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—— Abstract

‘We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree
MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (CROSSING-
ST). We solve the underlying LP to within a (1 + €) approximation factor in near-linear time

via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear
time algorithm that outputs an estimate B such that B < B* < [(1+€)B] + 1 where B* is the
minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main
technical contribution, we describe a fast near-linear time implementation of swap-rounding in the
spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input
graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas
lead to significantly faster approximation algorithms than known before for the two problems of
interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool
that has other applications, including to TSP and submodular function maximization.
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1 Introduction

Spanning trees in graphs are a fundamental object of study and arise in a number of settings.
Efficient algorithms for finding a minimum-cost spanning tree (MST) in a graph are classical.
In a variety of applications ranging from network design, TSP, phylogenetics, and others, one
often seeks to find a spanning tree with additional constraints. An interesting and well-known
problem in this space is the BOUNDED-DEGREE SPANNING TREE (BD-ST) problem in
which the goal is to find a spanning tree in a given graph G = (V, E) that minimizes the
maximum degree in the tree. We refer to the minimum-cost version of BD-ST as BD-MST
where one seeks a spanning tree of minimum cost subject to a given degree bound B on the
vertices. The decision version of BD-ST (Given G, B is there a spanning tree with maximum
degree B?) is already NP-Complete for B = 2 since it captures the Hamilton-Path problem.
In an influential paper, Fiirer and Raghavachari [24], building on earlier work of Win [49],
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Fast Bounded-Degree and Crossing Spanning Trees

described a simple local-search type algorithm that runs in O(mn) time (here m is number
of edges and n number of nodes) that outputs a spanning tree with degree at most B + 1, or
certifies that G does not have a spanning tree with degree at most B (we use O notation
to suppress poly-logarithmic factors in n,m, 1/e for notational simplicity). Their algorithm,
in fact, works even in the non-uniform setting where each vertex v has a specified degree
bound B,. The Fiirer-Raghavachari result spurred a substantial line of work that sought to
extend their clean result to the minimum-cost setting. This was finally achieved by Singh
and Lau [43] who described a polynomial-time algorithm that outputs a tree T such that
the degree of each v in T is at most B, + 1 and the cost of the tree is at most OPT. Their
algorithm is based on iterative rounding of a natural LP relaxation. We refer the reader to
[35, 13, 28, 43, 22] for several ideas and pointers on BD-ST and BD-MST.

Motivated by several applications, Bilo et al. [9] defined the CROSSING SPANNING
TREE problem (CROSSING-ST). In CROSSING-ST the input is a graph G = (V,E), a
collection of cuts C1,Cy,...,Cy, and integers Bi, Bs, ..., Bix. Each cut C; is a subset of
the edges though in many applications we view C; as dg(95;) for some S; C V (where
0¢(Si) ={uv e E|ueS;,veV\S,}is the standard definition of a cut set with respect to
S;). The goal is to find a spanning tree T" such that |E(T)NC;| < By, that is, T' crosses each cut
C; at most B; times. It is easy to see that BD-ST is a special case of CROSSING-ST where the
cuts correspond to singletons. We refer to the min-cost version of CROSSING-ST as CROSSING-
MST. CrOSSING-ST gained substantial prominence in the context of the asymmetric traveling
salesman problem (ATSP) — Asadpour et al. [5] showed the importance of thin spanning trees
for approximating ATSP and obtained an O(logn/loglogn)-approximation (now we have
constant factor approximations for ATSP via other methods [46, 47]). Motivated by the thin
tree conjecture and its applications to ATSP (see [5, 2]) and other technical considerations,
researchers have studied CROSSING-ST, its generalization to the matroid setting, and various
special cases [20, 8, 7, 37, 36]. The best known approximation algorithms for CROSSING-ST
and its special cases have mainly relied on the natural LP relaxation. For general CROSSING-
ST the best know approximation ratio is min{O(log k/loglog k), (1 + ¢)B + O(log k/e?)}. A
variety of sophisticated and interesting rounding techniques have been designed for CROSSING-
ST and its special cases. An outstanding open problem is whether CROSSING-ST admits
a constant factor approximation via the natural LP relaxation. This is challenging due its
implications for the thin tree conjecture.

Most of the focus on BD-MST and CROSSING-ST has been on the quality of the
approximation. The best known approximaton bounds rely on LP relaxations and complex
rounding procedures. The overall running times are very large polynomials in the input size
and are often unspecified. In this paper we are interested in the design of fast approximation
algorithms for BD-MST, CROSSING-ST and related problems. In recent years there has been
significant progress in designing fast, and often near-linear time, approximation algorithms
for a number of problems in discrete and combinatorial optimization. This has been led
by, and also motivated, synergy between continuous/convex optimization, numerical linear
algebra, dynamic data structures, sparsification techniques, and structural results, among
several others. For BD-ST with uniform degree, Duan, He and Zhang [22] described a
combinatorial algorithm that for any given € > 0, runs in O(m log” n/e") time, and either
outputs a spanning tree with degree (1 + €)B + O(logn/e?) or reports that there does not
exist a tree with maximum degree < B. This paper is partly motivated by the goal of
improving their results: dependence on €, a better approximation, handling non-uniform
bounds, cost, CROSSING-MST, and connection to the LP relaxation.

A second motivation for this paper is to develop a fast algorithm for swap-rounding in the
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spanning tree polytope. It is a dependent rounding technique that has several applications
ranging from TSP to submodular function maximization (see [20, 26, 17, 23]). The question
of developing a fast swap-rounding procedure for spanning trees was explicitly raised in [17]
in the context of Metric-TSP.

1.1 Results

In this paper we develop fast approximation algorithms for BD-MST, CROSSING-MST and
related problems in a unified fashion via broadly applicable methodology based on the LP
relaxation. We consider the following problem with general packing constraints. The input to
this problem is an undirected graph G = (V, E), a non-negative edge-cost vector ¢ : E — R4,
a non-negative matrix A € [0,1]**™, and a vector b € [1,00)*. The goal is to find a spanning
tree T of minimum cost such that Al < b where 17 € {0,1}™ is the characteristic vector
of the edge set of T. This is a special case of a more general problem considered in [20]:
min-cost matroid base with packing constraints. Here we restrict attention to spanning trees
(graphic matroid). We refer to this slightly more general problem also as CROSSING-MST.

Our first result is a near-linear time algorithm to approximately solve the underlying
LP relaxation for CROSSING-MST. For a multigraph G we let 7(G) denote the set of all
spanning trees of G and let ST(G) denote the spanning tree polytope of G (which is the
convex hull of the characteristic vectors {17 | T € T(G)}).

» Theorem 1. Let G = (V, E) be a multigraph with m edges and n nodes and consider the
linear program min{c'x : Az < b,z € ST(GQ)} where A € [0,1]F*™ b € [1,00)*,c € [0, 00)™.
Let N be the mazximum of m and number of non-zeroes in A. There is a randomized
polynomial time algorithm that for any given € € (0,1/2] runs in O(N/€*) time and with high
probability either correctly certifies that the LP is infeasible or outputs a solution y € ST(G)
such that ¢T'y < (14 €)OPT and Ay < (1+ €)b where OPT s the minimum value of a feasible
solution.

» Remark 2. We describe a randomized algorithm for the sake of simplicity, however we
believe that a deterministic algorithm with similar guarantees can be obtained via ideas in
[16].

Solving the LP relaxation quickly enables to estimate the optimum integer solution value
via existing rounding results [43, 20, 8, 7, 37, 36]. For instance, when specialized to BD-ST,
we obtain a near-linear time algorithm to estimate the optimum value arbitrarily closely
(modulo the addditive 1).

» Corollary 3. There is a randomized O(m/e?)-time algorithm that outputs a value B such
that B < B* < [(1 4 €)B]| 4+ 1 where B* is the minimum maximum degree over all spanning
trees (that is, B* = minpey(q) max,cy degy(v) where degp(v) is the degree of v in T').

Our second result shows the utility of the LP solution to sparsify the original graph G.

» Theorem 4. Let x € ST(G) be such that Ax < b for a matriz A € [0,1]¥*™ and b € [1, 00)*.
Consider a random subgraph G' = (V, E') of G obtained by picking each edge e € G with
probability o, := min{1, W e }. Then with high probability the following hold: (%)
|E'| = O(nln(k +m)/e?) (ii) there exists a fractional solution z € ST(G) in the support of
G’ such that Az < (1 + 3e)b.

One can run a combinatorial algorithm such as the Fiirer-Raghavchari algorithm [24] on
the sparse graph rather than on the original graph G. This yields the following corollary
which improves the O(mn) running time substantially when G is dense.
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» Corollary 5. There is a randomized algorithm for BD-ST that given a graph G on n nodes
runs in O(n?/e?) time, and with high probability outputs a spanning tree T with mazimum
degree [(1+ €)B*| + 2 where B* is the optimal degree bound.

» Remark 6. Corollaries 3 and 5 can be generalized to the non-uniform degree version of
BD-ST. Input is G and degree bounds B,,v € V, and the algorithm either decides that
there is no spanning tree satisfying the degree bounds or outputs a tree that approximately
satisfies them.

Our final result is a fast algorithm to round the LP solution. Several different rounding
strategies have been developed for BD-MST and CROSSING-MST and they yield different
guarantees and take advantage of the special structure of the given instance. Iterated
rounding has been one of the primary and powerful techniques, however it requires basic
feasible solutions to the LP relaxation; it seems far from obvious how to obtain fast algorithms
with comparable guarantees and is a challenging open problem. We are here interested
in oblivious randomized rounding strategies that take a point z € ST(G) and round it
to a random spanning tree 7' € 7 (G) such that the coordinates of the resulting random
edge vector are negatively correlated'. Negative correlation implies concentration for linear
constraints as shown by Panconesi and Srinivasan [38]. These strategies, when combined
with the LP solution, yield bicriteria approximation algorithms for CROSSING-MST of the
form (1 + ¢, min{O(log k/loglog k)b;, (1 + €)b; + O(log k)/€>}) where the first part is the
approximation with respect to the cost and the second part with respect to the packing
constraints. For CROSSING-ST and CROSSING-MST these are currently the best known
approximation ratios (although special cases such as BD-MST admit much better bounds).
Several dependent randomized rounding techniques achieving negative correlation in the
spanning tree polytope are known: maximum entropy rounding [5], pipage rounding and
swap rounding [20]. These rounding techniques generally apply to matroids and have several
other applications. In this paper we show that given 2 € ST(G), one can swap-round z to
a spanning tree in near-linear time provided it is given in an implicit fashion; alternately
one can obtain an implicit approrimate representation =’ of x and then apply an efficient
swap-rounding on z’. Since swap-rounding is a flexible procedure and does not generate a
unique distribution, a precise technical statement requires more formal notation and we refer
the reader to Section 3. Here we state a theorem in a general form so that it can be used in
other contexts.

» Theorem 7. Let G = (V, E) be a multigraph with m edges and let z € [0,1]™. For any
e € (0,1/2) there is a randomized algorithm that runs in O(m/€®) time and either correctly
decides that x ¢ ST(G) or outputs a random vector T = (X1, Xa,...,Xpm) € {0,1}™ such
that (i) T is the characteristic vector of a spanning tree of G (i) E[X;] < (1 + €)x; for
1<i<m and (iii) X1, Xa, ..., X, are negatively correlated. In particular T is obtained as
a swap-rounding of a vector y such that y < (1 + €)x.

Combining Theorems 1 and 7 and existing results on swap rounding [20] we obtain the
following. The approximation ratio matches the best known for CROSSING-MST and the
algorithm runs in near-linear time.

LA collection of %)[, 1} random variables X1, X2, ..., X, are negatively correlated if, for all subsets S C [r],
E[Hies Xi] <[],csE[Xi] and E[Hies(l - X)) < Hies(l —E[X3]).
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» Corollary 8. For the feasibility version of CROSSING-MST, there is a randomized algorithm
that runs in near-linear time and outputs a spanning tree T such that

Al < min{O(log k/ loglog k)b;, (1 + €)b; + O(log k) /¢*}

with high probability. For the cost version of CROSSING-MST, there is a randomized algorithm
that outputs a

(1 + ¢, min{O(log k/ log log k)b;, (1 + €)b; + O(log k)/€*})

bicriteria approzimation with probability Q(e). After O(1/€) independent repetitions of this
algorithm, we can obtain the same guarantees with high probability.

Our algorithm, when specialized to BD-ST and BD-MST is more general than the one
in [22] in terms of handling cost and non-uniform degrees. In addition we obtain a very close
estimate of B*, a much better dependence on ¢, and also obtain an approximation of the
form O(logn/loglogn)B* which is better than (1 + ¢)B* + O(logn)/e? for small B*.

We mainly focused on BD-MST and a high-level result for CROSSING-MST. One can
obtain results for related problems that involve multiple costs, lower bounds in addition to
upper bounds, and other applications of swap-roundings. We discuss these in more detail in
Section A.

1.2 Overview of main ideas

Faster approximation algorithms for LPs that arise in combinatorial optimization have been
developed via several techniques. We follow a recent line of work [16, 18, 39, 14] that utilizes
features of the multiplicative weight update (MWU) method and data structures to speed
up implicit LPs. In particular, the LP for CROSSING-MST that we seek to solve can be
addressed by the randomized MWU algorithm from [18] and data structures for dynamic
MST [29]. The overall approach follows some ideas from past work [16]. The sparsification
result is inspired by recent applications of similar ideas [16, 15, 11] and utilizes Karger’s
theorem on random sampling for packing disjoint bases in matroids [30].

Our main novel contribution is Theorem 7 which we believe is of independent interest
beyond the applications outlined here. Dependent randomized rounding techniques have had
many spectacular applications. In particular maximum entropy rounding in the spanning
tree polytope gave a strong impetus to this line of work via its applications to ATSP [5] and
metric-TSP [27]. Swap-rounding is a simpler scheme to describe and analyze, and suffices for
several applications that only require negative correlation. However, all the known dependent
rounding schemes are computationally expensive. Recent work has led to fantastic progress
in sampling spanning trees [4], however the bottleneck for maximum entropy rounding is to
compute, from a given point z € ST(G), the maximum entropy distribution with marginals
equal to x; polynomial time (approximation) algorithms exist for this [5, 44] but they are
rather slow. Swap-rounding [20] requires one to decompose x € ST(G) (or more generally a
point in the matroid base polytope) into a convex combination of spanning trees; that is
we write = . ALy such that > Ar =1 and Ay > 0,7 € 7. This is a non-trivial
problem to do exactly. The starting point here is a theorem in [16] that shows that one can
solve this decomposition problem approximately and deterministically in near-linear time via
a reduction to the problem of spanning tree packing; this is done via MWU techniques. The
near-linear time algorithm implies that any x € ST(G) can be decomposed efficiently into an
implicit convex decomposition of total size O(m/e?) where € is the approximation parameter
in the decomposition. To store the convex combination Z?ﬂ Ailr, implicitly, we store the
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first tree T explicitly and to obtain Tjy; from T; for ¢ € [h — 1], we store the edges in the
symmetric difference of T 1 and T;. The size of the decomposition is then the sum of the sizes
of the symmetric differences and the size of T7. We give a more formal definition of an implicit
decomposition in Section 3.2. We show in this paper that this implicit sparse decomposition
is well-suited to the swap-rounding algorithm. We employ a divide-and-conquer strategy
with appropriate tree data structures to obtain an implementation that is near-linear in the
size of the implicit decomposition. Putting these ingredients together yields our result.?

The seemingly fortuitous connection between the MWU based algorithm for packing
spanning trees and its implicit representation leading to a fast algorithm for swap-rounding
is yet another illustration of the synergy between tools coming together in the design of fast
algorithms.

1.3 Other related work

We overview some known results on CROSSING-ST and CROSSING-MST and special cases.
BD-MST can be viewed as a special case of CROSSING-MST where each edge participates in
2 constraints. Bansal et al. [8] showed that if each edge participates in at most A constraints
of A (and A is a binary matrix) then one can obtain a (1, b+A—1)-approximation generalizing
the BD-MST result; this was further extended to matroids by Lau, Kiraly and Singh [33].
It is shown in [7] that for CROSSING-ST one cannot obtain a purely additive approximation
better than O(y/n) via the natural LP relaxation. For this they use a reduction from
discrepancy minimization; it also implies, via the hardness result in [12] for discrepancy,
that it is NP-Hard to obtain a purely additive o(y/n) bound. Bansal et al. [7] consider
the laminar case of CROSSING-MST where the cuts form a laminar family and obtained
a (1,b + O(logn)) approximation via iterative rounding (this problem generalizes BD-
MST). Olver and Zenklusen [37] consider chain-constrained CROSSING-ST which is a further
specialization when the laminar family is a chain (a nested family of cuts). For this special
case they obtained an O(1)-factor approximation in the unit cost setting; Linhares and
Swamy [36] considered the min-cost version and obtained an (O(1),O(1))-approximation.
[37] also showed that even in the setting of chain-constrained CROSSING-ST, it is NP-Hard
to obtain a purely additive bound better than clogn/loglogn for some fixed constant c.

Dependent randomized rounding has been an active area of research with many applica-
tions. Pipage rounding, originally devoped by Ageev and Sviridenko [1] in a deterministic
way, was generalized to the randomized setting by Srinivasan [45] and by Gandhi et al. [25]
and [10, 20] and has led to a number of applications. Maximum entropy rounding satisfies
additional properties beyond negative correlation and this is important in applications to
metric-TSP (see [27] and very recent work [31, 32]). There has been exciting recent progress
on sampling spanning trees and bases in matroids and we refer the reader to some recent
work [41, 3, 4] for further pointers. Concentration bounds via dependent rounding can also
be obtained without negative correlation (see [21] for instance) and recent work of Bansal [6]
combines iterative rounding with dependent rounding in a powerful way.

2 In an earlier version of the paper (see [19]) we described our fast swap rounding using two ideas. The
first was a fast near-linear time algorithm to merge two spanning trees using the link-cut tree data
structure. We were unaware of prior work of Ene and Nguyén [23] that had already given such an
algorithm in the context of fast algorithms for submodular function maximization in graphic matroids.
In this version of the paper we use their algorithm as a black box. We focus on our second idea which
exploits the implicit representation. We thank Alina Ene and Huy Nguyén for pointing out to us their
fast algorithm for merging two trees.
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Fast approximation algorithms for solving positive LPs and SDPs has been an extensive
area of research starting from the early 90s. Lagrangean relaxation techniques based on
MWU and other methods have been extensively studied in the past, and continue to provide
new insights and results for both explicit and implicit problems. Recent work based on
a convex optimization perspective has led to a number of new results and improvements.
It is infeasible to do justice to this extensive research area and we refer the reader to two
recent PhD theses [40, 48]. Spectacular advances in fast algorithms based on the Laplacian
paradigm, interior point methods, cutting plane methods, spectral graph theory, and several
others have been made in the recent past and is a very active area of research with frequent
ongoing developments.

Organization

Section 2 introduces some relevant notation, technical background and tree data structures

that we rely on. Section 3 describes our fast swap-rounding algorithm and proves Theorem 7.

Section 4 describes the sparsification process of Theorem 4. Section 5 discusses the LP
relaxation for CROSSING-ST and Theorem 1. Section A brings together results from previous
sections to prove some of the corollaries stated in the introduction and provides details of
some extensions and related problems.

2 Preliminaries and notation

For a set S, we use the convenient notation S — i to denote S\ {i} and S + i to denote

S uU{i}.

Matroids

We discuss some basics of matroids to establish some notation as well as present some useful
lemmas that will be used later. A matroid M is a tuple (N,Z) with Z C 2V satisfying
the following three properties: (1) @ € Z, (2) if A€ Z and B C A, then B € Z, and (3) if
A, B € T such that |A| < |B] then there exists b € B\ A such that A+ b € Z. We refer to
the sets in Z as independent sets and say that maximal independent sets are bases. The rank
of M is the size of a base. For a set A € 2V, we refer to r(A) = max{|S|: S C A,S € T}
as the rank of A.

A useful notion that we utilize in our fast implementation of swap rounding is that of
contraction of a matroid. We say that the contraction of e in M results in the matroid
Mje=(N—e,{IC N—e:I+tecI})ifrm({e})=1land M/e=(N—e,{I C N—e:I€eI})
if rpq({e}) = 0. This definition extends naturally to contracting subsets A C N. It can be
shown that contracting the elements of A in any order results in the same matroid, which we
denote as M/A.

The following statements are standard results in the study of matroids (e.g. see [42]).

The following theorem is important in the analysis of swap rounding. It is often called the
strong base exchange property of matroids.

» Theorem 9. Let M = (N,T) be a matroid and let B, B’ be bases. For e € B\ B’, there
exists ¢ € B'\ B such that B—e+¢ € and B —¢e¢' +e€T.

The next lemma shows that if one contracts elements of an independent set in a matroid,
bases in the contracted matroid can be used to form bases in the initial matroid.
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» Lemma 10. Let M = (N,Z) be a matroid and let A € Z. Let By be a base in M/A.
Then AU By is a base in M.

A forest data structure

We need a data structure to represent a forest that supports the necessary operations we
need to implement randomized swap rounding in Section 3. The data structure mainly needs
to facilitate the contraction of edges, including being able to recover the identity of the
original edges after any number of contractions. We enable this by enforcing that when
the data structure is initialized, every edge e is accompanied with a unique identifier. This
identifier will be associated with the edge regardless of the edge’s endpoints changing due to
contraction. The implementation of this step is important to guarantee a fast running time.

The data structure is initialized via the function init, which takes as input the vertices,
edges, and unique edge identifiers of the forest. init initializes an adjacency list A, stores a
mapping f of edges to their unique edge identifiers, and creates a disjoint-set data structure
R where every vertex initially is in its own set. The operation contract contracts an edge uv
in the forest by identifying the vertices u and v as the same vertex. This requires choosing
or v to be the new representative (suppose we choose u without loss of generality), merging
the sets corresponding to v and v in R while making u the representative of the set in
R, and modifying the adjacency list A to reflect the changes corresponding to contracting
uv and making u the representative. After an edge is contracted, the vertex set changes.
We need to support the ability to obtain the edge identifier of an edge in the contracted
forest. The data structure maintains f under edge contractions and returns unique identifiers
with the operation orig-edge. Given an edge wv that was in the contracted forest at some
point in the past, we also need to support the ability to obtain the edge in the vertex
set of the current contracted forest. We do this using R, which stores all of the vertices
that have been contracted together in disjoint sets. This operation is supported by the
operation represented-edge. Finally, we can copy the graph via the operation copy, which
simply enumerates over the vertices, edges, and stored unique identifiers of the edges to
create a new data structure.

The following lemma formalizes the preceding description of the data structure. We leave
the formal details of a specific implementation and the proof of the following lemma for the
full version.

» Lemma 11. Let F = (V, E) be a forest and for all e € E, let id(e) be the unique identifier
of e. The data structure can be initialized via a call to init in O(|V|) time. Fori=0,1,...,k,
let F; = (V;, E;) be the forest after i calls to contract, so Fy = F and F}, is the current state
of the forest. The data structure supports the following operations.
orig-edge(e): input is an edge e € Ey. Output is the identifier id(e) that was provided
when e was added to the data structure. Running time is O(1).
represented-edge(e): input is two vertices u,v € V; for some i =0,1,... k. Output is the
pair {u,,v,}, where u, and v, are the vertices in Vi, that correspond to u and v in the
contracted forest Fy,. Running time is O(1).
contract(uv, z € {u,v}): input is two vertices u,v € V.. The operation contracts uv in
Ey, setting the new vertex in Frp11 = (Vig1, Ext1) to be {u,v} \ {z}. The amortized
running time is O(deng(z)).
copy(): output is a forest data structure with vertices Vi, and edges Ey along with the
stored edge identifiers. Running time is O(|V]).
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merge-bases(d, B, d’, B')
while B\ B’ # () do
e « arbitrary element of B\ B’
e’ < element of B’\ B such that B—e+¢ € Zand B'—e¢' +e€T
b + 1 with probability % and 0 otherwise
if b =1 then
B+ B—-e+¢
else
B'+ B —¢+e
end if
end while
return B

swap-round(dy, By, ..., 0p, Br)
Ci + By
for k from 1 to h — 1 do
Cry1 merge—bases(zi?:1 iy Chy Ok+1, Br+1)
end for
return (),

Figure 1 The randomized swap rounding algorithm from [20].

3 Fast swap rounding in the spanning tree polytope

Randomized swap rounding, developed in [20], is a dependent rounding scheme for rounding
a fractional point x in the base polytope of a matroid to a random base X. The rounding
preserves expectation in that E[X] = z, and more importantly, the coordinates of X are
negatively correlated. In this section we prove Theorem 7 on a fast algorithm for swap-
rounding in the spanning tree polytope. We begin by describing swap-rounding.

3.1 Randomized swap rounding

Let M = (N,Z) be a matroid and let P be the base polytope of M (convex hull of the
characteristic vectors of the bases of M). Any x € P can be written as a finite convex
combination of bases: z = Z?:l 0;1p,. Note that this combination is not necessarily unique.
As in [20], we give the original algorithm for randomized swap rounding via two routines. The
first is merge-bases, which takes as input two bases B, B" and two real values 4,9’ € (0,1). If
B = B’ the algorithm outputs B. Otherwise the algorithm finds a pair of elements e, e’ such
that e € B\ B’ and ¢ € B’\ B where B—e+¢ €Z and B’ — €' + e € Z. For such e and
e’, we say that they are a valid exchange pair and that we swap e with e¢’. The existence of
such elements is guaranteed by the strong base exchange property of matroids in Theorem 9.
The algorithm randomly retains e or €’ in both bases with appropriate probability and this
increases the intersection size of B and B’. The algorithm repeats this process until B = B’.
The overall algorithm swap-round utilizes merge-bases as a subroutine and repeatedly merges
the bases until only one base is left. A formal description is in Figure 1 along with the
pseudocode for merge-bases.

It is shown in [20] that swap-rounding generates a random base/extreme point X € P
(note that the extreme points of P are characteristic vectors of bases) such that E[X] =z
and the coordinates Xy, Xo, ..., X,, (here |[N| = n) are negatively correlated. We observe
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that swap-rounding does not lead to a unique probability distribution on the bases (that
depends only z). First, as we already noted, the convex decomposition of x into bases is not
unique. Second, both merge-bases and swap-round are non-deterministic in their choices of
which element pairs to swap and in which order to merge bases in the convex decomposition.
The key property for negative correlation, as observed in [20], is to view the generation of
the final base B as a vector-valued martingale (which preserves expectation in each step)
that changes only two coordinates in each step. Another rounding strategy, namely pipage
rounding, also enjoys this property. Nevertheless swap-rounding is a meta algorithm that
has certain clearly defined features. The flexibility offered by merge-bases and swap-round
are precisely what allow for faster implementation in specific settings.

We say that B 4 merge-bases(d, B, d’, B') if for some non-deterministic choice of valid
exchange pairs in the algorithm, B is the random output of merge-bases(6, B, ¢’, B’). Similarly

we say that B 4 swap-round(dy, By, ..., dp, By) if B is the random output of the swap-round
process for some non-deterministic choice of the order in which bases are merged and
some non-deterministic choices in the merging of bases. It follows from [20] that if B 4
swap-round(éy, By, ..., 0, B) then B satisfies the property that E[B] =  and coordinates
of B are negatively correlated.

3.2 Setup for fast implementation in graphs

Let G = (V, E) be a multigraph with |V| = n and |E| = m and let = € ST(G) be a fractional
spanning tree. Swap rounding requires decomposing z into a convex combination of spanning
trees. This step is itself non-trivial; existing algorithms have a high polynomial dependence
on n,m. Instead we will settle for an approrimate decomposition that has some very useful
features. We state a theorem (in fact a corollary of a theorem) from [16] in a slightly modified
form suitable for us.

» Theorem 12 (Paraphrase of Corollary 1.2 in [16]). Given a graph G = (V, E) with n = |V|
and m = |E| and a rational vector x € [0,1]™ there is a deterministic polynomial-time
algorithm that runs in O(m/eQ) time and either correctly reports that © & ST(G) or outputs
an implicit convex decomposition of z into spanning trees such that z < (1 + €)x.

The MWU algorithm behind the preceding theorem outputs a convex decomposition
of z =Y 81y, for h = O(m/e?) but in an implicit fashion. It outputs T = Ty and a
sequence of tuples (d;, Fy, E}) where T; 11 =T; — E; + E! for 1 <i < h and has the property
that Z?;11(|E,| +|E!|) = O(m/€?). Thus the convex decomposition of z is rather sparse and
near-linear in m for any fixed € > 0. We will take advantage of this and swap-round z via this
implicit convex decomposition. For many applications of interest, including CROSSING-MST,
the fact that we randomly round z instead of & does not make much of a difference in the
overall approximation since x itself in our setting is the output of an approximate LP solver.

» Remark 13. The output of the approximate LP solver based on MWU for CROSSING-MST
has the implicit decomposition as outlined in the preceding paragraph. However, for the sake
of a self-contained result as stated in Theorem 7, we use the result from [16] which also has
the advantage of being deterministic.

The rest of the section describes a fast implementation for swap-round. The algorithm
is based on a divide and conquer strategy for implementing swap-round when the convex
combination is described in an implicit and compact fashion. An important ingredient is a
fast black-box implementation of merge-bases. For this we use the following result; as we
remarked earlier, an earlier version of this paper obtained a similar result.
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» Theorem 14 (Ene and Nguyén [23]). Let T and T’ be spanning trees of a graph G = (V, E)
with [V| =n and E = TUT' and let §,6' € (0,1). There exists an algorithm fast-merge
such that fast-merge(8, T, 6", T") 4 merge-bases(, T, §', T") and the call to fast-merge runs in
O(nlog?®n) time.

3.3 Fast implementation of swap-round

In this subsection the goal is to prove the following theorem.

» Theorem 15. Let Z?:l 0; 17, be a convexr combination of spanning trees of the graph
G = (V,E) where n = |V|. Let T be a spanning tree such that T =Ty and let {(E;, E})}I=!
be a sequence of sets of edges such that Tj11 =T; — E; + E. for alli € [h—1] and E;NE] =10
for alli € [h — 1]. Then there exists an algorithm that takes as input T, {(E;, E})}'=, and
{6}, and outputs a tree Ts such that Ts 4 swap-round(d1,T1,...,0n,T1). The running
time of the algorithm is O(n + ) time where vy = Zf;ll(\El\ + |El]).

A divide and conquer approach

We consider the swap rounding framework in the setting of arbitrary matroids for simplicity.
We work with the implicit decomposition of the convex combination of bases Z?:l 0;1p, of
the matroid M = (N, Z), as described in Theorem 15. That is, the input is a base B such
that B = By, a sequence of sets of elements {(E;, E}) f;ll such that B;y1 = B; — E; + E
and E; N E! = () for all i € [h — 1], and the sequence of coefficients {d;}1_;.

The pseudocode for our divide and conquer algorithm divide-and-conquer-swap is given in
Figure 2. The basic idea is simple. We imagine constructing an explicit convex decomposition
By, Bs, ..., By from the implicit one. The high-level idea is to recursively apply swap rounding
to By, ..., By to create a base B, and similarly create a base B’ by recursively applying swap
rounding to By /211, ..., By, and then merging B and B’. The advantage of this approach is
manifested in the implicit case. To see this, we observe that in merge-bases(d, B, ', B'), the
intersection BN B’ is always in the output, and this implies that the intersection ﬂ?zl B; will
always be in the output of swap-round(d1, By, ..., 0p, Bp). Therefore, at every recursive level,
we simply contract the intersection prior to merging any bases. Note that this is slightly
complicated by the fact that the input is an implicit representation. However, we note that
BnU!'Z(B;:UE)) = B\N[_, Bi as E; U E, = B;AB;, for all i € [h — 1] where SAU
denotes the symmetric difference of the sets S,U (see full version for more details). (We
note later how the contraction of elements helps in the running time when specializing to the
graphic matroid.) After contracting the intersection, the algorithm recursively calls itself on
the first h/2 bases and the second h/2 bases, then merges the output of the two recursive
calls via merge-bases. With the given implicit representation, this means that the input to
the first recursive call is By, {(F;, E{)}fﬁ_l, {5,}?:% and the input to the second recursive
call is By 941, {(E;i, E}) ?:_,3/2“, {5i}?:h/2+1 (note we can easily construct By, /o4 via the
implicit representation). The underlying matroid in the call to merge-bases is the matroid
M with the intersection ﬂ:;l B; contracted.

The following lemma shows that divide-and-conquer-swap is a proper implementation of

swap-round. We leave the details of the proof for the full version of the paper.

» Lemma 16. Let Zf.;l 0;1p, be a convex combination of bases in the matroid M and
{(E, E;)}?:_ll be a sequence of elements such that B;11 = B;—E;+E] and E;NE. =0 for alli.
Then swap-round(d1, By, ..., 0, By) 4 divide-and-conquer-swap(By, {(E;, E)Y' =t {6:}0,).
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divide-and-conquer-swap(B, {(E;, E/)}.Z1 {6;}_,)
if s =1t then
return B
end if
Cemax {0 € {s,;s+ 1,00 S0 BN < ) IE
B+ BNUZ{(EiUE)
BC — B
for ¢ from s to ¢ do
BC — BC —FE; + Ez/
end for
BL + divide-and-conquer- swap(B {(E;, EN)}Z! ) {(5 )
Bp, + divide-and-conquer-swap (B¢, { (E;, E})}!Z 2+17 {0} _oi1)
By merge- bases(z 51,BL, Zi:lJrl 6¢,BR)
return By U (B\ UiZ 1(E UE)))

Figure 2 A divide-and-conquer implementation of swap rounding with an implicit representation.

A fast implementation of divide-and-conquer-swap for spanning trees

The pseudocode for our fast implementation fast-swap of divide-and-conquer-swap is given in
Figure 4.

As in divide-and-conquer-swap, the algorithm fast-swap contracts the intersection of the
input. Suppose we contract the intersection ﬂh T; in T and call this contracted tree Tj.

Then ’T ‘ . A simple argument shows that Tj \ﬁz 1T C U (T ATiq) =

Ui:1 (E; U E;) (see full version for more details). Thus, the size of the contracted tree is
bounded by the size of the implicit representation v := Z;:ll |E;| + |EZ|. One can write a
convex combination of bases in any matroid using the implicit representation, and contraction
could even be implemented quickly as is the case in the graphic matroid. The main point for
improving the running time is having an implementation of merge-bases that runs in time
proportional to the size of the contracted matroid. This is key to the speedup achieved for the
graphic matroid. fast-merge runs in time proportional to the size of the input trees, which
have been contracted to have size O(min{n,v}), which yields a running time of O(min{n,~}).
This speedup at every recursive level combined with the divide-and-conquer approach of
fast-swap is sufficient to achieve a near-linear time implementation of swap-round.

=1

Recall that as we are working with contracted trees, an edge in the contracted trees
might have different endpoints than it did in the initial trees. The identifiers of edges do not
change, regardless of whether the endpoints of the edge change due to contraction of edges
in a tree. We therefore will refer to id’s of edges throughout the algorithm fast-swap to work
from contracted edges back to edges in the initial trees. This extra bookkeeping will mainly
be handled implicitly.

Contraction of the intersection of the input trees in fast-swap using only the implicit
representation is handled by the algorithm shrink-intersection and we give the pseudocode
in Figure 3. Consider spanning trees Ts,Ts41,...,71;. The input to shrink-intersection
is Ts and a sequence of sets of edges {(E;, E}) Z_S such that T;41 = T; — E; + E} and
E;NE;=0fori e {s,s+1,...,t —1}. Then shrink-intersection contracts mi:st in Ty.
It is then easy to see that one can compute the intersection via the edges {(E;, E!) f;; as
Ni_ T =T \UZ 1(E U E!) (see full version for more details). Let Ty be Ty with (,_, T;
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shrink-intersection (T, {(E;, E/)}!Z1)
T + T.copy()
for e c T\ U'Z(E; UE)) do
uv < T'.represented-edge(e)
assume deg;(u) < deg;(v) (otherwise rename)
T'.contract (uv, u)
end for
let id(e) denote the unique identifier of an edge e
for i from s tot — 1 do
E; Ueer, (T.represented-edge(e), id(e))
E! UeeE; (T.represented-edge(e), id(e))
end for
return (7, {(E;, E))}IZ))

Figure 3 A subroutine used in our fast implementation fast-swap of randomized swap rounding;
used to implicitly contract the trees of the given convex combination.

contracted. The vertex set of Ts is different than the vertex set of Ts. Then as the sets of
edges F; and E! for all ¢ are defined on the vertices in Ts, we need to map the endpoints of
edges in E; to the new vertex set of Ts. Using the data structure presented in Lemma 11,
this is achieved using the operations represented-edge and orig-edge, which handle mapping
the edge to its new endpoints and maintaining the edge identifier, respectively.

The following lemma shows that shrink-intersection indeed contracts the intersection of
the trees via the implicit representation. We leave the details of the proof for the full version.

» Lemma 17. Let T1, ..., Ty be spanning trees and let {(F;, E})}'=} be a sequence of edge

sets defined on the same vertex set such that T;11 =T; — E; + E} and E;NE; =0 for all

i € [h—1]. Contract ﬂl 1T in Tl, ..., Ty, to obtain Ty, ..., Ty, respectively.
Let np, = |T] and v = Z (|E | + |E’|) Then shrlnk mtersec'uon(Tl7 {(E;

A

runs in time O(np, +7) and outputs (T, {(E;, E)Y'=1) where T = Ty and Ty = TZ
for all i € [h —1]. Moreover, |E;| = |E;| and |E!| = ‘E{’ for all i € [h—1] and

min{nr,,7}.

}:L
“E

<

)

E;

We use the algorithm in Theorem 14 for merge-bases. In fast-swap, the two trees that
are merged Ty, and T are the return values of the two recursive calls to fast-swap. The
algorithm at this point has explicit access to the adjacency lists of both Ty, and TR, which
are used as input to the algorithm fast-merge. The output of fast-merge will be the outcome
of merging the two trees T, and TR, which are edges of potentially contracted trees from
the original convex combination. We can use the operation orig-edge of the forest data
structure of Lemma 11 for 77, and Tk to obtain the edges from the trees of the original
convex combination. This extra bookkeeping will be handled implicitly.

We next prove that fast-swap is implementing swap-round and that it runs in near-linear
time.

» Lemma 18. Let Z?zl 0; 17, be a convexr combination of spanning trees of the graph
G = (V,E) where n = |V|. Let T be a spanning tree such that T =Ty and let {(E;, E)}I=!

be a sequence of sets of edges such that T; 11 = T —E;+E! and E;NE, =0 foralli € [h—1].

Then fast-swap(T, {(Ez,E’) i Lo ) swap- round(él,Tl,.. ,0n, Th) and the call to
fast-swap runs in O(ny + ) time where ny = |T| and v = Z (\E | + |E]).
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fast-swap(T, {(E;, E})}iZ S,{é} s)
if s =t then
return T
end if
éemaX{K'E{s st L.t Y B < AY |E-|}
(T {(E“E’) 1Y < shrink- mtersectlon(T (B, EDYZD
Ec « E(T)
for i from s to £ do
EC «— EC — El + EA';
end for
Te « init(V(T), Ec)
TL <« fast- swap(T {(E“E’)}z s,{5 )
TR <+ fast- swap(Tc, {(EzaEl) e+1v {o:}i é+1)
Thr « fast- merge(z (5,,TL,X:Z —41 6:,Tr)
return Ty U (T \ U\Z 1(E UE)))

Figure 4 A fast implementation of randomized swap rounding from [20].

Proof. One can immediately see fast-swap is an implementation of divide-and-conquer-swap.
There are some bookkeeping details that are left out of the implementation, such as main-
taining the set of edges returned by fast-merge, but these are easily handled. Lemma 16
shows that divide-and- conquer-swap(&l,Tl,.. 6h,Th) = swap-round(d1, 71, ...,0pn,Th), im-
plying fast-swap(7T, {(E;, Ef) }Z 1 Lo swap round(é1,T1, ..., 0n, Th).

Now we prove the running tlme bound. Let R(nr,7) denote the running time of the
call to fast-swap(T, {(E;, E})}' =L {630 ,). By Lemma 17, the running time of the call to
shrink-intersection is O(ng + 7). Let (T, {(E;, B/} ) be the output of shrink-intersection.

Lemma 17 also guarantees that v = Z?_ ! ’ and ‘T‘ < min{np,v}. Then by

Lemma 11, constructing T¢ requires O(nT + ’y) time. As the size of T, and T is the same

as T and T, the call to fast-merge runs in O(nr + v) time by Theorem 14. The time it

takes to compute the returned tree is O(ny + ) as we have enough time to scan all of T

and U (E U EY). So the total time excluding the recursive calls is (nr + 7) - a for where
O(log (np + 7)) for some fixed integer c.

As for the recursive calls, first define y(s, ) := S°¢__(|E;|+|E/|). Then the running time of
the first recursive call is R(n, v(1,¢—1)) and the second recursive call is R(ny,,y(€+1, h—1)).
By choice of ¢, we always have that v(1,£ —1) < 3. As [ is the largest integer such that
v(1,£ —1) < %, then y(1,£) > 7. Therefore, we have y({ +1,h —1) = v —~y(1,£) < 3
Combining this with the fact that shrink-intersection guarantees that ‘T‘ < min{ny,v} and

’TC’ < min{ny,~}, we have

R(nr,v) < 2R(min{nr,v},7/2) + a- (nr + 7).

Note that R(np,7v) = O(1) when ny = O(1) and v = O(1).

We claim that R(a,b) < af - (a+ 8blogb) is a valid solution to this recurrence for some
sufficiently large but fixed constant 5 > 1. By choosing § sufficiently large it is clear that it
holds for the base case. To prove the inductive step we see the following;:

R(a,b) < 2R(min{a, b},b/2) + a - (a+b) < 2[af - (min{a, b} + 4blog(b/2))] + o - (a + b).
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Hence we need to verify that

2[aB(min{a, b} 4 4blog(b/2))] + a - (a +b) < af - (a + 8blogb). (1)
Since 8 > 1, rearranging, it suffices to verify that

2min{a, b} + 8blog(b/2) + b < 8blogb.

As 8blogb — 8blog(b/2) = 8b and 2min{a,b} + b < 3b, this proves (1) and therefore

R(n7,7v) < af(ny + 8ylogy) = O(ng + 7). This concludes the proof. <

The proof of Theorem 7 then follows by combining Theorem 12 (and remarks after the
theorem statement) and Theorem 15.

4 Sparsification via the LP Solution

Let G = (V, E) be a graph on n nodes and m edges and let  be a point in ST(G). In
this section we discuss Theorem 4, which shows that, via random sampling, one can obtain
a sparse point 2’ € ST(G) from z. The random sampling approximately preserves linear
constraints and thus one can use this technique to obtain sparse LP solutions to the packing
problems involving spanning tree (and more generally matroid) constraints. The sampling
and analysis rely on Karger’s well-known work on random sampling for packing disjoint bases
in matroids. We paraphrase the relevant theorem.

» Theorem 19 (Corollary 4.12 from [30]). Let M be a matroid with m elements and non-
negative integer capacities on elements such that M has k disjoint bases. Suppose each
copy of a capacitated element e is sampled independently with probability p > 18(Inm)/(ke?)
yielding a matroid M(p). Then with high probability the number of disjoint bases in M(p) is
in [(1 — €)pk, (1 + €)pk].

We restate Theorem 4 for the reader’s convenience. We leave the details of the proof to
the full version.

» Theorem 20. Let x € ST(G) be a rational vector such that Az < b for a matriz A €
[0,1]"*™ and b € [1,00)". Consider a random subgraph G' = (V, E') of G obtained by picking
each edge e € G with probability c. := min{l, W -Ze}. Then with high probability the
following hold: (i) |E'| = O(nln(r +m)/€?) (i) there exists a fractional solution z € ST(G)
in the support of G' such that Az < (1 + 3¢)b.

» Remark 21. For problems that also involve costs, we have a fractional solution x and an
objective ) ccx.. Without loss of generality we can assume that ¢, € [0, 1] for all e. The
preceding proof shows that the sparse graph obtained by sampling supports a fractional
solution z such that E[)_ccze] < (1+¢€) ), cewe. Further, >, ceze < (1+3€) Y, cee holds
with high probability as long as max. c. < ), cewe. This condition may not hold in general
but can be typically guaranteed in the overall algorithm by guessing the largest cost edge in
an optimum integer solution.

» Remark 22. The proof in the preceding theorem also shows that with high probability
the graph G’ is connected and satisfies the property that A1z < O(logn/e?)b. Thus any
spanning tree of G’ satisfies the constraints to a multiplicative O(logn)-factor by fixing € to
a small constant. This is weaker than the guarantee provided by swap-rounding.
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5 Fast approximation scheme for solving the LP relaxation

In this section, we discuss Theorem 1, which gives a fast approximation scheme to solve the
LP relaxation for CROSSING-ST. We recall the LP for CROSSING-ST.

min Y eck CelYe
subject to Ay <b (P)
y € ST(G)

Note that even the feasibility problem (whether there exists y € ST(G) such that Ay < b)
is interesting and important. We will mainly focus on the feasibility LP and show how we
can incorporate costs in the full version of the paper. We recast the feasibility LP as a pure
packing LP using an implicit formulation with an exponential number of variables. This is
for technical convenience and to more directly apply the framework from [18]. For each tree
T € T(G) we have a variable 7 and we consider the problem of packing spanning trees.

maximize E T

TeT

subject to Z (Alg); - xr < b, Vi€ [k] ©)
TeT
T > 0’ YTI'eT

The following is easy to establish from the fact that y € ST(G) iff y can be written as a
convex combinaton of the characteristic vectors of spanning trees of G.

» Observation 23. There exists a feasible solution y to P iff there exists a feasible solution
x to C with value at least 1. Further, if x is a feasible solution to C with value (1 — €) there

exists a solution y such that y € ST(G) and Ay < 1ieb.

C is a pure packing LP, albeit in implicit form. In the full version of the paper, we show
how to approximately solve the LP using MWU techniques and in particular we use the
randomized MWU framework from [18] for positive LPs. The full version reviews the MWU
framework and shows how to apply it along with other implementation details to achieve the
concrete run times that we claim in Theorem 1.
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A  Putting things together and extensions

In the main body of the paper we discussed the main technical results corresponding to
Theorems 1, 4, and 7. In this section we give formal proofs of the corollaries stated in
Section 1. In addition, we also describe some extensions and other related results that follow
from the ideas in the preceding sections.

A.1 Proofs of corollaries

We start with Corollary 3.

Proof of Corollary 3. Let G = (V, E) be the input graph with m edges and n vertices and
let € > 0. Consider the LP relaxation to test whether G has a spanning tree with degree at
most a given parameter B’. Theorem 1 implies that there exists a randomized algorithm that,
with high probability, either correctly determines that there is no feasible solution to the LP,

or outputs a fractional spanning tree y € ST(G) such that 3 s, ye < (14 €)B’ for all v.

Using the algorithm, we can do binary search over the integers from 2 to n — 1 to find the
smallest value B for which the algorithm outputs a solution. We will focus on the scenario
where the algorithm from Theorem 1 is correct in each of the O(logn) calls in the binary
search procedure; this happens with high probability. For the value of B found in the binary
search, let y € ST(G) be the solution that is output; we have > s, ve < (1 +€)B for all
v. Since the approximate LP solver correctly reported infeasibility for all B’ < B, we have
B — 1 < B*, which implies B < B*. As there is a feasible fractional spanning tree y such

that 3 cs50,) Ye < [(1+€)B] for all v, the result of [43] implies that B* < [(1+€)B] + 1.
Regarding the run time, each call to the algorithm in Theorem 1 takes O(m/e?) time since

N = O(m) in the setting of BD-ST. Binary search adds only an O(log n) multiplicative-factor

overhead, leading to the claimed running time. |

We next prove Corollary 5. The algorithm described in the corollary takes advantage of
Theorem 4 to sparsify the input graph, then runs the Fiirer-Raghavachari algorithm [24].
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Proof of Corollary 5. We will assume that the input is a graph G = (V, E) m edges and
n vertices. Let € > 0. As in the proof of Corollary 3, we can use Theorem 1 and binary
search to find in O(g) time, with high probability, a fractional spanning tree z € ST(G)
such that >- 5.,y ze < (14 €)B” for all v € V. By Theorem 4, we can use random
sampling based on z to obtain a subgraph G’ = (V, E’) of G such that with high probability
we have |E'| = O(M) and there exists a fractional solution z € ST(G) in the
support of G such that }_ 5.,y 2 < (14 3€)(1 4 €)B* < (1 + Te)B* for all v € V (for
sufficiently small €). The result of [43] implies there exists a spanning tree T' in G’ such
that max,cy degy(v) < [(1+ 7¢)B*] + 1. For a graph H on n vertices and m edges, the
algorithm of [24] runs in O(mn) time and outputs a spanning tree T such that the maximum
degree of T is at most OPT(H) + 1, where OPT(H) = minpe7(g) max,ev degp(v). Thus,
the algorithm of [24] when applied to G’, outputs a spanning tree with degree at most

[(1+ 7€)B*] 4 2, and runs in O(Z—j) time. <

We now prove Corollary 8. This corollary combines the LP solver of Theorem 1 and the
fast implementation of randomized swap rounding of Theorem 7 to give a fast algorithm for
CROSSING-MST.

Proof of Corollary 8. Let G = (V, E) be the input graph and ¢ > 0. We want to solve
min{c’z : Az < b,z € ST(G)}. By Theorem 1, there exists a randomized algorithm that
runs in O(N/e?) time and with high probability certifies the LP is infeasible or outputs
y € ST(G) such that ¢fy < (1 + ¢)OPT and Ay < (1 + €)b. We then apply the fast
implementation of randomized swap rounding of Theorem 7 to y, which runs in O(m/e?)
time and outputs a spanning tree T'. If we only considered the feasibility version (i.e. find
x € ST(G) such that Az < b), then the existing results on swap rounding [20] imply that
Al < min{O(log k/loglog k)b, (1 + €)b + O(log k)/e*} with high probability. In the cost
version, [20] implies that Al < min{O(logk/loglog k)b, (1 + €)b + O(log k)/e*} with high
probability, and E[cT17] < >°_c¢Tz. Thus, the cost is preserved only in expectation. We can,
however, apply Markov’s inequality and conclude that Pr[cf 17 > (1 +€)cTz] < 1; <1-3
(for € sufficiently small). For a suitable choice of the high probability bound, we have
that Alr < min{O(logk/loglog k)b, (1 + €)b + O(logk)/e?} and 11 < (1 + €)cl'z with
probability at least § — L !

5.2- We can assume that € > 5, for otherwise the E% dependence
in the run time of the approximate LP algorithm is not meaningful; one can use other
techniques including an exact LP solver. Thus, with probability at least 7, we have cTlp <
(14 0(e))cTz < (14 0(e))OPT and Alr < min{O(log k/ loglog k)b, (1 + €)b + O(log k) /€?}.
To boost the § probability of success, we can repeat the rounding algorithm O(k’%)
times independently; with high probability, one of the trees will yield the desired bicriteria
approximation. |

Non-uniform degree bounds

We briefly sketch some details regarding Remark 6. First, we note that the algorithm for
solving the LP relaxation handles the non-uniform degree bound case in O(m/e?) time. It
either certifies that the given bounds are infeasible or outputs a fractional solution with
degree at most (1 + €)B, for each v. We can then apply the result in [43] to know that
there exists a spanning tree 7' in which the degree of each v is at most [(1 + €)B,] + 1.
We can apply sparsification from Theorem 4 to the fractional solution to obtain a sparse
subgraph that contains a near-optimal fractional solution. It remains to observe that the
Fiirer-Raghavachari algorithm can be used even in the non-uniform setting via a simple
reduction to the uniform setting. This was noted in prior work [34, 43] and we provide the
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details in the full version of the paper. This results in an O(n?/€?) time algorithm that either
decides that the given non-uniform degree bounds are infeasible or outputs a spanning tree
in which the degree of each node v is at most [(1 + €)B,| + 2.

A.2 Extensions and related problems

We focused mainly on BD-ST, BD-MST and CROSSING-MST. Here we briefly discuss
related problems that have also been studied in the literature to which some of the ideas in
this paper apply.

Estimation of value for special cases of CROSSING-MST

As we remarked in Section 1, various special cases of CROSSING-MST have been studied. For

some of these special cases one can obtain a constant factor violation in the constraint [37, 36].

We highlight one setting. One can view BD-MST as a special case of CROSSING-MST
where the matrix A is a {0, 1}-matrix with at most 2 non-zeroes per column (since an edge
participates in only two degree constraints); the result in [43] has been extended in [33] (see
also [8]) to show that if A is a {0, 1}-matrix with at most A non-zeroes per column, then the
fractional solution can be rounded such that the cost is not violated and each constraint is
violated by at most an addtive bound of (A —1). Theorem 1 allows us to obtain a near-linear
time algorithm to approximate the LP. Combined with the known rounding results, this
gives estimates of the integer optimum solution in near-linear time. Thus, the bottleneck in
obtaining a solution, in addition to the value, is the rounding step. Finding faster iterated
rounding algorithms is an interesting open problem even in restricted settings.

Multiple cost vectors

In some applications one has multiple different cost vectors on the edges, and it is advantageous
to find a spanning tree that simultaneously optimizes these costs. Such multi-criteria problems
have been studied in several contexts. Let ¢, co, ..., ¢, be r different cost vectors on the edges
(which we assume are all non-negative). In this setting it is typical to assume that we are
given bounds Bji, Bo, ..., B, and the goal is to find a spanning tree T € T (G) satisfying the
packing constraints such that ¢;(T") < Bj for j € [r]. We can easily incorporate these multiple
cost bounds as packing constraints and solve the resulting LP relaxation via techniques
outlined in Section 5. Once we have the LP solution we note that swap-rounding is oblivious
to the objective, and hence preserves each cost in expectation. With additional standard
tricks one can guarantee that the costs can be preserved to within an O(logr) factor while

ensuring that the constraints are satisfied to within the same factor guaranteed in Corollary 8.

Lower bounds

BD-MST has been generalized to the setting where there can also be lower bounds on
the degree constraints of each vertex. [43] and [33] showed that the additive degree bound
guarantees for BD-MST can be extended to the setting with lower bounds in addition to

upper bounds. One can also consider such a generalization in the context of CROSSING-MST.

The natural LP relaxation for such a problem with both lower and upper bounds is of the form

min{c’z : Az <b, Az > ,x € ST(G)} where A, A’ € [0,1]**™ b, b’ € [1,00),c € [0,00)™.

Here A corresponds to upper bounds (packing constraints) and A’ corresponds to lower
bounds (covering constraints). This mixed packing and covering LP can also be solved
approximately in near-linear time by generalizing the ideas in Section 5. Sparsification as
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well as swap-rounding can also be applied since they are oblivious to the constraints once the
LP is solved. The guarantees one obtains via swap rounding are based on negative correlation
and concentration bounds. They behave slightly differently for lower bounds. One obtains
a tree T such that Alr < (1 +¢€)b+ O(logk)/e®* and A"l > (1 — )b’ — O(log k)/e? with
high probability. As in the other cases, the LP solution proves the existence of good integer
solutions based on the known rounding results.
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