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We revisit Nye’s lattice curvature tensor in the light of Cartan’s moving frames. Nye’s definition of lat-
tice curvature is based on the assumption that the dislocated body is stress-free, and therefore, it makes
sense only for zero-stress (impotent) dislocation distributions. Motivated by the works of Bilby and oth-
ers, Nye’s construction is extended to arbitrary dislocation distributions. We provide a material definition
of the lattice curvature in the form of a triplet of vectors, that are obtained from the material covariant
derivative of the lattice frame along its integral curves. While the dislocation density tensor is related
to the torsion tensor associated with the Weitzenbdck connection, the lattice curvature is related to the
contorsion tensor. We also show that under Nye’s assumption, the material lattice curvature is the pull-
back of Nye’s curvature tensor via the relaxation map. Moreover, the lattice curvature tensor can be used
to express the Riemann curvature of the material manifold in the linearized approximation.
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1. Introduction

The definitions of the dislocation density tensor and the lattice
curvature tensor are both due to Nye [1]. Nye’s seminal work was
motivated by the observation that “when a single crystal deforms
by glide which is unevenly distributed over the glide surfaces the
lattice becomes curved”. The dislocation density tensor « is then
defined as the operator that assigns to a unit vector I the Burg-
ers vector B associated with a circuit of unit area that is normal to
I, ie, B; = ojl;, and it results from the distribution of dislocations
in the lattice. Nye also showed that this tensor carries information
on the change of the orientation of the lattice directions along the
coordinate dx; described by the infinitesimal axial vector d¢; via
the relation d¢); = «;;dx;, where « is a tensor that is related to the
dislocation density tensor as kjj = oj; — %akkSU. Nye called k the
curvature tensor, but since in the geometric setting the expression
“curvature tensor” usually implies the Riemannian curvature asso-
ciated with the material metric, we will be referring to k as the
lattice curvature tensor as in Kroner [2] (where the lattice curva-
ture tensor is defined with the opposite sign).

To prove the relation between o and «, Nye looked at the de-
formed configuration of lattice directions and planes and through
the use of graphic techniques he was able to calculate their curva-
ture. His study was carried out under the assumption of negligible
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elastic deformations: “when real crystals are distorted plastically
they do in fact contain large-scale distributions of residual strains,
which contribute to the lattice curvature”. In the absence of exter-
nal loads, elastic deformations develop to restore compatibility of
the total strain in the crystal, inducing residual stresses. This diffi-
culty can be avoided by considering impotent plastic deformations,
i.e., plastic deformations that, albeit incompatible in the sense that
they are not associated with any configuration map, still allow the
crystal to relax locally into a stress-free configuration. In the lan-
guage of modern dislocation theory, the absence of residual elastic
strains is equivalent to the assumption of plastic deformations in-
ducing a Euclidean material metric. This state is the same as Noll’s
contorted aeolotropy [3], sometimes referred to as zero-stress or
impotent dislocation distributions [4-6]. This ensures the existence
of a local isometric embedding of the material manifold into the
ambient space, so that the plastic deformation of the material can
be relaxed into a stress-free configuration. The lattice curvature
tensor has been studied by other researchers from a more geomet-
ric perspective. Bilby et al. [7] and Bilby and Smith [8] reviewed
Nye’s construction, and provided a material version of the notion
of lattice curvature, showing that it is related to the Ricci rotation
coefficients. Steinmann [9] established a relation between the con-
torsion tensor and Nye’s lattice curvature.

In this paper we revisit Nye’s lattice curvature tensor in the
light of modern differential geometry, and particularly, Cartan’s
moving frames [10,11], and teleparallelism. The material nature of
Nye’s tensor will be shown without assuming the absence of resid-
ual stresses. We do this by using a notion of lattice curvature due
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to Bilby and Smith [8], which is purely material and relies on the
Riemannian structure inherited by the metric defined on the ma-
terial manifold, without the need of a Euclidean material metric.
More specifically, the lattice curvature is defined starting from the
material covariant derivative of the lattice moving frame along the
frame itself, a quantity that is independent of any mapping of the
material manifold into the ambient space. In our approach, using
Cartan’s moving frames, the lattice curvature is represented by a
triplet of vectors. We show that starting from this more general
definition of curvature, the material variant of Nye’s tensor is the
object that encodes it. As a matter of fact, while the material dis-
location density tensor is related to the torsion tensor associated
with the Weitzenbdck connection, the material lattice curvature
tensor can be obtained from the contorsion tensor in a similar way.
Carrying information on both the Weitzenbock and the Levi-Civita
connections, the lattice curvature tensor can be used to express
the Riemann curvature of the material manifold in the linearized
approximation.

This paper is organized as follows. In Section 2 we introduce
the notion of lattice frame in a dislocated solid and define all the
geometric quantities associated with it. In Section 3 we review the
dislocation density tensor. In Section 4 we introduce a material
definition of lattice curvature, show its relation with the contorsion
tensor and, in the linear approximation, with the Einstein tensor.

2. The dislocated lattice

We work in the framework of continuum mechanics and con-
sider smooth embeddings ¢ : B — S representing spatial configu-
rations of a material body B in the ambient space S. The ambient
space is endowed with a Euclidean metric g, expressing the stan-
dard scalar product in the ambient space. Crystalline solids carry
additional information on the order with which particles are ar-
ranged. In a geometric continuum theory this information is en-
coded in a moving frame {eg} on 5 [6], that we call lattice frame.

Alternatively, one can use the associated lattice coframe {0ﬁ }, ie.,
a field of three 1-forms such that (0’3, e)) = 85. The material met-
ric G representing the natural distances in the lattice is then de-
fined as

G=23,59" 0" 21)

This means that the lattice frame {e,} is orthonormal with respect
to G, i.e, {(ex, €g))c = Jyp- In other words, the lattice frame repre-
sents an internal observer that is unaware of the plastic slip occur-
ring in the solid [12,13].

The presence of dislocations in solids is associated with the
anholonomicity of the lattice frame. A frame {eg} is holonomic
if there exist local coordinates {Y#} such that eg = %. This is
equivalent to the vanishing of the Lie bracket [eq, eg] for all &, B
[14-17]. Holonomicity of the lattice frame can also be expressed in
terms of its coframe as #* = dy# , which is equivalent to requiring
the lattice forms to be closed.! As a matter of fact one has

do” (ey.e5) = — (3 [es. e5]) . (2.2)

The presence of distributed dislocations can be detected by calcu-
lating the circulation of the lattice coframe along a closed curve y,
viz.

B _ B _ B
B [y]-[p(y)w*ﬂ _/yﬂ . (2.3)

T A k-form « on B is closed if de = 0, and is exact if there exists a k — 1-form x
such that o = dx. An exact k-form is necessarily closed, while the converse holds
only when the k-th de Rham cohomology group is trivial [18]. Since closedness can
be seen as the local version of exactness, holonomicity becomes quite clear: the
existence of local coordinates {Y#} such that # —dyf is guaranteed whenever the
lattice forms are closed.
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The scalars Bf[y] represent the Burgers vector associated with y.
If y is the only component of the boundary of a surface %, i.e,
y = 0%, invoking Stokes’ theorem one can write (2.3) as

By = /E i*do (2.4)

where i: ¥ < B is the inclusion map.

Remark 2.1. The dislocation-free case implies the existence of lo-
cal coordinates {Y#} such that #? = dYB, and hence, from (2.1) one
obtains G = §,gdY* ®dY#. This means that there exists a map
¢ : B— S whose Cartesian coordinate representation is {Y#} and
such that G = ¢*g locally, i.e., a local isometric embedding. Such a
map can be seen as a local relaxation for the body.

We define a Weitzenbdck connection V on B that parallelizes
the lattice frame {e,}. As a derivative operator, it acts on a tensor
as the ordinary derivative of the components of the tensor with
respect to the lattice frame, whence the vanishing of the Weitzen-
bdck derivative of the material metric G. Its torsion can be calcu-
lated by using Cartan’s formalism [6,14] and expressing the first
structural equation in terms of the lattice frame, viz.

TP = do’ + 0f, A 97, (2.5)

where wf, are the connection 1-forms and 7% are the torsion
2-forms. As the Weitzenbdck connection parallelizes #”, one sets
P, =0 to obtain 77 =d#”, and hence T has the expression
T=e0® d9”. The first Bianchi identity is obtained by differenti-

ating the first structural equation and reads d7" B —0,as dd#® = 0.
By construction, V has zero curvature [19].

We denote with V the Levi-Civita connection associated with
G, having zero torsion by construction and non-vanishing curvature
R. The contorsion tensor K is defined as the difference between the
Weitzenbock and the Levi-Civita connections, i.e.,

K(X.Y) = VxY — VxY, (2.6)
for all vectors X,Y. In components with respect to a coordinate
chart {X#} on B, one has

1
KAc = 5 (TAsc + Tg'c + Tcs) . (2.7)

2
where indices are lowered and raised using G.

Remark 2.2. It is straightforward to prove that when torsion T of
the Weitzenbdck connection vanishes (dislocation-free case of Re-
mark 2.1), the Levi-Civita connection has zero curvature (absence
of residual stresses). The converse does not hold: there exist distri-
butions of dislocations (i.e., T # 0) associated with a lattice frame
inducing a Euclidean material metric G, i.e., such that R = 0. In this
case, the existence of a local isometric embedding is still guaran-
teed by the Test Case theorem [14], and therefore the body is al-
lowed to locally relax. In other words, the plastic slips are {1?’3 }-
incompatible but G-compatible. These are called zero-stress or im-
potent dislocations by Mura [5], or contorted aeolotropy by Noll
[3]. As was mentioned earlier, the study by Nye [1] is carried out
under this assumption. It should also be noted that in this case
the lattice frame can be obtained through a rotation field super-
imposed to a defect-free lattice frame. Hence, the stress-free state
that Nye works with cannot be achieved by pure plastic rotations,
as was claimed in [20]. This can be shown by considering the ex-
ample of plastic bending of a slab presented by Nye, which is a
process that requires a change in length of the material fibers, and
not just a change in their orientation. However, by reparametrizing
the material manifold via the relaxation map ¢, i.e., working with
©(B) as reference configuration, one would be able to express the
lattice structure through a field of rotations of the Cartesian frame.
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3. The dislocation density tensor

The volume form p associated with G is called the material
volume form and has components ptppc = G? €apc, Where G = detG
and € is the permutation symbol. This object can be used to relate
vectors and 2-forms through the raised Hodge operator . Given a
2-form B, the vector »*B is defined as B =g (¢ is the interior
product operator), which in components reads Baz = tagc (x*8)C.
The inverse relation is written as (x*8)* = 145 Bgc, with uBC =

G~ €42 A volume form allows one to define the divergence of a
vector field V as (DivV) u = £y u = diyp.> When g is induced by
a metric G one also has DivV = tr VV, where V is the Levi-Civita
connection associated with G. Exterior derivative, raised Hodge op-
erator and divergence operator are related as

dB =Div(x*'B) i, (3.1)
for any 2-form S.

Geometric definitions of the dislocation density tensor using
the notion of holonomicity and torsion are due to Kondo [21], Bilby
et al. [7], and Kroner [22]. We define the dislocation density as the
triplet of vectors {af} given by

of = do’ (3.2)

or af =+*7# in Cartan’s formalism, where »* is the raised
Hodge operator associated to G. Note that since d7# = dde#? = o,
from (3.1) one necessarily has Diva? = 0. Thus, Diva® =0 can
also be seen as a consequence of the first Bianchi identity for the
Weitzenbock connection. The tensorial variant of the dislocation
density is defined as the tensor & = eg ® af of type (2,0), or equiv-
alently, as a = T, where the raised Hodge operator acts on the
lower indices. Note that denoting the extension of the divergence
operator to double contravariant tensors with Div (acting on the
second index), one has

Diva = (Dive?) eg + Vyses = Vysep (3.3)

which in general does not vanish.* This can also be written as
Va8 = —KAp-aB. It should be noted that by linearizing around
a defect-free lattice coframe (see Section 4), where both af and
Veg vanish, one obtains

Divda = Div(3aP) es = S(Divar’) eg

and hence, one recovers the classic identity Diva = 0.

The dislocation density tensor can be used to express the Burg-
ers vector associated with a closed curve y = d%. Denoting with
N the unit normal on X, and with v the area 2-form induced by G
on %, both induced by G, one can rewrite (2.3) as

Bﬁ[y1=/2<<ozﬂ,zv»c v,

meaning that each B?[y] is given by the flux of the corresponding
vector af across X.

(34)

(3.5)

2 In general, the Hodge operator assigns to a k-form B the (n—k)-form
«f such that for any G-orthonormal frame {X,} one has (xB)(X,,..., X;,) =
BX.,.---. X;,). The raised Hodge operator is defined by raising all the indices of
the Hodge star operator, i.e., »* = (xB)*. The result is an alternating contravariant
tensor.

3 The second equality is a consequence of Cartan’s formula Ly g = diypt + tydpe,
and dpu = 0, where £ is the Lie derivative operator.

4 This might seem to disagree with what was obtained by Yavari and Goriely [6],
i.e,, that the dislocation density tensor is divergence-free. In that work, however,
Cartan’s exterior covariant derivative was used to define a divergence operator for
tensors of type (2,0) that only operates on the second index. Therefore, this ex-
tended divergence operation is equivalent to taking the divergences of triplets of
vectors and assembling them together. As a matter of fact, it is straightforward
to prove that if one denotes with Div the divergence operator defined by Yavari
and Goriely [6], then Diver = (Diva?) eg. Thus, our result agrees with what was ob-
tained by Yavari and Goriely [6].
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4. Nye’s lattice curvature tensor

The incompatibility of the lattice structure can be described by
Nye’s lattice curvature tensor as well. This object is equivalent to
the dislocation density tensor, but instead of being associated with
the circulation of the lattice coframe, it represents the way the lat-
tice frame changes along its own integral curves. We start by pro-
viding three equivalent definitions of the lattice curvature tensor
in the material manifold. We will also discuss their geometric in-
terpretations. First, we introduce the lattice curvature as a triplet
of vectors {kg} defined by

1
Kg zaﬁ*j“}y,(x]/)eﬂ, (41)

where ag = dg e is a simple reindexing of the triplet {af}. The
lattice curvature can also be defined as a tensor k of type (2,0) as

K=0— %(Trca) G . (4.2)

In components, k"8 = % — Ty GB. It can also be written as
k=258 e, ® kg. Finally, a definition very similar to that of Nye
[1] is the following tensor of type (1,1):
|

kzal—j(TrGa)l, (4.3)
where b; denotes the lowering of the first index, while I is the
identity operator. In components, one has kA5 = ap? — Jay 84. It
can be written as k = #° ® kg, and vice versa kg = keg. The (1,1)
and (2,0) variants are related as k = k"1, i.e., k5 = k.

Next we provide a geometric interpretation of Nye’s construc-
tion. Instead of assuming the existence of a relaxed configuration
and expressing all the quantities with respect to it, we carry out
our analysis entirely in the material manifold. Let us consider an
arbitrary curve y in the material manifold B, with G-unit tangent
vector t. Then, V, indicates covariant derivative along y corre-
sponding to an arc-length parametrization, where V is the Levi-
Civita connection associated with G. Let us define the following
symbols

Auv = «Vteﬂv ev»G B

representing the way e, changes along y with respect to e,. It
is straightforward to check that since the lattice frame {eg} is
orthonormal with respect to G, by construction, one has Ay, =
—Ayy. Therefore, the coefficients (4.4) represent the infinitesimal
rotation that the lattice frame undergoes while moving by ds along
the curve y in the material manifold. Using the coefficients A,
one defines the 2-form A = A, #" ® #'. The axial vector asso-
ciated with A is defined through the raised Hodge operator as
W =+A.

(4.4)

Remark 4.1. We emphasize that the coefficients A, do not trans-
form tensorially with the frame that is used to define them. As a
matter of fact, if one considers a different frame fg, related to eg
as eg = A”gf,, then one can easily see that

{(Viey, ) = AP A% (Vi f ), Fo)) + VIAP 8poAy .

If one considers the Frenet frame {fg} = {t,n. b} associated with
a curve y, where n and b are respectively the normal and binor-
mal unit vectors, the coefficients {(V.f,, f,)) have the following
representation:

(4.5)

0 K 0

(Vb ] =]« 0 <.
0 -7 0

(4.6)
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where k and 7 are, respectively, the curvature and torsion of y
(here the torsion of a curve should not be confused with the tor-
sion of a connection). The axial vector associated to the Frenet
frame {t, n,b} is W = tt + kb.

Next we let the curve y be an integral curve for the lattice vec-
tor eg, i.e., we assume t = eg. This means that we are looking at
infinitesimal rotations of the lattice frame along its own integral
curves. Hence, we define the triplet of 2-forms {#4} as the ana-
logue of (4.4), with components

(gl = «veﬁe;u e = Copu s (4.7)

where I', g, are the Christoffel symbols of the first kind of G in
the moving frame {eg}. The (Hg),v's represent Ricci rotation co-
efficients [23] associated with the frame {eg}. It should be noted
that from the orthonormality of the lattice frame one has

Lppy = _«veﬂeu’ ey = —«@eﬁev —K(eg.e)). e
(K(eg.ey),eu)c=Kup, (4.8)

where use was made of the definition of the contorsion ten-
sor (2.6) and the fact that the Weitzenbock derivative of the lattice
frame vectors vanishes. In other words, the contorsion tensor can
be used to express the Ricci rotation coefficients. Hence, we define
the symbols Hg,, = (Hg)uv = K, g, This allows us to define the
tensor H as

(H(X,Y),eghe=HpX,Y), (4.9)
or
(H(X,Y),Z))¢ = (K(Z,Y),Z))¢. (4.10)

In coordinate components HAp- = Kz = GppG*F KPc. It should be
noted that the anti-simmetry in the lower indices of H coming
from the orthonormality of {eg} can be verified by using (2.7),
viz.

1 1
H'ge = 5 (Ts'c + Tsc + Tes”) = -5 (T*s + Tcs + Toc”)

= —KAp = —Hx. (4.11)

The following proposition shows that the lattice curvature tensor
of Nye can be obtained from the permutated contorsion tensor.

Proposition 4.2. The lattice curvature tensor is the axial vector asso-
ciated with the permutated contorsion tensor, i.e., k = +*H and kg =
*u’H.ﬂ.

Proof. We use components, and invoke (2.7) and (4.11) to write
1
Hop = 5 (Te*p + Tep + Toc?)

1
= o (Wor ac® + peor @ + pucr apf) (412)

2
where use was made of the relation TAg = uupcp AP, Therefore,
we can calculate +*H as

1 1
5 BCPHA o — Z( BCD A e a4 1B e oF o puBP A aDF)

1
=3 (aAB — oG 4 20 4+ oB — aHHGAB)

1
— o’ — "G (4.13)
which coincides with (4.2). The expression for kg can be obtained

by lowering the first index of « and contracting it with eg. O

Proposition 4.2 implies that the lattice curvature tensor can be
obtained from #g and H in the same way that the dislocation den-
sity tensor is obtained from 7# and T. This also shows that the
lattice curvature tensor represents rotations of the lattice frame.

Mechanics Research Communications 113 (2021) 103696

In particular, the geometric interpretation of the operator k is the
following: given a vector field Z on B, the vector kZ is the axial
vector describing the rotation of the lattice along integral curves
of Z. Similarly, the vector kg is the axial vector associated with
the rotation of the lattice along integral curves of the lattice vector
eﬁ.

Remark 4.3. Under the assumption of a stress-free crystal, Nye’s
work was carried out entirely in the deformed (relaxed) configura-
tion. In geometric terms, Nye studied the deformed lattice struc-
ture on ¢(B) represented by {go*eﬂ} with respect to the metric
g. Although not explicitly stated by Nye, this approach consists of
defining the following spatial dislocation density tensor and lattice
curvature tensor:

& = o0 Ry=y - 2 l0.0 &) p.es. (414)
where *g denotes the raised Hodge operator in the ambient space
induced by the metric g, and ¢ is a configuration map. The quanti-
ties defined in (4.14) are the spatial analogues of (3.2) and (4.1),
and describe the deformed lattice structure with respect to the
metric g. Under Nye’s assumption, the configuration map ¢ is a lo-
cal isometric embedding, and hence g = ¢..G (see Remark 2.2). This
means that all the quantities involved in the definition of &? and
kg (metric, covariant derivative, Hodge operator) are preserved by
the tangent map T¢, and hence, they coincide with their material
counterparts, ie., &’ = ¢g,af and i” = ¢,k (note that d and ¢,
commute).

Next we look at the lattice curvature tensor in the linearized
approximation. In nonlinear elasticity compatibility can be ex-
pressed in terms of the strain field as the vanishing of the
curvature tensor associated with the pulled-back metric C [24].
These conditions can be linearized to obtain the compatibility
equations in terms of the infinitesimal strain €= %SC in the
linearized setting [25]. It should be noted that in dimension
three, curvature can be expressed by several equivalent tensors
[26]. In particular, the linearization of the Einstein tensor allows
one to obtain compatibility as curlocurle =0 [24]. In a simi-
lar way, the compatibility of plastic deformations can be written
in terms of the material metric G as the vanishing of the cur-
vature R associated with G. As was mentioned in Remark 2.2,
this does not ensure the absence of dislocations, but the lack
of residual stresses. An incompatibility object for the plastic de-
formation is usually defined by linearizing the curvature tensor
[27].

According to Kroner [2], the lattice curvature tensor can be used
to express the incompatibility content of the plastic strain. There-
fore, we would like to recover Kroner’s result in our geometric
approach via the linearization of the Einstein tensor. We linearize
around a defect-free lattice coframe, inducing a Euclidean material
metric and a Weitzenbdck connection that coincides with the flat
Levi-Civita connection. This means that the initial plastic deforma-
tion is compatible, while we look at a small plastic deformation
carrying the entire dislocation content. Therefore, in this zeroth-
order structure, the tensors T, K, o, k and R vanish. We start by
linearizing the Riemann curvature tensor. As all the second-order
terms vanish, one can write [28]

8RAcp = 8T pgic — 8T cp p
= 8ﬁADB|C — 8K pp)c — 5fACB|D + 8K*cpip

= 8K cpip — 8K pc . (4.15)

where Mg = [y — KApp, and a vertical bar denotes the covari-
ant derivative V. Recalling the definition of permuted contorsion
tensor H and the lattice curvature tensor k, one writes

8Rpcp = SHp)p — SHp g1 = e (5KcF|D - 3KDF|C) . (4.16)
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Next, we linearize the relation

AMN

1B Rynpg (4.17)

1
EinfB — _ 2
n 2 12
for the raised Einstein tensor,” and recalling that all the defect-
related zeroth-order quantities vanish, (4.15) can be written as

(SEinAB — _1 AMN ,, BPQ

ZM M JAMNF (5KpF|Q - 5KQF|p)

1
= E[LBQP((SKPA‘Q - SKQA“)) = ,LLBQP(SKPA|Q . (4]8)
One can also write (4.18) as SEin = uBQP§KAp 4. This coincides
with what was obtained by Kréner [2].

5. Conclusions

In this paper we revisited Nye’s lattice curvature tensor and
presented a modern perspective. While Nye’s construction is based
on the assumption of no residual stresses, motivated by the works
of Bilby and others the notion of lattice curvature was extended
to arbitrary dislocation distributions. In the framework of Cartan’s
moving frames, the lattice curvature is a representation of the ro-
tation of the lattice moving frame with respect to an affine connec-
tion. In particular, the lattice curvature is related to the Ricci rota-
tion coefficients associated with the lattice frame and is therefore a
purely material object. We started by expressing the material ver-
sion of Nye’s lattice curvature as a triplet of vectors, and showed
that it can be obtained from the contorsion tensor via the raised
Hodge operator. It was also shown that if one works under Nye’s
assumption of a Euclidean material metric (i.e., zero-stress dislo-
cations), which ensures the existence of a (local) stress-free refer-
ence configuration in which the material metric is preserved, the
material and the spatial definitions of k coincide. As a matter of
fact, since all the quantities involved in its geometric definition—
metric, covariant derivative, and Hodge operator—are preserved,
the spatial lattice curvature is the push forward of the material
lattice curvature via the relaxation map. Moreover, we were able
to show that in the linearized approximation the lattice curvature
tensor can be used to express the Riemann curvature of the mate-
rial manifold. In particular, its curl is equal to the linearization of
the Einstein tensor.
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