, it acts on a tensor
s the ordinary derivative of the components of the tensor with 

espect to the lattice frame, whence the vanishing of the Weitzen- 

öck derivative of the material metric G . Its torsion can be calcu- 

ated by using Cartan’s formalism [6,14] and expressing the first 

tructural equation in terms of the lattice frame, viz. 

 
β = d ϑ 

β + ω 
β

γ ∧ ϑ 

γ
, (2.5) 

here ω 
β

γ are the connection 1-forms and T β are the torsion 

-forms. As the Weitzenböck connection parallelizes ϑ 

β
, one sets 

 
β

γ = 0 to obtain T β = d ϑ 

β
, and hence T has the expression 

 = e β � d ϑ 

β
. The first Bianchi identity is obtained by differenti- 

ting the first structural equation and reads d T β = 0 , as dd ϑ 

β = 0 .

y construction, ˆ ∇ has zero curvature [19] . 

We denote with ∇ the Levi–Civita connection associated with 

 , having zero torsion by construction and non-vanishing curvature 

 . The contorsion tensor K is defined as the difference between the 

eitzenböck and the Levi–Civita connections, i.e., 

 ( X , Y ) = 
ˆ ∇ X Y − ∇ X Y , (2.6) 

or all vectors X , Y . In components with respect to a coordinate 

hart { X A } on B, one has 
 
A 
BC = 

1 

2 

(
T A BC + T B 

A 
C + T C 

A 
B 

)
, (2.7) 

here indices are lowered and raised using G . 

emark 2.2. It is straightforward to prove that when torsion T of 

he Weitzenböck connection vanishes (dislocation-free case of Re- 

ark 2.1 ), the Levi–Civita connection has zero curvature (absence 

f residual stresses). The converse does not hold: there exist distri- 

utions of dislocations (i.e., T � = 0 ) associated with a lattice frame 

nducing a Euclidean material metric G , i.e., such that R = 0 . In this 

ase, the existence of a local isometric embedding is still guaran- 

eed by the Test Case theorem [14] , and therefore the body is al- 

owed to locally relax. In other words, the plastic slips are { ϑ 

β} -
ncompatible but G -compatible. These are called zero-stress or im- 

otent dislocations by Mura [5] , or contorted aeolotropy by Noll 

3] . As was mentioned earlier, the study by Nye [1] is carried out 

nder this assumption. It should also be noted that in this case 

he lattice frame can be obtained through a rotation field super- 

mposed to a defect-free lattice frame. Hence, the stress-free state 

hat Nye works with cannot be achieved by pure plastic rotations, 

s was claimed in [20] . This can be shown by considering the ex- 

mple of plastic bending of a slab presented by Nye, which is a 

rocess that requires a change in length of the material fibers, and 

ot just a change in their orientation. However, by reparametrizing 

he material manifold via the relaxation map ϕ, i.e., working with 

(B) as reference configuration, one would be able to express the 
attice structure through a field of rotations of the Cartesian frame. 
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. The dislocation density tensor 

The volume form μ associated with G is called the material 

olume form and has components μABC = G 

1 
2 εABC , where G = det G 

nd ε is the permutation symbol. This object can be used to relate 

ectors and 2-forms through the raised Hodge operator 
 � . Given a 

-form β, the vector 
 � β is defined as β = ι
 � βμ ( ι is the interior 

roduct operator), which in components reads βAB = μABC (
 
� β) C . 

he inverse relation is written as (
 � β) A = 
1 
2 μ

ABC βBC , with μABC = 

 
− 1 

2 εABC . 2 A volume form allows one to define the divergence of a 

ector field V as ( Div V ) μ = L V μ = d ιV μ. 3 When μ is induced by

 metric G one also has Div V = tr ∇ V , where ∇ is the Levi–Civita 

onnection associated with G . Exterior derivative, raised Hodge op- 

rator and divergence operator are related as 

 β = Div (
 � β) μ , (3.1) 

or any 2-form β. 
Geometric definitions of the dislocation density tensor using 

he notion of holonomicity and torsion are due to Kondo [21] , Bilby 

t al. [7] , and Kröner [22] . We define the dislocation density as the

riplet of vectors { αβ} given by 
β = 
 � d ϑ 

β
, (3.2) 

r αβ = 
 � T β in Cartan’s formalism, where 
 � is the raised 

odge operator associated to G . Note that since d T β = dd ϑ 

β = 0 ,

rom (3.1) one necessarily has Div αβ = 0 . Thus, Div αβ = 0 can 

lso be seen as a consequence of the first Bianchi identity for the 

eitzenböck connection. The tensorial variant of the dislocation 

ensity is defined as the tensor α = e β � αβ of type (2,0), or equiv- 

lently, as α = 
 � T , where the raised Hodge operator acts on the 

ower indices. Note that denoting the extension of the divergence 

perator to double contravariant tensors with Div (acting on the 

econd index), one has 

iv α = ( Div αβ ) e β + ∇ αβ e β = ∇ αβ e β , (3.3) 

hich in general does not vanish. 4 This can also be written as 

 B α
AB = −K A BC α

CB . It should be noted that by linearizing around 

 defect-free lattice coframe (see Section 4 ), where both αβ and 

 e β vanish, one obtains 

iv δα = Div (δαβ ) e β = δ( Div αβ ) e β , (3.4) 

nd hence, one recovers the classic identity Div δα = 0 . 

The dislocation density tensor can be used to express the Burg- 

rs vector associated with a closed curve γ = ∂
. Denoting with 

 the unit normal on 
, and with ν the area 2-form induced by G 

n 
, both induced by G , one can rewrite (2.3) as 

 
β [ γ ] = 

∫ 


〈〈 αβ, N 〉〉 G ν , (3.5) 

eaning that each B β [ γ ] is given by the flux of the corresponding

ector αβ across 
. 
2 In general, the Hodge operator assigns to a k -form β the (n − k ) -form 

 β such that for any G -orthonormal frame { X α} one has (
 β)( X I 1 , . . . , X I k ) = 

( X I k +1 
, . . . , X I n ) . The raised Hodge operator is defined by raising all the indices of 

he Hodge star operator, i.e., 
 � β = (
 β) � . The result is an alternating contravariant 

ensor. 
3 The second equality is a consequence of Cartan’s formula L V μ = d ιV μ + ιV d μ, 

nd d μ = 0 , where L is the Lie derivative operator. 
4 This might seem to disagree with what was obtained by Yavari and Goriely [6] , 

.e., that the dislocation density tensor is divergence-free. In that work, however, 

artan’s exterior covariant derivative was used to define a divergence operator for 

ensors of type (2,0) that only operates on the second index. Therefore, this ex- 

ended divergence operation is equivalent to taking the divergences of triplets of 

ectors and assembling them together. As a matter of fact, it is straightforward 

o prove that if one denotes with ˜ Div the divergence operator defined by Yavari 

nd Goriely [6] , then ̃  Div α = ( Div αβ ) e β . Thus, our result agrees with what was ob- 

ained by Yavari and Goriely [6] . 

R

f

m

a

〈  

I  

a

m

r

[

3 
. Nye’s lattice curvature tensor 

The incompatibility of the lattice structure can be described by 

ye’s lattice curvature tensor as well. This object is equivalent to 

he dislocation density tensor, but instead of being associated with 

he circulation of the lattice coframe, it represents the way the lat- 

ice frame changes along its own integral curves. We start by pro- 

iding three equivalent definitions of the lattice curvature tensor 

n the material manifold. We will also discuss their geometric in- 

erpretations. First, we introduce the lattice curvature as a triplet 

f vectors { κβ} defined by 

β = αβ − 1 

2 
〈 ϑ 

γ
, αγ 〉 e β , (4.1) 

here αβ = δβηα
η is a simple reindexing of the triplet { αβ} . The 

attice curvature can also be defined as a tensor κ of type (2,0) as 

= α − 1 

2 
( Tr G α) G 

� 
. (4.2) 

n components, κAB = αAB − 1 
2 αH 

H G 
AB . It can also be written as 

= δαβ e α � κβ . Finally, a definition very similar to that of Nye 

1] is the following tensor of type (1,1): 

 = α� 1 − 1 

2 
( Tr G α) I , (4.3) 

here � 1 denotes the lowering of the first index, while I is the 

dentity operator. In components, one has k A B = αB 
A − 1 

2 αH 
H δA B . It 

an be written as k = ϑ 

β
� κβ , and vice versa κβ = k e β . The (1,1) 

nd (2,0) variants are related as k = κ� 1 , i.e., k A B = κB 
A . 

Next we provide a geometric interpretation of Nye’s construc- 

ion. Instead of assuming the existence of a relaxed configuration 

nd expressing all the quantities with respect to it, we carry out 

ur analysis entirely in the material manifold. Let us consider an 

rbitrary curve γ in the material manifold B, with G -unit tangent 

ector t . Then, ∇ t indicates covariant derivative along γ corre- 

ponding to an arc-length parametrization, where ∇ is the Levi–

ivita connection associated with G . Let us define the following 

ymbols 

μν = 〈〈∇ t e μ, e ν〉〉 G , (4.4) 

epresenting the way e μ changes along γ with respect to e ν . It 

s straightforward to check that since the lattice frame { e β} is 
rthonormal with respect to G , by construction, one has �μν = 

�νμ. Therefore, the coefficients (4.4) represent the infinitesimal 

otation that the lattice frame undergoes while moving by d s along 

he curve γ in the material manifold. Using the coefficients �μν

ne defines the 2-form 	 = �μνϑ 

μ
� ϑ 

ν
. The axial vector asso- 

iated with 	 is defined through the raised Hodge operator as 

 = 
 � 	. 

emark 4.1. We emphasize that the coefficients �μν do not trans- 

orm tensorially with the frame that is used to define them. As a 

atter of fact, if one considers a different frame f β , related to e β
s e β = A ω β f ω , then one can easily see that 

〈∇ t e μ, e ν〉〉 = A ρμA 
σ

ν〈〈∇ t f ρ, f σ 〉〉 + ∇ t A 
ρ

μ δρσA 
σ

ν . (4.5)

f one considers the Frenet frame { f β} = { t , n , b } associated with

 curve γ , where n and b are respectively the normal and binor- 

al unit vectors, the coefficients 〈〈∇ t f μ, f ν〉〉 have the following 

epresentation: 

 

〈〈∇ t f μ, f ν〉〉 
] 

= 

⎡ 

⎣ 

0 κ 0 

−κ 0 τ

0 −τ 0 

⎤ 

⎦ , (4.6) 
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here κ and τ are, respectively, the curvature and torsion of γ
here the torsion of a curve should not be confused with the tor- 

ion of a connection). The axial vector associated to the Frenet 

rame { t , n , b } is W = τ t + κb . 

Next we let the curve γ be an integral curve for the lattice vec- 

or e β , i.e., we assume t = e β . This means that we are looking at

nfinitesimal rotations of the lattice frame along its own integral 

urves. Hence, we define the triplet of 2-forms { H β} as the ana- 
ogue of (4.4) , with components 

H β ) μν = 〈〈∇ e β e μ, e ν〉〉 G = �νβμ , (4.7) 

here �νβμ are the Christoffel symbols of the first kind of G in 

he moving frame { e β} . The (H β ) μν ’s represent Ricci rotation co-

fficients [23] associated with the frame { e β} . It should be noted 
hat from the orthonormality of the lattice frame one has 

μβν = −〈〈∇ e β e ν, e μ〉〉 G = −〈〈 ̂  ∇ e β e ν − K ( e β, e ν ) , e μ〉〉 G 
= 〈〈 K ( e β, e ν ) , e μ〉〉 G = K μβν , (4.8) 

here use was made of the definition of the contorsion ten- 

or (2.6) and the fact that the Weitzenböck derivative of the lattice 

rame vectors vanishes. In other words, the contorsion tensor can 

e used to express the Ricci rotation coefficients. Hence, we define 

he symbols H βνμ = (H β ) μν = K μβν . This allows us to define the

ensor H as 

〈 H ( X , Y ) , e β〉〉 G = H β ( X , Y ) , (4.9) 

r 

〈 H ( X , Y ) , Z 〉〉 G = 〈〈 K ( Z , Y ) , Z 〉〉 G . (4.10)

n coordinate components H 
A 
BC = K B 

A 
C = G BD G 

AF K D F C . It should be

oted that the anti-simmetry in the lower indices of H coming 

rom the orthonormality of { e β} can be verified by using (2.7) , 
iz. 

 
A 
BC = 

1 

2 

(
T B 

A 
C + T A BC + T CB 

A 
)

= −1 

2 

(
T C 

A 
B + T A CB + T BC 

A 
)

= −K C 
A 
B = −H 

A 
CB . (4.11) 

he following proposition shows that the lattice curvature tensor 

f Nye can be obtained from the permutated contorsion tensor. 

roposition 4.2. The lattice curvature tensor is the axial vector asso- 

iated with the permutated contorsion tensor, i.e., κ = 
 � H and κβ = 

 
� H β . 

roof. We use components, and invoke (2.7) and (4.11) to write 

 
A 
CD = 

1 

2 

(
T C 

A 
D + T A CD + T DC 

A 
)

= 

1 

2 

(
μA 

DF αC 
F + μCDF α

AF + μC 
A 
F αD 

F 
)
, (4.12) 

here use was made of the relation T A BC = μBCD α
AD . Therefore, 

e can calculate 
 � H as 

1 

2 
μBCD H 

A 
CD = 

1 

4 

(
μBCD μA 

DF αC 
F + μBCD μCDF α

AF + μBCD μC 
A 
F αD 

F 
)

= 

1 

4 

(
αAB − αH 

H G 
AB + 2 αAB + αAB − αH 

H G 
AB 

)
= αAB − 1 

2 
αH 

H G 
AB , (4.13)

hich coincides with (4.2) . The expression for κβ can be obtained 

y lowering the first index of κ and contracting it with e β . �

Proposition 4.2 implies that the lattice curvature tensor can be 

btained from H β and H in the same way that the dislocation den- 

ity tensor is obtained from T β and T . This also shows that the 

attice curvature tensor represents rotations of the lattice frame. 
4 
n particular, the geometric interpretation of the operator k is the 

ollowing: given a vector field Z on B, the vector k Z is the axial 
ector describing the rotation of the lattice along integral curves 

f Z . Similarly, the vector κβ is the axial vector associated with 

he rotation of the lattice along integral curves of the lattice vector 

 β . 

emark 4.3. Under the assumption of a stress-free crystal, Nye’s 

ork was carried out entirely in the deformed (relaxed) configura- 

ion. In geometric terms, Nye studied the deformed lattice struc- 

ure on ϕ(B) represented by { ϕ ∗e β} with respect to the metric 

 . Although not explicitly stated by Nye, this approach consists of 

efining the following spatial dislocation density tensor and lattice 

urvature tensor: 

¯ β = 
 
� 
g d ϕ ∗ϑ 

β
, κ̄β = ᾱβ − 1 

2 
〈 ϕ ∗ϑ 

γ
, ᾱγ 〉 ϕ ∗e β , (4.14) 

here 
 � g denotes the raised Hodge operator in the ambient space 

nduced by the metric g , and ϕ is a configuration map. The quanti- 

ies defined in (4.14) are the spatial analogues of (3.2) and (4.1) , 

nd describe the deformed lattice structure with respect to the 

etric g . Under Nye’s assumption, the configuration map ϕ is a lo- 

al isometric embedding, and hence g = ϕ ∗G (see Remark 2.2 ). This 

eans that all the quantities involved in the definition of ᾱβ and 

¯ β (metric, covariant derivative, Hodge operator) are preserved by 

he tangent map T ϕ, and hence, they coincide with their material 

ounterparts, i.e., ᾱβ = ϕ ∗αβ and κ̄β = ϕ ∗κβ (note that d and ϕ ∗
ommute). 

Next we look at the lattice curvature tensor in the linearized 

pproximation. In nonlinear elasticity compatibility can be ex- 

ressed in terms of the strain field as the vanishing of the 

urvature tensor associated with the pulled-back metric C [24] . 

hese conditions can be linearized to obtain the compatibility 

quations in terms of the infinitesimal strain ε = 
1 
2 δC in the 

inearized setting [25] . It should be noted that in dimension 

hree, curvature can be expressed by several equivalent tensors 

26] . In particular, the linearization of the Einstein tensor allows 

ne to obtain compatibility as curl ◦ curl ε = 0 [24] . In a simi- 

ar way, the compatibility of plastic deformations can be written 

n terms of the material metric G as the vanishing of the cur- 

ature R associated with G . As was mentioned in Remark 2.2 , 

his does not ensure the absence of dislocations, but the lack 

f residual stresses. An incompatibility object for the plastic de- 

ormation is usually defined by linearizing the curvature tensor 

27] . 

According to Kröner [2] , the lattice curvature tensor can be used 

o express the incompatibility content of the plastic strain. There- 

ore, we would like to recover Kröner’s result in our geometric 

pproach via the linearization of the Einstein tensor. We linearize 

round a defect-free lattice coframe, inducing a Euclidean material 

etric and a Weitzenböck connection that coincides with the flat 

evi–Civita connection. This means that the initial plastic deforma- 

ion is compatible, while we look at a small plastic deformation 

arrying the entire dislocation content. Therefore, in this zeroth- 

rder structure, the tensors T , K , α, κ and R vanish. We start by 

inearizing the Riemann curvature tensor. As all the second-order 

erms vanish, one can write [28] 

δR A BCD = δ�A 
DB | C − δ�A 

CB | D 
= δ ˆ �A 

DB | C − δK A DB | C − δ ˆ �A 
CB | D + δK A CB | D 

= δK A CB | D − δK A DB | C , (4.15) 

here �A 
BC = 

ˆ �A 
BC − K A DB , and a vertical bar denotes the covari- 

nt derivative ∇ . Recalling the definition of permuted contorsion 

ensor H and the lattice curvature tensor κ, one writes 

R A BCD = δH C 
A 
B | D − δH D 

A 
B | C = μA 

BF 

(
δκC 

F | D − δκD 
F | C 

)
. (4.16) 
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ext, we linearize the relation 

in AB = −1 

4 
μAMN μBPQ R MNPQ , (4.17) 

or the raised Einstein tensor, 5 and recalling that all the defect- 

elated zeroth-order quantities vanish, (4.15) can be written as 

Ein AB = −1 

4 
μAMN μBPQ μMNF 

(
δκP 

F | Q − δκQ 
F | P 

)
= 

1 

2 
μBQP 

(
δκP 

A | Q − δκQ 
A | P 

)
= μBQP δκP 

A | Q . (4.18) 

ne can also write (4.18) as δEin AB = μBQP δK 
A 
P | Q . This coincides 

ith what was obtained by Kröner [2] . 

. Conclusions 

In this paper we revisited Nye’s lattice curvature tensor and 

resented a modern perspective. While Nye’s construction is based 

n the assumption of no residual stresses, motivated by the works 

f Bilby and others the notion of lattice curvature was extended 

o arbitrary dislocation distributions. In the framework of Cartan’s 

oving frames, the lattice curvature is a representation of the ro- 

ation of the lattice moving frame with respect to an affine connec- 

ion. In particular, the lattice curvature is related to the Ricci rota- 

ion coefficients associated with the lattice frame and is therefore a 

urely material object. We started by expressing the material ver- 

ion of Nye’s lattice curvature as a triplet of vectors, and showed 

hat it can be obtained from the contorsion tensor via the raised 

odge operator. It was also shown that if one works under Nye’s 

ssumption of a Euclidean material metric (i.e., zero-stress dislo- 

ations), which ensures the existence of a (local) stress-free refer- 

nce configuration in which the material metric is preserved, the 

aterial and the spatial definitions of κ coincide. As a matter of 

act, since all the quantities involved in its geometric definition—

etric, covariant derivative, and Hodge operator—are preserved, 

he spatial lattice curvature is the push forward of the material 

attice curvature via the relaxation map. Moreover, we were able 

o show that in the linearized approximation the lattice curvature 

ensor can be used to express the Riemann curvature of the mate- 

ial manifold. In particular, its curl is equal to the linearization of 

he Einstein tensor. 
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