
Fast Approximation Algorithms for Bounded1

Degree and Crossing Spanning Tree Problems2

Chandra Chekuri !3

University of Illinois at Urbana-Champaign, USA4

Kent Quanrud !5

Purdue University, USA6

Manuel R. Torres !7

University of Illinois at Urbana-Champaign, USA8

Abstract9

We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree10

MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (Crossing-11

ST). We solve the underlying LP to within a (1 + ϵ) approximation factor in near-linear time12

via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear13

time algorithm that outputs an estimate B such that B ≤ B∗ ≤ ⌈(1 + ϵ)B⌉ + 1 where B∗ is the14

minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main15

technical contribution, we describe a fast near-linear time implementation of swap-rounding in the16

spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input17

graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas18

lead to significantly faster approximation algorithms than known before for the two problems of19

interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool20

that has other applications, including to TSP and submodular function maximization.21

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;22

Theory of computation → Graph algorithms analysis23

Keywords and phrases bounded degree spanning tree, crossing spanning tree, swap rounding, fast24

approximation algorithms25

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.2426

Category APPROX27

Related Version Full Version: https://arxiv.org/abs/2011.03194v2 [19]28

Funding Chandra Chekuri: Supported in part by NSF grant CCF-1910149.29

Manuel R. Torres: Supported in part by fellowships from NSF and the Sloan Foundation, and NSF30

grant CCF-1910149.31

1 Introduction32

Spanning trees in graphs are a fundamental object of study and arise in a number of settings.33

Efficient algorithms for finding a minimum-cost spanning tree (MST) in a graph are classical.34

In a variety of applications ranging from network design, TSP, phylogenetics, and others, one35

often seeks to find a spanning tree with additional constraints. An interesting and well-known36

problem in this space is the Bounded-Degree Spanning Tree (BD-ST) problem in37

which the goal is to find a spanning tree in a given graph G = (V, E) that minimizes the38

maximum degree in the tree. We refer to the minimum-cost version of BD-ST as BD-MST39

where one seeks a spanning tree of minimum cost subject to a given degree bound B on the40

vertices. The decision version of BD-ST (Given G, B is there a spanning tree with maximum41

degree B?) is already NP-Complete for B = 2 since it captures the Hamilton-Path problem.42

In an influential paper, Fürer and Raghavachari [24], building on earlier work of Win [49],43

© Chandra Chekuri, Kent Quanrud, and Manuel R. Torres;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
mailto:krq@purdue.edu
mailto:manuelt2@illinois.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.24
https://arxiv.org/abs/2011.03194v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Fast Bounded-Degree and Crossing Spanning Trees

described a simple local-search type algorithm that runs in Õ(mn) time (here m is number44

of edges and n number of nodes) that outputs a spanning tree with degree at most B + 1, or45

certifies that G does not have a spanning tree with degree at most B (we use Õ notation46

to suppress poly-logarithmic factors in n, m, 1/ϵ for notational simplicity). Their algorithm,47

in fact, works even in the non-uniform setting where each vertex v has a specified degree48

bound Bv. The Fürer-Raghavachari result spurred a substantial line of work that sought to49

extend their clean result to the minimum-cost setting. This was finally achieved by Singh50

and Lau [43] who described a polynomial-time algorithm that outputs a tree T such that51

the degree of each v in T is at most Bv + 1 and the cost of the tree is at most OPT. Their52

algorithm is based on iterative rounding of a natural LP relaxation. We refer the reader to53

[35, 13, 28, 43, 22] for several ideas and pointers on BD-ST and BD-MST.54

Motivated by several applications, Bilo et al. [9] defined the Crossing Spanning55

Tree problem (Crossing-ST). In Crossing-ST the input is a graph G = (V, E), a56

collection of cuts C1, C2, . . . , Ck, and integers B1, B2, . . . , Bk. Each cut Ci is a subset of57

the edges though in many applications we view Ci as δG(Si) for some Si ⊂ V (where58

δG(Si) = {uv ∈ E | u ∈ Si, v ∈ V \ Si} is the standard definition of a cut set with respect to59

Si). The goal is to find a spanning tree T such that |E(T)∩Ci| ≤ Bi, that is, T crosses each cut60

Ci at most Bi times. It is easy to see that BD-ST is a special case of Crossing-ST where the61

cuts correspond to singletons. We refer to the min-cost version of Crossing-ST as Crossing-62

MST. Crossing-ST gained substantial prominence in the context of the asymmetric traveling63

salesman problem (ATSP) — Asadpour et al. [5] showed the importance of thin spanning trees64

for approximating ATSP and obtained an O(log n/ log log n)-approximation (now we have65

constant factor approximations for ATSP via other methods [46, 47]). Motivated by the thin66

tree conjecture and its applications to ATSP (see [5, 2]) and other technical considerations,67

researchers have studied Crossing-ST, its generalization to the matroid setting, and various68

special cases [20, 8, 7, 37, 36]. The best known approximation algorithms for Crossing-ST69

and its special cases have mainly relied on the natural LP relaxation. For general Crossing-70

ST the best know approximation ratio is min{O(log k/ log log k), (1 + ϵ)B + O(log k/ϵ2)}. A71

variety of sophisticated and interesting rounding techniques have been designed for Crossing-72

ST and its special cases. An outstanding open problem is whether Crossing-ST admits73

a constant factor approximation via the natural LP relaxation. This is challenging due its74

implications for the thin tree conjecture.75

Most of the focus on BD-MST and Crossing-ST has been on the quality of the76

approximation. The best known approximaton bounds rely on LP relaxations and complex77

rounding procedures. The overall running times are very large polynomials in the input size78

and are often unspecified. In this paper we are interested in the design of fast approximation79

algorithms for BD-MST, Crossing-ST and related problems. In recent years there has been80

significant progress in designing fast, and often near-linear time, approximation algorithms81

for a number of problems in discrete and combinatorial optimization. This has been led82

by, and also motivated, synergy between continuous/convex optimization, numerical linear83

algebra, dynamic data structures, sparsification techniques, and structural results, among84

several others. For BD-ST with uniform degree, Duan, He and Zhang [22] described a85

combinatorial algorithm that for any given ϵ > 0, runs in O(m log7 n/ϵ7) time, and either86

outputs a spanning tree with degree (1 + ϵ)B + O(log n/ϵ2) or reports that there does not87

exist a tree with maximum degree ≤ B. This paper is partly motivated by the goal of88

improving their results: dependence on ϵ, a better approximation, handling non-uniform89

bounds, cost, Crossing-MST, and connection to the LP relaxation.90

A second motivation for this paper is to develop a fast algorithm for swap-rounding in the91

C. Chekuri, K. Quanrud, M. R. Torres 24:3

spanning tree polytope. It is a dependent rounding technique that has several applications92

ranging from TSP to submodular function maximization (see [20, 26, 17, 23]). The question93

of developing a fast swap-rounding procedure for spanning trees was explicitly raised in [17]94

in the context of Metric-TSP.95

1.1 Results96

In this paper we develop fast approximation algorithms for BD-MST, Crossing-MST and97

related problems in a unified fashion via broadly applicable methodology based on the LP98

relaxation. We consider the following problem with general packing constraints. The input to99

this problem is an undirected graph G = (V, E), a non-negative edge-cost vector c : E → R+,100

a non-negative matrix A ∈ [0, 1]k×m, and a vector b ∈ [1,∞)k. The goal is to find a spanning101

tree T of minimum cost such that A1T ≤ b where 1T ∈ {0, 1}m is the characteristic vector102

of the edge set of T . This is a special case of a more general problem considered in [20]:103

min-cost matroid base with packing constraints. Here we restrict attention to spanning trees104

(graphic matroid). We refer to this slightly more general problem also as Crossing-MST.105

Our first result is a near-linear time algorithm to approximately solve the underlying106

LP relaxation for Crossing-MST. For a multigraph G we let T (G) denote the set of all107

spanning trees of G and let ST(G) denote the spanning tree polytope of G (which is the108

convex hull of the characteristic vectors {1T | T ∈ T (G)}).109

▶ Theorem 1. Let G = (V, E) be a multigraph with m edges and n nodes and consider the110

linear program min{cT x : Ax ≤ b, x ∈ ST(G)} where A ∈ [0, 1]k×m, b ∈ [1,∞)k, c ∈ [0,∞)m.111

Let N be the maximum of m and number of non-zeroes in A. There is a randomized112

polynomial time algorithm that for any given ϵ ∈ (0, 1/2] runs in Õ(N/ϵ2) time and with high113

probability either correctly certifies that the LP is infeasible or outputs a solution y ∈ ST(G)114

such that cT y ≤ (1 + ϵ)OPT and Ay ≤ (1 + ϵ)b where OPT is the minimum value of a feasible115

solution.116

▶ Remark 2. We describe a randomized algorithm for the sake of simplicity, however we117

believe that a deterministic algorithm with similar guarantees can be obtained via ideas in118

[16].119

Solving the LP relaxation quickly enables to estimate the optimum integer solution value120

via existing rounding results [43, 20, 8, 7, 37, 36]. For instance, when specialized to BD-ST,121

we obtain a near-linear time algorithm to estimate the optimum value arbitrarily closely122

(modulo the addditive 1).123

▶ Corollary 3. There is a randomized Õ(m/ϵ2)-time algorithm that outputs a value B such124

that B ≤ B∗ ≤ ⌈(1 + ϵ)B⌉+ 1 where B∗ is the minimum maximum degree over all spanning125

trees (that is, B∗ = minT ∈T (G) maxv∈V degT (v) where degT (v) is the degree of v in T).126

Our second result shows the utility of the LP solution to sparsify the original graph G.127

▶ Theorem 4. Let x ∈ ST(G) be such that Ax ≤ b for a matrix A ∈ [0, 1]k×m and b ∈ [1,∞)k.128

Consider a random subgraph G′ = (V, E′) of G obtained by picking each edge e ∈ G with129

probability αe := min{1, 36 log(k+m)
ϵ2 · xe}. Then with high probability the following hold: (i)130

|E′| = O(n ln(k + m)/ϵ2) (ii) there exists a fractional solution z ∈ ST(G) in the support of131

G′ such that Az ≤ (1 + 3ϵ)b.132

One can run a combinatorial algorithm such as the Fürer-Raghavchari algorithm [24] on133

the sparse graph rather than on the original graph G. This yields the following corollary134

which improves the Õ(mn) running time substantially when G is dense.135

APPROX/RANDOM 2021

24:4 Fast Bounded-Degree and Crossing Spanning Trees

▶ Corollary 5. There is a randomized algorithm for BD-ST that given a graph G on n nodes136

runs in Õ(n2/ϵ2) time, and with high probability outputs a spanning tree T with maximum137

degree ⌈(1 + ϵ)B∗⌉+ 2 where B∗ is the optimal degree bound.138

▶ Remark 6. Corollaries 3 and 5 can be generalized to the non-uniform degree version of139

BD-ST. Input is G and degree bounds Bv, v ∈ V , and the algorithm either decides that140

there is no spanning tree satisfying the degree bounds or outputs a tree that approximately141

satisfies them.142

Our final result is a fast algorithm to round the LP solution. Several different rounding143

strategies have been developed for BD-MST and Crossing-MST and they yield different144

guarantees and take advantage of the special structure of the given instance. Iterated145

rounding has been one of the primary and powerful techniques, however it requires basic146

feasible solutions to the LP relaxation; it seems far from obvious how to obtain fast algorithms147

with comparable guarantees and is a challenging open problem. We are here interested148

in oblivious randomized rounding strategies that take a point x ∈ ST(G) and round it149

to a random spanning tree T ∈ T (G) such that the coordinates of the resulting random150

edge vector are negatively correlated1. Negative correlation implies concentration for linear151

constraints as shown by Panconesi and Srinivasan [38]. These strategies, when combined152

with the LP solution, yield bicriteria approximation algorithms for Crossing-MST of the153

form (1 + ϵ, min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2}) where the first part is the154

approximation with respect to the cost and the second part with respect to the packing155

constraints. For Crossing-ST and Crossing-MST these are currently the best known156

approximation ratios (although special cases such as BD-MST admit much better bounds).157

Several dependent randomized rounding techniques achieving negative correlation in the158

spanning tree polytope are known: maximum entropy rounding [5], pipage rounding and159

swap rounding [20]. These rounding techniques generally apply to matroids and have several160

other applications. In this paper we show that given x ∈ ST(G), one can swap-round x to161

a spanning tree in near-linear time provided it is given in an implicit fashion; alternately162

one can obtain an implicit approximate representation x′ of x and then apply an efficient163

swap-rounding on x′. Since swap-rounding is a flexible procedure and does not generate a164

unique distribution, a precise technical statement requires more formal notation and we refer165

the reader to Section 3. Here we state a theorem in a general form so that it can be used in166

other contexts.167

▶ Theorem 7. Let G = (V, E) be a multigraph with m edges and let x ∈ [0, 1]m. For any168

ϵ ∈ (0, 1/2) there is a randomized algorithm that runs in Õ(m/ϵ2) time and either correctly169

decides that x ̸∈ ST(G) or outputs a random vector T = (X1, X2, . . . , Xm) ∈ {0, 1}m such170

that (i) T is the characteristic vector of a spanning tree of G (ii) E[Xi] ≤ (1 + ϵ)xi for171

1 ≤ i ≤ m and (iii) X1, X2, . . . , Xm are negatively correlated. In particular T is obtained as172

a swap-rounding of a vector y such that y ≤ (1 + ϵ)x.173

Combining Theorems 1 and 7 and existing results on swap rounding [20] we obtain the174

following. The approximation ratio matches the best known for Crossing-MST and the175

algorithm runs in near-linear time.176

1 A collection of {0, 1} random variables X1, X2, . . . , Xr are negatively correlated if, for all subsets S ⊆ [r],
E[

∏
i∈S

Xi] ≤
∏

i∈S
E[Xi] and E[

∏
i∈S

(1 − Xi)] ≤
∏

i∈S
(1 − E[Xi]).

C. Chekuri, K. Quanrud, M. R. Torres 24:5

▶ Corollary 8. For the feasibility version of Crossing-MST, there is a randomized algorithm177

that runs in near-linear time and outputs a spanning tree T such that178

A1T ≤ min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2}179
180

with high probability. For the cost version of Crossing-MST, there is a randomized algorithm181

that outputs a182

(1 + ϵ, min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2})183
184

bicriteria approximation with probability Ω(ϵ). After Õ(1/ϵ) independent repetitions of this185

algorithm, we can obtain the same guarantees with high probability.186

Our algorithm, when specialized to BD-ST and BD-MST is more general than the one187

in [22] in terms of handling cost and non-uniform degrees. In addition we obtain a very close188

estimate of B∗, a much better dependence on ϵ, and also obtain an approximation of the189

form O(log n/ log log n)B∗ which is better than (1 + ϵ)B∗ + O(log n)/ϵ2 for small B∗.190

We mainly focused on BD-MST and a high-level result for Crossing-MST. One can191

obtain results for related problems that involve multiple costs, lower bounds in addition to192

upper bounds, and other applications of swap-roundings. We discuss these in more detail in193

Section A.194

1.2 Overview of main ideas195

Faster approximation algorithms for LPs that arise in combinatorial optimization have been196

developed via several techniques. We follow a recent line of work [16, 18, 39, 14] that utilizes197

features of the multiplicative weight update (MWU) method and data structures to speed198

up implicit LPs. In particular, the LP for Crossing-MST that we seek to solve can be199

addressed by the randomized MWU algorithm from [18] and data structures for dynamic200

MST [29]. The overall approach follows some ideas from past work [16]. The sparsification201

result is inspired by recent applications of similar ideas [16, 15, 11] and utilizes Karger’s202

theorem on random sampling for packing disjoint bases in matroids [30].203

Our main novel contribution is Theorem 7 which we believe is of independent interest204

beyond the applications outlined here. Dependent randomized rounding techniques have had205

many spectacular applications. In particular maximum entropy rounding in the spanning206

tree polytope gave a strong impetus to this line of work via its applications to ATSP [5] and207

metric-TSP [27]. Swap-rounding is a simpler scheme to describe and analyze, and suffices for208

several applications that only require negative correlation. However, all the known dependent209

rounding schemes are computationally expensive. Recent work has led to fantastic progress210

in sampling spanning trees [4], however the bottleneck for maximum entropy rounding is to211

compute, from a given point x ∈ ST(G), the maximum entropy distribution with marginals212

equal to x; polynomial time (approximation) algorithms exist for this [5, 44] but they are213

rather slow. Swap-rounding [20] requires one to decompose x ∈ ST(G) (or more generally a214

point in the matroid base polytope) into a convex combination of spanning trees; that is215

we write x =
∑

T ∈T λT1T such that
∑

T λT = 1 and λT ≥ 0, T ∈ T . This is a non-trivial216

problem to do exactly. The starting point here is a theorem in [16] that shows that one can217

solve this decomposition problem approximately and deterministically in near-linear time via218

a reduction to the problem of spanning tree packing; this is done via MWU techniques. The219

near-linear time algorithm implies that any x ∈ ST(G) can be decomposed efficiently into an220

implicit convex decomposition of total size Õ(m/ϵ2) where ϵ is the approximation parameter221

in the decomposition. To store the convex combination
∑h

i=1 λi1Ti
implicitly, we store the222

APPROX/RANDOM 2021

24:6 Fast Bounded-Degree and Crossing Spanning Trees

first tree T1 explicitly and to obtain Ti+1 from Ti for i ∈ [h− 1], we store the edges in the223

symmetric difference of Ti+1 and Ti. The size of the decomposition is then the sum of the sizes224

of the symmetric differences and the size of T1. We give a more formal definition of an implicit225

decomposition in Section 3.2. We show in this paper that this implicit sparse decomposition226

is well-suited to the swap-rounding algorithm. We employ a divide-and-conquer strategy227

with appropriate tree data structures to obtain an implementation that is near-linear in the228

size of the implicit decomposition. Putting these ingredients together yields our result.2
229

The seemingly fortuitous connection between the MWU based algorithm for packing230

spanning trees and its implicit representation leading to a fast algorithm for swap-rounding231

is yet another illustration of the synergy between tools coming together in the design of fast232

algorithms.233

1.3 Other related work234

We overview some known results on Crossing-ST and Crossing-MST and special cases.235

BD-MST can be viewed as a special case of Crossing-MST where each edge participates in236

2 constraints. Bansal et al. [8] showed that if each edge participates in at most ∆ constraints237

of A (and A is a binary matrix) then one can obtain a (1, b+∆−1)-approximation generalizing238

the BD-MST result; this was further extended to matroids by Lau, Kiraly and Singh [33].239

It is shown in [7] that for Crossing-ST one cannot obtain a purely additive approximation240

better than O(
√

n) via the natural LP relaxation. For this they use a reduction from241

discrepancy minimization; it also implies, via the hardness result in [12] for discrepancy,242

that it is NP-Hard to obtain a purely additive o(
√

n) bound. Bansal et al. [7] consider243

the laminar case of Crossing-MST where the cuts form a laminar family and obtained244

a (1, b + O(log n)) approximation via iterative rounding (this problem generalizes BD-245

MST). Olver and Zenklusen [37] consider chain-constrained Crossing-ST which is a further246

specialization when the laminar family is a chain (a nested family of cuts). For this special247

case they obtained an O(1)-factor approximation in the unit cost setting; Linhares and248

Swamy [36] considered the min-cost version and obtained an (O(1), O(1))-approximation.249

[37] also showed that even in the setting of chain-constrained Crossing-ST, it is NP-Hard250

to obtain a purely additive bound better than c log n/ log log n for some fixed constant c.251

Dependent randomized rounding has been an active area of research with many applica-252

tions. Pipage rounding, originally devoped by Ageev and Sviridenko [1] in a deterministic253

way, was generalized to the randomized setting by Srinivasan [45] and by Gandhi et al. [25]254

and [10, 20] and has led to a number of applications. Maximum entropy rounding satisfies255

additional properties beyond negative correlation and this is important in applications to256

metric-TSP (see [27] and very recent work [31, 32]). There has been exciting recent progress257

on sampling spanning trees and bases in matroids and we refer the reader to some recent258

work [41, 3, 4] for further pointers. Concentration bounds via dependent rounding can also259

be obtained without negative correlation (see [21] for instance) and recent work of Bansal [6]260

combines iterative rounding with dependent rounding in a powerful way.261

2 In an earlier version of the paper (see [19]) we described our fast swap rounding using two ideas. The
first was a fast near-linear time algorithm to merge two spanning trees using the link-cut tree data
structure. We were unaware of prior work of Ene and Nguyễn [23] that had already given such an
algorithm in the context of fast algorithms for submodular function maximization in graphic matroids.
In this version of the paper we use their algorithm as a black box. We focus on our second idea which
exploits the implicit representation. We thank Alina Ene and Huy Nguyễn for pointing out to us their
fast algorithm for merging two trees.

C. Chekuri, K. Quanrud, M. R. Torres 24:7

Fast approximation algorithms for solving positive LPs and SDPs has been an extensive262

area of research starting from the early 90s. Lagrangean relaxation techniques based on263

MWU and other methods have been extensively studied in the past, and continue to provide264

new insights and results for both explicit and implicit problems. Recent work based on265

a convex optimization perspective has led to a number of new results and improvements.266

It is infeasible to do justice to this extensive research area and we refer the reader to two267

recent PhD theses [40, 48]. Spectacular advances in fast algorithms based on the Laplacian268

paradigm, interior point methods, cutting plane methods, spectral graph theory, and several269

others have been made in the recent past and is a very active area of research with frequent270

ongoing developments.271

Organization272

Section 2 introduces some relevant notation, technical background and tree data structures273

that we rely on. Section 3 describes our fast swap-rounding algorithm and proves Theorem 7.274

Section 4 describes the sparsification process of Theorem 4. Section 5 discusses the LP275

relaxation for Crossing-ST and Theorem 1. Section A brings together results from previous276

sections to prove some of the corollaries stated in the introduction and provides details of277

some extensions and related problems.278

2 Preliminaries and notation279

For a set S, we use the convenient notation S − i to denote S \ {i} and S + i to denote280

S ∪ {i}.281

Matroids282

We discuss some basics of matroids to establish some notation as well as present some useful283

lemmas that will be used later. A matroid M is a tuple (N, I) with I ⊆ 2N satisfying284

the following three properties: (1) ∅ ∈ I, (2) if A ∈ I and B ⊆ A, then B ∈ I, and (3) if285

A, B ∈ I such that |A| < |B| then there exists b ∈ B \A such that A + b ∈ I. We refer to286

the sets in I as independent sets and say that maximal independent sets are bases. The rank287

of M is the size of a base. For a set A ∈ 2N , we refer to rM(A) = max{|S| : S ⊆ A, S ∈ I}288

as the rank of A.289

A useful notion that we utilize in our fast implementation of swap rounding is that of290

contraction of a matroid. We say that the contraction of e in M results in the matroid291

M/e = (N−e, {I ⊆ N−e : I+e ∈ I}) if rM({e}) = 1 andM/e = (N−e, {I ⊆ N−e : I ∈ I})292

if rM({e}) = 0. This definition extends naturally to contracting subsets A ⊆ N . It can be293

shown that contracting the elements of A in any order results in the same matroid, which we294

denote as M/A.295

The following statements are standard results in the study of matroids (e.g. see [42]).296

The following theorem is important in the analysis of swap rounding. It is often called the297

strong base exchange property of matroids.298

▶ Theorem 9. Let M = (N, I) be a matroid and let B, B′ be bases. For e ∈ B \B′, there299

exists e′ ∈ B′ \B such that B − e + e′ ∈ I and B′ − e′ + e ∈ I.300

The next lemma shows that if one contracts elements of an independent set in a matroid,301

bases in the contracted matroid can be used to form bases in the initial matroid.302

APPROX/RANDOM 2021

24:8 Fast Bounded-Degree and Crossing Spanning Trees

▶ Lemma 10. Let M = (N, I) be a matroid and let A ∈ I. Let BA be a base in M/A.303

Then A ∪BA is a base in M.304

A forest data structure305

We need a data structure to represent a forest that supports the necessary operations we306

need to implement randomized swap rounding in Section 3. The data structure mainly needs307

to facilitate the contraction of edges, including being able to recover the identity of the308

original edges after any number of contractions. We enable this by enforcing that when309

the data structure is initialized, every edge e is accompanied with a unique identifier. This310

identifier will be associated with the edge regardless of the edge’s endpoints changing due to311

contraction. The implementation of this step is important to guarantee a fast running time.312

The data structure is initialized via the function init, which takes as input the vertices,313

edges, and unique edge identifiers of the forest. init initializes an adjacency list A, stores a314

mapping f of edges to their unique edge identifiers, and creates a disjoint-set data structure315

R where every vertex initially is in its own set. The operation contract contracts an edge uv316

in the forest by identifying the vertices u and v as the same vertex. This requires choosing u317

or v to be the new representative (suppose we choose u without loss of generality), merging318

the sets corresponding to u and v in R while making u the representative of the set in319

R, and modifying the adjacency list A to reflect the changes corresponding to contracting320

uv and making u the representative. After an edge is contracted, the vertex set changes.321

We need to support the ability to obtain the edge identifier of an edge in the contracted322

forest. The data structure maintains f under edge contractions and returns unique identifiers323

with the operation orig-edge. Given an edge uv that was in the contracted forest at some324

point in the past, we also need to support the ability to obtain the edge in the vertex325

set of the current contracted forest. We do this using R, which stores all of the vertices326

that have been contracted together in disjoint sets. This operation is supported by the327

operation represented-edge. Finally, we can copy the graph via the operation copy, which328

simply enumerates over the vertices, edges, and stored unique identifiers of the edges to329

create a new data structure.330

The following lemma formalizes the preceding description of the data structure. We leave331

the formal details of a specific implementation and the proof of the following lemma for the332

full version.333

▶ Lemma 11. Let F = (V, E) be a forest and for all e ∈ E, let id(e) be the unique identifier334

of e. The data structure can be initialized via a call to init in Õ(|V |) time. For i = 0, 1, . . . , k,335

let Fi = (Vi, Ei) be the forest after i calls to contract, so F0 = F and Fk is the current state336

of the forest. The data structure supports the following operations.337

orig-edge(e): input is an edge e ∈ Ek. Output is the identifier id(e) that was provided338

when e was added to the data structure. Running time is Õ(1).339

represented-edge(e): input is two vertices u, v ∈ Vi for some i = 0, 1, . . . , k. Output is the340

pair {ur, vr}, where ur and vr are the vertices in Vk that correspond to u and v in the341

contracted forest Fk. Running time is O(1).342

contract(uv, z ∈ {u, v}): input is two vertices u, v ∈ Vk. The operation contracts uv in343

Ek, setting the new vertex in Fk+1 = (Vk+1, Ek+1) to be {u, v} \ {z}. The amortized344

running time is Õ(degFk
(z)).345

copy(): output is a forest data structure with vertices Vk and edges Ek along with the346

stored edge identifiers. Running time is Õ(|Vk|).347

C. Chekuri, K. Quanrud, M. R. Torres 24:9

merge-bases(δ, B, δ′, B′)
while B \B′ ̸= ∅ do

e← arbitrary element of B \B′

e′ ← element of B′ \B such that B − e + e′ ∈ I and B′ − e′ + e ∈ I
b← 1 with probability δ

δ+δ′ and 0 otherwise
if b = 1 then

B ← B − e + e′

else
B′ ← B′ − e′ + e

end if
end while
return B

swap-round(δ1, B1, . . . , δh, Bh)
C1 ← B1
for k from 1 to h− 1 do

Ck+1 ← merge-bases(
∑k

i=1 δi, Ck, δk+1, Bk+1)
end for
return Ch

Figure 1 The randomized swap rounding algorithm from [20].

3 Fast swap rounding in the spanning tree polytope348

Randomized swap rounding, developed in [20], is a dependent rounding scheme for rounding349

a fractional point x in the base polytope of a matroid to a random base X. The rounding350

preserves expectation in that E[X] = x, and more importantly, the coordinates of X are351

negatively correlated. In this section we prove Theorem 7 on a fast algorithm for swap-352

rounding in the spanning tree polytope. We begin by describing swap-rounding.353

3.1 Randomized swap rounding354

Let M = (N, I) be a matroid and let P be the base polytope of M (convex hull of the355

characteristic vectors of the bases of M). Any x ∈ P can be written as a finite convex356

combination of bases: x =
∑h

i=1 δi1Bi . Note that this combination is not necessarily unique.357

As in [20], we give the original algorithm for randomized swap rounding via two routines. The358

first is merge-bases, which takes as input two bases B, B′ and two real values δ, δ′ ∈ (0, 1). If359

B = B′ the algorithm outputs B. Otherwise the algorithm finds a pair of elements e, e′ such360

that e ∈ B \B′ and e′ ∈ B′ \B where B − e + e′ ∈ I and B′ − e′ + e ∈ I. For such e and361

e′, we say that they are a valid exchange pair and that we swap e with e′. The existence of362

such elements is guaranteed by the strong base exchange property of matroids in Theorem 9.363

The algorithm randomly retains e or e′ in both bases with appropriate probability and this364

increases the intersection size of B and B′. The algorithm repeats this process until B = B′.365

The overall algorithm swap-round utilizes merge-bases as a subroutine and repeatedly merges366

the bases until only one base is left. A formal description is in Figure 1 along with the367

pseudocode for merge-bases.368

It is shown in [20] that swap-rounding generates a random base/extreme point X ∈ P369

(note that the extreme points of P are characteristic vectors of bases) such that E[X] = x370

and the coordinates X1, X2, . . . , Xn (here |N | = n) are negatively correlated. We observe371

APPROX/RANDOM 2021

24:10 Fast Bounded-Degree and Crossing Spanning Trees

that swap-rounding does not lead to a unique probability distribution on the bases (that372

depends only x). First, as we already noted, the convex decomposition of x into bases is not373

unique. Second, both merge-bases and swap-round are non-deterministic in their choices of374

which element pairs to swap and in which order to merge bases in the convex decomposition.375

The key property for negative correlation, as observed in [20], is to view the generation of376

the final base B as a vector-valued martingale (which preserves expectation in each step)377

that changes only two coordinates in each step. Another rounding strategy, namely pipage378

rounding, also enjoys this property. Nevertheless swap-rounding is a meta algorithm that379

has certain clearly defined features. The flexibility offered by merge-bases and swap-round380

are precisely what allow for faster implementation in specific settings.381

We say that B̄
d= merge-bases(δ, B, δ′, B′) if for some non-deterministic choice of valid382

exchange pairs in the algorithm, B̄ is the random output of merge-bases(δ, B, δ′, B′). Similarly383

we say that B
d= swap-round(δ1, B1, . . . , δh, Bh) if B is the random output of the swap-round384

process for some non-deterministic choice of the order in which bases are merged and385

some non-deterministic choices in the merging of bases. It follows from [20] that if B
d=386

swap-round(δ1, B1, . . . , δh, Bh) then B satisfies the property that E[B] = x and coordinates387

of B are negatively correlated.388

3.2 Setup for fast implementation in graphs389

Let G = (V, E) be a multigraph with |V | = n and |E| = m and let x ∈ ST(G) be a fractional390

spanning tree. Swap rounding requires decomposing x into a convex combination of spanning391

trees. This step is itself non-trivial; existing algorithms have a high polynomial dependence392

on n, m. Instead we will settle for an approximate decomposition that has some very useful393

features. We state a theorem (in fact a corollary of a theorem) from [16] in a slightly modified394

form suitable for us.395

▶ Theorem 12 (Paraphrase of Corollary 1.2 in [16]). Given a graph G = (V, E) with n = |V |396

and m = |E| and a rational vector x ∈ [0, 1]m there is a deterministic polynomial-time397

algorithm that runs in Õ(m/ϵ2) time and either correctly reports that x ̸∈ ST(G) or outputs398

an implicit convex decomposition of z into spanning trees such that z ≤ (1 + ϵ)x.399

The MWU algorithm behind the preceding theorem outputs a convex decomposition400

of z =
∑h

i=1 δi1Ti
for h = Õ(m/ϵ2) but in an implicit fashion. It outputs T = T1 and a401

sequence of tuples (δi, Ei, E′
i) where Ti+1 = Ti − Ei + E′

i for 1 ≤ i < h and has the property402

that
∑h−1

i=1 (|Ei|+ |E′
i|) = Õ(m/ϵ2). Thus the convex decomposition of z is rather sparse and403

near-linear in m for any fixed ϵ > 0. We will take advantage of this and swap-round z via this404

implicit convex decomposition. For many applications of interest, including Crossing-MST,405

the fact that we randomly round z instead of x does not make much of a difference in the406

overall approximation since x itself in our setting is the output of an approximate LP solver.407

▶ Remark 13. The output of the approximate LP solver based on MWU for Crossing-MST408

has the implicit decomposition as outlined in the preceding paragraph. However, for the sake409

of a self-contained result as stated in Theorem 7, we use the result from [16] which also has410

the advantage of being deterministic.411

The rest of the section describes a fast implementation for swap-round. The algorithm412

is based on a divide and conquer strategy for implementing swap-round when the convex413

combination is described in an implicit and compact fashion. An important ingredient is a414

fast black-box implementation of merge-bases. For this we use the following result; as we415

remarked earlier, an earlier version of this paper obtained a similar result.416

C. Chekuri, K. Quanrud, M. R. Torres 24:11

▶ Theorem 14 (Ene and Nguyễn [23]). Let T and T ′ be spanning trees of a graph G = (V, E)417

with |V | = n and E = T ∪ T ′ and let δ, δ′ ∈ (0, 1). There exists an algorithm fast-merge418

such that fast-merge(δ, T, δ′, T ′) d= merge-bases(δ, T, δ′, T ′) and the call to fast-merge runs in419

O(n log2 n) time.420

3.3 Fast implementation of swap-round421

In this subsection the goal is to prove the following theorem.422

▶ Theorem 15. Let
∑h

i=1 δi1Ti
be a convex combination of spanning trees of the graph423

G = (V, E) where n = |V |. Let T be a spanning tree such that T = T1 and let {(Ei, E′
i)}h−1

i=1424

be a sequence of sets of edges such that Ti+1 = Ti−Ei + E′
i for all i ∈ [h− 1] and Ei∩E′

i = ∅425

for all i ∈ [h− 1]. Then there exists an algorithm that takes as input T , {(Ei, E′
i)}h−1

i=1 , and426

{δi}h
i=1 and outputs a tree TS such that TS

d= swap-round(δ1, T1, . . . , δh, Th). The running427

time of the algorithm is Õ(n + γ) time where γ =
∑h−1

i=1 (|Ei|+ |E′
i|).428

A divide and conquer approach429

We consider the swap rounding framework in the setting of arbitrary matroids for simplicity.430

We work with the implicit decomposition of the convex combination of bases
∑h

i=1 δi1Bi of431

the matroid M = (N, I), as described in Theorem 15. That is, the input is a base B such432

that B = B1, a sequence of sets of elements {(Ei, E′
i)}h−1

i=1 such that Bi+1 = Bi − Ei + E′
i433

and Ei ∩ E′
i = ∅ for all i ∈ [h− 1], and the sequence of coefficients {δi}h

i=1.434

The pseudocode for our divide and conquer algorithm divide-and-conquer-swap is given in435

Figure 2. The basic idea is simple. We imagine constructing an explicit convex decomposition436

B1, B2, . . . , Bh from the implicit one. The high-level idea is to recursively apply swap rounding437

to B1, . . . , Bh/2 to create a base B, and similarly create a base B′ by recursively applying swap438

rounding to Bh/2+1, . . . , Bh, and then merging B and B′. The advantage of this approach is439

manifested in the implicit case. To see this, we observe that in merge-bases(δ, B, δ′, B′), the440

intersection B∩B′ is always in the output, and this implies that the intersection
⋂h

i=1 Bi will441

always be in the output of swap-round(δ1, B1, . . . , δh, Bh). Therefore, at every recursive level,442

we simply contract the intersection prior to merging any bases. Note that this is slightly443

complicated by the fact that the input is an implicit representation. However, we note that444

B ∩
⋃h−1

i=1 (Ei ∪ E′
i) = B \

⋂h
i=1 Bi as Ei ∪ E′

i = Bi△Bi+1 for all i ∈ [h − 1] where S△U445

denotes the symmetric difference of the sets S, U (see full version for more details). (We446

note later how the contraction of elements helps in the running time when specializing to the447

graphic matroid.) After contracting the intersection, the algorithm recursively calls itself on448

the first h/2 bases and the second h/2 bases, then merges the output of the two recursive449

calls via merge-bases. With the given implicit representation, this means that the input to450

the first recursive call is B1, {(Ei, E′
i)}

h/2−1
i=1 , {δi}h/2

i=1 and the input to the second recursive451

call is Bh/2+1, {(Ei, E′
i)}h−1

i=h/2+1, {δi}h
i=h/2+1 (note we can easily construct Bh/2+1 via the452

implicit representation). The underlying matroid in the call to merge-bases is the matroid453

M with the intersection
⋂h

i=1 Bi contracted.454

The following lemma shows that divide-and-conquer-swap is a proper implementation of455

swap-round. We leave the details of the proof for the full version of the paper.456

▶ Lemma 16. Let
∑h

i=1 δi1Bi
be a convex combination of bases in the matroid M and457

{(Ei, E′
i)}h−1

i=1 be a sequence of elements such that Bi+1 = Bi−Ei+E′
i and Ei∩E′

i = ∅ for all i.458

Then swap-round(δ1, B1, . . . , δh, Bh) d= divide-and-conquer-swap(B1, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1).459

APPROX/RANDOM 2021

24:12 Fast Bounded-Degree and Crossing Spanning Trees

divide-and-conquer-swap(B, {(Ei, E′
i)}t−1

i=s , {δi}t
i=s)

if s = t then
return B

end if
ℓ← max

{
ℓ′ ∈ {s, s + 1, . . . , t} :

∑ℓ′−1
i=s |Ei| ≤ 1

2
∑t−1

i=s |Ei|
}

B̂ ← B ∩
⋃t−1

i=s(Ei ∪ E′
i)

B̂C ← B̂

for i from s to ℓ do
B̂C ← B̂C − Ei + E′

i

end for
B̂L ← divide-and-conquer-swap(B̂, {(Ei, E′

i)}ℓ−1
i=s , {δi}ℓ

i=s)
B̂R ← divide-and-conquer-swap(B̂C , {(Ei, E′

i)}t−1
i=ℓ+1, {δi}t

i=ℓ+1)
B̂M ← merge-bases(

∑ℓ
i=s δi, B̂L,

∑t
i=ℓ+1 δi, B̂R)

return B̂M ∪ (B \
⋃t−1

i=s(Ei ∪ E′
i))

Figure 2 A divide-and-conquer implementation of swap rounding with an implicit representation.

A fast implementation of divide-and-conquer-swap for spanning trees460

The pseudocode for our fast implementation fast-swap of divide-and-conquer-swap is given in461

Figure 4.462

As in divide-and-conquer-swap, the algorithm fast-swap contracts the intersection of the463

input. Suppose we contract the intersection
⋂h

i=1 Ti in Tj and call this contracted tree T̂j .464

Then
∣∣∣T̂j

∣∣∣ ≤ ∣∣∣Tj \
⋂h

i=1 Ti

∣∣∣. A simple argument shows that Tj \
⋂h

i=1 Ti ⊆
⋃h−1

i=1 (Ti△Ti+1) =465 ⋃h−1
i=1 (Ei ∪ E′

i) (see full version for more details). Thus, the size of the contracted tree is466

bounded by the size of the implicit representation γ :=
∑h−1

i=1 |Ei|+ |E′
i|. One can write a467

convex combination of bases in any matroid using the implicit representation, and contraction468

could even be implemented quickly as is the case in the graphic matroid. The main point for469

improving the running time is having an implementation of merge-bases that runs in time470

proportional to the size of the contracted matroid. This is key to the speedup achieved for the471

graphic matroid. fast-merge runs in time proportional to the size of the input trees, which472

have been contracted to have size O(min{n, γ}), which yields a running time of Õ(min{n, γ}).473

This speedup at every recursive level combined with the divide-and-conquer approach of474

fast-swap is sufficient to achieve a near-linear time implementation of swap-round.475

Recall that as we are working with contracted trees, an edge in the contracted trees476

might have different endpoints than it did in the initial trees. The identifiers of edges do not477

change, regardless of whether the endpoints of the edge change due to contraction of edges478

in a tree. We therefore will refer to id’s of edges throughout the algorithm fast-swap to work479

from contracted edges back to edges in the initial trees. This extra bookkeeping will mainly480

be handled implicitly.481

Contraction of the intersection of the input trees in fast-swap using only the implicit482

representation is handled by the algorithm shrink-intersection and we give the pseudocode483

in Figure 3. Consider spanning trees Ts, Ts+1, . . . , Tt. The input to shrink-intersection484

is Ts and a sequence of sets of edges {(Ei, E′
i)}t−1

i=s such that Ti+1 = Ti − Ei + E′
i and485

Ei ∩ E′
i = ∅ for i ∈ {s, s + 1, . . . , t − 1}. Then shrink-intersection contracts

⋂t
i=s Ti in Ts.486

It is then easy to see that one can compute the intersection via the edges {(Ei, E′
i)}t−1

i=s as487 ⋂t
i=s Ti = Ts \

⋃t−1
i=s(Ei ∪ E′

i) (see full version for more details). Let T̂s be Ts with
⋂t

i=s Ti488

C. Chekuri, K. Quanrud, M. R. Torres 24:13

shrink-intersection(T, {(Ei, E′
i)}t−1

i=s)
T̂ ← T.copy()
for e ∈ T \

⋃t−1
i=s(Ei ∪ E′

i) do
uv ← T̂ .represented-edge(e)
assume degT̂ (u) ≤ degT̂ (v) (otherwise rename)
T̂ .contract(uv, u)

end for
let id(e) denote the unique identifier of an edge e

for i from s to t− 1 do
Êi ←

⋃
e∈Ei

(T̂ .represented-edge(e), id(e))
Ê′

i ←
⋃

e∈E′
i
(T̂ .represented-edge(e), id(e))

end for
return (T̂ , {(Êi, Ê′

i)}t−1
i=s)

Figure 3 A subroutine used in our fast implementation fast-swap of randomized swap rounding;
used to implicitly contract the trees of the given convex combination.

contracted. The vertex set of T̂s is different than the vertex set of Ts. Then as the sets of489

edges Ei and E′
i for all i are defined on the vertices in Ts, we need to map the endpoints of490

edges in Ei to the new vertex set of T̂s. Using the data structure presented in Lemma 11,491

this is achieved using the operations represented-edge and orig-edge, which handle mapping492

the edge to its new endpoints and maintaining the edge identifier, respectively.493

The following lemma shows that shrink-intersection indeed contracts the intersection of494

the trees via the implicit representation. We leave the details of the proof for the full version.495

▶ Lemma 17. Let T1, . . . , Th be spanning trees and let {(Ei, E′
i)}h−1

i=1 be a sequence of edge496

sets defined on the same vertex set such that Ti+1 = Ti − Ei + E′
i and Ei ∩ E′

i = ∅ for all497

i ∈ [h− 1]. Contract
⋂h

i=1 Ti in T1, . . . , Th to obtain T̂1, . . . , T̂h, respectively.498

Let nT1 = |T1| and γ =
∑h−1

i=1 (|Ei| + |E′
i|). Then shrink-intersection(T1, {(Ei, E′

i)}h−1
i=1)499

runs in time Õ(nT1 +γ) and outputs (T̂ , {(Êi, Ê′
i)}h−1

i=1) where T̂ = T̂1 and T̂i+1 = T̂i−Êi +Ê′
i500

for all i ∈ [h − 1]. Moreover, |Ei| =
∣∣∣Êi

∣∣∣ and |E′
i| =

∣∣∣Ê′
i

∣∣∣ for all i ∈ [h − 1] and
∣∣∣T̂ ∣∣∣ ≤501

min{nT1 , γ}.502

We use the algorithm in Theorem 14 for merge-bases. In fast-swap, the two trees that503

are merged T̂L and T̂R are the return values of the two recursive calls to fast-swap. The504

algorithm at this point has explicit access to the adjacency lists of both T̂L and T̂R, which505

are used as input to the algorithm fast-merge. The output of fast-merge will be the outcome506

of merging the two trees T̂L and T̂R, which are edges of potentially contracted trees from507

the original convex combination. We can use the operation orig-edge of the forest data508

structure of Lemma 11 for T̂L and T̂R to obtain the edges from the trees of the original509

convex combination. This extra bookkeeping will be handled implicitly.510

We next prove that fast-swap is implementing swap-round and that it runs in near-linear511

time.512

▶ Lemma 18. Let
∑h

i=1 δi1Ti
be a convex combination of spanning trees of the graph513

G = (V, E) where n = |V |. Let T be a spanning tree such that T = T1 and let {(Ei, E′
i)}h−1

i=1514

be a sequence of sets of edges such that Ti+1 = Ti−Ei + E′
i and Ei∩E′

i = ∅ for all i ∈ [h−1].515

Then fast-swap(T, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1) d= swap-round(δ1, T1, . . . , δh, Th) and the call to516

fast-swap runs in Õ(nT + γ) time where nT = |T | and γ =
∑h−1

i=1 (|Ei|+ |E′
i|).517

APPROX/RANDOM 2021

24:14 Fast Bounded-Degree and Crossing Spanning Trees

fast-swap(T, {(Ei, E′
i)}t−1

i=s , {δi}t
i=s)

if s = t then
return T

end if
ℓ← max

{
ℓ′ ∈ {s, s + 1, . . . , t} :

∑ℓ′−1
i=s |Ei| ≤ 1

2
∑t−1

i=s |Ei|
}

(T̂ , {(Êi, Ê′
i)}t−1

i=s)← shrink-intersection(T, {(Ei, E′
i)}t−1

i=s)
ÊC ← E(T̂)
for i from s to ℓ do

ÊC ← ÊC − Êi + Ê′
i

end for
T̂C ← init(V (T̂), ÊC)
T̂L ← fast-swap(T̂ , {(Êi, Ê′

i)}ℓ−1
i=s , {δi}ℓ

i=s)
T̂R ← fast-swap(T̂C , {(Êi, Ê′

i)}t−1
i=ℓ+1, {δi}t

i=ℓ+1)
T̂M ← fast-merge(

∑ℓ
i=s δi, T̂L,

∑t
i=ℓ+1 δi, T̂R)

return T̂M ∪ (T \
⋃t−1

i=s(Ei ∪ E′
i))

Figure 4 A fast implementation of randomized swap rounding from [20].

Proof. One can immediately see fast-swap is an implementation of divide-and-conquer-swap.518

There are some bookkeeping details that are left out of the implementation, such as main-519

taining the set of edges returned by fast-merge, but these are easily handled. Lemma 16520

shows that divide-and-conquer-swap(δ1, T1, . . . , δh, Th) d= swap-round(δ1, T1, . . . , δh, Th), im-521

plying fast-swap(T, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1) d= swap-round(δ1, T1, . . . , δh, Th).522

Now we prove the running time bound. Let R(nT , γ) denote the running time of the523

call to fast-swap(T, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1). By Lemma 17, the running time of the call to524

shrink-intersection is Õ(nT + γ). Let (T̂ , {(Êi, Ê′
i)}h−1

i=1) be the output of shrink-intersection.525

Lemma 17 also guarantees that γ =
∑h−1

i=1

∣∣∣Êi

∣∣∣ +
∣∣∣Ê′

i

∣∣∣ and
∣∣∣T̂ ∣∣∣ ≤ min{nT , γ}. Then by526

Lemma 11, constructing T̂C requires Õ(nT̂ + γ) time. As the size of T̂L and T̂R is the same527

as T̂ and T̂C , the call to fast-merge runs in Õ(nT + γ) time by Theorem 14. The time it528

takes to compute the returned tree is Õ(nT + γ) as we have enough time to scan all of T529

and
⋃h−1

i=1 (Ei ∪ E′
i). So the total time excluding the recursive calls is (nT + γ) · α for where530

α = O(logc(nT + γ)) for some fixed integer c.531

As for the recursive calls, first define γ(s, t) :=
∑t

i=s(|Ei|+|E′
i|). Then the running time of532

the first recursive call is R(nT̂ , γ(1, ℓ−1)) and the second recursive call is R(nT̂C
, γ(ℓ+1, h−1)).533

By choice of ℓ, we always have that γ(1, ℓ − 1) ≤ γ
2 . As ℓ is the largest integer such that534

γ(1, ℓ − 1) ≤ γ
2 , then γ(1, ℓ) > γ

2 . Therefore, we have γ(ℓ + 1, h − 1) = γ − γ(1, ℓ) < γ
2 .535

Combining this with the fact that shrink-intersection guarantees that
∣∣∣T̂ ∣∣∣ ≤ min{nT , γ} and536 ∣∣∣T̂C

∣∣∣ ≤ min{nT , γ}, we have537

R(nT , γ) ≤ 2R(min{nT , γ}, γ/2) + α · (nT + γ).538

Note that R(nT , γ) = O(1) when nT = O(1) and γ = O(1).539

We claim that R(a, b) ≤ αβ · (a + 8b log b) is a valid solution to this recurrence for some540

sufficiently large but fixed constant β ≥ 1. By choosing β sufficiently large it is clear that it541

holds for the base case. To prove the inductive step we see the following:542

R(a, b) ≤ 2R(min{a, b}, b/2) + α · (a + b) ≤ 2[αβ · (min{a, b}+ 4b log(b/2))] + α · (a + b).543

C. Chekuri, K. Quanrud, M. R. Torres 24:15

Hence we need to verify that544

2[αβ(min{a, b}+ 4b log(b/2))] + α · (a + b) ≤ αβ · (a + 8b log b). (1)545

Since β ≥ 1, rearranging, it suffices to verify that546

2 min{a, b}+ 8b log(b/2) + b ≤ 8b log b.547

As 8b log b − 8b log(b/2) = 8b and 2 min{a, b} + b ≤ 3b, this proves (1) and therefore548

R(nT , γ) ≤ αβ(nT + 8γ log γ) = Õ(nT + γ). This concludes the proof. ◀549

The proof of Theorem 7 then follows by combining Theorem 12 (and remarks after the550

theorem statement) and Theorem 15.551

4 Sparsification via the LP Solution552

Let G = (V, E) be a graph on n nodes and m edges and let x be a point in ST(G). In553

this section we discuss Theorem 4, which shows that, via random sampling, one can obtain554

a sparse point x′ ∈ ST(G) from x. The random sampling approximately preserves linear555

constraints and thus one can use this technique to obtain sparse LP solutions to the packing556

problems involving spanning tree (and more generally matroid) constraints. The sampling557

and analysis rely on Karger’s well-known work on random sampling for packing disjoint bases558

in matroids. We paraphrase the relevant theorem.559

▶ Theorem 19 (Corollary 4.12 from [30]). Let M be a matroid with m elements and non-560

negative integer capacities on elements such that M has k disjoint bases. Suppose each561

copy of a capacitated element e is sampled independently with probability p ≥ 18(ln m)/(kϵ2)562

yielding a matroid M(p). Then with high probability the number of disjoint bases in M(p) is563

in [(1− ϵ)pk, (1 + ϵ)pk].564

We restate Theorem 4 for the reader’s convenience. We leave the details of the proof to565

the full version.566

▶ Theorem 20. Let x ∈ ST(G) be a rational vector such that Ax ≤ b for a matrix A ∈567

[0, 1]r×m and b ∈ [1,∞)r. Consider a random subgraph G′ = (V, E′) of G obtained by picking568

each edge e ∈ G with probability αe := min{1, 36 log(r+m)
ϵ2 · xe}. Then with high probability the569

following hold: (i) |E′| = O(n ln(r + m)/ϵ2) (ii) there exists a fractional solution z ∈ ST(G)570

in the support of G′ such that Az ≤ (1 + 3ϵ)b.571

▶ Remark 21. For problems that also involve costs, we have a fractional solution x and an572

objective
∑

e cexe. Without loss of generality we can assume that ce ∈ [0, 1] for all e. The573

preceding proof shows that the sparse graph obtained by sampling supports a fractional574

solution z such that E[
∑

e ceze] ≤ (1 + ϵ)
∑

e cexe. Further,
∑

e ceze ≤ (1 + 3ϵ)
∑

e cexe holds575

with high probability as long as maxe ce ≤
∑

e cexe. This condition may not hold in general576

but can be typically guaranteed in the overall algorithm by guessing the largest cost edge in577

an optimum integer solution.578

▶ Remark 22. The proof in the preceding theorem also shows that with high probability579

the graph G′ is connected and satisfies the property that A1E′ ≤ O(log n/ϵ2)b. Thus any580

spanning tree of G′ satisfies the constraints to a multiplicative O(log n)-factor by fixing ϵ to581

a small constant. This is weaker than the guarantee provided by swap-rounding.582

APPROX/RANDOM 2021

24:16 Fast Bounded-Degree and Crossing Spanning Trees

5 Fast approximation scheme for solving the LP relaxation583

In this section, we discuss Theorem 1, which gives a fast approximation scheme to solve the584

LP relaxation for Crossing-ST. We recall the LP for Crossing-ST.585

min
∑

e∈E ceye

subject to Ay ≤ b

y ∈ ST(G)
(P)586

Note that even the feasibility problem (whether there exists y ∈ ST(G) such that Ay ≤ b)587

is interesting and important. We will mainly focus on the feasibility LP and show how we588

can incorporate costs in the full version of the paper. We recast the feasibility LP as a pure589

packing LP using an implicit formulation with an exponential number of variables. This is590

for technical convenience and to more directly apply the framework from [18]. For each tree591

T ∈ T (G) we have a variable xT and we consider the problem of packing spanning trees.592

maximize
∑
T ∈T

xT

subject to
∑
T ∈T

(A1T)i · xT ≤ bi, ∀i ∈ [k]

xT ≥ 0, ∀T ∈ T

(C)593

The following is easy to establish from the fact that y ∈ ST(G) iff y can be written as a594

convex combinaton of the characteristic vectors of spanning trees of G.595

▶ Observation 23. There exists a feasible solution y to P iff there exists a feasible solution596

x to C with value at least 1. Further, if x is a feasible solution to C with value (1− ϵ) there597

exists a solution y such that y ∈ ST(G) and Ay ≤ 1
1−ϵ b.598

C is a pure packing LP, albeit in implicit form. In the full version of the paper, we show599

how to approximately solve the LP using MWU techniques and in particular we use the600

randomized MWU framework from [18] for positive LPs. The full version reviews the MWU601

framework and shows how to apply it along with other implementation details to achieve the602

concrete run times that we claim in Theorem 1.603

References604

1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing605

algorithms with proven performance guarantee. Journal of Combinatorial Optimization,606

8:307–328, 2004.607

2 N. Anari and S. O. Gharan. Effective-resistance-reducing flows, spectrally thin trees, and608

asymmetric TSP. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,609

pages 20–39, 2015.610

3 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,611

and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE612

59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,613

2018.614

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials615

IV: exchange properties, tight mixing times, and faster sampling of spanning trees, 2020.616

arXiv:2004.07220.617

http://arxiv.org/abs/2004.07220

C. Chekuri, K. Quanrud, M. R. Torres 24:17

5 Arash Asadpour, Michel X Goemans, Aleksander Mádry, Shayan Oveis Gharan, and Amin618

Saberi. An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman619

problem. Operations Research, 65(4):1043–1061, 2017.620

6 Nikhil Bansal. On a generalization of iterated and randomized rounding. In Proceedings of the621

51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1125–1135, 2019.622

7 Nikhil Bansal, Rohit Khandekar, Jochen Könemann, Viswanath Nagarajan, and Britta Peis.623

On generalizations of network design problems with degree bounds. Mathematical Programming,624

141(1-2):479–506, 2013.625

8 Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-626

bounded directed network design. SIAM Journal on Computing, 39(4):1413–1431, Jan 2010.627

URL: http://dx.doi.org/10.1137/080734340, doi:10.1137/080734340.628

9 Vittorio Bilo, Vineet Goyal, Ramamoorthi Ravi, and Mohit Singh. On the crossing spanning629

tree problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms630

and Techniques, pages 51–60. Springer, 2004.631

10 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone632

submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–633

1766, 2011.634

11 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.635

Faster matroid intersection. In 2019 IEEE 60th Annual Symposium on Foundations of636

Computer Science (FOCS), pages 1146–1168. IEEE, 2019.637

12 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for638

minimizing discrepancy. In Proceedings of the twenty-second annual ACM-SIAM symposium639

on Discrete Algorithms, pages 1607–1614. SIAM, 2011.640

13 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What would641

Edmonds do? augmenting paths and witnesses for degree-bounded MSTs. Algorithmica,642

55(1):157–189, Nov 2007. URL: http://dx.doi.org/10.1007/s00453-007-9115-5, doi:10.643

1007/s00453-007-9115-5.644

14 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP-based approximations for645

geometric packing and covering problems. In Proceedings of the Fourteenth Annual ACM-SIAM646

Symposium on Discrete Algorithms, pages 1019–1038. SIAM, 2020.647

15 Chandra Chekuri and Kent Quanrud. Approximating the Held-Karp bound for metric TSP648

in nearly-linear time. In 2017 IEEE 58th Annual Symposium on Foundations of Computer649

Science (FOCS), pages 789–800. IEEE, 2017.650

16 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some651

implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM652

Symposium on Discrete Algorithms, pages 801–820. SIAM, 2017.653

17 Chandra Chekuri and Kent Quanrud. Fast approximations for Metric-TSP via linear program-654

ming. arXiv preprint arXiv:1802.01242, 2018.655

18 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings656

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 358–377.657

SIAM, 2018.658

19 Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Fast approximation algorithms for659

bounded degree and crossing spanning tree problems. CoRR, abs/2011.03194, 2020. URL:660

https://arxiv.org/abs/2011.03194, arXiv:2011.03194.661

20 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via662

exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on663

Foundations of Computer Science, pages 575–584. IEEE, 2010.664

21 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid665

intersection via dependent rounding. In Proceedings of the twenty-second annual ACM-SIAM666

symposium on Discrete Algorithms, pages 1080–1097. SIAM, 2011.667

22 Ran Duan, Haoqing He, and Tianyi Zhang. Near-linear time algorithms for approximate668

minimum degree spanning trees. ArXiv, abs/1712.09166, 2017.669

APPROX/RANDOM 2021

http://dx.doi.org/10.1137/080734340
https://doi.org/10.1137/080734340
http://dx.doi.org/10.1007/s00453-007-9115-5
https://doi.org/10.1007/s00453-007-9115-5
https://doi.org/10.1007/s00453-007-9115-5
https://doi.org/10.1007/s00453-007-9115-5
https://arxiv.org/abs/2011.03194
http://arxiv.org/abs/2011.03194

24:18 Fast Bounded-Degree and Crossing Spanning Trees

23 Alina Ene and Huy L Nguyen. Towards nearly-linear time algorithms for submodular maxi-670

mization with a matroid constraint. In International Colloquium on Automata, Languages,671

and Programming, volume 132, 2019.672

24 M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within673

one of optimal. Journal of Algorithms, 17(3):409–423, Nov 1994. URL: http://dx.doi.org/674

10.1006/jagm.1994.1042, doi:10.1006/jagm.1994.1042.675

25 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent676

rounding and its applications to approximation algorithms. Journal of the ACM (JACM),677

53(3):324–360, 2006.678

26 Kyle Genova and David P Williamson. An experimental evaluation of the best-of-many679

Christofides’ algorithm for the traveling salesman problem. Algorithmica, 78(4):1109–1130,680

2017.681

27 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to682

the traveling salesman problem. In 2011 IEEE 52nd Annual Symposium on Foundations of683

Computer Science, pages 550–559. IEEE, 2011.684

28 Michel Goemans. Minimum bounded degree spanning trees. 2006 47th Annual IEEE Symposium685

on Foundations of Computer Science (FOCS ’06), 2006. URL: http://dx.doi.org/10.1109/686

FOCS.2006.48, doi:10.1109/focs.2006.48.687

29 Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic688

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.689

Journal of the ACM (JACM), 48(4):723–760, 2001.690

30 David R Karger. Random sampling and greedy sparsification for matroid optimization problems.691

Mathematical Programming, 82(1-2):41–81, 1998.692

31 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. An improved approximation693

algorithm for TSP in the half integral case. In Proceedings of the 52nd Annual ACM SIGACT694

Symposium on Theory of Computing, pages 28–39, 2020.695

32 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation696

algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on697

Theory of Computing, pages 32–45, 2021.698

33 Tamás Király, Lap Chi Lau, and Mohit Singh. Degree bounded matroids and submodular699

flows. Combinatorica, 32(6):703–720, 2012.700

34 Jochen Könemann and R Ravi. Primal-dual meets local search: approximating MST’s with701

nonuniform degree bounds. In Proceedings of the thirty-fifth annual ACM symposium on702

Theory of computing, pages 389–395, 2003.703

35 Jochen Könemann and Ramamoorthi Ravi. Primal-dual meets local search: approximating704

MSTs with nonuniform degree bounds. SIAM Journal on Computing, 34(3):763–773, 2005.705

36 André Linhares and Chaitanya Swamy. Approximating min-cost chain-constrained spanning706

trees: a reduction from weighted to unweighted problems. Mathematical Programming, 172(1-707

2):17–34, 2018.708

37 Neil Olver and Rico Zenklusen. Chain-constrained spanning trees. Mathematical Programming,709

167(2):293–314, 2018.710

38 Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an711

extension of the Chernoff-Hoeffding bounds. SIAM J. Comput., 26:350–368, 1997.712

39 Kent Quanrud. Fast and deterministic approximations for k-cut. arXiv preprint713

arXiv:1807.07143, 2018.714

40 Kent Quanrud. Fast approximations for combinatorial optimization via multiplicative weight715

updates. PhD thesis, University of Illinois, Urbana-Champaign, 2019. URL: https://www.716

ideals.illinois.edu/handle/2142/106153.717

41 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.718

In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages719

214–227, 2018.720

http://dx.doi.org/10.1006/jagm.1994.1042
http://dx.doi.org/10.1006/jagm.1994.1042
http://dx.doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1006/jagm.1994.1042
http://dx.doi.org/10.1109/FOCS.2006.48
http://dx.doi.org/10.1109/FOCS.2006.48
http://dx.doi.org/10.1109/FOCS.2006.48
https://doi.org/10.1109/focs.2006.48
https://www.ideals.illinois.edu/handle/2142/106153
https://www.ideals.illinois.edu/handle/2142/106153
https://www.ideals.illinois.edu/handle/2142/106153

C. Chekuri, K. Quanrud, M. R. Torres 24:19

42 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer721

Science & Business Media, 2003.722

43 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to723

within one of optimal. Journal of the ACM (JACM), 62(1):1–19, 2015.724

44 Mohit Singh and Nisheeth K Vishnoi. Entropy, optimization and counting. In Proceedings of725

the forty-sixth annual ACM symposium on Theory of computing, pages 50–59, 2014.726

45 Aravind Srinivasan. Distributions on level-sets with applications to approximation algorithms.727

In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 588–597.728

IEEE, 2001.729

46 Ola Svensson, Jakub Tarnawski, and László A Végh. A constant-factor approximation730

algorithm for the asymmetric traveling salesman problem. In Proceedings of the 50th Annual731

ACM SIGACT Symposium on Theory of Computing, pages 204–213, 2018.732

47 Vera Traub and Jens Vygen. An improved approximation algorithm for ATSP. In Proceedings733

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 1–13, 2020.734

48 Di Wang. Fast Approximation Algorithms for Positive Linear Programs. PhD thesis, EECS735

Department, University of California, Berkeley, Jul 2017. URL: http://www2.eecs.berkeley.736

edu/Pubs/TechRpts/2017/EECS-2017-126.html.737

49 Sein Win. On a connection between the existence of k-trees and the toughness of a graph.738

Graphs and Combinatorics, 5(1):201–205, 1989.739

A Putting things together and extensions740

In the main body of the paper we discussed the main technical results corresponding to741

Theorems 1, 4, and 7. In this section we give formal proofs of the corollaries stated in742

Section 1. In addition, we also describe some extensions and other related results that follow743

from the ideas in the preceding sections.744

A.1 Proofs of corollaries745

We start with Corollary 3.746

Proof of Corollary 3. Let G = (V, E) be the input graph with m edges and n vertices and747

let ϵ > 0. Consider the LP relaxation to test whether G has a spanning tree with degree at748

most a given parameter B′. Theorem 1 implies that there exists a randomized algorithm that,749

with high probability, either correctly determines that there is no feasible solution to the LP,750

or outputs a fractional spanning tree y ∈ ST(G) such that
∑

e∈δ(v) ye ≤ (1 + ϵ)B′ for all v.751

Using the algorithm, we can do binary search over the integers from 2 to n− 1 to find the752

smallest value B for which the algorithm outputs a solution. We will focus on the scenario753

where the algorithm from Theorem 1 is correct in each of the O(log n) calls in the binary754

search procedure; this happens with high probability. For the value of B found in the binary755

search, let y ∈ ST(G) be the solution that is output; we have
∑

e∈δ(v) ye ≤ (1 + ϵ)B for all756

v. Since the approximate LP solver correctly reported infeasibility for all B′ < B, we have757

B − 1 < B∗, which implies B ≤ B∗. As there is a feasible fractional spanning tree y such758

that
∑

e∈δ(v) ye ≤ ⌈(1 + ϵ)B⌉ for all v, the result of [43] implies that B∗ ≤ ⌈(1 + ϵ)B⌉+ 1.759

Regarding the run time, each call to the algorithm in Theorem 1 takes Õ(m/ϵ2) time since760

N = O(m) in the setting of BD-ST. Binary search adds only an O(log n) multiplicative-factor761

overhead, leading to the claimed running time. ◀762

We next prove Corollary 5. The algorithm described in the corollary takes advantage of763

Theorem 4 to sparsify the input graph, then runs the Fürer-Raghavachari algorithm [24].764

APPROX/RANDOM 2021

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html

24:20 Fast Bounded-Degree and Crossing Spanning Trees

Proof of Corollary 5. We will assume that the input is a graph G = (V, E) m edges and765

n vertices. Let ϵ > 0. As in the proof of Corollary 3, we can use Theorem 1 and binary766

search to find in Õ(m
ϵ2) time, with high probability, a fractional spanning tree x ∈ ST(G)767

such that
∑

e∈δ(v) xe ≤ (1 + ϵ)B∗ for all v ∈ V . By Theorem 4, we can use random768

sampling based on x to obtain a subgraph G′ = (V, E′) of G such that with high probability769

we have |E′| = O(n log(n+m)
ϵ2) and there exists a fractional solution z ∈ ST(G) in the770

support of G′ such that
∑

e∈δ(v) ze ≤ (1 + 3ϵ)(1 + ϵ)B∗ ≤ (1 + 7ϵ)B∗ for all v ∈ V (for771

sufficiently small ϵ). The result of [43] implies there exists a spanning tree T in G′ such772

that maxv∈V degT (v) ≤ ⌈(1 + 7ϵ)B∗⌉ + 1. For a graph H on n vertices and m edges, the773

algorithm of [24] runs in Õ(mn) time and outputs a spanning tree T such that the maximum774

degree of T is at most OPT(H) + 1, where OPT(H) = minT ∈T (H) maxv∈V degT (v). Thus,775

the algorithm of [24] when applied to G′, outputs a spanning tree with degree at most776

⌈(1 + 7ϵ)B∗⌉+ 2, and runs in Õ(n2

ϵ2) time. ◀777

We now prove Corollary 8. This corollary combines the LP solver of Theorem 1 and the778

fast implementation of randomized swap rounding of Theorem 7 to give a fast algorithm for779

Crossing-MST.780

Proof of Corollary 8. Let G = (V, E) be the input graph and ϵ > 0. We want to solve781

min{cT x : Ax ≤ b, x ∈ ST(G)}. By Theorem 1, there exists a randomized algorithm that782

runs in Õ(N/ϵ2) time and with high probability certifies the LP is infeasible or outputs783

y ∈ ST(G) such that cT y ≤ (1 + ϵ)OPT and Ay ≤ (1 + ϵ)b. We then apply the fast784

implementation of randomized swap rounding of Theorem 7 to y, which runs in Õ(m/ϵ2)785

time and outputs a spanning tree T . If we only considered the feasibility version (i.e. find786

x ∈ ST(G) such that Ax ≤ b), then the existing results on swap rounding [20] imply that787

A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} with high probability. In the cost788

version, [20] implies that A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} with high789

probability, and E[cT1T] ≤
∑

e cT x. Thus, the cost is preserved only in expectation. We can,790

however, apply Markov’s inequality and conclude that Pr[cT1T ≥ (1 + ϵ)cT x] ≤ 1
1+ϵ ≤ 1− ϵ

2791

(for ϵ sufficiently small). For a suitable choice of the high probability bound, we have792

that A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} and cT1T ≤ (1 + ϵ)cT x with793

probability at least ϵ
2 −

1
2n2 . We can assume that ϵ > 1

n2 , for otherwise the 1
ϵ2 dependence794

in the run time of the approximate LP algorithm is not meaningful; one can use other795

techniques including an exact LP solver. Thus, with probability at least ϵ
4 , we have cT1T ≤796

(1 + O(ϵ))cT x ≤ (1 + O(ϵ))OPT and A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2}.797

To boost the ϵ
4 probability of success, we can repeat the rounding algorithm O(log n

ϵ)798

times independently; with high probability, one of the trees will yield the desired bicriteria799

approximation. ◀800

Non-uniform degree bounds801

We briefly sketch some details regarding Remark 6. First, we note that the algorithm for802

solving the LP relaxation handles the non-uniform degree bound case in Õ(m/ϵ2) time. It803

either certifies that the given bounds are infeasible or outputs a fractional solution with804

degree at most (1 + ϵ)Bv for each v. We can then apply the result in [43] to know that805

there exists a spanning tree T in which the degree of each v is at most ⌈(1 + ϵ)Bv⌉ + 1.806

We can apply sparsification from Theorem 4 to the fractional solution to obtain a sparse807

subgraph that contains a near-optimal fractional solution. It remains to observe that the808

Fürer-Raghavachari algorithm can be used even in the non-uniform setting via a simple809

reduction to the uniform setting. This was noted in prior work [34, 43] and we provide the810

C. Chekuri, K. Quanrud, M. R. Torres 24:21

details in the full version of the paper. This results in an Õ(n2/ϵ2) time algorithm that either811

decides that the given non-uniform degree bounds are infeasible or outputs a spanning tree812

in which the degree of each node v is at most ⌈(1 + ϵ)Bv⌉+ 2.813

A.2 Extensions and related problems814

We focused mainly on BD-ST, BD-MST and Crossing-MST. Here we briefly discuss815

related problems that have also been studied in the literature to which some of the ideas in816

this paper apply.817

Estimation of value for special cases of Crossing-MST818

As we remarked in Section 1, various special cases of Crossing-MST have been studied. For819

some of these special cases one can obtain a constant factor violation in the constraint [37, 36].820

We highlight one setting. One can view BD-MST as a special case of Crossing-MST821

where the matrix A is a {0, 1}-matrix with at most 2 non-zeroes per column (since an edge822

participates in only two degree constraints); the result in [43] has been extended in [33] (see823

also [8]) to show that if A is a {0, 1}-matrix with at most ∆ non-zeroes per column, then the824

fractional solution can be rounded such that the cost is not violated and each constraint is825

violated by at most an addtive bound of (∆− 1). Theorem 1 allows us to obtain a near-linear826

time algorithm to approximate the LP. Combined with the known rounding results, this827

gives estimates of the integer optimum solution in near-linear time. Thus, the bottleneck in828

obtaining a solution, in addition to the value, is the rounding step. Finding faster iterated829

rounding algorithms is an interesting open problem even in restricted settings.830

Multiple cost vectors831

In some applications one has multiple different cost vectors on the edges, and it is advantageous832

to find a spanning tree that simultaneously optimizes these costs. Such multi-criteria problems833

have been studied in several contexts. Let c1, c2, . . . , cr be r different cost vectors on the edges834

(which we assume are all non-negative). In this setting it is typical to assume that we are835

given bounds B1, B2, . . . , Br and the goal is to find a spanning tree T ∈ T (G) satisfying the836

packing constraints such that cj(T) ≤ Bj for j ∈ [r]. We can easily incorporate these multiple837

cost bounds as packing constraints and solve the resulting LP relaxation via techniques838

outlined in Section 5. Once we have the LP solution we note that swap-rounding is oblivious839

to the objective, and hence preserves each cost in expectation. With additional standard840

tricks one can guarantee that the costs can be preserved to within an O(log r) factor while841

ensuring that the constraints are satisfied to within the same factor guaranteed in Corollary 8.842

Lower bounds843

BD-MST has been generalized to the setting where there can also be lower bounds on844

the degree constraints of each vertex. [43] and [33] showed that the additive degree bound845

guarantees for BD-MST can be extended to the setting with lower bounds in addition to846

upper bounds. One can also consider such a generalization in the context of Crossing-MST.847

The natural LP relaxation for such a problem with both lower and upper bounds is of the form848

min{cT x : Ax ≤ b, A′x ≥ b′, x ∈ ST(G)} where A, A′ ∈ [0, 1]k×m, b, b′ ∈ [1,∞)k, c ∈ [0,∞)m.849

Here A corresponds to upper bounds (packing constraints) and A′ corresponds to lower850

bounds (covering constraints). This mixed packing and covering LP can also be solved851

approximately in near-linear time by generalizing the ideas in Section 5. Sparsification as852

APPROX/RANDOM 2021

24:22 Fast Bounded-Degree and Crossing Spanning Trees

well as swap-rounding can also be applied since they are oblivious to the constraints once the853

LP is solved. The guarantees one obtains via swap rounding are based on negative correlation854

and concentration bounds. They behave slightly differently for lower bounds. One obtains855

a tree T such that A1T ≤ (1 + ϵ)b + O(log k)/ϵ2 and A′1T ≥ (1 − ϵ)b′ − O(log k)/ϵ2 with856

high probability. As in the other cases, the LP solution proves the existence of good integer857

solutions based on the known rounding results.858

	1 Introduction
	1.1 Results
	1.2 Overview of main ideas
	1.3 Other related work

	2 Preliminaries and notation
	3 Fast swap rounding in the spanning tree polytope
	3.1 Randomized swap rounding
	3.2 Setup for fast implementation in graphs
	3.3 Fast implementation of swap-round

	4 Sparsification via the LP Solution
	5 Fast approximation scheme for solving the LP relaxation
	A Putting things together and extensions
	A.1 Proofs of corollaries
	A.2 Extensions and related problems

